
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STATE SPACE MODELS ARE PROVABLY COMPARABLE
TO TRANSFORMERS IN DYNAMIC TOKEN SELECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep neural networks based on state space models (SSMs) are attracting signifi-
cant attention in sequence modeling since their computational cost is significantly
smaller than that of Transformers. While the capabilities of SSMs have been
demonstrated through experiments in various tasks, theoretical understanding of
SSMs is still limited. In particular, most theoretical studies discuss the capabil-
ities of SSM layers without nonlinear layers, and there is a lack of discussion
on their combination with nonlinear layers. In this paper, we explore the capa-
bilities of SSMs combined with fully connected neural networks, and show that
they are comparable to Transformers in extracting the essential tokens depending
on the input. As concrete examples, we consider two synthetic tasks, which are
challenging for a single SSM layer, and demonstrate that SSMs combined with
nonlinear layers can efficiently solve these tasks. Furthermore, we study the non-
parametric regression task, and prove that the ability of SSMs is equivalent to that
of Transformers in estimating functions belonging to a certain class.

1 INTRODUCTION

Foundation models based on Transformers have achieved remarkable success in various sequence
modeling tasks such as natural language processing (Vaswani et al., 2017), computer vision (Doso-
vitskiy et al., 2020), and speech recognition (Radford et al., 2023). The superior performance of
Transformers is attributed to the self-attention mechanism, which enables the model to aggregate
information from the input sequence.

In contrast to its success, the self-attention mechanism has a potential problem that it requires a large
amount of computation and memory. To deal with this issue, many studies have attempted to develop
efficient models that can replace Transformers. Among them, State Space Models (SSMs) have gar-
nered considerable interest recently. One advantage of SSMs is that the output can be computed
with a significantly small time using convolution via the FFT algorithm or recursive computation.
Based on the original SSMs, many improvements have been proposed, such as HiPPO-based in-
tialization (Gu et al., 2021) and architectures using gated convolutions (Fu et al., 2022; Poli et al.,
2023).

Networks based on SSMs have achieved high performance in various applications such as gene
analysis (Nguyen et al., 2024), audio generation (Goel et al., 2022) and speech recognition (Saon
et al., 2023). On the other hand, some of the recent studies pointed out the limitations of SSMs to
solve tasks. For example, Merrill et al. (2024) show that SSMs cannot solve sequential problems
from the view of computational complexity theory. Additionally, Jelassi et al. (2024) demonstrate
that SSMs are inferior to Transformers in solving the task to copy the input sequence.

One of the major differences between SSMs and Transformers lies in how they aggregate infor-
mation from the input sequence tokens. The output of Transformers is computed as a weighted
sum of the input tokens, where the weights are determined depending on the input. This allows
the Transformer to dynamically determine which tokens to extract based on the input, leading to its
high performance. SSMs also compute their output as a weighted sum of the input tokens, but the
weights do not depend on the input. Therefore, a single SSM layer cannot perform dynamic token
extraction, which limits its capability.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Nonlinear + SSM

Data-independent

Comparable

Transformer

Data-dependent

Both models can switch the tokens they pay attention to.

Figure 1.1: Conceptual illustrations of our theory. The abilities of SSMs are said to be limited since
their filter is not data-dependent. However, when combined with nonlinear layers, SSMs are compa-
rable to Transformers in terms of dynamic token selection. Indeed, experiments on associative recall
tasks show that SSMs capture the important tokens in the sequence depending on the input, which
is similar to the behavior of Transformers. The heatmap in the figure represents the importance of
the token when the model predicts the output. Note that these are not artificial figures, but the actual
results of the experiments.

However, in typical architectures, SSMs are repeatedly applied alternately with fully connected
neural networks (FNNs), similar to the attention mechanism. This raises the following question:

Can SSMs combined with FNN layers perform dynamic token selection similar to Transformers?

This paper provides a positive theoretical result for this question. Specifically, we demonstrate that
SSMs, when combined with FNNs, can exhibit dynamic token selection with performance equiva-
lent to Transformers.

To demonstrate the claim, we consider two synthetic tasks (input copying and associative recall),
and a non-parametric regression problem. Input copying is the task of generating the same sequence
as the given input. Jelassi et al. (2024) intensively studied this task and showed that a single SSM
layer underperforms compared to Transformers in solving this task. In this paper, we show that two-
layer SSMs combined with FNN layers can achieve performance comparable to Transformers in this
task. In associative recall, the models are required to infer the answer from a pair of words provided
as input. We demonstrate that the performance of SSMs combined with FNN layers is better than
that of SSMs without FNNs shown in Massaroli et al. (2024). As for the non-parametric regression,
we consider the estimation of piecewise γ-smooth functions, which is defined in Takakura & Suzuki
(2023). Takakura & Suzuki (2023) shows that Transformers can efficiently estimate functions in this
class. We show that SSMs combined with FNN layers can achieve the same convergence rate as the
rate for Transformers shown in Takakura & Suzuki (2023).

In solving the three problems above, the models have to determine which tokens to extract based on
the input data. Therefore, these results imply that SSMs possess dynamic token extraction capabil-
ities comparable to Transformers. We give some examples of associative recall task in Figure 1.1.
We trained SSMs and Transformers on the task and draw heatmaps to show which tokens the trained
models focus on. From the figures, we can observe that both models pay attention to similar parts
of the input. This verifies that SSMs possess dynamic feature extraction capabilities comparable to
Transformers. See Section 3.2 for more details of the associative recall task.

The contributions of this paper are summarized as follows:
1. We theoretically study the abilities of SSMs to solve two artificial tasks, input copying and asso-

ciative recall, and prove that SSMs + FNNs can solve these tasks efficiently (Section 3.1, 3.2).

2. To prove the above results, we provide a theoretical result that shows SSMs combined with FNNs
can mimic the dynamic token selection mechanism of Transformers (Section 3.3).

3. As a more general example, we also consider the non-parametric regression for the function
class defined in Takakura & Suzuki (2023), and demonstrate that SSMs can achieve the same
estimation error as Transformers (Section 4).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Other related works. Some studies have theoretically investigated the abilities of SSMs recently.
For instance, Wang & Xue (2023) show that SSMs are universal approximators for continuous
sequence-to-sequence functions. Moreover, Cirone et al. (2024) studied the abilities of SSMs using
rough path theory. Furthermore, Alonso et al. (2024) analyzed the abilities of SSMs with the use of
the control theory. However, these studies (i) do not give quantitative evaluations comparing SSMs
to Transformers, and/or (ii) only consider SSM layers without nonlinear layers.

There are some previous studies for the estimation error bound for non-parametric regression, for
example, Suzuki (2018); Schmidt-Hieber (2020); Suzuki & Nitanda (2021) for FNNs and Okumoto
& Suzuki (2021) for CNNs. These studies do not consider the case where the positions of essential
features change depending on the input. The function classes with piecewise smoothness are also
considered in Petersen & Voigtlaender (2018) and Imaizumi & Fukumizu (2019). They do not
consider anisotropic smoothness or sequence inputs, whereas we consider such situations.

Notations. For l, r ∈ Z (l ≤ r), let [l] be the set {1, . . . , l}, and [l : r] be the set {l, . . . , r}.
For a set S ⊆ R and d, V ∈ N, let Sd×[−V :0] :=

{
[s−V , . . . , s0] | si ∈ Sd

}
and let Sd×∞ :={

[. . . , s−2, s−1, s0] | si ∈ Sd
}

. For F : Ω → Rl, let ∥F∥∞ := supX∈Ω ∥F (X)∥∞. For a matrix
A, let ∥A∥0 = |{(i, j) | Aij ̸= 0}|. For X ∈ Rd×∞, Xi,: ∈ R1×∞ represents its i-th row.

2 THE DEFINITION OF DEEP NEURAL NETWORKS WITH SSMS

In this section, we provide the formal definition of deep neural networks with SSMs. State space
models with the input [ut]0t=−L, the latent vectors [xt]0t=−L and the output [yt]0t=−L (ut ∈ R, xt ∈
R, yt ∈ R), are represented as follows:

xt+1 = Axt + But, yt = Cxt + Dut (t = −L, . . . ,−1),

where A,B,C,D ∈ R are learnable parameters. Then, the output yt can be written explicitly as
yt =

∑t
n=−L (CAt−nB+ Dδt−n)un. By setting ht := CAtB + Dδt and h = [ht]

L
t=0, we can

rewrite the output as yt = (h ∗ u)t :=
∑t

n=−L ht−nun using convolution operation ∗. If the filter
[ht]

L
t=0 is precomputed, the output can be computed with O(L logL) time complexity using FFT

algorithm, which is much faster than the computation cost of Transformers, O(L2).

In this paper, we consider the architectures consisting of the following three types of layers: (i) FNN
layers, (ii) convolution layers, and (iii) an embedding layer.

(i) FNN layer An FNN with depth L and width W is defined as
f(x) := (ALη(·) + bL) ◦ · · · ◦ (A1x+ b1),

where η = ReLU, and Ai ∈ Rdi+1×di , bi ∈ Rdi+1 with maxi di ≤W . Then, we define the class of
FNN with depth L, width W , norm bound B and sparsity S by

Ψ(L,W, S,B) :=

{
f

∣∣∣∣∣ max
i

{∥Ai∥∞, ∥bi∥∞} ≤ B,

L∑
i=1

∥Ai∥0 + ∥bi∥0 ≤ S

}
.

(ii) Convolution layer Next, we define the convolution layers. Let W ∈ RD×D be learnable
weights, and D be the embedding dimension. Then, given the input X ∈ RD×∞, the output of the
convolution layer g : RD×∞ → RD×∞ with window size U is computed as

g(X) := H ∗ (WX), Hk,j := c1,k cos

(
2πj · a1,k
U + 1

)
+ c2,k sin

(
2πj · a2,k
U + 1

)
,

where H ∈ RD×(U+1) is a filter controlled by learnable parameters c1, c2, a1, a2 ∈ RD. The oper-
ator ∗ : RD×(U+1) × RD×∞ → RD×∞ represents element-wise convolution. Note that we assume
the finite window size U , i.e., the output of position −i (i ∈ N≥0) is computed with the tokens at
position −i, . . . ,−i− U . Such setting is also considered in the analysis of Transformers (Takakura
& Suzuki, 2023). Then, we define the class of convolution layers with window size U , embedding
dimension D and norm constraint B by

C(U,D,B) := {g | max {∥W∥∞, ∥a1∥∞, ∥a2∥∞, ∥c1∥∞, ∥c2∥∞} ≤ B}.

The definition of the convolution filter includes several important settings. First, our setting includes
the case where we use the convolution filter ht = CAtB + Dδt of ordinary SSMs. Indeed, by

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

constructing the parameters A,B,C,D in the filter appropriately, we can obtain the same architecture
as the convolution layer we consider (see Appendix A for the details). Moreover, our setting includes
the filter used in Hyena (Poli et al., 2023), in which the filter is defined by neural networks with sin-
activation.

(iii) Embedding layer Finally, the embedding layer with embedding dimension D is defined as
Emb(X) = [E1Xi + E2]

∞
i=−∞,

where E1 ∈ RD×d and E2 ∈ RD are learnable parameters.

We first feed the sequence into Emb, and then alternately apply convolution layers and FNN layers.
Note that the FNN layers are applied in a token-wise manner. Thus, we define a class of deep neural
networks using SSMs, denoted as S , as follows:

S(M,U,D,L,W, S,B) :=

fM ◦ gM ◦ · · · ◦ f1 ◦ g1 ◦ Emb

∣∣∣∣∣∣
fi ∈ Ψ(L,W, S,B),

gi ∈ C(U,D,B),

∥E1∥∞ ≤ B, ∥E2∥∞ ≤ B.

 .

We remark that the number of parameters of the model is O(M(LW 2 +D2)), and does not depend
on the window size U , since the parameters are shared among the tokens.

3 SYNTHETIC TASKS: INPUT COPYING AND ASSOCIATIVE RECALL

In this section, we consider the two tasks of (i) input copying and (ii) associative recall, and show
that SSMs combined with FNNs can solve these tasks efficiently. In both of these tasks, the position
of the important token is different for each input. Therefore, the fact that SSMs can solve these tasks
suggests that SSMs have dynamic token extraction capabilities comparable to those of Transformers.

Throughout this section, we assume that an input is given as a sequence of words in the dictionary W ,
where W is a finite set. Each word in the sequence is first converted into a |W|-dimensional one-hot
vector. Then, the tokens are transformed to D-dimensional vectors by the embedding layer, and fed
into subsequent convolution layers and FNN layers. Thus, we obtain a sequence of D-dimensional
tokens as a model’s output. We consider the setting where the model generates sequences by autore-
gressively outputting the words, i.e., next-token prediction. To do this, we introduce an additional
decoding layer, which we denote by Dec. This layer has a learnable parameter WDec ∈ RD×|W|,
and linearly transforms the final token of the model’s output into a vector in R|W|. Then, the word
corresponding to the largest component of this vector is regarded as the model’s prediction.

3.1 INPUT COPYING

The input copying is a task in which the model is required to output exactly the same sequence as the
input via autoregressive inference. As an example, consider the situation where the model receives
the input sequence “〈BOS〉 c a d b e 〈COPY〉”, where a, b, c, d, e are the words in W , and
〈BOS〉 and 〈COPY〉 are special tokens, which are also included in W . Then, the model first needs to
output “c”. Next, the model receives the input “〈BOS〉 c a d b e 〈COPY〉 c”, and the model
is required to generate “a”. This process is repeated until the number of tokens the model generates
becomes equal to the number of words in the input sequence.

To evaluate the model for this task, we consider the probability that the model generates the correct
sequence for a certain input distribution. More precisely, suppose that input sequences are given
in the form of “〈BOS〉 x1 x2 · · · xV 〈COPY〉”, where x1, x2, . . . , xV are independently generated
from the uniform distribution on W \ {〈BOS〉, 〈COPY〉}. Then, we set y1, . . . , yV as the sequence
generated by the model, and evaluate the model by the metric errV defined as follows, which mea-
sures the probability that the model does not correctly copy the input sequence:

errV := P[(y1, . . . , yV) ̸= (x1 . . . , xV)].

Jelassi et al. (2024) intensively studied the capabilities of SSMs and Transformers to solve this task.
They theoretically showed that Transformers with O(log(V/ϵ) log |W|) parameters can achieve
errV ≤ ϵ. In their proof, they leverage the dynamic token extraction ability of the attention mech-
anism. More specifically, they demonstrate that Transformers can solve the copying task by look-
ing up the n sequential tokens that match the last n tokens. In addition, they discuss the lower
bound of the accuracy of SSMs, and showed that SSMs need O(L log |W|) memory size to achieve

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

errV ≤ 1/2. These results suggest that a single SSM layer is inferior to Transformers in terms of
the dynamic token extraction abilities.

In contrast to these results, we investigate the case where nonlinear layers are placed before and after
the SSM layer, and obtain the following result.

Theorem 3.1. For any ϵ > 0, there exists an SSM F̂ ∈ S(M,U,D,L,W, S,B) with
M = 2, U = V, D, L, W, S, logB ≲ log37 ϵ−1 log42 V log8 |W|,

and decoding layer Dec with ∥WDec∥∞ ≤ 1 such that supV ′∈[V] errV ′ ≤ ϵ.

This result shows that, two layer SSMs combined with FNNs, we can achieve the error ϵ with
poly log

(
ϵ−1, V, |W|

)
parameters, and avoid the necessity of the memory size increasing linearly

with V .

In the proof of this theorem, it is essential that there are FNN layers before and after the second SSM
layer. As we will show later in Lemma 3.3, the SSM combined with the preceding and following
FNN layers has the ability to extract tokens based on the inner product of keys and queries, similar
to a Transformer. Jelassi et al. (2024) demonstrates that a two-layer Transformer can solve the input
copying task. Thus, by replacing the attention layer with FNN + SSM + FNN, the above theorem
can be proved. The detailed proof can be found in Appendix H.

3.2 ASSOCIATIVE RECALL

Next, we investigate the task called associative recall. In this task, we assume that the set of words
W is divided into two disjoint sets Wkey and Wvalue. The input sequence is given in the form of “k1
v1 · · · kV vV q”, where k1, . . . , kV ∈ Wkey (ki ̸= kj if i ̸= j), v1, . . . , vV ∈ Wvalue and q ∈ Wkey

matches one of the ki (i ∈ [V]). Then, the model is required to output the corresponding vi for the
given q = ki. For example, if the model receives the input “c 2 a 5 d 1 b 4 a”, the model
needs to output “5”.

Similarly to the input copying task, this task also requires the model to dynamically extract the
important tokens. Indeed, to solve this task, the model needs to focus on three tokens: (i) the last
token of the input, (ii) the token with the same word as the last one, and (iii) the token that follows
(ii). Since the locations of (ii) and (iii) change depending on (i), the model needs to pay attention to
different locations depending on the input.

We proved the following theorem, which shows that O(poly log(|W|)) parameters are sufficient to
solve the associative recall task when using SSMs combined with FNNs.
Theorem 3.2. There exists an SSM F̂ ∈ S(M,U,D,L,W, S,B) with

M = 2, U = 2V, D, L, W, S, logB ≲ log13(|W|),
and decoding layer Dec with ∥WDec∥∞ ≤ 1 such that, for any input sequences of associative recall
task, the model generates the correct output.

Massaroli et al. (2024) showed that Hyena-based SSMs can solve the associative recall task with
O(
√

|W| log2 |W|) parameters. In contrast, we proved that we require only O(poly log |W|) pa-
rameters, thanks to the nonlinear layers. This indicates that combining SSMs with nonlinear layers
can improve the dynamic token extraction ability of SSMs.

In this theorem as well, the essence of the proof is the ability of the SSM with preceding and
following FNN layers, as described in Lemma 3.3. The proof can be found in Appendix H.

3.3 SSMS MIMIC ATTENTION MECHANISMS TO SELECT IMPORTANT TOKENS

In this subsection, we discuss why SSMs combined with FNNs can perform dynamic token selection
similar to Transformers.

