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ABSTRACT

Grid cells, found in the medial Entorhinal Cortex, are known for their regular spa-
tial firing patterns. These cells have been proposed as the neural solution to a range
of computational tasks, from performing path integration, to serving as a metric
for space. Their exact function, however, remains fiercely debated. In this work,
we explore the consequences of demanding distance preservation over small spa-
tial scales in networks subject to a capacity constraint. We consider two distinct
self-supervised models, a feedforward network that learns to solve a purely spatial
encoding task, and a recurrent network that solves the same problem during path
integration. We find that this task leads to the emergence of highly grid cell-like
representations in both networks. However, the recurrent network also features
units with band-like representations. We subsequently prune velocity inputs to
subsets of recurrent units, and find that their grid score is negatively correlated
with path integration contribution. Thus, grid cells emerge without path integra-
tion in the feedforward network, and they appear substantially less important than
band cells for path integration in the recurrent network. Our work provides a min-
imal model for learning grid-like spatial representations, and questions the role of
grid cells as neural path integrators. Instead, it seems that distance preservation
and high population capacity is a more likely candidate task for learning grid cells
in artificial neural networks.

1 INTRODUCTION

Known for their striking hexagonal spatial firing fields, grid cells (Hafting et al., 2005) of the medial
Entorhinal Cortex (mEC) are thought to underpin several navigational abilities. These include path
integration (Hafting et al., 2005; McNaughton et al., 2006; Burak and Fiete, 2009; Gil et al., 2017),
forming a neural metric for space (Moser and Moser, 2008; Ginosar et al., 2023), vector navigation
(Bush et al., 2015), and supporting memory and inference (Mulders et al., 2021; Whittington et al.,
2020). Given the range of different functions believed to be supported by grid cells, it is natural to
investigate which of these tasks, if any, are actually performed by these enigmatic cells.

In the modeling literature, emphasis has been placed on grid cells as path integrators, with compu-
tational models establishing that grid cells are capable of doing path integration (Burak and Fiete,
2009). Recently, it has also been shown that grid-like representations emerge in neural networks
trained to path integrate (Cueva and Wei, 2018; Banino et al., 2018; Sorscher et al., 2022; Whitting-
ton et al., 2020; Xu et al., 2022; Dorrell et al., 2022; Schaeffer et al., 2023), which has been taken
as evidence for grid cells performing path integration. However, under interventional cell ablations
grid units are as important for path integration as randomly selected units (Nayebi et al., 2021) while
band-like units are significantly more important (Schøyen et al., 2023). Moreover, these models are
typically complex, featuring different architectures and activation functions, interacting label cell
types (e.g. simulated place cell-like targets (Sorscher et al., 2022)), multiple regularization terms,
additional constraints (e.g. path invariance (Schaeffer et al., 2023) or conformal isometry (Xu et al.,
2022)), and large cell counts. All of these works report grid-like representations, making it difficult
to disentangle exactly what function grid cells serve in the various models.

In this work, we therefore propose a minimal model of grid cell function inspired by other recent
models (Xu et al., 2022; Dorrell et al., 2022; Schaeffer et al., 2023), and use this model to approach
the question of whether grid cells do path integration. Concretely, we are inspired by the notion
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of grid cells serving as a metric for space, and consider an objective function that requires distance
preservation over small spatial scales. In addition, we impose an L1 capacity constraint, which
favors distributed representations that occupy a minimal portion of the state space. We train neural
networks to minimize the proposed objective functions, and find that strikingly hexagonal grid-like
spatial representations emerge using these two simple ingredients.

To explore whether grid cells do path integration in our model, we ablate path integration itself by
training a feedforward (FF) network to minimize a purely spatial version of the proposed objec-
tive, alongside a recurrent neural network (RNN) tasked with implicit path integration. We find that
the feedforward network learns grid representations on par with those of the path integrating RNN
model. However, some RNN units display distinct band cell-like (Krupic et al., 2012) spatial re-
sponses, not seen in the FF network. When pruning velocity inputs to sampled subsets of units, we
find that path integration contribution is inversely correlated with the mean sample grid score, with
band-type cells providing the largest contribution.

Our findings suggest that grid cells may serve as a distributed high-capacity, distance-preserving
representation. However, grid cells do not appear to be defined by the task of path integration. On
the contrary, grid cells appear to be relatively unimportant for path integration, suggesting that grid
cells may be more suitable for defining neural metrics for space, at least in artificial neural networks.

2 RESULTS & DISCUSSION

LOSS FUNCTION AND LEARNED REPRESENTATIONS

We consider the problem of training a representation that preserves distances in a neighborhood
around a current location, as illustrated in Fig. 1a). Considering Cartesian coordinates xt (e.g.
along a trajectory) where t indexes time, we propose the following objective

L = αEt,t′

[
e−

1
2σ2 ∥xt−xt′∥

2

(∥xt − xt′∥ − ∥gt − gt′∥)2
]
+ (1− α)E[lcap(gt)], (1)

where σ is the envelope scale parameter that determines the width of the neighborhood distance
preservation in the exponential term. This creates a window around each spatial location where
the difference between physical and neural distances should be minimized. While this requirement
is similar to demanding a conformal isometry (Xu et al., 2022), there are subtle, but behaviorally
relevant differences (see Appendix A.9).

Gaussian radial basis functions are widely used and have been previously applied in e.g. normative
models of grid cells to promote local separation of neural representations, as seen in Dorrell et al.
(2022) and Schaeffer et al. (2023). α is a hyper-parameter to weight the different loss terms, and
∥·∥ denotes the Euclidean norm. gt is the representation we wish to learn, which we parametrize
with either a feedforward neural network or a recurrent neural network, as illustrated in Fig. 1c)
and described in section 3.2. Although both models must solve the same spatial encoding task, the
FF model takes direct Cartesian coordinate inputs, while the RNN only receives an initial Cartesian
position and subsequently receives Cartesian velocities. To correctly encode subsequent positions
and distances, the RNN therefore also needs to learn to path integrate. Notably, we constrain gt to
be non-negative and of constant L2 norm, i.e., git ≥ 0 and ∥gt∥ = 1 for all i, t, similar to Xu et al.
(2022) and Schaeffer et al. (2023). The first loss term is minimized when Euclidean distances in the
learned representation g equal the target Euclidean distances in a neighborhood around the current
location. The second loss term, lcap, is a capacity term. Xu et al. (2022) and Schaeffer et al. (2023)
posit that capacity constraints are conducive to grid-like representations, and Schaeffer et al. (2023)
proposed an L2 activity-based regularization term to maximize representational capacity. We, on
the other hand, propose using an L1 capacity term given by

lcap(gt) = −
∑
i

git. (2)

