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Abstract

Estimating the Lipschitz constant of a function, also known as Lipschitz learning, is a funda-
mental problem with broad applications in fields such as control and global optimization. In
this paper, we study the Lipschitz learning problem with minimal parametric assumptions
on the target function. As a first theoretical contribution, we derive novel lower bounds
on the sample complexity of this problem for both noise-free and noisy settings under mild
assumptions. Moreover, we propose a simple Lipschitz learning algorithm called Lipschitz
Constant Estimation by Least Squares Regression (referred to as LCLS). We show that
LCLS is asymptotically consistent for general noise assumptions and offers finite sample
guarantees that can be translated to new upper bounds on the sample complexity of the
Lipschitz learning problem. Our analysis shows that the sample complexity rates derived in
this paper are optimal in both the noise-free setting and in the noisy setting when the noise
is assumed to follow a Gaussian distribution and that LCLS is a sample-optimal algorithm
in both cases. Finally, we show that by design, the LCLS algorithm is computationally
faster than existing theoretically consistent methods, and can be readily adapted to various
noise assumptions with little to no prior knowledge of the target function properties or noise
distribution.

1 Introduction

Many applications are based on the Lipschitz continuity of an objective or target function and depend
explicitly on the value of a Lipschitz constant. Examples include: robustness analysis which utilises Lipschitz
constants to characterise worst-case behaviour in control settings (Limon et al. (2017), Canale et al. (2014)),
system identification which leverages the Lipschitz continuity property to obtain worst-case prediction error
bounds for interpolation methods (Milanese and Novara (2004),Beliakov (2006), Calliess et al. (2020)), global
optimization algorithms which rely on precise Lipschitz constant estimates to ensure speedy convergence
(Jones et al. (1993), González et al. (2016), Malherbe and Vayatis (2017)), multi-armed bandit problems
which utilise the Lipschitz constants to obtain asymptotic lower bounds and design algorithms (Magureanu
et al. (2014)) or reinforcement learning which utilises the Lipschitz constant to construct safe initial policies
(Chakrabarty et al. (2020)). For these applications it is critical that the Lipschitz constant estimate used
is sufficiently precise in order to ensure satisfactory performance in their specified goal. A main practical
drawback is therefore the dependency on the assumption of prior knowledge of the Lipschitz constant or,
in the case that this assumption is not made, the necessity of having to learn a precise Lipschitz constant
estimate from data.

Consequently, a number of Lipschitz constant estimation methods (also called Lipschitz learning algorithms)
have been developed. For target functions belonging to families of parametric models, Lipschitz learning
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approaches generally utilise the structure of the model class to obtain precise estimates (e.g. see extensive
literature on the estimation of Lipschitz constants of Neural networks (Virmaux and Scaman (2018)) (Fazlyab
et al. (2019))). For frameworks that don’t consider a particular parametric family, a majority of the existing
approaches are black-box methods that utilise and extend Strongin’s classical estimator (Strongin (1973)):
L̂ := r maxi ̸=j

|fi−fj |
∥xi−xj∥ where r ∈ R is a multiplicative factor and (xi, fi) is a data sample with fi = f(xi). In

particular, we highlight: (Wood and Zhang (1996)) builds on Strongin’s estimator by fitting an approximate
reverse Weibull distribution to the Lipschitz estimate in the one-dimensional case and using the location
parameter as a Lipschitz estimate, (Sergeyev (1995)) utilises Strongin’s approach to compute local Lipschitz
constant estimates and extends the approach to the multidimensional case by using space filling curves in
order to solve a global optimization problem and a more recent approach (Strongin et al. (2019)) proposes dual
Strongin Lipschitz estimates: with two differing "local" and "global" multiplicative factors. We remark that
the class of Lipschitz learning algorithms described so far does not consider the possibility of observational
noise and can explode in value if it exists. In this case, we can consider the Lispchitz constant estimator
proposed by both (Novara et al. (2013)) and (Calliess et al. (2020)) which specifically extends Strongin’s
estimate to deal with bounded observational noise.

Alternative Lipschitz learning approaches that do not directly utilise Strongin’s estimate have also been de-
veloped. These generally can consider the case of observational noise and include: (Beliakov (2005)) which
utilises a short optimisation problem and cross validation/sample splitting to obtain Lipschitz constant es-
timates, (Bubeck et al. (2011)) which employs a similar idea to Strongin’s estimate in order to propose a
Lipschitz constant estimator in the context of the Lipschitz multi-armed bandit problem, (González et al.
(2016)) which generates Lipschitz constant estimates using the mean function of the gradient function es-
timate of a fitted Gaussian Process (GP) and is directly computable using the GP-associated covariance
function, and (Calliess (2017)) which obtains Lipschitz constant estimates by optimising a Lipschitz interpo-
lation method. Unfortunately, while this class of Lipschitz learning algorithms tends to work well in practice,
they generally do not guarantee asymptotic convergence and are of limited theoretical interest.