The dynamic token selection abilities of Transformers stem from the attention mechanisms. Indeed,
attention mechanisms compute the weighted sum of the values (i.e., projected input tokens), where
the weights are determined based on the input. The weights are computed by applying the softmax
function to the inner product between keys and queries. This means that the attention mechanism
prioritizes the tokens where the key and query have a high inner product. The following statement
shows that SSMs combined with FNN layers can mimic this functionality.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Lemma 3.3 (Dynamic Token Selection by SSMs). Suppose that the input sequence X is given by

X =

[∗ · · · ∗ q
k−V · · · k−1 k0
v−V · · · v−1 v0

]
∈ R(2d′+d)×[−V :0],

where q, kj ∈ Rd′
and vj ∈ Rd with ∥q∥∞ ≤ 1, ∥kj∥∞ ≤ 1, ∥vj∥∞ ≤ 1 (j = −V, . . . , 0). Let

µj = q⊤kj (j = −V, . . . , 0) and j∗ = argmaxj=−V,...,0 µj . Suppose that, for any j ∈ [−V :
0] \ {j∗}, it holds µj ≤ µj∗ − δ for some δ > 0. Then, for any ϵ > 0, there exist FNN layers
f1, f2 ∈ Ψ(L,W, S,B) and a convolution layer g ∈ C(U,D,B) with

U = V, D = d′
3
δ−2
(
log2 ϵ−1 + log2 V

)
,

L ≲ d′
8
δ−5
(
log5 ϵ−1 + log5 V

)
, W ≲ d′

3
δ−3
(
log3 ϵ−1 + log3 V

)
,

S ≲ d′
8
δ−5
(
log5 ϵ−1 + log5 V

)
, logB ≲ d′

3
δ−2
(
log3 ϵ−1 + log3 V

)
,

such that ∥y0 − vj∗∥∞ ≤ ϵ, where [y−V , . . . , y−1, y0] := f2 ◦ g ◦ f1(X).

We provide the proof in Appendix G. From this theorem, we can see that SSMs preceded and
followed by FNN layers can dynamically change the positions of tokens to focus on based on the
value of the inner product between the key and query, similar to the attention mechanism. Thus,
SSMs demonstrate dynamic token selection abilities similar to Transformers.

4 NONPARAMETRIC REGRESSION PROBLEM

In this section, we consider a non-parametric regression problem with sequence inputs, and show
that SSMs are comparable to Transformers in estimating piecewise γ-smooth functions. As we will
explain later, in functions belonging to this class, the positions of important tokens vary depending
on the input. Therefore, the dynamic token selection ability is essential for estimating a piecewise γ-
smooth function. In Appendix E, we provide a visual explanation of the motivation for considering
this class of functions.

Due to the technical convenience to analyze the estimation error, we consider the setting where the
output of the network is bounded. For this purpose, we assume that the output of the model is
fed into the function clipR defined by clipR(x) := max {−R,min {R, x}}. Since clipR can be
implemented by the FNN with depth 1 and width 2, this assumption is not far from the practical
setting. Furthermore, to predict a real value, the final token (i.e., index 0) in the sequence output by
the model is regarded as the predicted value. We define the class of clipped networks S ′ by

S ′(M,U,D,L,W, S,B) = {(clipR ◦ F)0 | F ∈ S(M,U,D,L,W, S,B)} .

4.1 PROBLEM SETTING

We consider the situation where the input X := [xi]
0
i=−∞ ∈ Rd×∞ is a sequence of d-dimensional

tokens, and they are generated from a probability measure PX on ([0, 1]d×∞,B([0, 1]d×∞)).
In the following, we denote Ω := suppPX and define the norm ∥·∥p,PX

by ∥f∥p,PX
=(∫

Ω
∥f(X)∥pp dPX

)1/p
.

As in the usual nonparametric regression setting, suppose that we observe n i.i.d. inputs X(i) ∼
PX (i = 1, . . . , n) and the corresponding outputs Y (i) ∈ R generated by Y (i) = F ◦(X(i)) + ξ(i),
where ξ(i) ∈ R is the i.i.d. noise generated from N (0, σ2) (σ > 0). We further assume
that

{
ξ(i)
}n
i=1

is independent of the inputs
{
X(i)

}n
i=1

. Given the pairs of inputs and outputs{
(X(i), Y (i))

}n
i=1

, we obtain the estimator F̂ of the target function F through empirical risk mini-
mization:

F̂ := arg min
F∈S′

1

n

n∑
i=1

(
Y (i) − F (X(i))

)2
,

where S ′ is the class of networks that we defined above. To measure the statistical performance of
the estimator F̂ , we utilize mean squared error (MSE) defined by

R(F̂ , F ◦) = E
[∥∥∥F̂ (X)− F ◦(X)

∥∥∥2
2,PX

]
,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where the expectation is taken for
{
X(i)

}n
i=1

and
{
ξ(i)
}n
i=1

.

4.2 PIECEWISE γ-SMOOTH FUNCTION CLASS

To compare the estimation ability of SSMs with that of Transformers, we assume that the target
function F ◦ belongs to the function class called piecewise γ-smooth. The function class was intro-
duced in Takakura & Suzuki (2023), and they showed the estimation error bound of Transformers
for the functions in the class. In this function class, the importance of the tokens (or coordinates) is
characterized by the smoothness of the function. We describe the details in the following.

γ-smooth function class. Before introducing the piecewise γ-smooth function class, we first de-
fine the γ-smooth function class, which was first proposed by Okumoto & Suzuki (2021). This
function class can be seen as an extension of the well-known function spaces, such as the mixed-
Besov space and (anisotropic) Sobolev space.

First, for r ∈ Zd×∞
0 , we define ψrij : [0, 1] → R by ψrij (x) :=

{√
2 cos(2π|rij |x) (rij ≤ 0),√
2 sin(2π|rij |x) (rij > 0),

and ψr : [0, 1]d×∞ → R by ψr(X) =
∏

i=1

∏
j=1 ψrij (Xij). Then, {ψr}r∈Zd×∞

0
forms a complete

orthonormal system of L2([0, 1]d×∞), Therefore, any f ∈ L2([0, 1]d×∞) can be expanded as f =∑
r∈Zd×∞

0
⟨f, ψr⟩ψr. For s ∈ Nd×∞

0 , we define

δs(f) :=
∑

r∈Zd×∞
0 ,⌊2sij−1⌋≤rij<2sij

⟨f, ψr⟩ψr.

Then, we define the γ-smooth function class as follows.

Definition 4.1 (γ-smooth function class). For a given γ : Nd×∞
0 → R which is monotonically non-

decreasing with respect to each coordinate and p ≥ 2, θ ≥ 1, we define the γ-smooth function space
as follows:

Fγ
p,θ([0, 1]

d×∞) :=
{
f ∈ L2([0, 1]d×∞) | ∥f∥Fγ

p,θ
<∞

}
,

where the norm ∥f∥Fγ
p,θ

is defined as ∥f∥Fγ
p,θ

:=
(∑

s∈Nd×∞
0

2θγ(s)∥δs(f)∥θp,PX

)1/θ
. We also

define the finite dimensional version Fγ
p,θ([0, 1]

d×l) for l ∈ N in the same way.

Note that δs(f) can be seen as the frequency component of f with frequency |rij | ∼ 2sij for
each coordinate (i, j). Therefore, we can interpret that γ controls the amplitude of each frequency
component through weighting the term ∥δs(f)∥p,PX

in the definition of the norm ∥·∥Fγ
p,θ

. In other
words, if γ(s) is larger, the norm of frequency component δs(f) is smaller.

As a special case of γ, we consider the following two types of smoothness:

γ(s) =

{
⟨a, s⟩ (Mixed smoothness),
max {aijsij | i ∈ [d], j ∈ Z} (Anisotropic smoothness),

where a ∈ Rd×∞
>0 is the smoothness parameter, which determines the smoothness of the function

for each coordinate. To provide the intuition of the smoothness, let us consider the extreme case,
aij → ∞ for (i, j) with sij ̸= 0. Then, it holds γ(s) → ∞, both for mixed and anisotropic
smoothness, which implies 2γ(s) → ∞. This indicates that a strong “penalty” is imposed on the
component δs(f) and the function f does not have the frequency component sij along the direction
of (i, j). Since the norm ∥f∥Fγ

p,θ
has to be finite, it holds ∥δs(f)∥p,PX

→ 0. This means that the
function f has to be smooth for the input coordinate (i, j). Therefore, large aij implies that the
function is smooth towards the coordinate (i, j), and this indicates that the value of function does
not change much for the input coordinate (i, j), which means that Xij is not an important feature.
In contrast, small aij implies that the coordinate Xij is an important feature.

As we stated above, the function class Fγ
p,θ([0, 1]

d×∞) can be seen as an extension of some well-
known function spaces to the infinite-dimensional setting. Indeed, if PX is a uniform distribution on
[0, 1]1×l and p < ∞, then Fγ

p,θ([0, 1]
1×l) with mixed smoothness is equivalent to the mixed-Besov

space. Moreover, if PX is a uniform distribution, then the anisotropic Sobolev space is included in
the unit ball of Fγ

2,2 with anisotropic smoothness.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Piecewise γ-smooth function class. Now, we are ready to define the piecewise γ-smooth function
class. The functions in this class have different smoothness depending on the input unlike γ-smooth
functions. Therefore, the models have to choose appropriate tokens to extract depending on the
input when estimating a function in this class.

The rigorous definition of piecewise γ-smooth function class is given as follows. In the following,
we denote X−i := [. . . , x−i−1, x−i] for i ∈ N and X = [. . . , x−1, x0].
Definition 4.2 (Piecewise γ-smooth function class). Let µ be a function that belongs to
Fγ

p,θ([0, 1]
d×∞), which we call the importance function. Additionally, let πX : [−V : 0] → [−V :

0] be the map that sorts the indices i ∈ [−V : 0] in ascending order of the importance µ(Xi), i.e.,
µ(XπX(−V)) < · · · < µ(XπX(0)).

Then, we define the map Π : [0, 1]d×∞ → [0, 1]d×[−V :0] by
Π(X) := [xπX(−V), . . . , xπX(0)].

Then, for p ≥ 2, θ ≥ 1 and γ : Nd×∞
0 → R, the function class Pγ

p,θ([0, 1]
d×∞) with piecewise

γ-smoothness is defined as follows:

Pγ
p,θ([0, 1]

d×∞) :=
{
g = f ◦Π

∣∣∣ f ∈ Fγ
p,θ([0, 1]

d×[−V :0]), ∥g∥Pγ
p,θ

<∞
}
,

where the norm ∥g∥Pγ
p,θ

is defined by ∥g∥Pγ
p,θ

:=
(∑

s∈Nd×[−V :0]
0

2θγ(s)∥δs(f) ◦Π∥θp,PX

)1/θ
.

In simple terms, when an input X = [. . . , x−V , . . . , x0] is fed into a function g ∈ Pγ
p,θ([0, 1]

d×∞),
the tokens x−V , . . . , x0 are first sorted in ascending order of the importance µ(X−V), . . . , µ(X0),
and the resulting sequence [xπX(−V), . . . , xπX(0)] is fed into the γ-smooth function f . The impor-
tance of each token x−i is determined by the preceding tokens, i.e., x−i, x−i−1, Since the order
of the sorted tokens changes depending on the input, the smoothness of the function g = f◦Π ∈ Gγ

p,θ

differs for different inputs.

In the definition, tokens with higher importance are placed closer to index 0 after sorting. In the
latter subsection, we assume that the smoothness of the function f for a coordinate is smaller for
the tokens with indices closer to 0, which implies that the tokens with higher importance are more
essential to estimate the function f .

As in Takakura & Suzuki (2023), we assume that an importance function µ is well-separated, i.e.,
for some constant c, β > 0, µ satisfies µ(Xπλ(−i)) ≥ µ(Xπλ(−i−1)) + ci−β for any X ∈ Ωλ. This
implies that X satisfies µ(X−i) ≃ µ(X−j) (i ̸= j) with probability zero. A similar assumption can
be found in the literature of statistics such as Hall & Horowitz (2007).

4.3 APPROXIMATION AND ESTIMATION ABILITY OF SSMS

In this subsection, we show the theoretical results on the ability of SSMs to approximate and estimate
the function in the piecewise γ-smooth function class.

To establish the theories, we make the following assumptions, all of which are also imposed in
Takakura & Suzuki (2023).
Assumption 4.3. The true function F ◦ belongs to Gγ

p,θ, where γ is mixed or anisotropic smoothness.
Moreover, F ◦ and the importance function µ satisfy the following conditions:

(i) ∥F ◦∥Fγ
p,θ

≤ 1, ∥F ◦∥∞ ≤ R, ∥µ∥Fγ
p,θ

≤ 1, ∥µ∥∞ ≤ 1 for some constant R > 0.

(ii) For the smoothness parameter a, it holds aij = Ω(log(|j|+ 1)) for µ ∈ Fγ
p,θ, and aij =

Ω(jα) for F ◦ ∈ Gγ
p,θ, where α > 0 is a constant. Moreover, it holds ∥a∥wlα ≤ 1 for both µ

and F ◦, where ∥a∥wlα := supj j
αā−1

j and āj is the j-th smallest element of a.
(iii) If γ is mixed smoothness, we assume ā1 < ā2.

Remark 4.4. The assumption ∥a∥wlα ≤ 1 implies that the j-th smallest element of smoothness
parameter a increases polynomially with respect to j, which indicates the sparsity of the important
features. This assumption is natural in real-world applications, as we check in Section 5. Moreover,
the assumptions aij = Ω(log(|j|+ 1)) and aij = Ω(jα) mean that the token placed far from the
final token is less important. Note that the condition aij = Ω(jα) for F ◦ = f ◦Π ∈ Gγ

p,θ is imposed
on the function f ∈ Fγ

p,θ, and the input of the function f is sorted by the importance.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Then, we have the following theorem on the approximation ability of SSMs for piecewise γ-smooth
functions.
Theorem 4.5. Let F ◦ be a function satisfying Assumption 4.3. Then, for any T > 0, there exists a
SSM F̂ ∈ S ′(M,U,D,L,W, S,B) with

M ≲ T 1/α, U = V, D ≲ T cα,β log2 V, L ≲ T cα,β log5 V,

W ≲ 2T/a†
T cα,β log3 V, S ≲ 2T/a†

T cα,β log5 V, logB ≲ T cα,β log3 V,
(4.1)

such that
∥∥∥F ◦ − F̂

∥∥∥
2
≲ 2−T . Here, cα,β is a constant depending on α and β such that cα,β ≤

5 + 2/α+ 5β/α.

This result reveals that the number of parameters to achieve the error ϵ is
O((1/ϵ)

1

a† poly log(1/ϵ, V)), which is the same as that of Transformers shown by Takakura
& Suzuki (2023). Similarly to Theorem 3.1 and Theorem 3.2, to prove this theorem, we utilize the
similar argument as Lemma 3.3, which establishes the dynamic token selection ability of SSMs
combined with FNNs. The detailed proof can be found in Appendix I.

Using the approximation theory above, we obtain the following results, which state the estimation
ability of SSMs for piecewise γ-smooth functions.
Theorem 4.6. Suppose that the target function F ◦ satisfies Assumption 4.3. Let a† = ā1 for mixed
smoothness, and a† =

(∑∞
i=1 ā

−1
i

)−1
for anisotropic smoothness. Moreover, let F̂ be an ERM

estimator in S(M,U,D,L,W, S,B), with M,U,D,L,W, S,B defined as (4.1) for T = a†

2a†+1
.

Then, for any l, r ∈ Z, it holds

Rl,r(F̂ , F
◦) ≲ n

− 2a†
2a†+1 (log n)c

′
α,β log13 V,

where c′α,β is a constant such that c′α,β ≤ 21 + 10/α+ 20β/α.

The proof can be found in Appendix J. We can see that the convergence rate with respect to n
matches that of Transformers shown in Takakura & Suzuki (2023). This indicates that SSMs possess
the ability to select important tokens based on the inputs, similarly to Transformers. Moreover, since
the estimation error bound depends on V with only poly-log factor, if V = poly(n), the estimation
error rate does not change up to poly-log factor. This also aligns with Transformers and shows
that, even when estimating functions that depend on long ranges of the input sequence, SSMs are
as efficient as Transformers. Overall, we can conclude that SSMs can estimate the function in the
piecewise γ-smooth function class with the same efficiency as Transformers.

5 EXPERIMENTS: SPARSITY OF IMPORTANT TOKENS

Figure 5.1: The transition of the prob-
ability of correct classification when we
repeatedly mask the input tokens.

In the tasks we theoretically study, the number of essen-
tial tokens in the sequence is small. We conducted simple
numerical experiments and confirmed that (i) such spar-
sity of important tokens also holds in real-world tasks,
and that (ii) SSMs can indeed extract these important to-
kens depending on the input.

We use the dataset of DNA base sequences in Genomic
Benchmark Dataset (Grešová et al., 2023). The base se-
quences are treated as sequences where each nucleic acid
is considered a single token, and we consider a binary
classification task based on the role of the base sequences.
We employ the pre-trained Hyena provided by Nguyen
et al. (2024), and fine-tune it on the dataset.

To investigate which tokens the model focuses on for clas-
sification, we selected a correctly classified data sample (we refer to this as the target sequence) and
masked unimportant tokens one by one. More precisely, we repeatedly masked the token that causes
the smallest decrease in accuracy when masked. The change in accuracy is shown by the blue line
in Figure 5.1. We can see that, even when most of the tokens are masked, the model is still able to
classify correctly. This indicates that the important tokens in the input sequence are sparse.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Furthermore, to investigate the ability of SSMs to dynamically extract important tokens, we exam-
ined how the accuracy changes by masking the tokens at the same positions as in the target sequence
for other data samples. The average and minimum changes in accuracy are shown with the red and
green lines, respectively. The figure shows that although the accuracy was high before masking, it
decreases as more tokens are masked. This demonstrates that the positions of important tokens vary
across different data samples, and that SSMs are able to dynamically extract important tokens based
on the input to perform correct classifications.

6 CONCLUSION

In this study, we theoretically investigated the capabilities of SSMs compared to Transformers.
Specifically, we focused on the ability to dynamically extract tokens based on the input, which is an
essential strength of Transformers, and clarified that SSMs combined with FNN layers can emulate
such mechanism. Using this insight, we analyzed three cases: input copying, associative recall, and
nonparametric regression, and showed that SSMs exhibit performance comparable to Transformers.