Using an L1 capacity term is markedly different from an L2 capacity term both empirically and
mechanistically. An empirical investigation into the heterogeneous effects of using L2 capacity reg-
ularization instead of L1 is presented in Appendix A.8. A geometric illustration of when L1 capacity
is optimal is illustrated in Fig. 1b). When g has constant L2 norm and non-negative elements, L2
capacity promotes representations with similar angles, but any angle (in the positive quadrant) is
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equally rewarded. Akin to L2 capacity constraints, the L1 capacity constraint (2) will also promote
representations with similar directions. However, the L1 capacity constraint encourages maximally
distributed and correlated cell activities. In other words, the full population vector state space is
ideally placed near the diagonal vector, with all units coactive.

Surprisingly, both FF and RNN models learn highly grid-like representations, as seen in the ratemaps
in Fig. 1c), and quantified by grid scores in Fig. 1d). We further find in Fig. 1d) that their phase
distribution is seemingly random and uniform within the unit cell of the grid pattern. The histogram
of grid spacings is unimodally peaked, indicating a single module in both models. However, the
orientation histogram for the FF model is bimodal, suggesting two modules, but with identical spac-
ing. In Appendix Fig. A1a) and b), we perform a parameter sweep across α and σ, evaluating
grid score and grid spacing, and demonstrating how grid spacing can be tuned by adjusting these
parameters. Moreover, Appendix Fig. A9 shows that grid spacing and field size vary independently
and can also be controlled using a third hyperparameter, ρ. Extending our model to include multiple
modules could be achieved by partitioning it, as in Xu et al. (2022), and assigning different distance-
preservation hyperparameters to each module. However, we consider this beyond the scope of the
current study, as our focus is on analyzing the functional role of the emergent cell types while min-
imizing potential confounding factors. Finally, Fig. 1e) shows the population vectors projected to
three dimensions using UMAP alongside persistence diagrams quantifying the number of persistent
1,2 and 3-dimensional cocycles. Both models show one 0D, two 1D, and one 2D hole, indicating
a toroidal manifold, which is also evident in the accompanying UMAP projection, consistent with
recent experimental evidence in biological grid cells (Gardner et al., 2022).

While both networks learn similar representations, we find that the RNN learned a small set of cells
with band-like representations, which is also visible in Fig. 1d) as a small bump near zero-grid score
(see Appendix A.6 for ratemaps of all units, for both networks). Why would the model add this extra
band-like subpopulation to the RNN? One key difference between the FF and the RNN is that the
RNN is required to path integrate. It therefore seems especially strange that the amount of grid-like
cells is reduced when the network is also required to path integrate, considering that mechanistic
theories advocate grid cells as the neural substrate for path integration, and normative models argue
that grid cells appear in RNNs trained for path integration. Additionally, when evaluating the loss
terms on distinct subpopulations, we observe in Fig. A1b) that units with high grid scores achieve
a somewhat lower distance loss, while band-type cells afford slight improvements in capacity. This
supports the notion that grid cells are optimal for distance preservation. To rule out that architectural
differences induce the difference in observed patterns between model types, we also train RNNs
without velocity input, and find that band patterns vanish (see Appendix A.5). We also find that
band-type units become more prolific in networks trained in a high-speed setting (necessitating
stronger path integration).

2.1 PRUNING & PATH INTEGRATION ABILITY

To investigate the role of different cell types during path integration, we selectively pruned velocity
inputs to different cells as illustrated in Fig. 2a). By pruning velocity inputs, rather than network
units directly (i.e. network states), we minimize off-target effects, as pattern formation and network
stability should only be affected in cases where units require velocity input to perform state updates
(i.e., path integrate). As an alternative to this approach, we also train a one-step linear decoder (see
Appendix A7) to demonstrate that the network is in fact path integrating.

We categorized cell types with a grid score of less than 0.15 as band-like and the rest grid-like,
as seen in Fig. 2b). Pruning velocity input to the band-like cells induces a stark increase in (path
integration) error, as given by Eq. 4, over time, as shown in Fig. 2c). Comparably, pruning velocity
input to high grid score subpopulations showed almost no change in error over time. Furthermore,
we find that path integration performance is not strongly affected even when input to all grid units
in the network is pruned (see Fig. A2). Figure 2e) displays the corresponding error when pruning
uniformly across any cell (including both band and grid-like), which is accompanied by higher
error. We hypothesise that this is due to the fact that low grid score units can be included in the
subpopulation. We also find that path integration ability correlates with band-like tuning, during
training (see Appendix A7).
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Figure 1: Overview of models and objective function. a) Illustration of the objective function: dis-
tant locations should be represented by distant population vector, close locations by close population
vectors. b) Illustration of the L1 capacity constraint. c) Illustration of the investigated neural net-
work architectures (feedforward and recurrent) and inputs. Below, ratemaps of a random selection
of units are inset. d) Distributions of phases, grid scores, orientations, and spacing for both models.
Orientations are given in radians, spacing is relative to environment dimensions (a 4π × 4π square
arena). e) Persistence diagram and 3D UMAP projection of population ratemaps, for feedforward
and recurrent networks. For the feedforward network, results are shown for units with orientation in
the range [0.4, 0.8].

Schøyen et al. found similar results when pruning band-like cells in Sorscher et al.’s RNN model of
grid cells. We further demonstrate in Fig. 2d) how the error is linearly related to grid score, where
pruning low grid score units has a high impact, and conversely, pruning high grid score units yields
low error. Finally, we also compare the initial state difference (ISD), as described in Equation 5, to
later states along different trajectories when pruning in Fig. 2f). We see the ISD rise fastest with no
pruning, as would be expected when moving away from the initial state. When pruning high grid
score units, the trend is similar to no pruning, i.e., the neural representation is moved away from
its initial state over time, as one would expect if the network was still path integrating. However,
when pruning low grid score units (band cells), we see a much flatter ISD, indicating that the neural
state does not change as much. In other words, the neural path integrator is close to being turned
off. This provides compelling evidence that band cells, not grid cells, do path integration, at least in
recurrently connected artificial neural network models.