Despite the wide range of proposed Lipschitz learning algorithms, there has been little theoretical investiga-
tion into the Lipschitz constant estimation problem other than various consistency proofs of Strongin-based
estimators. It is generally understood that this learning problem, without making further restrictive as-
sumptions on the underlying space of target functions, is inevitably subject to the curse of dimensionality.
However, to the best of our knowledge, this intuition has not been explored formally. A first goal of this
paper is therefore to provide a theoretical investigation into the Lipschitz learning problem by deriving lower
bounds on the sample complexity in the case of both a noiseless and noisy sampling settings. We confirm
the general intuition on the difficulty of the Lipschitz learning problem by demonstrating that the problem
has a sample complexity lower bound that scales at least exponentially on the function input dimension in
both the noiseless case and the noisy sampling case when the noise is assumed to be Gaussian.

Our theoretical results imply that a precise estimation of the Lipschitz constant requires a significant number
of samples. This is computationally problematic for classical Strongin-based Lipschitz learning algorithms
due to the fact that the computational complexity of these methods can be shown to be quadratic in the
number of samples: O(n2

samples). While the non-Strongin based estimators discussed above could potentially
be less computationally expensive, they only provide heuristic or experimental convergence guarantees and
are generally difficult to study from a theoretical perspective. Therefore, in light of our lower bounds on
sample complexity, we propose a novel algorithm for Lipschitz learning called LCLS (short for Lipschitz
Constant estimation by Least Squares regression) that has a linear computational complexity in the number
of sample points and for which we can derive theoretical guarantees on asymptotic convergence and finite
sample behaviour in a general noisy sampling setting. The optimality of the lower bounds on the sample
complexity of the Lipschitz learning problem in both the noiseless sampling setting and in the noisy sampling
setting under Gaussian noise assumptions derived in the first part of the paper follow from these theoretical
results.

In practice, the proposed LCLS algorithm provides a theoretically motivated and computationally quick
way of estimating the Lipschitz constant. With minimal fine-tuning, LCLS can be plugged into any com-
putational method that utilises a Lipschitz constant estimate – see above discussion – under any sampling
noise assumptions. We provide an example of such a procedure in the context of nonparametric regres-
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sion for system identification in control by combining the LCLS algorithm with a classical nonlinear set-
membership/Lipschitz interpolation framework and illustrating the empirical performance of the combined
regression method through a series of short experiments.

A more comprehensive list of the contributions of this paper is given below.

1.1 Contributions and Outline of Paper

In this paper, we provide a rigorous treatment of the Lipschitz constant estimation problem discussed above.
In particular, we make the following contributions:

1. In Section 2, we provide novel theoretical lower bounds on the sample complexity of the general
Lipschitz learning problem (for p ∈ {1, 2}) in the noiseless sampling setting (see Theorem 2.2) and
of a slightly modified version of the problem1 in the noisy sampling setting (see Theorem 2.5) when
the target function f : X ⊂ Rd → R satisfies a regularity condition C2(X , K) defined in Assumption
2. We note that these bounds can be equivalently stated as lower bounds on the convergence rate of
the general Lipschitz learning problem (see Corollaries 2.3 and 2.6). As far as the authors are aware,
the sample complexity and convergence bounds derived in this paper are the first theoretical results
pertaining to the convergence of the general Lipschitz learning problem. We show in Section 3 that
our proposed lower bound on the sample complexity rate is optimal in both the noiseless sampling
setting and the noisy sampling setting under a Gaussian assumption.

2. In Section 3.1, we propose a least squares-based Lipschitz learning (LCLS) approach that utilises a
partition of the input space X and local least squares estimates in order to generate a Lipschitz con-
stant estimate. As discussed in the introduction, our motivation for developing the LCLS algorithm
rests on the following two desiderata for an estimator:

• it should be both theoretically and computationally tractable, and,
• directly applicable across all noise settings considered in the literature and implementable with-

out any prior knowledge of target function properties or of the noise structure.

3. In Sections 3.2 and 3.3, we investigate theoretical properties of the proposed algorithm:
• Asymptotic convergence for general partition choice in noiseless and general noisy sampling

set-ups (Section 3.2, see Theorem 3.7).
• Finite sample guarantees in the noiseless and general noisy sampling set-ups when the partition

is constructed using regular hypercubes (Section 3.3, see Theorem 3.10, Corollary 3.16). These
guarantees can be used to provide an upper bound on the sample complexity of the Lipschitz
learning problem and show that the complexity rates derived in the first part of the paper match
in both the noiseless and noisy setting under a Gaussian assumption. (Section 3.3, see Remark
3.11, 3.12, Theorem 3.15).

4. In Section 3.4, we illustrate and compare the empirical performance of the LCLS algorithm against
Strongin-based Lipschitz learning algorithms on a set of test functions. We consider both the noise-
less and noisy sampling settings. We find that while the benchmark Strongin-based algorithms
converges slightly faster in terms of number of samples, our proposed algorithm converges faster in
terms of computation time for all functions in the test set (see Figure 4). This is despite the fact
that we consider noise settings for which the benchmark algorithms are specifically designed in our
experiments.