Limitations and future work We studied approximation and estimation abilities of SSMs to solve
the tasks, and did not discuss whether SSMs can be optimized efficiently. Analyzing how the op-
timization algorithm works for SSMs is a possible direction for future work. Additionally, we did
not investigate the other types of efficient sequence models, such as SSMs with data-dependent
filters (like Mamba (Gu & Dao, 2023)) and linear attention (Katharopoulos et al., 2020). Future re-
search could focus on the comparison of those models and SSMs. Moreover, we did not consider a
specific parameterization known in practical applications of SSMs. Specifically, we did not impose
constraints such as A being a diagonal matrix in the filter CAt−nB +Dδt−n. Instead, as described
in Appendix A, we considered cases where A is a block diagonal matrix. It remains future work to
explore how we can constrain the structure of A to solve the tasks.

REFERENCES

Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary
coins. Journal of computer and System Sciences, 66(4):671–687, 2003.

Carmen Amo Alonso, Jerome Sieber, and Melanie N Zeilinger. State space models as foundation
models: A control theoretic overview. arXiv preprint arXiv:2403.16899, 2024.

Nicola Muca Cirone, Antonio Orvieto, Benjamin Walker, Cristopher Salvi, and Terry Lyons. Theo-
retical foundations of deep selective state-space models. arXiv preprint arXiv:2402.19047, 2024.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An im-
age is worth 16x16 words: Transformers for image recognition at scale. In International Confer-
ence on Learning Representations, 2020.

Daniel Y Fu, Tri Dao, Khaled Kamal Saab, Armin W Thomas, Atri Rudra, and Christopher Re.
Hungry hungry hippos: Towards language modeling with state space models. In The Eleventh
International Conference on Learning Representations, 2022.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with state-
space models. In International Conference on Machine Learning, pp. 7616–7633. PMLR, 2022.

Katarı́na Grešová, Vlastimil Martinek, David Čechák, Petr Šimeček, and Panagiotis Alexiou. Ge-
nomic benchmarks: a collection of datasets for genomic sequence classification. BMC Genomic
Data, 24(1):25, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2021.

Peter Hall and Joel L Horowitz. Methodology and convergence rates for functional linear regression.
2007.

Masaaki Imaizumi and Kenji Fukumizu. Deep neural networks learn non-smooth functions effec-
tively. In The 22nd international conference on artificial intelligence and statistics, pp. 869–878.
PMLR, 2019.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Stefano Massaroli, Michael Poli, Dan Fu, Hermann Kumbong, Rom Parnichkun, David Romero,
Aman Timalsina, Quinn McIntyre, Beidi Chen, Atri Rudra, et al. Laughing hyena distillery:
Extracting compact recurrences from convolutions. Advances in Neural Information Processing
Systems, 36, 2024.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
arXiv preprint arXiv:2404.08819, 2024.

Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas, Michael Wornow, Callum Birch-Sykes,
Stefano Massaroli, Aman Patel, Clayton Rabideau, Yoshua Bengio, et al. Hyenadna: Long-range
genomic sequence modeling at single nucleotide resolution. Advances in neural information
processing systems, 36, 2024.

Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distri-
bution estimators. In International Conference on Machine Learning, pp. 26517–26582. PMLR,
2023.

Sho Okumoto and Taiji Suzuki. Learnability of convolutional neural networks for infinite dimen-
sional input via mixed and anisotropic smoothness. In International Conference on Learning
Representations, 2021.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

Dmytro Perekrestenko, Philipp Grohs, Dennis Elbrächter, and Helmut Bölcskei. The universal ap-
proximation power of finite-width deep relu networks. arXiv preprint arXiv:1806.01528, 2018.

Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise smooth functions
using deep relu neural networks. Neural Networks, 108:296–330, 2018.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. arXiv preprint arXiv:2302.10866, 2023.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
Robust speech recognition via large-scale weak supervision. In International Conference on Ma-
chine Learning, pp. 28492–28518. PMLR, 2023.

George Saon, Ankit Gupta, and Xiaodong Cui. Diagonal state space augmented transformers for
speech recognition. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation
function. 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Taiji Suzuki. Adaptivity of deep relu network for learning in besov and mixed smooth besov spaces:
optimal rate and curse of dimensionality. In International Conference on Learning Representa-
tions, 2018.

Taiji Suzuki and Atsushi Nitanda. Deep learning is adaptive to intrinsic dimensionality of model
smoothness in anisotropic besov space. Advances in Neural Information Processing Systems, 34:
3609–3621, 2021.

Shokichi Takakura and Taiji Suzuki. Approximation and estimation ability of transformers for
sequence-to-sequence functions with infinite dimensional input. In Proceedings of the 40th Inter-
national Conference on Machine Learning, pp. 33416–33447. PMLR, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Shida Wang and Beichen Xue. State-space models with layer-wise nonlinearity are universal ap-
proximators with exponential decaying memory. Advances in Neural Information Processing
Systems, 36, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

—— Appendix ——

A EXTENSION TO ORDINARY SSM FILTER

In this section, we describe how to extend our setting to the ordinary SSM filter. More specifically,
our setting with embedding dimensionD can be extended to the ordinary SSM filter with embedding
dimension 4D.

For simplicity, we consider the case D = 1. We constuct the parameters A,B,C,D ∈ R2×2 to make
the filter ht := CAtB+ Dδt−n same as the filter defined in Section 2. Let us set D = 0, and

A =


cos
(

2πa1,1

U+1

)
− sin

(
2πa1,1

U+1

)
0 0

sin
(

2πa1,1

U+1

)
cos
(

2πa1,1

U+1

)
0 0

0 0 cos
(

2πa1,2

U+1

)
− sin

(
2πa1,2

U+1

)
0 0 sin

(
2πa1,2

U+1

)
cos
(

2πa1,2

U+1

)

.
Then, we have

At =


cos
(

2πa1,1t
U+1

)
− sin

(
2πa1,1t
U+1

)
0 0

sin
(

2πa1,1t
U+1

)
cos
(

2πa1,1t
U+1

)
0 0

0 0 cos
(

2πa1,2t
U+1

)
− sin

(
2πa1,2t
U+1

)
0 0 sin

(
2πa1,2t
U+1

)
cos
(

2πa1,2t
U+1

)

.
Therefore, if we set

B =

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

, C =

c1,1 0 0 0
0 0 0 0
0 0 0 0
c1,2 0 0 0

,
then we have

ht =


c1,1 cos

(
2πa1,1t
U+1

)
0 0 0

0 0 0 0
0 0 0 0

c1,2 sin
(

2πa1,2t
U+1

)
0 0 0

.
Then, if we appropriately set WV and WQ, this filter can realize the same output with our setting.

While we do not show the estimation ability for the filter above, we can easily extend our proof to
derive the almost same estimation error bound for it.

B REPRODUCTION OF THE FINITE WINDOW SETTING

For mathematical simplicity, we assumed in Section 2 that the convolution of the SSM layers are
performed within finite windows, which can be smaller than the sequence length. However, in
practical applications, the window size is equal to the sequence length. In the theorem presented
in Section 3, we consider the case where the window size matches the sequence length, and this
aligns with realistic problem settings. On the other hand, in the nonparametric regression discussed
in Section 4, since we consider infinitely long sequences, it is impossible to set the window size
equal to the sequence length.

In the problem setting of Section 4, we can obtain the same output as when using a finite window size
by performing some additional calculations with standard SSMs. Let [ut]t≤0 be the input sequence,
and [xt]t≤0, [yt]t≤0 be the sequence of states and outputs of standard SSMs, respectively. In other
words, for any t ≤ 0, we have

xt+1 = Axt + But,

yt = Cxt + Dut,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

and
xt =

∑
s≤t

At−sBus.

Next, let [x′t]t≤0, [y
′
t]t≤0 be the sequence of states and outputs when the shifted input sequence

[ut−U−1]t≤0 are fed into the same SSMs. Then, it holds

x′t+1 = Ax′t + But−U−1,

y′t = Cx′t + Dut−U−1,

and
x′t =

∑
s≤t

At−sBus−U−1 =
∑

s≤t−U−1

At−s−U−1Bus.

Therefore, we have

xt − AU+1x′t =

t∑
s=t−U

At−sBus.

Let [y◦t]t≤0 be the output sequence of SSMs with the finite window size of length U + 1. Then, we
have

y◦t =

t∑
s=t−U

(
CAt−sB+ Dδt−s

)
us = C(xt − AU+1x′t) + Dut.

Since AU+1 can be pre-computed, we can obtain the output of SSMs with the window by performing
recurrent calculations for two SSMs.

C EMPIRICAL RESULTS ON THE SYNTHETIC TASKS

In order to empirically demonstrate the dynamic token selection ability of SSMs, we conducted
experiments on the input copying and associative recall tasks.

We consider three types of models: (i) single-layer SSMs (SSM + FNN), (ii) two-layer SSMs (SSM
+ FNN + SSM + FNN), and (iii) Transformers. As we proved theoretically in Lemma 3.3, to exhibit
dynamic token selection ability in SSMs, it is essential that SSMs are preceded and followed by
FNN layers. Therefore, theoretically, (ii) two-layer SSMs are expected to perform similarly to (i)
Transformers. Moreover, since (i) single-layer SSMs do not have the dynamic token selection ability,
they are expected to perform worse than two-layer SSMs and Transformers.

To demonstrate the effectiveness of adding FNN layers to SSMs, we vary the dimension of the hid-
den states (i.e., dimension of the states in SSMs). Then, we observe the changes in the performance.

Results are shown in Figure C.1. We can see that the performance of (ii) two-layer SSMs is better
than (i) single-layer SSMs, particularly when the dimension of the hidden states is small and the
FNN layers have sufficient expressive power. This means that the alternation of SSM layers and
FNN layers is essential to exhibit SSMs’ dynamic token selection ability. Moreover, we observe that
the performance of (ii) two-layer SSMs is comparable to (iii) Transformers. This result empirically
supports our theoretical analysis that SSMs combined with FNN layers can mimic the dynamic token
selection ability of Transformers.

D ADDITIONAL RESULTS ON SYNTHETIC TASKS

In this section, we provide additional results on the SSMs’ ability to solve synthetic tasks. Specifi-
cally, we consider the two tasks: induction heads and selective copying.

D.1 INDUCTION HEAD

The induction heads (Olsson et al., 2022) is a task to recall the word that appears immediately after
a specific keyword. For example, if the keyword is x and the input sequence is “a c b d e c”,
the model have to output the word “b”, which is the word that appears after “c”.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure C.1: Empirical results for input copying task (left) and associative recall task (right). We
compare the performance of single-layer SSMs (SSM + FNN), two-layer SSMs (SSM + FNN + SSM
+ FNN), and Transformers. The number in parentheses following ”FNN” indicates the depth of the
FNN. We can see that two-layer SSMs with sufficiently expressive FNN layers exhibit performance
comparable to Transformers, and outperform single-layer SSMs.

To formalize the task, suppose that input sequences are given by the form “x1 x2 · · · xV k”, where
x1, . . . , xV , k ∈ W . Moreover, we assume that, for each sequence, there exists a unique j ∈ [V −1]
such that xj = k. Then, the model is required to output xj+1.

In this task, the position of the token to extract changes for each input sequence. Therefore, to solve
this task, the model has to change which token to focus based on the input, i.e., the dynamic token
selection ability is required.

For induction heads, we obtain the following result.

Theorem D.1. There exists an SSM F̂ ∈ S(M,U,D,L,W, S,B) with
M = 2, U = V, D, L, W, S, logB ≲ log5 V log8 |W|,

and decoding layer Dec with ∥WDec∥∞ ≤ 1 such that, for any input sequences of induction heads
task, the model generates the correct output.

The proof is provided in Appendix H.

D.2 SELECTIVE COPYING

The selective copying (Gu & Dao, 2023) is a variant of the input copying task, where there
are some empty tokens between the tokens to copy. For example, if the input sequence is
“〈BOS〉 a 〈PAD〉 〈PAD〉 b 〈PAD〉 c 〈PAD〉 〈COPY〉”, the model have to generate the se-
quence “a b c” in an auto-regressive manner.

Similarly to the input copying task, since the models have to change the position of the token to
copy, the dynamic token selection ability is required to solve this task. Moreover, since the model
needs to avoid empty tokens at different positions for each sequence and copy only the necessary
tokens. Therefore, it requires capturing the context of the sequence, making it a more challenging
than input copying task.

To provide a formal definition of the task, suppose that the special tokens 〈BOS〉, 〈PAD〉, and
〈COPY〉 are included in the vocabulary W . Then, let us consider the input sequence of the form
“〈BOS〉 x1 x2 · · · xV 〈COPY〉”, where x1, . . . , xV ∈ W \ {〈BOS〉, 〈COPY〉}. For each i ∈ [V],
xi is a random variable that matches 〈PAD〉 with probability α (> 0). Otherwise, xi is generated
from the uniform distribution over W \ {〈BOS〉, 〈COPY〉, 〈PAD〉}. Let i1, . . . , iK ∈ [V] be the
indices such that xik ̸= 〈PAD〉 (k ∈ [K]). Then, the model is required to output the sequence “xi1
· · · xiK ”.

For the task described above, we obtain the following result.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure E.1: Intuitive explanation of piecewise γ-smooth functions. Left: For simplicity, consider a
finite-length input sequence X = [x−4, . . . , x−1, x0]. An importance function µ takes the sequence
as input and determines the importance of the last token. Using the function µ, the importance values
of each token, µ(X−4), . . . , µ(X0), are determined. A permutation map Π rearranges the tokens in
ascending order of their importance. Finally, the rearranged tokens are fed into a γ-smooth function
f . In the sorted sequence, tokens in the right have higher importance, and the function f becomes
less smooth for tokens positioned further to the right. Right: An intuitive explanation of how the
smoothness of a function changes due to token reordering. As an example, consider a function with
a 3-dimensional input vector X = (x1, x2, x3). Assume f is only non-smooth in the direction of
the second coordinate, while it is smooth in all other directions. If X is directly fed into f , the
second coordinate, x2, is always the non-smooth direction. On the other hand, if the coordinates are
rearranged by an input-dependent permutation map Π before being passed to f , the smoothness of
the function changes. For example, in the top-left region of the domain, the reordering might cause
the second coordinate to correspond to x3, making x3 the non-smooth direction.

Theorem D.2. Let ϵ > 0. Suppose that |W| ≳ log4(V/ϵ). Then, there exists an SSM F̂ ∈
Ŝ(M,U,D,L,W, S,B) with

M = 2, U = V, D, L, W, S, logB ≲ log84 V log89 ϵ−1 log8 |W|,
and decoding layer Dec with ∥WDec∥∞ ≤ 1 such that, the model generates the correct sequence
for selective copying task with probability 1− ϵ.

In this theorem, compared to the case of input copying, we additionally assume that |W| ≳
log4(V/ϵ). This is mainly due to the existence of empty tokens in the input sequence, and is not
due to the problems specific to the SSMs, i.e., the same problem would occur in the case of Trans-
formers. More concretely, in the proof of the theorem, similarly to the proof of Theorem 3.1, we
consider the n-gram immediately before the token, and construct a network that can find the same
n-gram (excluding empty tokens) in the input sequence. Since there are empty tokens in the input
sequence in selective copying, n-gram overlapping (excluding empty tokens) can easily occur com-
pared to the case without empty tokens. In particular, when the vocabulary size |W| is small, n-gram
overlapping much more likely to occur, thus it is difficult to copy the sequence correctly.

The proof is provided in Appendix H.

E THE INTUITION BEHIND PIECEWISE γ-SMOOTH FUNCTIONS

In this chapter, we provide an intuitive explanation of the definition of piecewise γ-smooth functions
introduced in Section 4.2.

The goal of our study is to demonstrate that SSMs possess the ability to focus on important tokens
in the input sequence, similar to Transformers. To achieve this, we formulate the importance of each
token in terms of the smoothness of a function. Specifically, let us consider a function f that takes
a sequence of tokens X = [. . . , x−2, x−1, x0] as input and outputs y = f(X). If the function f is
smooth with respect to a token (coordinate) xi, we regard that token as unimportant; conversely, if
f is not smooth with respect to xi, we consider the token to be important. This is because, when f

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Bob was born in New York. After graduating
from university, he became a lawyer.
What is Bob's occupation? ▶ Lawyer
In which city was Bob born? ▶ New York

Figure E.2: Real-world tasks where piecewise γ-smooth functions can be applied. Left: There are a
different type of bird in each of the two images. The images are taken from ImageNet (Deng et al.,
2009). When considering a task of classifying these two types of birds, the important region is only
the part containing the bird, highlighted by the red box. By defining an importance function that
assigns larger values to this region, the task can be framed within the framework of piecewise γ-
smooth functions. Right: A passage and two related questions are given. Depending on the question,
the important parts of the passage are different. Let us define the importance function that assigns
larger values to the relevant parts of the passage based on the given question. Then, this problem
setting can also be framed within the framework of piecewise γ-smooth functions.

is smooth with respect to xi, the value of f does not change significantly with variations in xi, and
vice versa.

To quantitatively handle the smoothness of a function, we first consider γ-smooth functions. As
described in Section 4.2, γ-smooth functions form a class of functions that includes spaces such as
mixed-Besov spaces and Sobolev spaces. While this class includes a wide variety of functions, once
a specific function is fixed, its smoothness is also fixed. In other words, the locations of important
tokens are independent of the input. Thus, even if we demonstrate the capability of SSMs to estimate
functions in this class, it does not reveal whether SSMs possess the ability to dynamically adjust their
focus based on the input, i.e., the dynamic token selection ability.

To reflect the dynamic token selection ability of Transformers and SSMs, we introduce piecewise
γ-smooth functions. We provide an illustrative explanation in Figure E.1. To make the smoothness
of a function dependent on the input, we consider rearranging the input tokens. If we rearrange the
tokens using a permutation map Π based on the input X and apply the function f , the smoothness
changes depending on the input, while the smoothness of the γ-smooth function f itself is fixed.
We define the composition of the permutation map Π and the γ-smooth function f , i.e., f ◦ Π, as a
piecewise γ-smooth function.

To define the permutation map Π, we introduce an importance function µ. The function µ takes a
sequence of tokens as input and returns the importance of the last token as a real number. Given a
sequence X = [. . . , x−2, x−1, x0], let X−i = [. . . , x−i−2, x−i−1, x−i]. The importance of a token
x−i is then computed as µ(X−i), as shown in Figure E.1. The map Π rearranges the tokens in
ascending order of their importance scores µ(X−i).