In other recent work that incorporates path integration in the learning task, most of the learned spatial
representations appear grid-like Xu et al. (2022); Schaeffer et al. (2023). Thus, in these models, it
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appears that grid cells alone are responsible for the imposed objectives, including path integration.
Moreover, ablating each term of their losses provides compelling evidence for the need of each
component for robust pattern generation. However, Schaeffer et al. (2023) report band-like tunings
for some runs, and compared to our model, features a velocity-dependent, MLP recurrent weight
matrix that may obscure the contribution of other cell types (see Appendix A.4 for a detailed model
comparison). In Xu et al. (2022), while a high proportion of cells were classified as grid cells, other
types, such as band-like cells, can be observed in some reported LSTM units.

Importantly, neither model has explored whether path integration is a necessary condition for grid
pattern emergence. While this would be an intriguing test, it is unclear how these models could
be adapted to non-path-integration domains, as certain features they identify as essential for pattern
formation—such as path invariance and trajectory permutations—rely on path integration. For a
comprehensive comparison between our model and others, including Xu et al. (2024); Dorrell et al.
(2022); Sorscher et al. (2022); Xu et al. (2022); Schaeffer et al. (2023), see Appendix A.4.

2.2 PATTERN FORMATION, CONNECTIVITY, AND GENERALIZABILITY

To investigate whether all hexagonal patterns are created equal, we examined the pattern formation,
connectivity structure, and generalization capabilities of the two models. In the bottom row of Fig.
3a), a sorted subset of feedforward unit ratemaps is shown, scaled by their outgoing weights to a
selected output unit (displayed as a large ratemap to the right), as detailed in section 3.5. For the FF
model, ratemaps of the penultimate layer serve as the basis representations forming the grid pattern
in the final layer. This basis representation is diverse, encompassing various patterns such as place-
like (see the final three ratemaps) and single-band-like (see ratemap in the final row, second column)
ratemaps. These basis representations are non-periodic, indicating that the corresponding down-
stream grid representations cannot maintain periodicity outside their training domain. This non-
periodic nature can also be seen directly in the FF-network architecture, which uses non-periodic
activation functions. The bottom row of Fig. 3c) confirms that the network does not generalize the
grid pattern outside its training domain.

The RNN, while facing a similar out-of-domain initialization challenge as the FF network, can po-
tentially generalize beyond the training arena boundaries using a learned, periodic path integrator
circuit. Subsequent ratemaps and their cumulative pattern formation rely on previously similar pe-
riodic patterns, as observed in the top rows of Fig. 3a). Fig. 3c) demonstrates that initializing the
RNN inside its training domain and allowing it to path integrate along long sequences beyond the do-
main reveals a clear periodic generalization. Conversely, starting outside its training domain results
in the same non-generalization behavior as the FF network. Additionally, Fig. 3b) shows that the
connectivity profile of the recurrent cells follows a short-range excitation and long-range inhibition
principle with respect to cells with neighboring phases, which is a known structure for generat-
ing grid-like representations (Burak and Fiete, 2009). Interestingly, the band-like cells exhibit an
excitation-inhibition connectivity profile shifted by their phase. Combined with the previous finding
that band cells function as the neural path integrator circuit in the RNN, this suggests a mechanism
for path integration through an excitation-inhibition shift of population activity in the wave direction
of the band. Fig. 3b) also shows that the input weight matrix has a particular structure: velocities
are projected along band directions (forming a hexagonal pattern in connectivity). Furthermore,
velocity weights tend to decrease with increasing grid score, possibly suggesting that grid cells are
less tuned towards integrating velocities.

2.3 SUMMARY AND OUTLOOK

Our approach, featuring a minimal model (only two loss terms and a model without path integration),
has allowed us to isolate key factors contributing to the emergence of grid-like representations.
This simplification contrasts with previous complex models, which, while effective in generating
grid-like patterns, often obscure the specific contributions of grid cells to navigational tasks due to
their many-sided nature. Our findings demonstrate that grid cells, as encoded in feed-forward and
recurrent neural networks, can emerge when optimized to preserve local spatial distances under a
capacity constraint. This aligns with previous theories positing that grid cells contribute to spatial
navigation by providing a consistent metric for space (Moser and Moser, 2008; Stemmler et al.,
2015; Ginosar et al., 2023; Schøyen et al., 2024).
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Figure 2: Results of pruning velocity inputs to the RNN. a) Illustration of the velocity input
pruning: during pruning, velocity projections to randomly selected subsets of units are silenced.
b) Grid score distribution, with indicated cutoff for low grid score units. Shown are also ratemaps
for low and high grid score units. c) Path integration error for pruning of 1000 subpopulations
among units with high grid score. Also shown is the error for low grid score units (dashed). d) Path
integration error at each trajectory timestep, for pruning of randomly sampled subpopulations of
units. Inset is the Pearson correlation coefficient between subpopulation mean grid score and the PI
error. e) As in c), for random subsamplings of the full population. f) Average initial state distance,
for pruning random subpopulations of the full population. Also shown is the initial state distance
for the low grid score selection (dashed).
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Figure 3: Pattern formation and out-of-bounds behaviors. a) Example pattern formation for
select recurrent units (top and middle), and a feedforward unit (bottom); ratemaps inset on the
right. gprev denotes previous activations (penultimate layer activation for FF, second-to-last state
for RNN), while cumulative representations shows the cumulative sum of weighted unit inputs. b)
Top: Ratemaps, alongside spatial connectivity of the recurrent network. Shown is the outgoing
recurrent weight, as a function of unit spatial phase. Also inset is the convex hull of all ensemble
phases. Red indicates excitation (positive weight), blue inhibition (negative weight). Bottom: x- and
y- components of the input matrix of the RNN, shaded by grid score of target unit. c) Evaluation
of recurrent (top) and feedforward units (bottom) units when the network is the environment is
extended beyond the original training regime (white square). For the RNN, representations are
shown for trajectories starting within the training enclosure, and both inside and outside.