5. In Section 4, we explore the application of the various theoretical results and the LCLS algorithm
derived in this paper to the fields of Global Optimisation and Nonparametric Regression for System
Identification. More specifically, we propose a lower bound on the sample complexity of adaptive
Lipschitz optimisation algorithms that follows from one of the theoretical results stated in Section
2 and a new nonparametric regression method constructed by combining the LCLS algorithm of
Section 3 with a classical nonlinear set membership framework (see Milanese and Novara (2004)).

1Which can be shown to be equivalent for the majority of existing Lipschitz learning algorithms.

3



Published in Transactions on Machine Learning Research (09/2023)

2 Assumptions and Sample Complexity Lower Bound

In this section, we provide the standing assumptions of the paper and state the main results pertaining to
theoretical lower bounds on the sample complexity of Lipschitz learning algorithms.

2.1 Basic Assumptions

Let p ∈ N, d ∈ N, a function f : X ⊂ Rd → R is said to be Lipschitz continuous with respect to a norm ∥.∥p

if there exists a positive real value Lp(f) ∈ R such that |f(x) − f(y)| ≤ Lp(f)∥x − y∥p, for all x, y ∈ X . The
smallest constant satisfying this condition denoted L∗

p(f) is called the (best) Lipschitz constant and can be
interpreted as the tightest bound on the rate of change of f . Furthermore, for any L ≥ 0, we define the class
of Lipschitz continuous functions as

Fp(L) := {h : X → R|h is Lipschitz ∧ L∗
p(h) = L}.

The Lipschitz learning problem therefore considers the estimation of L∗
p(f) when f is an unknown target

function. As described in the introduction, we consider a general version of this problem where f is considered
black-box and can can only be accessed through queries to a, possibly noisy, oracle. As f is not assumed to
belong to any parametric family, other assumptions are needed2 in order to derive theoretical bounds on the
sample complexity. For our results, we make the following two assumptions on the input space X and the
regularity of f .

Assumption 1 (Domain) The domain X of the target function f is a convex and compact subset of Rd.

Assumption 2 (Functional) The target function f ∈ C2(X ) and there exists an upper bound K ∈ R+ on
the second-order partial derivatives of f , i.e. | ∂f

∂xi∂xj
| ≤ K for all x ∈ X and i, j ∈ {1, ..., d}. Furthermore,

f can be extended on an open set X̄ such that X ⊂ X̄ .

For a given K ∈ R+, we denote by C2(X , K) the class of functions that satisfies Assumption 2 with an upper
bound K on the second degree partial derivatives. It is important to point out that this bound does need to
be tight and that if Assumption 1 holds then any f ∈ C2(X ) automatically belongs to C2(X , K̄) for some
K̄ ∈ R+. Finally, we assume that we have access to the target function f through an oracle Ω : X → R –
defined formally below for each sampling setting – which can be queried in order to generate observations
of f . In particular, this oracle can be freely used by any Lipschitz learning algorithm as described in the
following definition.

Definition 2.1 (Lipschitz Learning Algorithms) We define Ln,p(X ) as the set of all ∥.∥p-Lipschitz learning
algorithms that utilise at most n ∈ N queries to the Oracle Ω with inputs in X . The sampling procedure is
considered to be a part of the Lipschitz learning algorithm and ∀L̂ ∈ Ln,p(X ) we denote the set of generated
sample points by GL̂

X = {(xL̂
i , Ω(xL̂

i ))i=1,...,n}.

We note that Definition 2.1 defines a general class of Lipschitz learning algorithms without any structural
specifications and that the inclusion of the sampling procedure in the algorithm is common for applications
in both control and global optimisation.

2.2 Noiseless Sampling Setting

Assumptions (1)-(2) are sufficient to formulate a lower bound on the sample complexity rate of the Lipschitz
learning problem in the case where one has access to an oracle3 Ω that can be queried to obtain noiseless
observations of the underlying target function. Formally, the noiseless Oracle is described by

Ω : X → R

2Otherwise, a theoretical characterisation of the Lipschitz learning problem is not feasible.
3Note: in the noiseless case, the oracle and the target function are equivalent.
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x
Ω7−→ f(x).

The lower bound on the sample complexity of any Lipschitz learning algorithm is given in the following
theorem.

Theorem 2.2 (Sample Complexity Bound – Noiseless) Let M ∈ R+, d ∈ N, p ∈ {1, 2} and suppose
X := [0, M ]d. Assume that Assumption (2) holds and that a noiseless Oracle Ω, (described above) is available.
∀L∗ ≥ 0, ∀ϵ ∈ (0, MK), if

inf
L̂∈Ln,p(X )

sup
f∈C2(X ,K)∩Fp(L∗)

|L̂(f) − L∗| < ϵ

then

n ≥
(

C(d, p)MK

ϵ

)d

In this paper, we find C(d, p) = 1
20d

1
p

− 1
2

, however this value has not been optimized.