As assumed in Assumption 4.3, the function f becomes smoother with respect to tokens located
farther from position 0. Thus, tokens with higher importance as defined by µ are rearranged to
positions closer to position 0 after the permutation. Consequently, these tokens are considered more
critical for the function f .

Thus, the piecewise γ-smooth function g = f ◦ Π is defined. The following two points are particu-
larly important:

• While γ-smooth functions have fixed smoothness, piecewise γ-smooth functions have smooth-
ness depending on the input. This is because the tokens are sorted by the order of importance.

• The importance of tokens are determined by the importance function µ. If a token has high
importance, it is a significant token for the function f .

In Figure E.2, we present concrete examples of real-world problems where piecewise γ-smooth
functions are applicable.

In the example on the left, there are two images with birds. We consider the task of predicting the
species of the bird in each image. For this task, only the regions containing the bird are relevant,
while the other parts of the images are not essential. Since the locations of the birds differ between

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

the two images, the important regions vary depending on the input. By defining an importance
function that assigns higher importance to tokens corresponding to the regions containing the bird,
this problem can be framed within the framework of piecewise γ-smooth functions.

In the example on the right, a passage and related questions are provided. We consider the task of
inferring appropriate answers to the questions based on the passage. For the first question, which
asks about Bob’s profession, the focus should be on the blue-highlighted part of the passage. For the
second question, which asks about Bob’s hometown, the focus shifts to the green-highlighted part.
We can define an importance function that takes the passage and the question as input and assigns
higher values to tokens corresponding to the relevant parts of the passage (e.g., the blue part for the
first question and the green part for the second question). Then, we can interpret the problem within
the framework of piecewise γ-smooth functions.

F AUXILIARY LEMMAS

In the following discussion, to simplify the notation, we define the function class Ψ′(D,B) by

Ψ′(D,B) :=
{
t 7→ [c1,k cos (2πa1,kt) + c2,k sin (2πa2,kt)]

D
k=1

∣∣∣ ∥c∥∞ ≤ B, ∥a∥∞ ≤ B.
}
.

First, we prove the following lemma, which states the properties of the Softmax and multi-variate
Swish function.
Lemma F.1 (Properties of Softmax and Multi-variate Swish function). Fix θ ∈ Rd. Assume that
there exists an index i∗ ∈ [d] and δ > 0 such that θi∗ > θi + δ for all i ̸= i∗. Then, the following
two statements hold:

1. (Lemma C.1 of Takakura & Suzuki (2023)) It holds
d∑

i=1

|Softmax(θ)i − δi,i∗ | ≤ 2d exp(−δ).

2. For any x ∈ [0, 1]d, it holds∣∣∣∣∣
d∑

i=1

Softmax(θ)i · xi − xi∗

∣∣∣∣∣ ≤ 2d2 exp(−δ).

Proof. We prove the second one. Using the first argument, we have∣∣∣∣∣
d∑

i=1

Softmax(θ)i · xi − xi∗

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
i̸=i∗

Softmax(θ)i · xi + (Softmax(θ)i∗ · xi∗ − xi∗)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i̸=i∗

Softmax(θ)i · xi + (Softmax(θ)i∗ · xi∗ − δi∗,i∗xi∗)

∣∣∣∣∣∣
≤
∑
i ̸=i∗

|Softmax(θ)i − δi,i∗ | · xi + |Softmax(θ)i∗ − δi∗,i∗ | · xi∗

≤
d∑

i=1

|Softmax(θ)i − δi,i∗ | · xi

≤ 2d2 exp(−δ),
which completes the proof.

The following is a famous fact that there exists a neural network that realize the clipping function.
Lemma F.2. Let a, b ∈ R. There exists a neural neural network fclip ∈ Ψ(L,W, S,B) with

L ≲ 1, W ≲ 1, S ≲ 1, B ≲ |a|+ |b|,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

such that, for any x ∈ R, it holds

fclip(x) =


a if x ≤ a,

x if a ≤ x ≤ b,

b if b ≤ x.

The following lemma shows the approximation ability of FNN for some elementary functions.

Lemma F.3 (Lemma F.6, Lemma F.7, Lemma F.12 of Oko et al. (2023), Corollary 4.2 of
Perekrestenko et al. (2018)). The following statements hold:

(mult) Let d ≥ 2, C ≥ 1, ϵerror ∈ (0, 1]. For any ϵ > 0, there exists a neural network fmult ∈
Ψ(L,W,S,B) with
L ≲ (log ϵ−1 + d logC) · log d, W ≲ d, S ≲ d log ϵ−1 + d logC, logB ≲ d logC,

such that, for any x ∈ [0, C]d and x ∈ Rd with ∥x− x′∥∞ ≤ ϵerror, it holds∣∣∣∣∣fmult(x
′)−

d∏
i=1

xi

∣∣∣∣∣ ≤ ϵ+ d · Cd · ϵerror.

(rec) For any ϵ ∈ (0, 1), there exists frec ∈ Ψ(L,W,S,B) with
L ≲ log2 ϵ−1, W ≲ log3 ϵ−1, S ≲ log4 ϵ−1, logB ≲ log ϵ−1,

such that, for any x ∈ [ϵ, ϵ−1] and x′ ∈ R, it holds∣∣∣∣frec(x′)− 1

x

∣∣∣∣ ≤ ϵ+
|x′ − x|
ϵ2

.

(exp) For any ϵ > 0, there exists fexp ∈ Ψ(L,W, S,B) with
L ≲ log2 ϵ−1, W ≲ log ϵ−1, S ≲ log2 ϵ−1, logB ≲ log2 ϵ−1,

such that, for any x, x′ ≥ 0, it holds
|fexp(x′)− exp(x)| ≤ ϵ+ |x′ − x|.

(cos) For any ϵ > 0, a > 0, b ∈ R, C ≥ 1, there exists fcos ∈ Ψ(L,W, S,B) with
L ≲ log2 ϵ−1 + log(aD + b), W ≲ 1,

S ≲ log2 ϵ−1 + log(aD + b), logB ≲ max {1, log |b/a|},
such that, for any x ∈ [−D,D], it holds

|fcos(x)− cos(ax+ b)| ≤ ϵ.

We also use the following lemma, which gives the approximation error of (x, y) 7→ y/x.

Lemma F.4. For any ϵ ∈ (0, 1], there exists a neural network ϕ ∈ Ψ(L,W, S,B) with
L ≲ log2 ϵ−1, W ≲ log3 ϵ−1, S ≲ log4 ϵ−1, logB ≲ log ϵ−1,

such that, for any x, y, x′, y′ ∈ R with x ∈ [ϵ, ϵ−1], y ∈ [0, ϵ−1], it holds∣∣∣ϕ(x′, y′)− y

x

∣∣∣ ≤ ϵ+
|x− x′|
ϵ8

+
|y − y′|
ϵ2

.

Proof. From (rec) of Lemma F.3, there exists a neural network ϕ1 ∈ Ψ(L,W, S,B) with
L ≲ log2 ϵ−1, W ≲ log3 ϵ−1, S ≲ log4 ϵ−1, logB ≲ log ϵ−1,

such that, for any x ∈ [ϵ, ϵ−1] ⊆ [ϵ3, ϵ−3] and x′ ∈ R, it holds∣∣∣∣ϕ1(x′)− 1

x

∣∣∣∣ ≤ ϵ3 +
|x− x′|
ϵ6

.

Next, using (mult) of Lemma F.3, there exists a neural network ϕ2 ∈ Ψ(L,W,S,B) with
L ≲ log ϵ−1, W ≲ 1, S ≲ log ϵ−1, logB ≲ log ϵ−1,

such that, for any y, z ∈ [0, ϵ−1] and y′, z′ ∈ R, it holds

|ϕ2(z′, y′)− zy| ≲ ϵ+
|z − z′|+ |y − y′|

ϵ2
.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Therefore, we have ∣∣∣ϕ2(ϕ1(x′), y′)− y

x

∣∣∣ ≲ ϵ+
1

ϵ2

(∣∣∣∣ϕ1(x′)− 1

x

∣∣∣∣+ |y − y′|
)

≲ ϵ+
|x− x′|
ϵ8

+
|y − y′|
ϵ2

.

Lastly, we state the following lemma, which shows that the Gaussian kernel can be approximated
expressed as the sum of the product of neural networks.

Lemma F.5. There exists N ∈ N and FNNs ϕn, ϕ
′
n, ϕ

′′
n ∈ Ψ1,1(L,W, S,B), ψn, ψ

′
n ∈

Ψ′(1, B) (n = 1, . . . , N) with
N ≲ log2 ϵ−1,

L ≲ log4 ϵ−1 log2 κ, W ≲ 1, S ≲ log4 ϵ−1 log2 κ, logB ≲ log2 ϵ−1 log κ,

L′ = 1, W ′ ≲ log2 ϵ−1, S′ ≲ log2 ϵ−1,

such that,

• for any t, x ∈ [−1, 1], it holds∣∣∣∣∣exp(−κ · sin2
(π
2
(t− x)

))
−

N∑
n=1

ψn(t)ϕn(x)

∣∣∣∣∣ ≲ ϵ,

• for any x, y ∈ [−1, 1], it holds∣∣∣∣∣exp(−κ · sin2
(π
2
(x− y)

))
−

N∑
n=1

ϕ′n(x)ϕ
′′
n(y)

∣∣∣∣∣ ≲ ϵ,

• for any t ∈ [−1, 1], it holds∣∣∣∣∣exp
(
−κ · sin2

(
πt

2

))
−

N∑
n=1

ψ′
n(t)

∣∣∣∣∣ ≲ ϵ.

Proof. The first part of the proof is inspired by Lemma F.12 of Oko et al. (2023). Let us set A =
log 3ϵ−1. The Taylor expansion of exp shows that, for any x ∈ [0, A], it holds∣∣∣∣∣exp(−x)−

N−1∑
n=0

(−1)n

n!
xn

∣∣∣∣∣ ≤ AN

N !
.

Additionally, we can evaluate the right-hand side as Ak/k! ≤ (eA/k)
k. Therefore, if we set N =

max
{
2eA, ⌈log2 3ϵ−1⌉

}
, the error can be bounded by ϵ/3. Moreover, for x > A, we have∣∣∣∣∣exp(−x)−

N−1∑
n=0

(−1)n

n!
xn

∣∣∣∣∣ ≤ |exp(−x)− exp(−A)|+

∣∣∣∣∣exp(−A)−
N−1∑
n=0

(−1)n

n!
xn

∣∣∣∣∣
≤ ϵ

3
+

2ϵ

3
= ϵ.

Next, let us approximate
N−1∑
n=0

(−κ)n

n!
sin2n

(π
2
(t− x)

)
. We use the fact that

sin2n(x) =

(
eix − e−ix

2

)2n

=
1

22n

2n∑
k=0

(
2n

k

)
(−1)kei(2k−2n)x

=
(−1)n

22n

(
2n

n

)
+
∑

k≥n+1

(−1)k

22n−1

(
2n

k

)
cos ((2k − 2n)x),

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

where cn = 1 if n is even and cn = 0 if n is odd. Thus, we have
N−1∑
n=0

(−κ)n

n!
sin2n

(π
2
(t− x)

)
=

N−1∑
n=0

κn

n!22n

(
2n

n

)
+

N−1∑
n=0

∑
k≥n+1

(−κ)n

n!

1

22n−1

(
2n

k

)
cos (π(k − n)(t− x))

=

N−1∑
n=0

κn

n!22n

(
2n

n

)
+

N−1∑
n=0

∑
k≥n+1

(−κ)n

n!

1

22n−1

(
2n

k

)(
cos (π(k − n)t) cos (π(k − n)x)

+ sin (π(k − n)t) sin (π(k − n)x)

)
,

which is decomposed into the sum of products of functions of t and x. Since∣∣∣∣ (−κ)nn!

1

22n−1

(
2n

k

)∣∣∣∣ ≤ κn

n!2n
(2n)!

k!(2n− k)!
≤ κn

n!2n
2n(n!)2

(max(k, 2n− k))!
=

κn

n!2n
2n(n!)2

n!
≤ κN ,

we can see that, there exists C0, Cn,k (n = 0, . . . , N − 1; k = 0, . . . , N − 1) with
C0 ≤ κN , Cn,k ≤ κN ,

such that
N−1∑
n=0

(−κ)n

n!
sin2n

(π
2
(t− x)

)
= C0 +

N−1∑
n=0

N−1∑
k=0

Cn,k

(
cos (π(k − n)t) cos (π(k − n)x)

+ sin (π(k − n)t) sin (π(k − n)x)
)
.

The second item to be proved is already obtained setting x = 0.

To prove the first item, we approximate each term using neural networks. Lemma F.3 implies that,
for any n, k and ϵ > 0, there exists a neural network ϕ1,n,k, ϕ2,n,k ∈ Ψ1,1(L,W, S,B) with

L ≲ N2 log2 κ+ log2 ϵ−1, W ≲ 1, S ≲ N2 log2 κ+ log2 ϵ−1, logB ≲ 1,

such that
|cos(π(k − n)x)− ϕ1,n,k(x)| ≤ ϵ/(N2κN), |sin(π(k − n)x)− ϕ2,n,k(x)| ≤ ϵ/(N2κN).

Then, if we approximate exp(−κ · cos(2π(t− x))) by

C0 +

N−1∑
n=0

N−1∑
k=0

Cn,k(cos (π(k − n)t)ϕ1,n,k(x) + sin (π(k − n)t)ϕ2,n,k(x)),

the error can be bounded by

ϵ+

N−1∑
n=0

N−1∑
k=0

Cn,k · 2ϵ

N2κN
≤ ϵ+N2κN · 2ϵ

N2κN
≤ 3ϵ,

which gives the desired result.

For the third item, if we utilize ϕ1,n,k and ϕ2,n,k to approximate cos(π(k − n)y) and
sin(π(k − n)y), respectively, we can obtain the desired result.

The following lemma is the multi-dimensional version of Lemma F.5.

Lemma F.6. There exists N ∈ N and FNNs ϕn,i, ϕ′n,i ∈ Ψd,1(L,W,S,B) with

N ≲ log2 ϵ−1 + log2 d,

L ≲ d4 log4 ϵ−1 log2 κ, W ≲ d, S ≲ d4 log4 ϵ−1 log2 κ, logB ≲ d log2 ϵ−1 log κ,

such that, for any x, y ∈ [−1, 1]d, it holds∣∣∣∣∣exp
(
−κ ·

n∑
i=1

sin2
(π
2
(xi − yi)

))
−

N∑
n=1

ϕn(x)ϕ
′
n(y)

∣∣∣∣∣ ≲ ϵ.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof. The proof of Lemma F.5 shows that, for N ∼ log2 ϵ−1+log2 d, there exists ϕ∗1, . . . , ϕ
∗
N and

C1, · · · , CN with |Cn| ≤ κN such that∣∣∣∣∣exp(−κ · sin2
(π
2
(xi − yi)

))
−

N∑
n=1

Cnϕ
∗
n(xi)ϕ

∗
n(yi)

∣∣∣∣∣ ≲ ϵ

d
,

where ϕ∗n is a function represented as sin(anx+ bn) with some an, bn ∈ R. Therefore,
d∏

i=1

(
N∑

n=1

Cnϕ
∗
n(xi)ϕ

∗
n(yi)

)
=

∑
n1,...,nd

Cn1
· · ·Cnd

ϕ∗n1
(x1) · · ·ϕ∗nd

(xd)ϕ
∗
n1
(y1) · · ·ϕ∗nd

(yd),

which have Nd terms, is an approximation of exp

(
−κ ·

n∑
i=1

sin2
(π
2
(xi − yi)

))
, and the error is

bounded as∣∣∣∣∣exp
(
−κ ·

n∑
i=1

sin2
(π
2
(xi − yi)

))
−

d∏
i=1

(
N∑

n=1

Cnϕ
∗
n(xi)ϕ

∗
n(yi)

)∣∣∣∣∣ ≤ d · ϵ
d
= ϵ.

Using (cos) of Lemma F.3, we can see that, for any n ∈ [N] and ϵ > 0, there exists a neural network
ψ1,n ∈ Ψd,1(L,W, S,B) with

L ≲ d4 log4 ϵ−1 log κ, W ≲ 1, S ≲ d4 log4 ϵ−1 log κ, logB ≲ log2 ϵ−1 log κ,

such that

|ϕ∗n(x)− ψ1,n(x)| ≤
ϵ

dκdNNd
.

Moreover, using (mult) of Lemma F.3, we can see that there exists a neural network ψ2,n1,...,nd
, ψ3 ∈

Ψ(L,W, S,B) with
L ≲ d2 log2 ϵ−1 log2 κ, W ≲ d, S ≲ d3 log2 ϵ−1 log2 κ, logB ≲ d,

such that
|ψ2(x1, . . . , xd)− Cn1

· · ·Cnd
x1x2 · · ·xd| ≲

ϵ

κdN

|ψ3(x1, . . . , xd)− x1x2 · · ·xd| ≲
ϵ

κdN
.

for any x ∈ R with |x| ≤ 1. for any x1, . . . , xd ∈ R with |xi| ≤ 1. Then, we have∣∣∣∣∣ ∑
n1,...,nd

ψ2,n1,...,nd
(ψ1,n1

(x1), . . . , ψ1,nd
(xd))ψ3(ψ1,n1

(y1), . . . , ψ1,nd
(yd))

− exp

(
−κ ·

n∑
i=1

sin2
(π
2
(xi − yi)

))∣∣∣∣∣
≤ ϵ

κdN
· κdN +

∣∣∣∣∣ ∑
n1,...,nd

Cn1
· · ·Cnd

· ψ1,n1
(x1) · · ·ψ1,nd

(xd) · ψ1,n1
(y1) · · ·ψ1,nd

(yd)

− exp

(
−κ ·

n∑
i=1

sin2
(π
2
(xi − yi)

))∣∣∣∣∣
≤ ϵ

κdN
· κdN + dκdNNd · ϵ

dκdNNd

+

∣∣∣∣∣ ∑
n1,...,nd

Cn1
· · ·Cnd

· ϕ∗1(x1) · · ·ψ∗
d(xd) · ϕ∗1(y1) · · ·ψ∗

d(yd)

− exp

(
−κ ·

n∑
i=1

sin2
(π
2
(xi − yi)

))∣∣∣∣∣
≲ ϵ,

which completes the proof.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

G PROOF OF LEMMA 3.3

First, for any j ̸= j∗, it holds(
1

2
∥q∥2 + 1

2
∥kj∥2 −

1

2
∥q − kj∥2

)
−
(
1

2
∥q∥2 + 1

2
∥kj∗∥2 −

1

2
∥q − kj∗∥2

)
= q⊤kj−q⊤kj∗ ≤ −δ.