Our results challenge the widely-held view that grid cells are integral to path integration. In our
experiments, feed-forward networks, which lack an explicit path integration mechanism, still devel-
oped grid-like representations comparable to those in the path-integrating recurrent network. This
observation suggests that the emergence of grid cells is not contingent on the process of path inte-
gration. Instead, it indicates that grid cells may function to encode spatial relationships.

Pruning velocity inputs further allowed us to disentangle the contributions of different cell types
to path integration. By comparing the representations of a pruned network to a non-pruned net-
work, we could directly ascertain that path integration was not critically dependent on grid cells,
but seemingly rather on band-type units, echoing other recent findings (Schøyen et al., 2023). The
inverse correlation between the contribution to path integration and the mean sample grid score fur-
ther reinforces the notion that grid cells might not be as crucial for path integration as previously
thought.

In summary, our findings suggests a reevaluation of the role of grid cells within the neural navigation
framework. While grid cells clearly provide a powerful spatial metric, their necessity for path inte-
gration is less obvious. This insight not only advances our understanding of grid cell functionality
but also prompts a reconsideration of how spatial representations are constructed and utilized in both
biological and artificial systems. Future research should continue to explore the interplay between
different cell types in the entorhinal cortex, as well as investigate how these findings can inform the
development of more efficient and interpretable models of spatial navigation.
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2.4 LIMITATIONS

While our work provides evidence supporting the role of grid cells as a high capacity distance
preserving representation, our model operates in a simplified domain, with Cartesian coordinate and
velocity inputs. One could therefore consider extending the recurrent model to include e.g. more
expressive input projections (such as Schaeffer et al. (2023)), or use other self-motion information,
such as simulated head direction cell (Taube et al., 1990) input.

From a biological perspective, the use of label distances during training is also implausible. A related
limitation is the use of Euclidean distances in computing the loss function. While this might be
sufficient in an open arena such the one used in this work, more naturalistic settings, with e.g. interior
walls may require other distance functions to capture the observed deformation of grid patterns in
e.g. exotic geometries (Ginosar et al., 2023). Using the Euclidean distance between state vectors
may also lead to inaccuracies when computing the loss. As an alternative, one could compute state
distances using the metric induced by the neural network model. However, when comparing over
smaller distances (which are implicitly enforced by σ), the Euclidean distance function could still
be a fair approximation.

3 METHODS

3.1 DATA & INPUT TO NETWORKS

We considered two distinct neural networks in this work, with different inputs. The feedforward
network received batches of Cartesian coordinate inputs (x, y), sampled randomly and uniformly
from a square region with side lengths 4π × 4π (arbitrary units). The recurrent network, on the
other hand, received Cartesian velocity inputs (vx, vy), along trajectories sampled in the same square
region. Additionally, the recurrent network was given the starting location (x0, y0) of each trajectory
(in Cartesian coordinates), to form a suitable initial state.

To generate trajectories, a bouncing procedure was used. Starting locations were sampled randomly
and uniformly within the square arena. At each step, head directions were sampled according to
a von Mises distribution with scale κ = 4π, and step sizes drawn from a Rayleigh distribution
with scale parameter s = 0.15. Subsequently, we checked whether the resulting step landed out-
side the enclosure. If so, the component of the velocity vector normal to the offending boundary
was reversed, effectively causing an elastic collision with the wall, keeping the trajectory inside.
Otherwise, the procedure was repeated until the desired number of timesteps and trajectories was
achieved. Due to the simplicity of the data, no datasets were pre-created, and all training data was
new to the networks, i.e. created on the fly.

3.2 NEURAL NETWORKS & TRAINING

We consider two distinct architectures: A fully connected feedforward network and a recurrent
neural network. The FF model consisted of two hidden layers, with 64 and 128 units, respectively,
followed by an output layer of size ng = 256 units, transforming 2D Cartesian coordinates to a
latent space of ng dimensions. We applied the ReLU activation function after each hidden layer, and
normReLU after the output layer. normReLU is a normalized ReLU function, which we take to be
given by normReLU(x) = ReLU(x)/maximum(||ReLU(x)||, ε), with ε = 10−12 a small constant
to avoid zero division. Finally, we initialize the weights of each layer in the FF model uniformly
between −

√
k and

√
k, where k is the number of input features to the layer.

Similar to the feedforward model, the RNN model featured ng = 256 recurrently connected units.
The state of the RNN model at a time t was given by

gt = normReLU(Wgt−1 +Winvt) (3)

where W ∈ Rng×ng is a matrix of recurrent weights, Win ∈ Rng×2 a matrix of input weights,
while vt the velocity input at t. The initial state of the RNN was encoded with a feedforward
neural network, with the exact same architecture as the FF model. In this case, the initial Cartesian
position of the intended trajectory was provided as input. The weights in the recurrent matrix W
were initialized to the identity to mitigate vanishing/exploding gradients, similar to Le et al. (2015),
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while the weights of the input matrix Win were initialized uniformly, similarly to the FF model.
We also initialized the RNN according to a uniform distribution (Fig. A3), with similar results, but
slower convergence times. We therefore use the identity initialization throughout this work.

Both models were trained with a mini-batch size of 64 using the Adam optimizer with a learning
rate of 10−3 (Kingma and Ba, 2017). We set ng = 256 for both models, and trained the RNN on
10-timestep trajectories. The RNN was trained for a total of 50000 training steps and the FF network
for 100000 steps, on unseen data. Note that the RNN initial state encoder was trained from scratch
when training the RNN, and did not reuse the previous, independent FF model.

The final parameters needed for training are σ and α, which define the loss function (1). σ is an
envelope scale parameter for the distance preservation loss term (See Appendix A.9 for more). α
determines the relative weighting of the two terms in the loss, where α is the weight for the distance
loss term and 1 − α is the weight for the capacity loss term, chosen such that α ∈ [0, 1]. We
performed a grid search for α and σ for both models to explore the impact of this weighting on the
grid score and scale of the representations. The values for α were chosen uniformly between 0.01
and 0.99, while σ values were selected empirically around values that were seen to yield models
high grid score during initial testing. After the grid search (Fig. A1 a)), the values σ = 1.2 and
α = 0.54 were chosen for the FF and RNN models as this yielded high grid scores for both models,
even though multiple other combinations of α and σ gave similar results. See Appendix A.1 and
A.6 for more on the effects of α on learned representations.