Theorem 2.2 provides a lower bound on the minimum number of oracle queries that are needed in order for
a Lipschitz learning algorithm to ensure a precise estimate of the Lipschitz constant for all underlying target
functions in C2(X , K). As speculated in the introduction, it shows that the Lipschitz Learning problem is a
computationally expensive one that depends heavily on the input dimension. The lower bounding expression
is given as a function of the size of the input space (M), the assumed bound on the second order partial
derivatives (K) and the precision parameter (ϵ) but is independent of the true Lipschitz constant (L∗) of the
target function. The product MK can be understood as a bound on the maximum change in the gradient
values of functions in C2(X , K). In Section 3, the proposed LCLS algorithm will be shown capable of
estimating the Lipschitz constant of all functions f in C2(X , K) using O(

(
MK

ϵ )d) queries to the noiseless
sampling oracle Ω implying that the lower bound on the sample complexity rate stated in Theorem 2.2 is
optimal.

An equivalent reformulation of Theorem 2.2 in the form of a lower bound on the convergence rate of Lipschitz
learning algorithms is provided in the following corollary.

Corollary 2.3 (Convergence Rate Bound – Noiseless) Assume the same setting as Theorem 2.2. Then,
∀L∗ ≥ 0,

inf
L̂∈Ln,p(X )

sup
f∈C2(X ,K)∩Fp(L∗)

|L̂(f) − L∗| ≥ C(d, p)MK
d
√

n

where C(d, p) is defined in Theorem 2.2.

Corollary 2.3 is generally more practical to use then Theorem 2.2 when considering convergence properties
of applications of Lipschitz constant estimators. In Section 4, we show how Corollary 2.3 can be applied
in conjunction with recent theoretical results (Bachoc et al. (2021)) to derive lower bounds on the sample
complexity of adaptive Lipschitz optimisation algorithms.

2.3 Noisy Setting

In many practical cases, the sampling oracle cannot be assumed reliable and only approximate observations
of the target function are obtainable. In this case, we model Ω : X → R as being corrupted by additive noise
and a new lower bound on the sample complexity of Lipschitz learning algorithms can be derived. In order
to do so, additional assumptions must be made on the additive observational noise process.

Assumption 3 (Noisy Oracle – Gaussian Noise) Let σ2 > 0. We define a noisy sampling oracle as

Ω̃ : X → R

x
Ω̃7−→ f̃x := f(x) + γx

where γx are independent Gaussian random variables (x ∈ X ) with mean 0 and variance σ2. Note: γx is an
abuse of notation as the noise is not dependent on the input x. In other words: if x ∈ X is sampled twice,
then γ1

x ̸= γ2
x.
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As the class of Lipschitz learning has been loosely defined so far, with no parametric or functional assump-
tions, a slight reformulation of the Lipschitz learning problem is needed in order to derive lower bounds on the
sample complexity. Consider the function class C2(X , K) as defined above and p ∈ N. It is known (e.g. see
Lemma B.2) that for all f ∈ C2(X , K), L∗

p(f) = maxX {∥∇f(x)∥q} if p = 1, 2 and L∗
p(f) ≤ maxX {∥∇f(x)∥q}

otherwise, where q is the Hölder conjugate of p. Then, instead of directly considering the estimation error
|L̂(f) − L∗

p| with a Lipschitz learning algorithm L̂(f) ∈ Ln,p(X ) as done in Theorem 2.2, one can consider
the problem of obtaining xL̂(f) ∈ X such that |∥∇f(xL̂(f))∥q − L∗

p| is minimised. In this case, we say that
the algorithm L̂(f) belongs to the class Ln,p(X ) of Lipschitz Learning search algorithms which is defined
formally as follows:

Definition 2.4 (Lipschitz Learning Search Algorithms) We define Ln,p(X ) as the set of all ∥.∥p-Lipschitz
learning search algorithms that utilise at most n ∈ N queries to the Oracle Ω̃ with inputs in X in order to
produce an estimate x̂ that aims to minimise: Loss(x̂, f) := |∥∇f(x̂)∥q − L∗

p|.

This type of paradigm is similar to the one considered in the literature on minimax global optimisation
where one generally aims to obtain the minimising argument x̂ ∈ X of a target function rather than directly
estimating the minimum (e.g. Bull (2011)). We stress that if a good estimate of xL̂(f) can be obtained, then it
is relatively straightforward to obtain an accurate Lipschitz constant estimate by computing a local gradient
or slope estimate of the target function near xL̂(f). In fact, the majority of Lipschitz algorithms either
directly or implicitly operate by maximising gradient or slope estimates (e.g. Strongin (1973), Calliess et al.
(2020), the LCLS algorithm proposed in this paper) and could therefore be trivially modified to generate a
search estimate: xL̂(f).

Using Assumption 3, the following lower bound on the sample complexity rate can be derived in the noisy
sampling setting.