Now, since it is hold that

u2 − u4

3
≤ sin2(u) =

1− cos 2u

2
≤ u2,

for u ∈ [0, π/2], for A > 0, j ∈ [−V : 0], i ∈ [d′], we have∣∣∣∣(A sin
(π

2A
(kji − qj)

))2
−
(π
2
(kji − qj)

)2∣∣∣∣
=

∣∣∣∣A2 sin2
(π

2A
(kji − qj)

)
−A2

(π

2A
(kji − qi)

)2∣∣∣∣
≤ A2 ·

(π

2A
(kji − qi)

)4
≤ π4

A2
.

Therefore, if we set A =
√

16π2d′

δ , it holds1

2
∥q∥2 + 1

2
∥kj∥2 −

1

2
· 4

π2

d′∑
i=1

(
A sin

(π

2A
(kji − qi)

))2
−

1

2
∥q∥2 + 1

2
∥kj∗∥2 −

1

2
· 4

π2

d′∑
i=1

(
A sin

(π

2A
(kj∗ − qi)

))2
≤
(
1

2
∥q∥2 + 1

2
∥kj∥2 −

1

2
∥q − kj∥2

)
−
(
1

2
∥q∥2 + 1

2
∥kj∗∥2 −

1

2
∥q − kj∗∥2

)
+

4d′

π2

∣∣∣∣(A sin
(π

2A
(kji − qi)

))2
−
(π
2
(kji − qi)

)2∣∣∣∣
+

4d′

π2

∣∣∣∣(A sin
(π

2A
(kj∗i − qi)

))2
−
(π
2
(kj∗i − qi)

)2∣∣∣∣
≤ −δ + 4d′π2

A2
+

4d′π2

A2
≤ −δ + δ

4
+
δ

4
= −δ

2
.

In the following, we denote

µ′
j :=

1

2
∥q∥2 + 1

2
∥kj∥2 −

1

2
· 4

π2

d′∑
i=1

(
A sin

(π

2A
(kji − qi)

))2
.

Using Lemma F.1, we have∥∥∥∥∥
∑0

j=−V exp
(
κµ′

j

)
· vj∑0

j=−V exp
(
κµ′

j

) − vj∗

∥∥∥∥∥
∞

≤ 2(V + 1)2 exp

(
−δκ

2

)
.

for any κ > 0. Therefore, if we set κ = Ω
(

log ϵ−1+log V
δ

)
, the right-hand side is less than ϵ.

Next, let us consider approximating

exp
(
κµ′

j

)
· vj = vj · exp

κ ·

1

2
∥q∥2 + 1

2
∥kj∥2 −

1

2
· 4

π2

d′∑
i=1

(
A sin

(π

2A
(kji − qi)

))2
= vj · exp

(κ
2
∥q∥2

)
exp

(κ
2
∥kj∥2

)
exp

−32κd′

δ

d′∑
i=1

sin2
(
π

2

kji − qi
A

).
23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Combining (mult) and (exp) in Lemma F.3, we can see that there exists a neural network ϕ1 ∈
Ψ(L,W, S,B) with

L ≲
d′

2

δ2
(
log2 ϵ−1 + log2 V

)
, W ≲

d′

δ

(
log ϵ−1 + log V

)
,

S ≲
d′

2

δ2
(
log2 ϵ−1 + log2 V

)
, logB ≲

d′
2

δ2
(
log2 ϵ−1 + log2 V

)
,

such that ∣∣∣ϕ1(x)− exp
(κ
2
∥x∥2

)∣∣∣ ≲ 1

(V + 1)2
ϵ9 exp(−9κd′ − 4δ)

for any x ∈ R with ∥x∥∞ ≤ 1. Moreover, using Lemma F.6, we can see that there exists neural
networks ϕ2,n, ϕ3,n ∈ Ψ(L,W, S,B) (n = 1, . . . , N) with

N ≲
d′

2

δ2
(
log2 ϵ−1 + log2 V

)
, L ≲

d′
8

δ5
(
log5 ϵ−1 + log5 V

)
, W ≲ d′,

S ≲
d′

8

δ5
(
log5 ϵ−1 + log5 V

)
, logB ≲

d′
3

δ2
(
log3 ϵ−1 + log3 V

)
,

such that, for any x, y ∈ [−1, 1]d,∣∣∣∣∣∣
N∑

n=1

ϕ2,n(x)ϕ3,n(y)− exp

−32κd′

δ

d′∑
i=1

sin2
(π
2
(x− y)

)∣∣∣∣∣∣ ≲ 1

(V + 1)2
ϵ9 exp(−9κd′ − 4δ).

Note that, by clipping the output appropriately, we can ensure that

∥ϕ1∥∞ ≤ exp

(
κd′

2

)
, ∥ϕ2,n∥∞ ≤

(
32κd′

δ

)d′N

, ∥ϕ3,n∥∞ ≤
(
32κd′

δ

)d′N

,

without changing the approximation error. Therefore, we have∥∥∥∥∥vj · ϕ1(q)ϕ1(kj)
N∑

n=1

ϕ2,n

(q
A

)
ϕ3,n

(
kj
A

)
− exp

(
κµ′

j

)
· vj

∥∥∥∥∥
∞

=

∥∥∥∥∥vj · ϕ1(q)ϕ1(kj)
N∑

n=1

ϕ2,n

(q
A

)
ϕ3,n

(
kj
A

)

− vj · exp
(κ
2
∥q∥2

)
exp

(κ
2
∥kj∥2

)
exp

−32κd′

δ

d′∑
i=1

sin2
(
π

2

kji − qi
A

)∥∥∥∥∥
∞

≲ exp(κd′) · 1

(V + 1)2
ϵ9 exp(−9κd′ − 4δ) =

1

(V + 1)2
ϵ9 exp(−8(κd′ + δ/2)).

Using (mult) of Lemma F.3, we can see that there exists a neural network ϕ4 ∈ Ψ(L,W, S,B) with

L ≲
d′

3

δ3
(
log3 ϵ−1 + log3 V

)
, W ≲ 1, S ≲

d′
3

δ3
(
log3 ϵ−1 + log3 V

)
, logB ≲ 1,

such that |ϕ4(x, y)− xy| ≲ ϵ9 · 1
N(V+1)2

(
δ

32κd′

)d′N
exp(−(17κd′ + δ)/2) for any x, y ∈ R

with |x| ≤ exp
(

κd′

2

)
, |y| ≤

(
32κd′

δ

)d′N

. Additionally, there exists a neural network ϕ5 ∈
Ψ(L,W, S,B) with

L ≲
d′

3

δ3
(
log3 ϵ−1 + log3 V

)
, W ≲ 1, S ≲

d′
3

δ3
(
log3 ϵ−1 + log3 V

)
, logB ≲ 1,

such that |ϕ5(v, x, y)− v · xy| ≲ ϵ9 · 1
N(V+1)2

(
δ

32κd′

)d′N
exp(−(17κd′ + δ)/2) for any v ∈

Rd′
x, y ∈ R with ∥v∥∞ ≤ 1 and |x| ≤ exp

(
κd′

2

)
, |y| ≤

(
32κd′

δ

)d′N

. Using these networks,
we have the following approximation:∣∣∣ϕ4(ϕ1(q), ϕ2,n(q

A

))
− ϕ1(q)ϕ2,n

(q
A

)∣∣∣
≲ ϵ9 · 1

N(V + 1)2

(
δ

32κd′

)d′N

exp(−(17κd′ + δ)/2),

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

∥∥∥∥ϕ5(vj , ϕ1(kj), ϕ3,n(kjA
))

− vjϕ1(kj)ϕ3,n

(
kj
A

)∥∥∥∥
∞

≲ ϵ9 · 1

N(V + 1)2

(
δ

32κd′

)d′N

exp(−(17κd′ + δ)/2).

This implies that there exist neural networks Φ1, ψ1 ∈ Ψ(L,W, S,B) with

L ≲
d′

8

δ5
(
log5 ϵ−1 + log5 V

)
, W ≲

d′

δ

(
log ϵ−1 + log V

)
,

S ≲
d′

8

δ5
(
log5 ϵ−1 + log5 V

)
, logB ≲

d′
3

δ2
(
log3 ϵ−1 + log3 V

)
,

such that∥∥Φ1(kj , vj)ψ(q)− exp
(
κµ′

j

)
· vj
∥∥
∞

=

∥∥∥∥∥
N∑

n=1

ϕ4

(
ϕ1(q), ϕ2,n

(q
A

))
ϕ5

(
vj , ϕ1(kj), ϕ3,n

(
kj
A

))
− vj · exp

(
κµ′

j

)∥∥∥∥∥
∞

≤

∥∥∥∥∥
N∑

n=1

ϕ4

(
ϕ1(q), ϕ2,n

(q
A

))
ϕ5

(
vj , ϕ1(kj), ϕ3,n

(
kj
A

))

− vj · ϕ1(q)ϕ1(kj)
N∑

n=1

ϕ2,n

(q
A

)
ϕ3,n

(
kj
A

)∥∥∥∥∥
∞

+

∥∥∥∥∥vj · ϕ1(q)ϕ1(kj)
N∑

n=1

ϕ2,n

(q
A

)
ϕ3,n

(
kj
A

)
− vj · exp

(
κµ′

j

)∥∥∥∥∥
≲

1

(V + 1)2
ϵ9 exp(−8(κd′ + δ/2)),

where Φ1(kj , vj) ∈ Rd′×N and ψ(q) ∈ RN . Summing up the error for j = −V, . . . , 0, we have∥∥∥∥∥∥
 0∑

j=−V

Φ1(kj , vj)

ψ1(q)−
0∑

j=−V

exp
(
κµ′

j

)
· vj

∥∥∥∥∥∥
∞

≲
1

V + 1
ϵ9 exp(−8(κd′ + δ/2)).

Similarly, there exist neural networks ψ2, ψ3 ∈ Ψ(L,W, S,B) with

L ≲
d′

8

δ5
(
log5 ϵ−1 + log5 V

)
, W ≲

d′

δ

(
log ϵ−1 + log V

)
,

S ≲
d′

8

δ5
(
log5 ϵ−1 + log5 V

)
, logB ≲

d′
3

δ2
(
log3 ϵ−1 + log3 V

)
,

such that ∣∣∣∣∣∣ψ3(q)
⊤

0∑
j=−V

ψ2(kj)−
0∑

j=−V

exp
(
κµ′

j

)
· vj

∣∣∣∣∣∣ ≲ 1

V + 1
ϵ9 exp(−8(κd′ + δ/2)),

where ψ2(kj), ψ3(q) ∈ RN . Note that Φ1(kj , vj) ∈ Rd′×N and ψ2(kj) ∈ RN are the output of the
convolution layer.

From (mult) in Lemma F.3, we can see that there exists a neural network ϕ6 ∈ Ψ(L,W, S,B) with

L ≲
d′

δ

(
log ϵ−1 + log V

)
, W ≲ 1,

S ≲
d′

δ

(
log ϵ−1 + log V

)
, logB ≲ 1,

such that |ϕ6(x, y)−Xy| ≲ 1
V+1ϵ

9 exp(−8(κd′ + δ/2)) for any X ∈ Rd′×N , y ∈ RN with

∥X∥∞, ∥y∥∞ ≤ (V + 1)
(

32κd′

δ

)d′N

exp
(

κd′

2

)
. Similarly, we have the network ϕ7 that approx-

imates x⊤y for any x, y ∈ RN with ∥x∥∞, ∥y∥∞ ≤ (V + 1)
(

32κd′

δ

)d′N

exp
(

κd′

2

)
. Then, we

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

have∥∥∥∥∥∥ϕ6
 0∑

j=−V

Φ1(kj , vj), ψ1(q)

−

 0∑
j=−V

Φ1(kj , vj)

ψ1(q)

∥∥∥∥∥∥
∞

≲
1

V + 1
ϵ9 exp(−8(κd′ + δ/2)),

∣∣∣∣∣∣ϕ7
ψ3(q),

0∑
j=−V

ψ2(kj)

− ψ3(q)
⊤

0∑
j=−V

ψ2(kj)

∣∣∣∣∣∣ ≲ 1

V + 1
ϵ9 exp(−8(κd′ + δ/2)).

Now, from Lemma F.4, there exists a neural network ϕ8 ∈ Ψ(L,W, S,B) with

L ≲
d′

2

δ2
(
log2 ϵ−1 + log2 V

)
, W ≲

d′
3

δ3
(
log3 ϵ−1 + log3 V

)
,

S ≲
d′

4

δ4
(
log4 ϵ−1 + log4 V

)
, logB ≲

d′

δ

(
log ϵ−1 + log V

)
,

such that ∣∣∣∣ϕ8(x′, y′)− y′

x′

∣∣∣∣ ≲ ϵ+
|x− x′|
τ8

+
|y − y′|
τ2

for any x, y, x′, y′ ∈ R with x ∈ [τ, τ−1] and y ∈ [0, τ−1], where
τ := min {ϵ, exp(−(κd′ + δ/2))/(V + 1)}

Since it holds
0∑

j=−V

exp(κµj) · vji ≤
0∑

j=−V

exp
(
κµ′

j

)
≤ (V + 1) exp(κd′ + δ/2),

for any i ∈ [d′], and
0∑

j=−V

exp(κµj) ≥ exp(κµj∗) ≥ exp(−κd′ − δ/2),

we have∥∥∥∥∥∥ϕ8
ϕ6

 0∑
j=−V

Φ1(kj , vj), ψ1(q)

, ϕ7
ψ3(q),

0∑
j=−V

ψ2(kj)

−
∑0

j=−V exp
(
κµ′

j

)
· vj∑0

j=−V exp
(
κµ′

j

)
∥∥∥∥∥∥
∞

≲ ϵ+
ϵ9 exp(−8(κd′ + δ/2))/(V + 1)

τ8
+
ϵ9 exp(−8(κd′ + δ/2))/(V + 1)

τ2
≲ ϵ.

which completes the proof.

H PROOF OF THEOREM 3.1, 3.2, D.1 AND D.2

H.1 CONSTRUCTING THE EMBEDDINGS

To construct the embeddings, we use the following lemma.
Lemma H.1. Let S be an arbitrary set of n points in Rd, and m ≥ 1 be a integer. Suppose that, for
any x ∈ S, it holds ∥x∥2 ≤ 1. Then, there exists a matrix R ∈ Rk×d with k ≤ 512m4 log n + 1
satisfying the following:

• Any elements of R is +1/
√
k or −1/

√
k.

• For any x, y ∈ S, it holds
∣∣(Rx)⊤(Ry)− x⊤y

∣∣ ≤ 1
8m2 .

To prove Lemma H.1, we use the following proposition.
Proposition H.2 (Theorem 1.1 in Achlioptas (2003)). Let P be an arbitrary set of n points in Rd.
Given ϵ, β > 0, let k be an integer such that k ≥ 4+2β

ϵ2−ϵ3 log n. Let R be a k×d matrix whose entries

are independent random variables drawn from the uniform distribution on
{
1/
√
k,−1/

√
k
}

. Then,

with probability at least 1− n−β , for any x, y ∈ P ,
(1− ϵ)∥x− y∥22 ≤ ∥Rx−Ry∥22 ≤ (1 + ϵ)∥x− y∥22.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Proof of Lemma H.1. We apply Proposition H.2 with

P = S ∪ {−s | s ∈ S} , ϵ =
1

8m2
, β = 1.

Let k be an integer such that

k ≥ 512m4 log n

(
≥ 4 + 2β

ϵ2 − ϵ3
log n

)
,

and R be the random matrix defined in Proposition H.2. With probability at least 1 − 1
2n , for any

x, y ∈ P , ∣∣∣∥Rx−Ry∥22 − ∥x− y∥22
∣∣∣ ≤ 1

8m2
∥x− y∥22, (H.1)∣∣∣∥Rx+Ry∥22 − ∥x+ y∥22

∣∣∣ ≤ 1

8m2
∥x+ y∥22. (H.2)

Since 1 − 1
2n ≥ 1

2kd for any positive integer n, k, d, we can choose R such that (H.1) holds. For
such R, it holds

(Rx)⊤(Ry)− x⊤y =
1

4

(
∥Rx+Ry∥22 − ∥Rx−Ry∥22 − ∥x+ y∥22 + ∥x+ y∥22

)
≤ 1

4

(∣∣∣∥Rx+Ry∥22 − ∥x+ y∥22
∣∣∣+ ∣∣∣∥Rx−Ry∥22 − ∥x− y∥22

∣∣∣)
≤ 1

4

(
1

4m2
∥x+ y∥22 +

1

4m2
∥x− y∥22

)
=

1

16m2
∥x∥22 +

1

16m2
∥y∥22

≤ 1

8m2
,

which completes the proof.

H.2 PROOF OF THE THEOREMS

The following is the essential lemma to prove the three theorems.

Lemma H.3. Let m ∈ N>0 and Z = [z−V , . . . , z0] ∈ [−1, 1]|W|×[−V :0] be a sequence of one-hot
vector representing the alphabets in set S. Suppose that there uniquely exists j∗ ∈ [−V : −1] such
that

[zj∗−m, zj∗−m+1, . . . , zj∗−1] = [z−m+1, z−m+2, . . . , z0],

where zj = 0 for j /∈ [−m + 1 : 0]. Then, there exists F ∈ S(M,U,D,L,W, S,B) and W ∈
R|W|×D with

M = 2, U = V, D = m14 log2 V log3 |W|, L ≲ m37 log5 V log8 |W|,
W ≲ m15 log3 V log3 |W|, S ≲ m37 log5 V log8 |W|, logB ≲ m10 log2 V log2 |W|,

such that j∗ = argmaxj=−V,...,0(W · F (Z)0)j .