3.3 VELOCITY PRUNING

To investigate the influence of different RNN unit types on path integration ability, we ablated ve-
locity inputs to subsets of recurrent units. Specifically, the velocity-pruned recurrent state was given
by

g̃t = normReLU(Wgt−1 +m⊙ (Winvt)),

where m is a binary mask that silences velocity input to select units, and ⊙ the Hadamard product.
RNN units were subselected so that a given subpopulation featured as many units as the number
of low-gridscore units (n = 29; grid score cutoff 0.15). The subselection procedure was done for
the full ensemble (random), as well as high grid-score units (grid score above cutoff). In each case,
1000 subpopulations were sampled randomly, with equal probability across units.

Since the proposed objective does not feature any decoding into a known target representation such
as Euclidean coordinates, an alternate method of assessing whether the network is path integrating
correctly is needed. We therefore computed the mean square error between velocity-pruned rep-
resentations and a target representation created by running the network on the same velocity input
without pruning. In other words,

Errort =
1

M

M∑
i=1

||gi
t − g̃i

t||2, (4)

where M = 10000 is the number of evaluated trajectories, and T = 10 the trajectory length. As a
baseline, we also computed the mean squared difference with the initial RNN state, i.e.

ISDt =
1

M

M∑
i=1

||gi
0 − g̃i

t||2, (5)

for velocity pruning to randomly sampled subpopulations, as described previously. To further es-
tablish that the network is capable of path integration, we also explore a trainable, one-step linear
decoder (See. Appendix A.7).

3.4 GRID STATISTICS

To quantify the properties of the learned representations, we compute the grid score, orientation,
spacing and phase of smoothed unit ratemaps. Smoothing was done with a Gaussian kernel, using
the Astropy library (The Astropy Collaboration, 2022), with a standard deviation of 2 pixels, for
64× 64 ratemaps of unit activity. Grid scores were computed as the difference between the smallest
and largest correlations, when comparing autocorrelogram annuli correlations at 60 and 30 degrees,
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respectively. Orientations were computed as the smallest angle of the six innermost peaks of the
autocorrelogram (excluding the origin) with the horizontal. The grid spacing was computed as the
average distance to the six innermost peaks. Finally, grid phases were taken to be the displacement
of the closest grid peak to the origin of the ratemap.

3.5 PATTERN FORMATION

To better understand how representations emerge in the feedforward and recurrent networks, we
visualized the pattern formation process for select units. To do so, we weighted the activity of
input ratemaps to a given unit by the network weight relating them. Then, weighted inputs were
sorted according to their L2 norm over all spatial bins, and pattern forming was visualized using the
cumulative sum of all weighted input ratemaps.

3.6 OUT-OF-BOUNDS EVALUATION

To explore the ability of the networks to generalize beyond their training regime, we evaluated
trained feedforward and recurrent networks outside of the square training domain. Concretely, we
ran the feedforward network with Cartesian coordinates sampled in a 8π × 8π square, i.e., double
the original enclosure wall lengths. For the RNN, we evaluated two cases, one in which the network
started in the original square, and was allowed to move outside, and another wherein the network
started out anywhere in the enlarged enclosure. In both cases, the RNN was run for a total of 50
timesteps, and responses aggregated over 10000 trajectories.

3.7 SUBPOPULATION LOSS EVALUATION

To assess whether different cell types contributed differently to the various loss terms, we evaluated
randomly sampled subpopulations of recurrent units on the capacity and distance losses separately.
For a given sample, the subpopulation vector consisted of the flattened ratemaps of the selected units.
Subsequently, the subpopulation vector was re-normalized to allow for a more direct comparison
with the full network loss. As a reference, we also evaluated low grid score units (n = 29; grid
score cutoff = 0.15) on either loss term. Additionally, we computed a baseline loss by randomly
shuffling the bins of unit ratemaps, effectively achieving a spatially random representation. All
subpopulations featured the same number of units (n = 29, as with the low grid score ensemble),
and a total of 1000 samplings were performed.

3.8 PERSISTENT HOMOLOGY & LOW DIMENSIONAL PROJECTION

We used persistent homology to investigate whether the learned representation conformed to a sim-
ple geometric structure. Specifically, we used the Ripser python library (Tralie et al., 2018) to com-
pute persistence diagrams using spatially flattened ratemaps of unit activity. For the feedforward
network, the outermost 20 % of ratemap pixels were excluded to avoid boundary effects, and only
units with orientation in the range [0.4, 0.8] were included. This was done to avoid mixing possibly
independent modules of units with different orientations. For the RNN ratemaps, the ratemaps of
the full domain were used, and every unit was included in the analysis. For the analysis, we set
n perm = 500, and max dim = 2, with otherwise default parameters.

We further visualized the neural structure of space using UMAP (McInnes et al., 2020) with
n neigbhours = 2000 and min dist = 0.8 to project ratemaps of the feedforward and recurrent
networks down to three dimensions. We colored the resulting 3D point cloud using the first prin-
ciple component of the ratemaps, similar to Gardner et al. (2022), highlighting important regions.
Ratemaps were processed in the same way as for the persistent homology analysis.

3.9 FIGURES

Figures were created using BioRender.com.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 HYPERPARAMETER SEARCH AND LOSS ABLATION

Fig. A1 shows the result of a hyperparameter search in the weighting coefficient α, alongside
training and evaluation loss for both models, as well as cell types. Note that α = 0 and α = 1
corresponds to complete ablation of distance and capacity losses, respectively.

RNN

a) b)

c)

FF

Figure A1: Hyperparameter search, loss evaluation and training results. a) Grid score as a
function of σ and α for FF (top) and RNN models (bottom), where grid scale is calculated for the
model with the highest grid score at a particular σ. b) Loss evaluation on 1000 randomly selected
(random), spatially shuffled RNN unit ratemaps (random + shuffled) and low grid score (low GS)
subpopulations. c) Loss training history for FF and RNN models.