Theorem 2.5 (Sample Complexity Bound – Noisy) Let M ∈ R+, d ∈ N, p ∈ {1, 2} and suppose X :=
[0, M ]d. Assume that Assumptions (2)-(3) hold, that one has access to a noisy oracle Ω̃ : X → R as specified
in Assumption (3) and that the sample inputs are uniformly and independently sampled on X . Define Ln,p(X )
as in Definition 2.4. If there exists δ ∈ (0, 1) such that

lim
ϵ→0+

inf
L̂∈Ln,p(X )

sup
f∈C2(X ,K)

P(Loss(xL̂(f), f) > ϵ) ≤ δ

then,

n ∈ Ω
(

σ2MdKd+2 log( MK
ϵ )

ϵd+4

)
.

In contrast to the sample complexity bounds obtained in the noiseless sampling setting, the bounds proposed
in Theorem 2.5 only hold asymptotically and can therefore not be utilised in order to obtain finite sample
guarantees. Furthermore, the Lipschitz learning (search) algorithms considered in Theorem 2.5 are assumed
to be passive4 (as the sampling inputs are sampled randomly) as opposed to the active algorithms considered
in Theorem 2.2. Nonetheless, the obtained bounds provide insight into the necessary sampling requirements
needed to ensure convergence for the Lipschitz learning (search) problem in the noisy sampling setting. In
Section 3.3, we will show that the LCLS algorithm matches the convergence rate stated in Theorem 2.5
under the same assumptions implying that the rate Θ

(
σ2 MdKd+2 log( MK

ϵ )
ϵd+4

)
is optimal.

Finally, as in the noiseless sampling setting, an equivalent reformulation of Theorem 2.5 is provided in the
form of a probabilistic lower bound on the convergence rate of Lipschitz learning (search) algorithms.

4Note: we are not aware of any existing active Lipschitz learning algorithms as Lipschitz constant estimation is usually
computed as a secondary task to a main objective (e.g. optimisation, nonparametric regression).
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Corollary 2.6 (Sample Complexity Bound – Noisy) Assume the same setting as Theorem 2.5. Then, for
all δ ∈ (0, 1), there exists C > 0 such that

lim
n→∞

inf
L̂∈Ln,p(X )

sup
f∈C2(X ,K)

P(Loss(xL̂(f), f) > CMK

(
log(MKn)
nM4K2σ2

) 1
d+4

) > δ.

Theorem 2.5 and Corollary 2.6 are particularly interesting in the context of system identification for control
applications (e.g. Milanese and Novara (2004), Calliess et al. (2020)) where robustness properties depend
explicitly on estimating a feasible Lipschitz constant from noisy data. These frameworks often ignore the
modeling error arising from the Lipschitz constant estimation which is problematic when the goal is to
provide worst-case guarantees. One source of usefulness for the two bounds stated in this subsection is
therefore to provide a theoretical understanding of the worst-case estimation of Lipschitz constants in this
context and therefore to make possible a more realistic robustness analysis of Lipschitz constant-based system
identification methods in practice. A short illustrative comparison of the convergence rate given in Corollary
2.6 with the convergence of existing Lipschitz learning algorithms used for system identification purposes is
given in Figure 3.

Remark 2.7 (Comparison to Nonparametric Estimation) The optimal convergence rates of nonparametric
estimation in the noisy sampling setting with Gaussian noise are well-known (Tsybakov (2008)). In par-
ticular, the uniform5 convergence rate of the nonparametric estimation of first-order partial derivatives on
C2(X , K) for some K > 0 is given by Θ

(
( log(n)

n ) 1
d+4

)
n∈N

which corresponds exactly to the lower bounds de-
rived in Corollary 2.6. This implies that although Lipschitz learning seems more straightforward than partial
derivative estimation, asymptotically their sample complexities are equivalent. Note that this observation is
somewhat unsurprising as similar results hold in the context of global optimisation (Bull (2011), Wang et al.
(2018)).

3 Lipschitz Constant estimation by Least Squares regression (LCLS)

The theoretical results of Section 2 imply that a significant number of samples must be used in order to
obtain a precise estimation of the best Lipschitz constant. As noted in the introduction, this is problematic
computationally for classical Strongin-based Lipschitz learning algorithms due to the fact that the computa-
tional complexity of these methods can be shown to be quadratic in the number of samples. Using existing
non-Strongin based methods could resolve this computational problem, however obtaining convergence guar-
antees would then be difficult as this class of methods is generally complicated to study from a theoretical
perspective. Therefore, in the goal of obtaining a Lipschitz learning approach that can provide asymptoti-
cally consistency guarantees, has low computational complexity and for which we can derive upper bounds
on the sample complexity (in the goal of comparing with the sample complexity lower bounds derived in
Section 2), we define a new estimator: Lipschitz Constant estimation by Least Squares regression (LCLS).