Proof. Set κ ∼ V 2(logm + log V + log log |W|). Additionally, let us set embedding E1 = R ∈
RD×|W| as in Lemma H.1, and set E2 = 0. We define xj = Rzj for j = −V, . . . , 0. The third item
of Lemma F.5, we can see that there exists ψn ∈ Ψ′(D,B) with
N ≲ log2m+ log2 V + log2 log |W|, D = 1, logB ≲ log2m+ log2 V + log2 log |W|,

such that ∥∥∥∥∥exp
(
−κ · sin2

(
π · (j − k)

2(V + 1)

))
−

N∑
n=1

ψn

(
j

V + 1

)∥∥∥∥∥
∞

≤ 1

8m2d(V + 1)
.

for any j = −V, . . . , 0. Since∣∣∣∣exp(−κ · sin2
(
π · (k − j)

2(V + 1)

))
− δj,k

∣∣∣∣ ≤ 1

8m2d(V + 1)
,

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

it holds ∥∥∥∥∥∥
0∑

j=−V

N∑
n=1

ψn

(
j

V + 1

)
· xj − xk

∥∥∥∥∥∥
∞

≤ 1

4m2d
.

Therefore, there exists g1 ∈ C(U,D,B) with
U = V, D = m, logB ≲ m2 log V,

such that

g(X) =

q′−V q′−V+1 · · · q′0
k′−V k′−V+1 · · · k′0
v′−V v′−V+1 · · · v′0

,
∥∥∥∥∥∥
q′−V q′−V+1 · · · q′0
k′−V k′−V+1 · · · k′0
v′−V v′−V+1 · · · v′0

−

[
q−V q−V+1 · · · q0
k−V k−V+1 · · · k0
v−V v−V+1 · · · v0

]∥∥∥∥∥∥
∞

≤ 1

4m2d
,

where
qj =

[
x⊤j−m+1, x

⊤
j−m+2, . . . , x

⊤
j

]⊤
,

kj =
[
x⊤j−m+1, x

⊤
j−m+2, . . . , x

⊤
j

]⊤
,

vj = xj ,

and xj = 0 for j /∈ [−m+ 1 : 0]. Then, it holds,

q′0
⊤
k′j∗ ≥ q⊤0 kj∗ −md · 1

4m2d
≥ 1− 1

8m2
·m− 1

4m
= 1− 3

8m
,

and, for any j ∈ [−V : 0] \ {j∗},

q′0
⊤
k′j ≤ q⊤0 kj +md · 1

4m2d
≤ m− 1

m
+

1

8m2
·m+

1

4m
= 1− 5

8m
.

Therefore, due to Lemma 3.3, there exists f1, f2 ∈ Ψ(L,W, S,B) and g2 ∈ C(U,D,B) with
U = V, D = m14 log2 V log3 |W|, L ≲ m37 log5 V log8 |W|,
W ≲ m15 log3 V log3 |W|, S ≲ m37 log5 V log8 |W|, logB ≲ m14 log2 V log2 |W|,

such that

∥f2 ◦ g2 ◦ f1 ◦ g1(X)− xj∗∥∞ ≤ 1

4
.

Therefore,
∥∥R⊤(F (Z)0)− zj∗

∥∥
∞ ≤ 1

4 + 1
8m2 , which completes the proof.

Now, we prove Theorem 3.1, Theorem 3.2 and Theorem D.1.

Proof of Theorem 3.1. Due to Lemma 2.4 of Jelassi et al. (2024), if we set m ≲ log(V/ϵ)/ log |W|
in Lemma H.3, we can achieve errV ≤ ϵ. Therefore, the result follows.

Proof of Theorem 3.2. Applying m = 1 and V ≤ |W| directly gives the result.

Proof of Theorem D.1. The proof is completely the same as the proof of Theorem 3.2. Note that
associative recall is the special case of induction heads where the set keys and the set queries are
completely split.

Proof of Theorem D.2. The probability of havingM or more consecutive 〈PAD〉 tokens in the input
sequence is at most V · αM . Therefore, if M ∼ log V + log ϵ−1, this probability becomes less than
ϵ/2. Hence, in the following discussion, we consider situations where 〈PAD〉 does not appear
consecutively M times or more.

Let “s0, s1, . . . , sV ” be the input sequence, and take an arbitrary index i ∈ [V]. Fix a positive integer
K. Due to the definition of M , if we set m = KM , there are at least K tokens that are not 〈PAD〉
in the sequence [si−m+1, si−m+2, . . . , si].

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Now, let us upper bound the probability that there exists i ̸= j (i, j ∈ [V]) such that two sequences
[si−m+1, si−m+2, . . . , si] and [sj−m+1, sj−m+2, . . . , sj] have common K elements (including du-
plicates) that are not 〈PAD〉. First, we have |W|K choices for the common K elements. Then, we
have (m!/(m−k)!)2 choices for the positions of the common K elements in the sequence of length
m. Each choice of the positions occurs with probability at most 1/|W|2K . Moreover, there are at
most V 2 choices for the indices i and j. Therefore, the probability can be upper bounded by

V 2 · |W|K · m!2

(m−K)!2
· 1

|W|2K
≤ V 2

|W|K
· m!2

(m−K)!2

≤ V 2

|W|K
· e2(m+ 1/e)2(m+1)

e2((m−K)/e)2(m−K)

≤ V 2

|W|K
· (m+ 1)2(m+1)

e2(m+1)
· e2(m−K)

(m−K)2(m−K)

≤ V 2

e2
·
(
(MK −K)2

e2|W|

)K

· (m+ 1)2(m+1)

(m−K)2m

≤ V 2(KM + 1)2

e2
·
(
K2(M − 1)2

e2|W|

)K

·
(
KM + 1

KM −K

)2KM

≤ V 2(KM + 1)2

e2
·

(
K2(M − 1)2

e2|W|
·
(
M + 1

M − 1

)M
)K

≤ V 2(KM + 1)2

e2
·
(
C ·K2(M − 1)2

|W|

)K

,

whereC > 0 is a universal constant. Therefore, if |W| ≥ 2C ·K2(M−1)2 andK ∼ log ϵ−1+log V ,
the probability is less than ϵ/2.

Let us consider the situation where the input “s0, s1, . . . , sL” is fed into the model. Let us set
embedding E1 = R ∈ RD×|W| as in Lemma H.1, and set E2 = 0. Additionally, let xj be the
embedding of sj for j = 0, . . . , L. Let us consider the model that finds sI with the index I ∈ [L]
such that the partial sequence [sI−m+1, sI−m+2, . . . , sI] and [sL−m+1, sL−m+2, . . . , sL] have the
same K elements that are not 〈PAD〉.

The similar discussion as in the proof of Lemma H.3 reveals that there exists ψn ∈ Ψ′(D,B) with
N ≲ log2m+ log2 V, D = 1, logB ≲ log2m+ log2 V,

such that ∥∥∥∥∥∥
L∑

j=0

N∑
n=1

ψn

(
j

V + 1

)
· xj −

1

m

L∑
j=L−m+1

xj

∥∥∥∥∥∥
∞

≤ 1

4m2
.

Therefore, there exists g1 ∈ C(U,D,B) with
U = L, D ≲ log2m+ log2 V, logB ≲ log2m+ log2 V,

such that

g1(X) =

[
q′0 q′1 · · · q′L
k′0 k′1 · · · k′L
v′0 v′1 · · · v′L

]
,

∥∥∥∥∥
[
q′0 q′1 · · · q′L
k′0 k′1 · · · k′L
v′0 v′1 · · · v′L

]
−

[
q0 q1 · · · qL
k0 k1 · · · kL
v0 v1 · · · vL

]∥∥∥∥∥
∞

≤ 1

4m2
,

where

qt =
1

m

t∑
j=t−m+1

xj , kt =
1

m

t∑
j=t−m+1

xj , vt = xt,

Then, if [sj−m+1, sj−m+2, . . . , sj] and [sL−m+1, sL−m+2, . . . , sL] have the common K elements,
it holds

q′L
⊤
k′j ≥

K

m2
− 1

4m2
.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Moreover, if the number of common elements in [sj−m+1, sj−m+2, . . . , sj] and
[sL−m+1, sL−m+2, . . . , sL] is less than K, it holds

q′L
⊤
k′j ≤

K − 1

m2
+

1

4m2
=

K

m2
− 3

4m2
.

Therefore, due to Lemma 3.3, there exists f1, f2 ∈ Ψ(L,W, S,B) and g2 ∈ C(U,D,B) with
U = V, D = m16 log2 V log3 |W|, L ≲ m42 log5 V log8 |W|,
W ≲ m18 log3 V log3 |W|, S ≲ m42 log5 V log8 |W|, logB ≲ m16 log2 V log2 |W|,

such that
∥f2 ◦ g2 ◦ f1 ◦ g1(X)− xI∥∞ ≤ 1

4
.

Therefore,
∥∥R⊤(F (Z)0)− xI

∥∥
∞ ≤ 1

4 + 1
8m2 , which completes the proof.

I PROOF OF THEOREM 4.5

I.1 PREPARATION: APPROXIMATION OF γ-SMOOTH FUNCTIONS

Before proving Theorem 4.5, we prove the following theorem Theorem I.2 under Assumption I.1
about the approximation of γ-smooth functions.
Assumption I.1. The true function F ◦ satisfies F ◦

0 ∈ Fγ
p,θ, where γ is mixed or anisotropic smooth-

ness. Suppose that it holds ∥F∥Fγ
p,θ

≤ 1 and ∥F ◦
0 ∥∞ ≤ R, where R > 0 is a constant. Addition-

ally, we assume the smoothness parameter a satisfies ∥a∥wlα ≤ 1 for some 0 < α < ∞ and
aij = Ω(log(|j|+ 1)). Moreover, if γ is mixed smoothness, we assume ā1 < ā2.
Theorem I.2. Suppose that target function F ◦ satisfies Assumption I.1. Then, for any T > 0, there
exists an SSM F ∈ S(M,U,D,L,W, S,B) with

M = 1, logU ∼ T, D ∼ T 1/α, L ∼ T, W ∼ T 1/α,

W ′ ∼ T 1/α2T/a†
, S ∼ T 2/α max

{
T 2/α, T 2

}
2T/a†

, logB ∼ T 1/α,
(I.1)

such that ∥F − F ◦∥2,PX
≲ 2−T .

Given a smoothness function γ : Nd×∞
0 → R, we define

I(T, γ) := {(i, j) | ∃s ∈ Nd×∞
0 such that sij ̸= 0, γ(s) < T},

dmax := |I(T, γ)|.
The feature extraction map Γ: Rd×∞ → Rdmax is defined as

Γ(X) = [Xi1,j1 , . . . , Xidmax ,jdmax
].

The following lemma shows that, if FNN receives finite number of ”important” features, it can
approximate γ-smooth functions and piecewise γ-smooth functions. This is mainly due to the con-
dition ∥a∥wlα ≤ 1, which induces sparsity of important features.
Lemma I.3 (Theorem D.3 in Takakura & Suzuki (2023)). Suppose that the target functions f ∈ Fγ

p,θ

and g ∈ Pγ
p,θ satisfy ∥f∥∞ ≤ R and ∥g∥∞ ≤ R, where R > 0 and γ is the mixed or anisotropic

smoothness and the smoothness parameter a satisfies ∥a∥wlα ≤ 1. For any T > 0, there exist FNNs
f̂T , ĝT ∈ Ψ(L,W, S,B) such that ∥∥∥f̂T ◦ Γ− f

∥∥∥
2,PX

≲ 2−T ,

∥ĝT ◦ Γ ◦Π− g∥2,PX
≲ 2−T ,

where
L ∼ max

{
T 2/α, T 2

}
,W ∼ T 1/α2T/a†

,

S ∼ T 2/α max
{
T 2/α, T 2

}
2T/a†

, logB ∼ T 1/α.

From this lemma, we can see that, if the the convolution layer can approximate Γ, the SSM can give
important features to the FNN, and the FNN can approximate the target function.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Now, we prove Theorem I.2.

Proof of Theorem I.2. Firstly, we construct the embedding layer Emb: Rd×∞ → RD×∞. Set the
embedding dimension D as max{d, dmax}+ 1. We set E1 ∈ RD×d to satisfy

E1x = [x1, . . . , xd, 0, 0, . . . , 0︸ ︷︷ ︸
D−d−1 elements

]⊤.

for x = [x1, . . . , xd] ∈ Rd. Additionally, we set E2 ∈ RD to satisfy
E2 = [0, . . . , 0︸ ︷︷ ︸

d elements

, 1, 0, . . . , 0︸ ︷︷ ︸
D−d−1 elements

]⊤.

Note that ∥E1∥∞ = ∥E2∥∞ = 1. Then, the constructed embedding layer Emb is represented as
follows:

Emb(X) =


· · · xt · · ·
· · · 1 · · ·
· · · 0 · · ·
...

...
...

· · · 0 · · ·

 ∈ RD×∞.

Secondly, we construct the convolution layer. The role of this layer is to approximate the fea-
ture extractor Γ. The weight matrix WV ∈ RD×|X| is set to extract the important “dimen-
sions” (i1, . . . , idmax). More precisely, we set WV to satisfy

WV y = [yi1 , . . . , yidmax
, 0, . . . , 0︸ ︷︷ ︸
D−dmax elements

] ∈ RD

for y = [y1, . . . , yD] ∈ RD. Then, the resulted projection is represented as follows:

WV (Emb(X)) =



· · · Xt,i1 · · ·
...

...
...

· · · Xt,idmax
· · ·

· · · 0 · · ·
...

... · · ·
· · · 0 · · ·


∈ RD×∞.

Next, we construct the convolution filter. From the assumption aij = Ω(log(|j|+ 1)), we can
choose the window size U ∈ N such that

logU ∼ T and aij ≤ T =⇒ j ≤ U.

Lemma F.5 shows that, for each jm (m = 1, . . . , dmax), for any ϵ > 0, κ > 0, there exists km ∈
Ψ′(W ′, B) with

W ′ ≲ log2 ϵ−1, B ≲ log ϵ−1 log κ

such that

max
j=0,...,U

∣∣∣∣km(j

U

)
− exp

(
−κ · sin2

(
π

2

(
j

U
− jm

U

)))∣∣∣∣ ≲ ϵ.

Now, if |j − jm| ≥ 1, it holds

exp

(
−κ · sin2

(
π

2

(
j

U
− jm

U

)))
≤ exp

(
−κ ·

(
2

π
· π
2
· 1

U

)2
)

= exp
(
− κ

U2

)
,

and, if j = jm, it holds

exp

(
−κ · sin2

(
π

2

(
j

U
− jm

U

)))
= 1.

Therefore, if we set κ = U2 log ϵ−1, we have

max
j=0,...,U

∣∣∣∣km(j

U

)
− δjm(j)

∣∣∣∣ ≲ 2ϵ,

where δj′ is the function defined by

δj′(j) =

{
1 if j = j′,

0 otherwise.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

This inequality show that the filter k can approximately extract the important tokens.

Finally, we set the weight matrix WQ by

WQ
i,j =

{
1 if j = d+ 1

0 otherwise,

which results in WQ(Emb(X)) = [1, . . . , 1]⊤ and
g1 ◦ Emb(X) =WQ(Emb(X))⊙ (β(1) ∗W (0)(Emb(X)))

= β(1) ∗W (0)(Emb(X))

= [zt]
0
t=−∞ ∈ RD×∞,

zt =

U−1∑
s=0

k(s)

D∑
i=1

W
(0)
i,t−sXi,t−s

=



∑U−1
s=0 (k(s))1Xi1,t−s

...∑U−1
s=0 (k(s))dmax

Xidmax ,t−s

0
...
0


.

Thirdly, we construct the FNN layer. From Lemma I.3, there exists an FNN f̂ ∈ Ψ(L,W, S,B)
such that ∥∥∥f̂ ◦ Γ− F ◦

∥∥∥
2,PX

≲ 2−T , (I.2)

where
L ∼ max

{
T 2/α, T 2

}
,W ∼ T 1/α2T/a†

,

S ∼ T 2/α max
{
T 2/α, T 2

}
2T/a†

, logB ∼ T 1/α.
(I.3)

Let C : RD → Rd be a linear map such that
Cy = [y1, . . . , ydmax

]⊤

for y = [y1, . . . , yD]⊤ ∈ RD, and we set f1 := f̂ ◦C. Note that f1 ∈ Ψ(L,W, S,B) for L,W,S,B
defined in (I.3). The constructed SSM F̂ is represented as follows:

F̂ (X) = f1(z0) = f̂ ◦ C(z0) = f̂ ◦ Γ̂(X)0,

where

Γ̂(X) =

[
U−1∑
s=0

(k(s))mXim,−s

]dmax

m=1

∈ Rdmax .

Now, we evaluate the error between the target function F ◦ and the constructed model F̂ . We evaluate
the error by separating into two terms:∥∥∥F̂ − F ◦

∥∥∥
2,PX

≤
∥∥∥F̂ − f̂ ◦ Γ

∥∥∥
2,PX

+
∥∥∥f̂ ◦ Γ− F ◦

∥∥∥
2,PX

.

The second term can be bounded by (I.2), so we evaluate the first term. Since f̂ ∈ Ψ(L,W, S,B) is
(BW)L-lipschitz continuous, for any X ∈ [0, 1]d×∞, we have∣∣∣F̂ (X)− f̂ ◦ Γ(X)

∣∣∣ = ∣∣∣f̂(Γ̂(X))− f̂(Γ(X))
∣∣∣ ≤ (BW)L

∥∥∥Γ̂(X)− Γ(X)
∥∥∥
∞
.

Since X ∈ [0, 1]d×∞, it holds∥∥∥Γ̂(X)− Γ(X)
∥∥∥
∞

= max
m=1,...,dmax

∣∣∣∣∣
U−1∑
s=0

(k(s))mXim,−s − δjm(s)Xim,−s

∣∣∣∣∣
≤ max

m=1,...,dmax

U−1∑
s=0

|(k(s))m − δjm(s)|

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

≤ Uϵ.