A.2 EXTENDED PRUNING RESULTS

Fig. A2 shows ratemaps and error distributions for the recurrent network, in cases where velocity
input to all grid and band units are ablated. Notably, path integration error is consistently lower
when pruning input to grid than band units, even when every grid unit is velocity-deprived.
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a)

b)

n = 200 grid units pruned, t = 10 n = 29 band units pruned, t = 10

Low GS

Figure A2: a) Ratemaps for every recurrent unit, after 10 timesteps, when pruning velocity inputs
for: 200 grid units (left) and 29 band units (right). b) Final timestep error aggregated across 10000,
10-timestep trajectories as a function of number of pruned high grid score units. Shown is the
median (black line) and the 25th and 75 percentile (shaded region. Also inset is a box plot of the
corresponding error for pruning n = 29 low grid score units, with a corresponding jitter plot of the
error distribution. Note the logarithmic scale.
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Figure A3: Recurrent unit ratemaps for a network initialized according to (random) uniform distri-
butions.

A.3 EFFECT OF NETWORK INITIALIZATION

Fig. A3 shows ratemaps of a recurrent network initialized according to a (random) uniform distri-
bution, demonstrating that grid and band-like solutions are still learned without the identity initial-
ization used elsewhere in this work.

A.4 COMPARISON TO OTHER MODELS

To contextualize our work, we compare it to several recent normative models of grid cells, highlight-
ing both similarities and differences with the works Schaeffer et al. (2023); Sorscher et al. (2022);
Dorrell et al. (2022); Dordek et al. (2016); Xu et al. (2022; 2024). Table 1 provides an overview of
key characteristics of the models in Schaeffer et al. (2023); Sorscher et al. (2022); Xu et al. (2022),
and our approach for both feedforward (FFN) and recurrent (RNN) implementations. It is especially
noteworthy in the table that we are the only ones demonstrating emergence of grid-like cells with
and without path integration (PI). Additionally, our model achieves high-fidelity grid patterns using
a relatively simple architecture, requiring fewer loss components compared to Schaeffer et al. (2023)
and omitting place-like encoding/decoding present in Sorscher et al. (2022) and Xu et al. (2022).

Regarding emergence of grid-like cells without path integration, Dorrell et al. (2022) and Dordek
et al. (2016) are worth highlighting. Dordek et al. (2016) demonstrates that grid cells can emerge
as optimal low-dimensional, non-negative projections (non-negative PCA) of place-cell-like inputs
modeled as difference-of-Gaussian radial basis functions. This framework elegantly connects place
and grid cells, consistent with their known anatomical connections (Bush et al., 2015). However,
this approach does not address normative aspects related to behaviorally relevant tasks, such as path
integration or maintaining a distance-preserving representation. In contrast, Dorrell et al. (2022)
employs a model constrained to a linear combination of sine and cosine plane waves. While grid-
like patterns emerge, the simplicity of this formulation limits the flexibility of the resulting patterns
compared to neural network-based approaches. Their functional constraints share similarities with
the separation loss in Schaeffer et al. (2023), which encourages distinct neural representations for
different spatial positions, but lack explicit distance-preserving objectives present in Xu et al. (2022),
Schaeffer et al. (2023), and our model.

Xu et al. (2024) presents a simplified version of their earlier models (Xu et al., 2022; 2023; Gao et al.,
2020), removing the reliance on place-cell decoding that is prominent in Sorscher et al. (2022). This
refinement aligns more closely with Schaeffer et al. (2023) and our approach by imposing objectives
directly on grid representations gt. However, their initial grid state is not explicitly stated complicat-
ing direct comparisons. Similar to Schaeffer et al. (2023) and our work, Xu et al. (2024) incorporates
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a hard normalization constraint on grid representations. A key distinction between our FF model and
Xu et al. (2024) lies in the ablation of their second assumption—“transformation” (analogous to path
integration)—while still achieving grid-like cell emergence. This demonstrates the minimal require-
ments necessary for producing grid-like cells, emphasizing the connection between grid cells and
distance preservation rather than path integration. This is fundamental to our work, as we further
show that extending our FF model to an RNN framework, which incorporates path integration, leads
to the emergence of band-like representations. We subsequently provide extensive analysis showing
that these band-like representations are the primary functional component for path integration.

Whether Xu et al. (2024) also produce band-like cells is not clear. The authors report large en-
semble grid scores, suggestive of all-grid representations. However, their models makes use of a
heading direction-dependent velocity input projection, which could conceivably produce band-like
projections directly in the input. This architectural design is similar to Schaeffer et al. (2023), which
also reports high proportions of grid-like units (and some band cells, for certain runs), wherein the
recurrent weight matrix is an MLP and a function of the incoming velocity. Given the apparent
importance of band cells for path integration in our model, investigating whether these architectures
reproduce band-like behaviors could provide valuable insights into how differing model components
influence the emergence or suppression of band-like representations, offering a promising direction
for future research.

Table 1: Comparison of Grid Cell Models
Aspect Schaeffer et al.

(2023)
Xu et al. (2022) Sorscher et al.

(2022)
Ours FFN (+
RNN)

Objective Sep + Inv + CI +
PI

CI + PI PI Distance preser-
vation (+ PI)

RNN Inputs Learned RNN
weight ma-
trix W (v⃗t) =
MLP(v⃗t) from
Cartesian veloci-
ties

Cartesian veloci-
ties v⃗t

Cartesian veloci-
ties v⃗t

None (+ Carte-
sian velocities
v⃗t)

Initial state N/A - the au-
thors report that
the network is
initialized using
a ”shared initial
state”

Initial position in
place cell basis
Wpp⃗(x⃗0)

Learned linear
projection of
initial position in
place cell basis
Wpp⃗(x⃗0)

Learned initial
representations
MLP(x⃗0)

PI architecture RNN-like with
recurrent weight
W (v⃗) as input:
Norm(ReLU(
W (v⃗t)g⃗t))

Vanilla RNN
and LSTM with
ReLU

Vanilla RNN
with ReLU

None (+
Normalized
vanilla RNN:
Norm(ReLU(
WRg⃗t +WI v⃗t))