3.1 Overview

The general intuition behind the Lipschitz learning algorithm proposed in this paper follows from the simple
observation that the coefficients from a least squares regression can be interpreted as a local approximation
of the gradient and that the maximum q-norm of the gradient of f on X coincides6 (for certain values of
p ∈ N) with the best Lipschitz constant associated to the p-norm, where q is the Hölder-conjugate of p, i.e.
1
p + 1

q = 1. Therefore, by using a partition H of the input space X that is sufficiently refined to properly
capture the gradient variation of f and computing the maximum q-norm of the least squares coefficients
associated to each subset of H, a precise estimate of the Lipschitz constant is obtainable. Practically, in
order to ensure that the refinement of the partition suffices7, the proposed estimation framework is designed

5With respect to ∥.∥∞.
6See Lemma B.2 in Appendix for a formal statement.
7In the case where the upper bound K given in Assumption 2 is known beforehand it is possible to directly partition at the

required refinement level (See Theorem 3.10 for example).
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Algorithm 1 General LCLS
Input: Ω̃ (Oracle), (HI)I∈N (Partition Sequence)
Output: {L̂I} (Lipschitz Estimates)
procedure: LCLS(Ω̃, (HI)I∈N)
initialise: I ← 1
repeat

L̂I ← 0
for H ∈ HI do

(XH
I , f̃H

I )← DH
I generated by Ω̃

β̂H
I ← (XH

I
⊤

XH
I )−1XH

I
⊤

f̃H
I

L̂I ← max(∥β̂H
I ∥q, L̂I)

end
I ← I + 1

return {L̂I}I∈N

Algorithm 2 Hypercube LCLS8on [0, M ]d

Input: Ω̃ (Oracle), K (Bound from (2), η (covering con-
stant), σ2 (noise variance), (ϵ, δ) (precision)

Output: L̂ (Lipschitz Constant Estimation)
procedure: LCLS(Ω̃, K, η, σ2, (ϵ, δ))
initialise: L̂← 0 I ← (C1(d) MK√

ηϵ
),

NI ← (C2(d, q) σ2

ηδ
Id+2

M2ϵ2 )
H ← hypercube partition of [0, M ]d with side-length M

I

for H ∈ H do
(XH , f̃H)← DH generated by Ω̃
β̂H ← (XH ⊤

XH)−1XH ⊤
f̃H

L̂← max(∥β̂H∥q, L̂)
end
return L̂

Figure 1: Algorithm 1 details the implementation of the LCLS algorithm for a general input space and partition choice.
Algorithm 2 details the theoretical implementation given in Theorem 3.10 of the LCLS algorithm when the input space
is a hypercube [0, M ]d and the partitions are regular. In practice, I ∈ N and NI ∈ R+ can be set heuristically in order
to improve convergence. We note that the generated data points XH

I used by the two algorithms are selected arbitrarily
in each H ∈ HI . In order to ensure convergence of the LCLS algorithm, XH

I will need to verify Assumption 4 for all
I ∈ N and H ∈ HI .

as an iterative method that utilises a sequence of increasingly fine convex partitions (HI)I∈N that are given as
input. A brief technical description of an iteration of the algorithm can be described as follows: For a given
iteration, indexed by I ∈ N, a set of observations DH

I := {(xHi
, f̃Hi

)}i∈{1,...,NH
I

} is generated by an oracle
Ω : X → R (defined in Section 2) for each subset H of the partition HI and used individually to compute
the coefficients {βH

I }H∈H of an ordinary least squares regression for each subset H ∈ HI . The Lipschitz
constant estimate can then be directly computed: L̂I := maxH∈HI

{∥βH
I ∥q} where q is the Hölder-conjugate

of p.

Definition 3.1 (Notation Overview) For a partition HI of X and a set of samples DI := {(xi, f̃i)}i∈{1,...,NI }
as described above, we utilise the following notation.

1. The subset of samples that belongs to H ∈ HI is denoted DH
I := {(xHi , f̃Hi)}i∈{1,...,NH

I
}. Note:

samples can only belong to one subset H. If a sample point is on the border between two sets, then
it can be included in either design matrix.

2. We denote the design matrices of the least squares regressions XH
I ∈ RNH

I ×(d+1) and the observation
vectors f̃H

I ∈ RNH
I ;

XH
I =


1 x⊤

H1
1 x⊤

H2
...

...
1 x⊤

H
NH

I

, f̃H
I =


f̃H1

f̃H2
...

f̃H
NH

I

 =


fH1

fH2
...

fH
NH

I


︸ ︷︷ ︸

fH
I

:=

+


γH1

γH2
...

γH
NH

I


︸ ︷︷ ︸

γH
I

:=

, where ∀k ∈ {1, ..., NH
I } and where

(xHk
, f̃Hk

) is a sample point contained in DH
I with f̃Hk

:= Ω̃(xHk
) and by abuse of notation; γHk

=
γxHk

.
3. We denote by [b̂H

I , β̂H
I ] ∈ Rd+1 (where b̂H

I ∈ R is the intercept) the least squares coefficients associated
to H ∈ HI and computed using XH

I and f̃H
I .