By setting ϵ = 2−T /U , we have∣∣∣F̂ (X)− f̂ ◦ Γ(X)
∣∣∣ ≤ ∥∥∥Γ̂(X)− Γ(X)

∥∥∥
∞

≤ 2−T

for any X ∈ [0, 1]d×∞. Therefore, it holds∥∥∥F̂ − F ◦
∥∥∥
2,PX

≤
∥∥∥F̂ − f̂ ◦ Γ

∥∥∥
2,PX

+
∥∥∥f̂ ◦ Γ− F ◦

∥∥∥
2,PX

≤ sup
X∈[0,1]d×∞

∣∣∣F̂ (X)− f̂ ◦ Γ(X)
∣∣∣+ ∥∥∥f̂ ◦ Γ− F ◦

∥∥∥
2,PX

≲ 2−T .

Finally, we evaluate the parameters L,W, S,B which controls the class of k ∈ Ψ′(W ′, B). Since
∥a∥wlα = supj j

αā−1
j ≤ 1, it holds

dmax :=
∣∣{(i, j) ∣∣ ∃s ∈ Nd×∞

0 , sij ̸= 0, γ(s) < T
}∣∣ ≤ T 1/α.

Therefore, we have
W ′ = dmax · log2 ϵ−1 ≲ T 2+1/α,

logB ∼ log ϵ−1 log
(
U2 log ϵ−1

)
≲ T 2.

This completes the proof.

I.2 PROOF OF THEOREM 4.5

Proof of Theorem 4.5. For T > 0, we define

Ij(T, γ) := {i | (i, j) ∈ I(T, γ)} =
{
i
(j)
1 , . . . , i

(j)
|Ij |

}
,

rmax(T, γ) := max {j ∈ [J] | Ij(T, γ) ̸= ∅},
Note that rmax(T, γ) ∼ T 1/α since aij = Ω(jα).

Theorem I.2 implies that there exist an embedding layer Emb, an FNN f1 ∈ Ψ(L,W, S,B) and a
convolution layer g1 ∈ C(U,D,L′,W ′, S,B) with

M = 1, logU ∼ T,D ∼ T 1/α,

L ∼ T,W1 ∼ T 1/α,

L′ ∼ max
{
T 2/α, T 2

}
,W ′ ∼ T 1/α2T/a†

,

S ∼ T 2/α max
{
T 2/α, T 2

}
2T/a†

, logB ∼ T 1/α,

such that
f1 ◦ g1 ◦ Emb(X)i = [x⊤i , µ̂i(X), 0, . . . , 0︸ ︷︷ ︸

dmax elements

,−1, . . . ,−1︸ ︷︷ ︸
rmax elements

]⊤,

for all i ∈ Z, where µ̂i(X) satisfies
|µ̂i(X)−t − (µi(X)− 1)| ≲ 2−T .

Intuitively, the i-th elements for i = 3, . . . , 2+ dmax are used to store the feature Xt−i,j for j ∈ [d],
and the i-th elements for i = 3 + dmax, . . . , 2 + dmax + rmax are buffers to store which elements
are already selected. Note that, for any i ≤ rmax, it holds

µ̂(X)πλ(i) − µ̂(X)πλ(i+1) ≳ (µ(X)πλ(i) − 2−T)− (µ(X)πλ(i+1) + 2−T) ≳ T−β/α,

and µ̂(X)t ∈ [−1, 0] for all t ∈ [0 : V].

In the following, we set U = V . Let us set χT ∼ T log 2 + 2 logU

T−β/α
. Using Lemma F.3, we see that,

there exists a neural network ϕexp ∈ Ψ(L,W, S,B) with

L ≲ T 2(1+β/α) log2 U, W ≲ T 1+β/α logU, S ≲ T 2(1+β/α) log2 U, logB ≲ T 2(1+β/α) log2 U,

such that, for any x ≤ 0, it holds

|ϕexp(χTx)− exp(χTx)| ≤ 2−2T 1+β/α

/U3.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Moreover, using Lemma F.3 again, we see that there exists a neural network ϕ× with
L ≲ T 2(1+β/α) log2 U, W ≲ 1, S ≲ T 2(1+β/α) log2 U, logB ≲ T 1+β/α logU,

such that, for any 0 ≤ x ≲ U2 exp
(
T 1+β/α

)
, 0 ≤ y ≲ 1, it holds

|ϕ×(x, y)− xy| ≤ 2−2T 1+β/α

/U3.

Then, for any x ≤ 0 and y ∈ [0, 1], it holds
|ϕ×(ϕexp(χTx), y)− exp(χTx)y| ≤ |ϕ×(ϕexp(χTx), y)− ϕexp(χTx)y|+ |ϕexp(χTx)y − exp(χTx)y|

≤ 2−2T 1+β/α

/U3 + 2−2T 1+β/α

/U3

≲ 2−2T 1+β/α

/U3.

Then, let us define f ′1 be an FNN layer such that it holds
f ′1 ◦ f1 ◦ g1(X) ◦ Emb(X)i = [ϕ×(ϕexp(µ̂i(X)), xi), 0, . . . , 0︸ ︷︷ ︸

dmax elements

,−1, . . . ,−1︸ ︷︷ ︸
rmax elements

]⊤.

Additionally, we define
Zm := (f ′m ◦ gm ◦ fm) ◦ · · · ◦ (f ′1 ◦ g1 ◦ f1) ◦ Emb(X),

for m ∈ [1 : rmax]. We construct remaining layers f2, g2, f ′2, . . . , frmax+1, grmax+1, f
′
rmax+1 to

make them satisfying
Zm = [ϕ×(ϕexp(µ̂i(X)), xi), X̂i

(1)
1 ,j1

, . . . , X̂
i
(1)

|I1|,j1
, . . . , X̂

i
(m)
1 ,jm

, . . . , X̂
i
(m)

|Im|,jm
, 0, . . . , 0︸ ︷︷ ︸
dmax−

∑m
j=1 |Ij | elements

,

ĵ1/U, . . . , ĵm/U, −1, . . . ,−1︸ ︷︷ ︸
rmax−m elements

]⊤,

where X̂
i
(jm)
k ,jm

, ĵm are the approximation of X̂
i
(jm)
k ,jm

, ĵm (m = 1, . . . ,M ; k = 1, . . . , |Ijm |)
respectively such that∣∣∣X̂i

(jm)
k ,jm

−X
i
(jm)
k ,jm

∣∣∣ ≲ 2−T ,
∣∣∣ĵm/U − jm/U

∣∣∣ ≲ 2−3T 1+β/α

/V 5.

Then, we see that
ZM = [x⊤i , µ̂i(X), X̂

i
(1)
1 ,j1

, . . . , X̂
i
(1)

|I1|,j1
, . . . , X̂

i
(rmax)
1 ,jrmax

, . . . , X̂
i
(rmax)

|Irmax |
,jrmax

, ĵ1/U, . . . , ĵM/U]⊤.

Hence, Lemma I.3 shows that there exists a FNN f ′M ∈ Ψ(L,W, S,B) with

L ≲ max
{
T 2/α, T 2

}
, W ≲ T 1/α2T/α†

,

S ≲ T 2/α max
{
T 2/α,T 2

}
2T/α†

, logB ≲ T 1/α,

such that

∥f ′M (ZM)− f∥2 ≲ 2−T .

The same discussion as Theorem I.2 gives the desired result.

In the following, we construct an FNN fm and a convolution layer gm form ∈ [1 : rmax]. The proof
mainly divided into two parts: (i) obtaining X̂

i
(m)
k ,jm

, i.e., the approximation of important features

X
i
(m)
k ,jm

(k = 1, . . . , |Im|) and (ii) getting ĵm, i.e., recording which token jm was selected.

Picking up the important features X
i
(m)
k ,jm

(k = 1, . . . , |Im|) Due to Lemma F.1 and the fact
that jm ∈ [0 : V] is an index such that µt−j (µ̂t−j) is the largest in µt−j (µ̂t−j) (j ̸= j1, . . . , jm−1),
for any t ∈ [0 : U] with t ̸= t0, it holds∣∣∣∣∣

∑V
j=0Xi,j exp(χT · µ̂t−j) · (1− IS(j))∑V

j=0 exp(χT · µ̂t−j) · (1− IS(j))
−Xi,jm

∣∣∣∣∣ ≤ 2U2 exp
(
−χT · T−β/α

)
≲ 2−T ,

where S = {j1, . . . , jm−1}. Now, let us approximate∑V
j=0Xi,j exp(χT · µ̂ti) · (1− IS(j))∑V
j=0 exp(χT · µ̂t−i) · (1− IS(j))

=
1
V

∑V
j=0Xi,j exp(χT · µ̂ti) · (1− IS(j))

1
V

∑V
j=0 exp(χT · µ̂t−i) · (1− IS(j))

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

using neural networks. Using Lemma F.4, we can see that there exists a neural network ϕ∗ ∈
Ψ(L,W, S,B) with
L ≲ T 2(1+β/α) log2 U, W ≲ T 3(1+β/α) log3 U, S ≲ T 4(1+β/α) log4 U, logB ≲ T 1+β/α logU,

such that, for any x ∈ [exp(−χT), exp(χT)], y ∈ [0, U], x′ > 0, y′ > 0, it holds∣∣∣ϕ∗(x′, y′)− y

x

∣∣∣ ≲ 2−T + U22T
1+β/α

(|x− x′|+ |y − y′|).

Next, Lemma F.5 implies that there exists a neural networks ϕ′n ∈ Ψ′(1, B) and ϕn ∈
Ψ(L,W, S,B) (n = 1, . . . , N) with

N ≲ T 1+β/α log T log V,

L ≲ T 5(1+β/α) log T log5 V, W ≲ 1,

S ≲ T 5(1+β/α) log T log5 V, logB ≲ T 3(1+β/α) log T log3 V,

such that, for any t, x, x̂ ∈ [0, 1], it holds∣∣∣∣∣
N∑

n=0

ϕ′n(t)ϕn(x̂)− exp

(
−
V 2(1

α log T + 2T 1+β/α + 2 log V) · sin2
(
π
2 (t− x)

)
2

)∣∣∣∣∣
≲ T−1/α2−2T 1+β/α

/V 2 + T 1+β/αV 3|x− x̂|.
Since

exp

(
−
V 2(1

α log T + 2T 1+β/α + 2 log V) sin2
(
π
2 (t− x)

)
2

)
{
≤ T−1/α2−2T 1+β/α

/V 2 (|t− x| ≥ 1/V),

= 1 (t = x),

we have∣∣∣∣∣exp
(
−
V 2(1

α log T + 2T 1+β/α + 2 log V) sin2
(
π
2 (t− x)

)
2

)
− I{x}(t)

∣∣∣∣∣ ≲ 2T−1/α2−2T 1+β/α

/V 2.

Therefore, we have∣∣∣∣∣
N∑

n=1

ϕ′n(t)ϕn(x̂)− I{x}(t)

∣∣∣∣∣ ≲ T−1/α2−(1+β/α)T /V 2 + T 1+β/αV 3|x− x̂|.

Summing up over x = j1/U, . . . , jm−1/U , we have∣∣∣∣∣
m−1∑
m′=1

I∑
i=1

ϕ
(jm′ ,i)
0 (t)ϕ

(jm′ ,i)
1 (ĵm′/U)− IS(t)

∣∣∣∣∣
≲ rmax

(
T−1/α2−2T 1+β/α

/V 2 + T 1+β/αV 3
∣∣∣ĵm′/U − jm′/U

∣∣∣)
≲ 2−2T 1+β/α

/V 2.

Combining the results above, we have∣∣∣∣∣ 1V
V∑

j=0

ϕ×(ϕexp(Xi,j , χT ·̂µt−j)) ·

(
1−

m−1∑
m′=1

I∑
i=1

ϕ
(jm′ ,i)
0 (t)ϕ

(jm′ ,i)
1 (ĵm′/U)

)

− 1

V

V∑
j=0

Xi,j exp(χT · µ̂t−j) · (1− IS(j))

∣∣∣∣∣
≲

1

V

V∑
j=0

(∣∣∣∣∣ϕ×(ϕexp(Xi,j , χT · µ̂t−j)) ·

(
m−1∑
m′=1

I∑
i=1

ϕ
(jm′ ,i)
0 (t)ϕ

(jm′ ,i)
1 (ĵm′/U)− IS(j)

)∣∣∣∣∣
+ |(ϕ×(ϕexp(Xi,j , χT ·̂µt−j))−Xi,j exp(χT · µ̂t−j))IS(j)|

)
≲ 2−2T 1+β/α

/V 2

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Similarly, we have∣∣∣∣∣ 1V
V∑

j=0

ϕexp(χT ·̂µt−j) ·

(
1−

m−1∑
m′=1

I∑
i=1

ϕ
(jm′ ,i)
0 (t)ϕ

(jm′ ,i)
1 (ĵm′/U)

)

− 1

V

V∑
j=0

exp(χT · µ̂t−j) · (1− IS(j))

∣∣∣∣∣
≲ 2−2T 1+β/α

/V 2

Using the facts that

exp(−χT) ≤
1

V

V∑
t=0

exp(χT · µ̂[t]) ≤ 1,

1

V

V∑
t=0

u[t] exp(χT · µ̂[t]) ≤ 1

V

V∑
t=0

exp(χT · µ̂[t]),

we have∣∣∣∣∣ϕ∗
(

1

V

V∑
j=0

ϕ×(Xi,j , ϕexp(χ̂T · µt−j)) ·

(
1−

m−1∑
m′=1

I∑
i=1

ϕ
(jm′ ,i)
0 (t)ϕ

(jm′ ,i)
1 (ĵm′/U)

)
,

1

V

V∑
j=0

ϕexp(χ̂T · µt−j) ·

(
1−

m−1∑
m′=1

I∑
i=1

ϕ
(jm′ ,i)
0 (t)ϕ

(jm′ ,i)
1 (ĵm′/U)

))

−
∑U

t=0 u[t] exp(χT · µ̂[t]) · (1− IS(j))∑U
t=0 exp(χT · µ̂[t]) · (1− IS(j))

∣∣∣∣∣
≲ 2−T + V 22T

1+β/α

· 2−2T 1+β/α

/V 2 ≲ 2−T .

Overall, we can see that, there exist neural networks ϕO ∈ Ψ′(L,W, S,B) and ϕA, ϕB , ϕC ∈
Ψ(L,W, S,B) with

L ≲ T 5+1/α+5β/α log T log5 V, W ≲ T 3+1/α+3β/α log T log3 V,

S ≲ T 5+1/α+5β/α log T log5 V, logB ≲ T 3+1/α+3β/α log T log3 V,

such that

max
i∈

{
i
(m)
1 ,...,i

(m)

|Im|

}
∣∣∣∣∣ϕC

 V∑
j=0

ϕO(j/V)ϕA(Zm−1)ϕB(Zm−1[−j])


︸ ︷︷ ︸

=:X̂i,jm

−Xjm,i

∣∣∣∣∣ ≲ 2−T .

Recording which token was picked up Similar discussion as above shows that there exist neural
networks ϕ′O ∈ Ψ′(L,W, S,B) and ϕ′A, ϕ

′
B , ϕ

′
C ∈ Ψ(L,W, S,B) with

L ≲ T 5+1/α+5β/α log T log5 V, W ≲ T 3+1/α+3β/α log T log3 V,

S ≲ T 5+1/α+5β/α log T log5 V, logB ≲ T 3+1/α+3β/α log T log3 V,

such that ∣∣∣∣∣∣ϕ′C
 V∑

j=0

ϕ′O(j/V)ϕ′A(Zm−1)ϕ
′
B(Zm−1[−j])

− sin

(
π

4

jm
V

)∣∣∣∣∣∣ ≲ 2−T .

Lemma F.3 shows that there exists a neural network ϕarcsin ∈ Ψ(L,W,S,B) with
L ≲ T 2(1+β/α) log2 V, W ≲ 1, S ≲ T 2(1+β/α) log2 V, logB ≲ T 1+β/α log V,

for any x ∈ [0, π/4], it holds

|ϕarcsin(x)− arcsin(x)| ≲ 2−3T 1+β/α

/V 5.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

Using this network, we can obtain ĵm/V such that
∣∣∣ĵm/V − jm/V

∣∣∣ ≲ 2−3T 1+β/α

/V 5.

Finishing the proof We can easily see that, constructing the weight matrix in the convolution
layers appropriately, we can obtain Zm from Zm−1 using the neural networks constructed above.
This completes the proof.

J PROOF OF THEOREM 4.6

J.1 PREPARATION

In this subsection, we prove the following theorem.

Theorem J.1. Let F̂ ∈ S(M,U,D,L,W, S,B) be an ERM estimator which minimizes the emprical
cost. Then, for any δ ∈ (0, 1), it holds that

Rl,r(F̂ , F
◦) ≲ inf

F∈S

1

r − l + 1

r∑
i=l

∥Fi − F ◦
i ∥

2
2,PX

+
1

n
·M2L(S +D) log

(
DULWB

δ

)
+ δ.

To prove the theorem, we use the following proposition.

Proposition J.2 (Theorem 5.2 in Takakura & Suzuki (2023)). For a given class F of functions from
[0, 1]d×∞ to R∞, let F̂ ∈ F be an ERM estimator which minimizes the empirical cost. Suppose
that there exists a constant R > 0 such that ∥F ◦∥∞ ≤ R, ∥F∥∞ ≤ R for any F ∈ F , and
N (F , δ, ∥·∥∞) ≥ 3. Then, for any 0 < δ < 1, it holds that

Rl,r(F̂ , F
◦) ≲ inf

F∈F

1

r − l + 1

r∑
i=l

∥Fi − F ◦
i ∥

2
2,PX

+ (R2 + σ2)
logN (F , δ, ∥·∥∞)

n
+ (R+ σ)δ,

where N (F , δ, ∥·∥) is the δ-covering number of the space F associated with the norm ∥·∥, defined
by

N (F , δ, ∥·∥) := inf {m ∈ N | ∃F1, . . . , Fm ∈ F ,∀F ∈ F ,∃i ∈ [m] s.t. ∥F − Fi∥ ≤ δ}.

Thanks to this proposition, the problem to obtain the upper bound of the excess risk of the estimator
F̂ is reduced to the problem to evaluate the covering number of the function class S. The covering
number of the function class S can be evaluated as follows.

Theorem J.3 (Covering number of SSMs). The covering number of the function class
S(M,U,D,L,W, S,B) can be bounded as

logN (S(M,U,D,L,W, S,B), δ, ∥·∥∞) ≲M2L(S +D2) log

(
DULWB

δ

)
.