Decoder None Linear readout to
place cell basis
ˆ⃗p = Woutg⃗t

Linear readout to
place cell basis
ˆ⃗p = Woutg⃗t

None

Regularization L2 Capacity on
g⃗t

L2 weight
penalty on Lin-
ear place cell
readout weights
Wout

L2 weight
penalty on recur-
rent weights WR

L1 capacity on g⃗

Results Emerges het-
erogeneous
multi-modular
grid-like cells
including some
place and band-
like cells

Emerges high-
quality grid-like
cells with
tunable multi-
modularity

Emerges a range
of spatially
heterogeneous
cells, including
grid-like cells

Emerges only
grid-like cells
with tunable
multimodularity
(+ band-like
cells)
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A.5 SPEED DEPENDENCE OF LEARNED REPRESENTATIONS

As we find that feedforward networks without velocity inputs learn grid-like representations, and that
RNNs with velocity input learn additional band-like representations, it is natural to investigate the
importance of the velocity signal for pattern formation in the RNN. We therefore trained recurrent
networks on 10-timestep trajectory datasets with varying Rayleigh speed scales s. The results are
presented in Fig. A4, which shows trained RNN unit ratemaps for s = 0, 0.075 and 0.75 (default
value s = 0.15).

The case s = 0 corresponds to no speed, wherein the RNN sits idly at the starting location of each
trajectory, not path integrating. Notably, patterns are still grid-like, but there is no apparent band-
like tuning. Thus, representations are similar to those of the feedforward network, and again, band
structures appear linked to path integration. This also seems to indicate that band responses do not
emerge as a consequence of architectural differences between networks, as part of a pattern forming
process.

For small speeds (s = 0.075), some band-like tuning is again observed. However, for speeds much
larger than that used in the default case (s = 0.75), a large fraction of units now appear strongly
band-like. The pattern, surprisingly, has also turned square, rather than hexagonal, which has been
observed in other path integrating models Cueva and Wei (2018). A square pattern may reflect
that path integration is more accurately achieved along the cardinal directions of the input velocity
vectors, but this observation warrants further investigation.

Together, these results all point towards bands being a necessary component of path integration
in recurrent networks, as band-like representations emerge in proportion to the importance of path
integration for the task at hand.

A.6 EXTENDED UNIT RATEMAPS

As noted previously, we find that feedforward networks learn grid-like representations, and that path
integrating RNNs learn additional band-like structures. This is shown explicitly in Fig. A5, which
shows every unit in two trained models, one feedforward and one recurrent. Notably, all appear grid-
or band-like.

When ablating the capacity loss, however, RNN units tend to lose their regular firing patterns. In
particular, Fig. A6 shows that low-capacity units have heterogenous firing fields, reminiscent of
place fields, in large environments (Park et al. (2011)). While a minority of units do exhibit striped
or banded firing fields, none display clear periodic band-like tuning. One might therefore speculate
that path integrating band units are inextricably tied to grid cells, and that other cell types, such as
place cells, rely on distinct path integration mechanism.

A.7 DECODING & PATH INTEGRATION PERFORMANCE

Assessing path integration performance in the trained RNN is not straight-forward, due to the highly
periodic nature of its learned representations (which causes representations at different locations at
distant locations to be ambiguously encoded). However, a network may still be able to path integrate
correctly, even without global decodability (as we observe in our model, using the path integration
measures in Fig. 2). We therefore develop a simple, one-step linear decoder to uncover this ability,
and perform decoding locally.

Specifically, we consider a conditional linear decoding of the form

x̂t = Wut,

where ut = cat(gt, x̂t−1), i.e. a concatenation of the current state gt and a previous estimated
position x̂t−1, and W is a trainable weight matrix.

We train this decoder in a one-step fashion by feeding in network states and (true) previous-step
locations xt, along trajectories. However during inference, we decode positions iteratively by using
the previous position estimate x̂t−1 produced by the decoder, so that the entire decoded trajectory is
produced by the decoder. To verify that the decoder is not simply copying the previous location, we
compare decodings of 1000-timestep, long-sequence trajectories starting at the origin, to a baseline
of always predicting the origin (which would be expected if the decoder simply copied its input).
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s = 0.0

s = 0.075

s = 0.75

Figure A4: Speed modulation of learned representations. Ratemaps of randomly selected RNN
units for different Rayleigh speed scales s. Higher values of s correspond to faster trajectories, s = 0
results in stationary trajectories.
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FF

RNN

Figure A5: Ratemaps of all 256 network units. Ratemaps of every network unit, for feedforward
(top), and recurrent (bottom) networks.
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Figure A6: Low capacity networks learn irregular firing patterns. All recurrent units, for a
network trained with α = 1 (no L1 capacity constraint).
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The results are shown in Fig. A7a), which demonstrate that not only does the decoder outperform the
zero-prediction baseline, but the network is capable of fairly accurate path integration for hundreds
of timesteps. Notably, this extends far beyond the training sequence length of 10 timesteps, which
is in line with the out-of-box generalization ability observed in Fig. 3c). The training loss in Fig.
A7b) also demonstrate that the decoder becomes adept only after thousands of training steps. Fig.
A7c) shows an example decoded long-sequence trajectory. Evidently, the decoded trajectory trails
the true one for a long time, but shows signs of drift over time.

To explore how path integration ability changes over training time, we trained decoders at varying
steps during model training (Fig. A7d)). As expected, path integration ability increases with training
time. However, even an untrained network is somewhat decodable (possibly due to the inherent
reservoir capacity of larger networks such as ours), but performance degrades considerably faster
than trained networks. Another notable feature, is that fully trained networks do not appear to be the
most capable path integrators, with the 1000-step checkpoint achieving the smallest decoding error.

Inspired by this, and our findings that band units are most important for path integration in trained
networks, we examined network representations in terms of their band score. Following Redman
et al. (2024), the band score is given by

b(G) = maxkx,ky
Corrcoeff(G,S(kx, ky)),

where kx, ky ∈ {0, 0.1, 0.2, ..., 2π} are spatial frequencies in the x and y directions, corrcoeff the
Pearson correlation coefficient, and for G we use the autocorrelogram of the ratemap of a particular
network unit (to ensure G is centered), and S(kx, ky) a 2D sinusoid whose frequency is given by kx
and ky .