The LCLS algorithm is described here in its most general form in order to allow flexibility in the choice
of the input space partitions and sampling scheme. Algorithm 1 provides an algorithmic description of
this approach. A more specific implementation of the LCLS algorithm which utilises a regular hypercube

8The method described in this algorithm corresponds to the specific case where the (K, σ2) variables are known.
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partition of the input space is given in Algorithm 2 and discussed later on in this section in Theorem 3.10 and
ensuing discussions. As one might expect, the structure of (HI)I∈N is a key part of the LCLS estimator. In
practice, these partitions can be defined using domain or functional knowledge in order to better estimate the
gradient variation and therefore speed up the convergence of the algorithm. The distribution of the sample
points given by (NH

I )n∈N should also be considered carefully and can be selected in a partition dependent
way to take advantage of any prior knowledge of f or of the underlying noise distribution. We note that
the relation between the structure of (HI)I∈N and (NH

I )n∈N is essential in the proofs of Theorem 3.7 and
Theorem 3.10.

The following variables are used to formally describe a partition belonging to (HI)I∈N.

Notation 3.2 Let δ(A) = supx,y∈A ∥x − y∥2 denote the diameter function and Br(x) the d-dimensional ball
centered in x ∈ X and with radius r with respect to ∥.∥2.

Definition 3.3 (Partition Variables) Let HJ ∈ (HI)I∈N. We define the following two HJ related quantities:
the maximum diameters of HJ : {∆H

J }H∈HJ
, ∆H

J := δ(H) and the minimum diameters of the biggest subset-
inscribed balls of HJ : {δH

J }H∈HJ
, δH

J := 2 max{r ∈ R+|∃x ∈ H such that Br(x) ⊂ H}.

The quantities {∆H
J }H∈HJ

and {δH
J }H∈HJ

are used in Definition 3.5 and in Theorem 3.7 to define sufficient
conditions on the structure of the (HI)I∈N partitions in order for the general version of the LCLS algorithm
to converge.

We conclude this subsection by giving a result on the computational complexity of the proposed algorithm.

Proposition 3.4 (Computational Complexity of LCLS) The computational complexity of the Lipschitz Con-
stant Least Squares Estimator is O

(
d2nsamples

)
where nsamples denotes the number of observations sampled

by the algorithm and the d ∈ N is the input dimension of the target function.

The computational complexity derived in Proposition 3.4 is significantly smaller than the complexity of
Strongin-based approaches which is O

(
dn2

samples

)
. The difference in computation speed is illustrated em-

pirically on a set of test functions in Section 3.4.

3.2 General Theoretical Analysis

An investigation of the theoretical behaviour and performance of the proposed LCLS algorithm is carried
out in this section. This analysis provides an understanding of the design constraints required for the con-
struction of the input space partitions and for the choice of sampling schemes in order to ensure satisfactory
performance – see Remark 3.8. We begin by stating an asymptotic convergence result for the general form of
the algorithm in the noiseless and general noisy sampling settings before stating and discussing finite sample
results for a more concrete application of LCLS when the partition of the input space is constructed to be
a set of regular hypercubes.

The following definition defines two quantities (aI)I∈N, (bI)I∈N as a function of {∆H
J }H∈HJ

, {δH
J }H∈HJ

,
({NH

I }H∈HI )I∈N and (|HI |)I∈N in order to alleviate notation9. They will be used to describe the conditions
on the structure of the input partition sequence needed in order to ensure asymptotic consistency.

Definition 3.5 For any sequence of convex and compact partitions, (HI)I∈N, we construct the following
sequences:

• (aI)I∈N, aI = maxH∈HI
( (∆H

I )2

δH
I

)

• (bI)I∈N, bI = maxH∈HI

(
|HI |

NH
I

(δH
I

)2

)
.

Before stating the first main result of this section, a condition on the sampling procedure used by the LCLS
algorithm and a generalisation of the Oracle noise assumption of Section 2 are given.

9Here. |.| denotes the cardinality operator.
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Definition 3.6 Let H ⊆ X be compact and convex and denote by DH
I := {(xHi

, f̂Hi
)}i∈{1,...,NH

I
} the subset

of generated or archived data samples in H. We say that H is (ϵ, η)-covered for ϵ > 0, η ∈]0, 1] if there exists
an ϵ-cover of H (with respect to ∥.∥2) with at least ηNH

I samples of DH
I in each of the balls associated to an

element in the ϵ-cover.

Assumption 4 (Sampling) For a given η ∈ (0, 1], the sampling scheme selected for LCLS is such that
∀I ∈ N and ∀H ∈ HI , H is ( δH

I

8 , η)-covered.

The sampling condition stated in Assumption 4 is used in order to ensure the stability of the least squares
coefficient as the sequence of partitions becomes increasingly refined and can be satisfied by using quasi-
Monte Carlo schemes in practice. In essence, it ensures that the samples are sufficiently well distributed
in each subset H of the partition HI , avoiding extreme cases such as when a single sample input gets
repeatedly sampled. A possible (conservative) value for η in the regular hypercube implementation of the
LCLS algorithm of Section 3.3 is given by η = vol(B1(0))

23d+2 with vol(B1(0)) denoting the volume of the d-
dimensional unit ball. In the proof of Theorem 3.15, under a uniform and independent sampling (on X )
assumption, Assumption 4 is shown to hold for η = vol(B1(0))

23d+13d with high probability when the number of
observations is sufficiently large.