This theorem implies that the upper bound of the covering number of the function class S polyno-
mially increases with respect to the embedding dimensions D, the number of layers M,L and the
sparsity S of the parameters. This result is similar to the result by Takakura & Suzuki (2023) on the
covering number of Transformers.

A large difference of the covering number between the SSMs and Transformers is the dependence
on the window size U ; the covering number of the SSMs depends on U logarithmically, while that of
the Transformers does not depend on U . This is because SSMs sum up the tokens in the convolution
without normalization. Whereas it is prefered that the covering number does not depend on U , the
logarithmic dependence on U is not a serious problem for the estimation ability, as we will see later.

In the following, we prove Theorem J.3. First of all, we introduce the lemma below, which is useful
to evaluate the covering number.

Lemma J.4. Let {fθ}θ∈Θ be a parametrized function class from [0, 1]d×∞ to R∞. Suppose that the
parameter space Θ satisfies Θ ⊆ [−B,B]D for some B > 0, D > 0. Additionally, suppose that

|{θ | θ ̸= 0, θ ∈ Θ}| ≤ S.

Moreover, assume that there exists a constant r > 0 such that∥∥fθ − fθ̃
∥∥
∞ ≤ r∥θ − θ̃∥∞ for any θ, θ̃ ∈ Θ.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

Then, it holds

logN (F , δ, ∥·∥∞) ≤ S log

(
rBD

δ

)
.

The following lemma is drawn from Takakura & Suzuki (2023), which evaluates the norm of the
output of FNN, the lipschitz constant with respect to the input, and the lipschitz constant with respect
to the parameters.

Lemma J.5 (Lemma E.3 in Suzuki (2018)). Suppose that two FNNs f, f̃ with L layers and W
hidden units is given by

f(x) := (ALσ(·) + bL) ◦ · · · ◦ (A1σ(x) + b1),

f̃(x) := (ÃLσ(·) + b̃L) ◦ · · · ◦ (Ã1σ(x) + b̃1),

where σ is the ReLU activation function. Assume that for any l = 1, . . . , L, it holds

∥Al∥∞ ≤ B,
∥∥∥Ãl

∥∥∥
∞

≤ B, ∥bl∥∞ ≤ B,
∥∥∥b̃l∥∥∥

∞
≤ B.

Additionally, let r ≥ 1 be a constant.

1. For any x ∈ RD×∞ with ∥x∥∞ ≤ r, it holds
∥f(x)∥∞ ≤ (2BW)Lr.

2. For any X,X ′ ∈ RD×∞, it holds
∥f(x)− f(x′)∥∞ ≤ (BW)L∥X −X ′∥∞.

3. Assume that, for any l = 1, . . . , L, it holds∥∥∥Al − Ãl

∥∥∥
∞

≤ δ,
∥∥∥bl − b̃l

∥∥∥
∞

≤ δ.

Then, for any x ∈ RD with ∥x∥∞ ≤ r, it holds∥∥∥f(x)− f̃(x)
∥∥∥
∞

≤ 2(2BW)Lr · δ.

We also evaluate them for the convolution layers.
Lemma J.6. Suppose that two convolution layers g, g̃ with window sizeU and embedding dimention
D is given by1

g(X) := β(X) ∗ (WVX),

g̃(X) := β̃(X) ∗ (W̃VX).

Let r ≥ 1 be a constant. Assume that it holds

∥WV ∥∞ ≤ B,
∥∥∥W̃V

∥∥∥
∞

≤ B,

and, for any h = 0, . . . ,H and X ∈ Rd×∞ with ∥X∥∞ ≤ r, it holds

∥β(X)∥1 ≤ c,
∥∥∥β̃(X)

∥∥∥
1
≤ c,

for some B ≥ 1, c ≥ 1. Then, the following statements hold.

1. For any X ∈ RD×∞ with ∥X∥∞ ≤ r, it holds
∥g(X)∥∞ ≤ BDrc.

2. Suppose that X,X ′ ∈ RD×∞ satisfies ∥X∥∞ ≤ r, ∥X ′∥∞ ≤ r and
∥β(X)− β(X ′)∥1 ≤ κ∥X −X ′∥∞

for some κ ≥ 02. Then, it holds
∥g(X)− g(X ′)∥∞ ≤

(
B2rc+Br · κ

)
∥X −X ′∥∞.

3. Assume that, for any h = 0, . . . ,H , it holds∥∥∥WV − W̃V

∥∥∥
∞

≤ δ,
∥∥∥β(X)− β̃(X)

∥∥∥
1
≤ ιδ.

1This architecture can be easily extended to the multi-order version since it corresponds to gH ◦ gH−1 ◦
· · · ◦ g1 with WV = I for g2, . . . , gH .

2If the filter is data-dependent, then κ = 0.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

for ι > 0. Then, it holds
∥g(X)− g̃(X)∥∞ ≤

(
Br2c+ (Br)2 · ι

)
· δ.

Proof. We use frequently the following three inequalities:
∥WX∥∞ ≤ ∥W∥1∥X∥∞ ≤ D · ∥W∥∞∥X∥∞,
∥β ∗X∥∞ ≤ ∥β∥1∥X∥∞,

where W ∈ RD×D, X ∈ RD×∞, Y ∈ RD×∞, β ∈ RD×U .

Proof of 1 We have
∥g(X)∥∞ = ∥(β(X) ∗ (WVX))∥∞

≤ ∥β(X) ∗ (WVX)∥∞
≤ ∥WVX∥∞ · ∥β(X)∥1
≤ BDr · c ≤ BDrc.

Proof of 2 We have
∥g(X)− g(X ′)∥∞ = ∥β(X) ∗ (WVX)− β(X ′) ∗ (WVX

′)∥∞
≤ ∥β(X) ∗ (WVX)− β(X ′) ∗ (WVX)∥∞

+ ∥(β(X ′) ∗ (WVX))− (β(X ′) ∗ (WVX
′))∥∞

≤ ∥((β(X)− β(X ′)) ∗ (WVX))∥∞ + ∥(β(X ′) ∗ (WV (X −X ′)))∥∞
≤ ∥β(X)− β(X ′)∥1 · ∥WVX∥∞ + ∥β(X ′)∥1 · ∥WV (X −X ′)∥∞
≤ Br · κ∥X −X ′∥∞ ·Br +Br · c ·B∥X −X ′∥∞
=
(
B2rc+Br · κ

)
∥X −X ′∥∞.

Proof of 3 We have
∥g(X)− g̃(X)∥∞ =

∥∥∥β(X) ∗ (WVX)− β̃(X) ∗
(
W̃VX

)∥∥∥
∞

≤
∥∥∥β(X) ∗ (WVX)− β̃(X) ∗ (WVX)

∥∥∥
∞

+
∥∥∥β̃(X) ∗ (WVX)− β̃(X) ∗

(
W̃VX

)∥∥∥
∞

≤
∥∥∥(β(X)− β̃(X)

)
∗ (WVX)

∥∥∥
∞

+
∥∥∥β̃(X) ∗

((
WV − W̃V

)
X
)∥∥∥

≤
∥∥∥β(X)− β̃(X)

∥∥∥
1
· ∥WVX∥∞ +

∥∥∥β̃(X)
∥∥∥
1
·
∥∥∥(WV − W̃V

)
X
∥∥∥
∞

≤ Br · ιδ ·Br +Br · c · δr
=
(
Br2c+ (Br)2 · ι

)
δ.

Subsequently, we evaluate the lipschitz constant of the composition of the layers with respect to the
input and the parameters.

Lemma J.7. Let (f1, f̃1), . . . , (fM , f̃M) be pairs of two FNNs which satisfy the same condition of
the pair (f, f̃) in Lemma J.5. Additionally, let (g1, g̃1), . . . , (gM , g̃M) be convolution layers which
satisfy the same condition of the pair (g, g̃) in Lemma J.6. Suppose R > 0 be a constant, and
F, F̃ : [0, 1]d×∞ → R∞ are two functions defined by

F := clipR ◦ fM ◦ gM ◦ · · · ◦ clipR ◦ f1 ◦ g1,

F̃ := clipR ◦ f̃M ◦ g̃M ◦ · · · ◦ clipR ◦ f̃1 ◦ g̃1.
Moreover, assume that B ≥ 1, c ≥ 1, r ≥ 1. Then, it holds∥∥∥F (X)− F̃ (X)

∥∥∥
∞

≤ 2M+1(2BW)ML(BDRc)2M (1 + κ)M (1 + ι) · δ.

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

Proof. For m = 1, . . . ,M , we define
Fm := clipR ◦ fm ◦ gm ◦ · · · ◦ clipR ◦ f1 ◦ g1, F̃m := clipR ◦ f̃m ◦ g̃m ◦ · · · ◦ clipR ◦ f̃1 ◦ g̃1,

and F0 := id, F̃0 := id. Then, it holds
Fm = clipR ◦ fm ◦ gm ◦ Fm−1, F̃m = clipR ◦ f̃m ◦ g̃m ◦ F̃m−1

for m = 1, . . . ,M . Note that ∥Fm∥∞ ≤ R and
∥∥∥F̃m

∥∥∥
∞

≤ R for any m = 1, . . . ,M due to the
clipping.

For any X ∈ Rd×∞ with ∥X∥∞ ≤ r and m = 1, . . . ,M , we have∥∥∥Fm(X)− F̃m(X)
∥∥∥
∞

=
∥∥∥clipR ◦ fm ◦ gm ◦ Fm−1(X)− clipR ◦ f̃m ◦ g̃m ◦ F̃m−1(X)

∥∥∥
∞

=
∥∥∥fm ◦ gm ◦ Fm−1(X)− f̃m ◦ g̃m ◦ F̃m−1(X)

∥∥∥
∞

(∵ clipR is 1-lipschitz continuous.)

≤
∥∥∥fm ◦ gm ◦ Fm−1(X)− f̃m ◦ gm ◦ Fm−1(X)

∥∥∥
∞

+
∥∥∥f̃m ◦ gm ◦ Fm−1(X)− f̃m ◦ g̃m ◦ Fm−1(X)

∥∥∥
∞

+
∥∥∥f̃m ◦ g̃m ◦ Fm−1(X)− f̃m ◦ g̃m ◦ F̃m−1(X)

∥∥∥
∞
.

For the first term, since ∥gm ◦ Fm−1(X)∥ ≤ (BDRc)2 due to the first argument of Lemma J.6,
using the third argument of Lemma J.5, we have∥∥∥fm ◦ gm ◦ Fm−1(X)− f̃m ◦ gm ◦ Fm−1(X)

∥∥∥
∞

≤ 2(2BW)L(BDRc)2 · δ.
For the second term, the second argument of Lemma J.5 and the third argument of Lemma J.6 yield∥∥∥f̃m ◦ gm ◦ Fm−1(X)− f̃m ◦ g̃m ◦ Fm−1(X)

∥∥∥
∞

≤ (BW)L∥gm ◦ Fm−1(X)− g̃m ◦ Fm−1(X)∥∞
≤ (BW)L ·

(
2BR2c+ (BR)2 · ι

)
· δ.

For the thrid term, the third argument of Lemma J.5 and the third argument of Lemma J.6 imply∥∥∥f̃m ◦ g̃m ◦ Fm−1(X)− f̃m ◦ g̃m ◦ F̃m−1(X)
∥∥∥
∞

≤ (BW)L
∥∥∥g̃m ◦ Fm−1(X)− g̃m ◦ F̃m−1(X)

∥∥∥
∞

≤ (BW)L ·
(
2B2Rc+BR · κ

)
·
∥∥∥Fm−1(X)− F̃m−1(X)

∥∥∥
∞
.

Let λ1, λ2 be the constants defined by
λ1 :=

(
2(2BW)L(BDRc)2 + (BW)L ·

(
2BR2c+ (BR)2 · ι

))
· δ

λ2 := (BW)L ·
(
2B2Rc+BR · κ

)
.

Then, we have ∥∥∥Fm(X)− F̃m(X)
∥∥∥
∞

≤ λ1 + λ2 ·
∥∥∥Fm−1(X)− F̃m−1(X)

∥∥∥
∞
.

This implies∥∥∥Fm(X)− F̃m(X)
∥∥∥
∞

+
λ1

λ2 − 1
≤ λ2 ·

(∥∥∥Fm−1(X)− F̃m−1(X)
∥∥∥
∞

+
λ1

λ2 − 1

)
.

Thus, by induction, we have∥∥∥Fm(X)− F̃m(X)
∥∥∥
∞

+
λ1

λ2 − 1
≤ λm2 ·

(∥∥∥F0(X)− F̃0(X)
∥∥∥
∞

+
λ1

λ2 − 1

)
=
λm2 · λ1
λ2 − 1

.

Since λ2 > 1, it holds∥∥∥Fm(X)− F̃m(X)
∥∥∥
∞

≤ λ1 ·
λm2 − 1

λ2 − 1
= λ1 ·

(
1 + λ2 + ·+ λm−1

2

)
≤ mλ1λ

m−1
2 .

Now, using
λ1 ≤ 3(2BW)L(BDRc)2(1 + ι) · δ, λ2 ≤ 2(2BW)L(BDRc)2(1 + κ),

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

we have∥∥∥F (X)− F̃ (X)
∥∥∥
∞

≤Mλ1λ
M−1
2 ≤ 2M+1(2BW)ML(BDRc)2M (1 + κ)M (1 + ι) · δ,

which completes the proof.

Finally, we prove Theorem J.3.

Proof of Theorem J.3. In the model we consider, it holds
κ = 0,

ι ≤ 2U · (2BW ′)L
′
,

c ≤ U(2BW ′)L
′
.

Therefore, we have∥∥∥F (X)− F̃ (X)
∥∥∥
∞

≤ 2M+1(2BW)ML(BDRU(2BW ′)L
′
)2M ·

(
2 · 2U(2BW ′)L

′
)
· δ

= 2M+3(2BW)ML(2BW ′)(2M+1)L′
(BDRU)2M+1 · δ.

The number of parameters in a FNN is 2W 2L. Additionally, the number of parameters in a convo-
lution layer is 2D2. Moreover, the number of nonzero parameters in whole network is bounded by
M(S + 2D2). Therefore, the covering number can be evaluated as

logN (S(M,U,D,L,W, S,B), δ, ∥·∥∞)

≤M(S + 2D2)

+ log

(
M
(
2W 2L+D2

)
·B · 2M+3(2BW)ML(2BW ′)(2M+1)L′

(BDRU)2M+1

δ

)

≲M2L(S +D2) log

(
DULWB

δ

)
,

which completes the proof.

J.2 PROOF OF THEOREM 4.6

Theorem 4.5 implies that, for any T > 0, there exists an SSM F ∈ S(M,U,D,L,W, S,B) with
M = T 1/α, U = V, D ∼ T cα,β log2 V,

L ∼ T cα,β log5 V, W ∼ 2T/a†
T cα,β log3 V,

S ∼ 2T/a†
T cα,β log5 V, logB ∼ T cα,β log3 V,

such that ∥F − F ◦∥2,PX
≲ 2−T . Therefore, it holds

1

r − l + 1

r∑
t=l

∥Fi − F ◦
i ∥

2
2,PX

≤ 2−2T .

Next, Theorem J.3 shows that it holds

logN(S, δ, ∥·∥∞) ≲ 2T/a†
T 2/α+4cα,β (log V)13 log

1

δ
.

Using Theorem J.1, we can show that

Rl,r(F̂ , F
◦) ≲ 2−2T +

2T/a†
T 2/α+4cα,β (log V)13 log 1

δ

n
+ δ.

By setting T = a†

2a†+1
log n and δ = 1/n, we have

Rl,r(F̂ , F
◦) ≲ n

− 2a†
2a†+1 (log n)1+2/α+4cα,β log13 V.

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

K ADDITIONAL DETAILS ON THE EXPERIMENTS

All the code was implemented in Python 3.10.14 with Pytorch 1.13.1 and CUDA ver 11.7. The
experiments were conducted on Ubuntu 20.04.5 with A100 PCIe 40GB.

Genomic Benchmark dataset (Grešová et al., 2023) is given with the Apache License Version
2.0 and can be accessed from https://github.com/ML-Bioinfo-CEITEC/genomic_
benchmarks. The pretrained model of Hyena is given with the Apache License Version
2.0 and can be accessed from https://github.com/HazyResearch/safari?tab=
readme-ov-file.

For the training and evaluation of models, we utilized the code provided at https://colab.
research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL.

We used the dataset human enhancers cohn of Genomic Benchmark dataset. As for the pre-
trained model of Hyena, we used hyenadna-tiny-1k-seqlen. The model was fine-tuned for
100 epochs. Then, we sampled 20 different test sequences whose correct probability is larger or
equal to 0.95. For each sequence, we repeatedly mask the tokens that maximize the correct proba-
bility. The error bar is calculated by the standard deviation of these 20 samples. The source code
for the experiment is downstream finetune.py and downstream mask.py, which can be
found in the supplemental material. Finetuning needs around one hour, and masking needs around
90 minutes.

42

https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks
https://github.com/ML-Bioinfo-CEITEC/genomic_benchmarks
https://github.com/HazyResearch/safari?tab=readme-ov-file
https://github.com/HazyResearch/safari?tab=readme-ov-file
https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL
https://colab.research.google.com/drive/1wyVEQd4R3HYLTUOXEEQmp_I8aNC_aLhL

	Introduction
	The Definition of Deep Neural Networks with SSMs
	Synthetic Tasks: Input Copying and Associative Recall
	Input Copying
	Associative Recall
	SSMs Mimic Attention Mechanisms to Select Important Tokens

	Nonparametric Regression Problem
	Problem setting
	Piecewise -smooth function class
	Approximation and Estimation Ability of SSMs

	Experiments: Sparsity of Important Tokens
	Conclusion
	Extension to Ordinary SSM filter
	Reproduction of the Finite Window Setting
	Empirical Results on the Synthetic Tasks
	Additional Results on Synthetic Tasks
	Induction Head
	Selective Copying

	The intuition behind piecewise -smooth functions
	Auxiliary Lemmas
	Proof of Lemma 3.3
	Proof of Theorem 3.1, 3.2, D.1 and D.2
	Constructing the Embeddings
	Proof of the theorems

	Proof of Theorem 4.5
	Preparation: Approximation of -smooth functions
	Proof of Theorem 4.5

	Proof of Theorem 4.6
	Preparation
	Proof of Theorem 4.6

	Additional details on the experiments