Intriguingly, we find that band scores indeed correlate with path integration ability (compare Fig.
A7d) and e)). In particular, ensembles with greater band scores tend to perform better; compare e.g.
the fully trained model, and the network trained for 1000 steps. As can be seen from inset ratemaps,
ratemaps at this particular step are more square, and highly band-like.

As a final remark, this correspondence should not be taken to mean that path integration is necessar-
ily performed by band units; it could for instance reflect that such units are more linearly decodable,
for instance. However, these findings resonate with our other results (which do not explicitly rely
on a linear decoder), again hinting at a connection between path integration ability and band-like
representations.

A.8 AN L2 CAPACITY CONSTRAINT INDUCES HETEROGENEOUS REPRESENTATIONS

In this work, we have shown that distance preservation and an L1 capacity constraint is sufficient
to induce grid patterns in feedforward and recurrent networks. However, this choice was in part
motivated by other work (Schaeffer et al., 2023), that utilizes a similar L2 constraint. To demonstrate
why an L1 constraint, rather than an L2 appears more conducive to grid-like representations, we
trained multiple networks with varying L2 capacity constraints.

The resulting ratemaps are shown for both FF and RNN networks in Fig. A8. Notably, recurrent
unit responses do appear hexagonal and grid-like (as well as band-like) for appropriate α values.
However, representations are more irregular than what we observe for an L1 constraint, with some
units being mainly silent, some exhibit spurious firing fields, and others incomplete grid firing fields.
Comparing to results for L1 capacity, grid cells are known for their tendency to fire all over the
recording environment (in symmetric geometries), and exhibit persistent activity across different
environments, suggesting an L1 constraint may be more appropriate.

Unlike for the L1 case, we could not find hyperparameter values α that resulted in grid-like repre-
sentations in the feedforward network using an L2 capacity constraint. Rather, the learned repre-
sentations tended to be sparse. Thus, an L1 capacity appears to favor distributed representations,
aligning well with grid cell properties and potentially contributing to more robust representations.
However, it should be pointed out that the presence of path integration induced band- and grid-like
representations, also for the L2 constraint; suggesting that it may enhance pattern formation, and that
band and grid patterns are better suited for simultaneous path integration and distance preservation
than heterogeneous ones.
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a)

b) c)

d)

e)

Figure A7: Recurrent network path integration performance. a) Path integration error (Eu-
clidean distance between true and decoded trajectories) for the one-step linear decoder. Shown is
the median error, for a trained RNN model, and a baseline, all-zero prediction, for 1000 trajectories
all starting at the origin. Shaded regions indicate the inter-quartile range. b) Training loss for the
one-step decoder. c) An example decoded true trajectories, alongside the corresponding true trajec-
tory. d) Decoding error over trajectory time, as a function of model training length (legend indicates
training step; 49999 denotes a fully trained RNN). e) Ensemble band scores corresponding to the
training steps in d). Also inset are randomly selected unit ratemaps at the indicated training step.
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RNN

α = 0.1 α = 0.9α = 0

FF

Figure A8: Effects of L2 capacity constraints on learned representations. Ratemaps of ran-
domly selected units when the L1 capacity constraint is exchanged for an L2 constraint. Shown
are responses for RNN (top) and FF (bottom) network units for varying loss weightings. α = 0
corresponds a pure capacity loss, α = 1 to a pure distance preservation loss.

A.9 GRID SPACING AND FIRING FIELD SIZE

The grid search in A1 unveiled that the envelope scale parameter σ dictates the spacing of the grid
pattern. This is shown explicitly in Fig. A9, wherein feedforward grid fields are shown to become
more distantly spaced with increasing σ.

A related, interesting quantity is the grid firing field size. How this quantity is determined in our
model, is not entirely obvious. However, because of the close correspondance between neural dis-
tances and physical ones, we note that we can modulate the scale of the pattern, by introducing a
factor ρ into the loss function,

L = αEt,t′

[
e−

1
2σ2 ∥xt−xt′∥

2

(ρ ∥xt − xt′∥ − ∥gt − gt′∥)2
]
+ (1− α)E[lcap(gt)],

so that the representation learns to represent distances scaled by a factor of ρ. This is similar to the
conformal scaling factor used by (Xu et al., 2022).

Ratemaps of feedforward units trained to minimize this slightly modified loss are also shown in Fig.
A9, which demonstrates how firing fields become larger with decreasing ρ. Following (Xu et al.,
2022) and (Xu et al., 2024), this control over learned representations allows us to directly introduce
multiple modules in an interpretable way, by partitioning the network into distinct modules, or
allowing ρ to be a unit-specific trainable parameter.

Thus, grid field size and spacing can be readily understood in our model: field sizes reflect the
ratio between neural and physical distances, while grid spacing reflects the scale at which distances
should be accurately represented (for a fixed field size).

This result also highlights an important, but subtle difference between distance preservation, and a
conformal isometry requirement: While both enable faithful distance computations by integrating
the (flat) metric along neural trajectories, demanding distance preservation allows distances to be
computed directly by comparing two population vectors (while in the range where this is valid),
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α = 0.075, σ = 3α = 0.15, σ = 2

α = 0.9, ρ = 0.5

α = 0.54, ρ = 1, σ = 1.2

Default

α = 0.999, ρ = 0.25

Figure A9: Grid spacing and firing field size can vary independently. Ratemaps of randomly
selected units for different parameter combinations in σ and ρ. Shown is the default FF case (left),
decreasing ρ (rightmost, top row), and increasing σ (rightmost, bottom row).

Figure A10: Euclidean distances in representation vs. space. Distances between population
vectors of feedforward networks trained with varying scale parameters, σ, versus distances in the
arena. States and locations are sampled from a square grid, i.e. a ratemap.

which could greatly simplify distance computations. However, it should be noted that this is also
true to first order for a conformal isometry.

That our model preserves Euclidean distances (and preservation is determined by σ), is showcased
in Fig. A10, where representational and physical Euclidean distances are compared directly. As
shown, a larger value of σ induces a right-shift in the distance plot, and the relationship between the
two is near-linear for longer, indicating that distances are preserved.

Exploring the scale at which distances are preserved in biological grid cell data, could make for an
interesting comparison between our model and others, and could possibly account for variations in
grid spacing, which we find coincides with the scale at which (Euclidean) distances are preserved in
the representation.
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