The second assumption of this section generalises the Gaussian noise assumption made in Assumption 3 to
include all distributions with zero mean and finite variance and weaken the assumption of independence.

Assumption 5 (Noisy Oracle – General) Let σ2 > 0 and denote by D(0, σ2) the set of all probability
distributions on R with zero mean and finite variance σ2 > 0. We define a general noisy sampling oracle as

Ω̃ : X → R

x
Ω̃7−→ f̃x := f(x) + γx

where γx ∼ Dγx
∈ D(0, σ2) are uncorrelated random variables (x ∈ X ).

The general nature of Assumption 5 ensures that the convergence results obtained for the proposed LCLS
algorithm hold for a wide range of noise distributions and therefore removes the necessity of having to verify
a sub-Gaussian noise assumption when applying LCLS in practice.

Theorem 3.7 formalizes the consistency of the proposed Lipschitz learning framework for the general noisy
sampling setting.

Theorem 3.7 (General Convergence Rate) If Assumptions (1),(2),(4),(5) (for a given η ∈ (0, 1]) hold and
the following conditions are verified:

1. ∀I ∈ N, HI is a convex partition of X ,
2. limI→∞ aI = 0, limI→∞ bI = 0, limI→∞ maxH∈HI

(∆H
I ) = 0,

then ∀ Dn
γ ∈ D(0, σ2), f ∈ C2(X , K),

L̂I(f) P−−−→
I→∞

Lp(f)

where Lp(f) = L∗
p(f) for p = 1, 2, Lp ≥ L∗

p(f) for p > 2. P denotes convergence in probability and (L̂I(f))I∈N
is the sequence of Lipschitz constant estimates generated by the LCLS estimator.

Remark 3.8 (Design Constraints) Condition 2 of Theorem 3.7 specifies the design constraints needed in the
construction of the partition sequence (HI)I∈N and the number of sample points ({NH

I }H∈HI )I∈N required
per hypercube in order to ensure convergence. In particular:

1. limI→∞ aI = 0 provides the limitations on the shape of the sets in each partition HI as I goes to
infinity. In particular, as I → ∞, (∆H

I )2 << δH
I < ∆H

I .
2. In the noisy sampling setting, limI→∞ bI = 0 specifies a condition on the number of samples needed

per hypercube. As I → ∞, NH
I >> |HI |

(δH
I

)2 . This is made precise in the next section in Remark 3.11.

10
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3. limI→∞ maxH∈HI
(∆H

I ) = 0 ensures that the partitions are increasingly refined.

In practice, applying the theoretical conditions used in Theorem 3.7 produces an overly conservative estimator
in terms of required number of queries made to the oracle – see Section 3.4 for an illustration of the empirical
convergence of the LCLS estimator. This is due to the fact that the LCLS estimator makes minimal functional
assumptions and therefore has to explore all of X to generate a precise Lipschitz estimate. In order to avoid
this issue, the number of samples per hypercube as measured by (bI)I∈N can be set heuristically in order to
improve the empirical performance.

In the noiseless sampling setting, the stopping and sampling rules given in Theorem 3.7 and Remark 3.8 can
be modified in order to obtain a quicker convergence. This is detailed in the following corollary.

Corollary 3.9 (Noiseless Sampling) If Assumptions (1),(2),(4) (for a given η ∈ (0, 1]) hold, a noiseless
oracle Ω : X → R is available and the following conditions are verified:

1. ∀I ∈ N, HI is a convex partition of X ,
2. limI→∞ aI = 0, limI→∞ maxH∈HI

(∆H
I ) = 0,

3. ∀I ∈ N, H ∈ HI , NH
I ≥ d + 1,

then f ∈ C2(X , K),
L̂I(f) −−−→

I→∞
Lp(f)

where Lp(f) = L∗
p(f) for p = 1, 2, Lp(f) ≥ L∗

p(f) for p > 2 and the right arrow denotes deterministic
convergence.

While, the conditions on the design constraints of the partition sequence needed to ensure asymptotic
convergence of the LCLS algorithm remain the same as in Theorem 3.7, the sampling conditions specified
in Corollary 3.9 imply that a much smaller number of samples are required per hypercube. More precisely,
the only sampling condition stated in Corollary 3.9 is related to the minimum number of samples needed to
ensure that the local linear regressions computed by the LCLS algorithm are well-defined.

Using the general results developed in this section, we now explore a more specific application to the [0, M ]d
input space. Theorem 3.10 provides finite-sample sample complexity bounds for the LCLS in the general
noise sampling setting that can be utilised when limited information on the noise distribution is available. As
a consequence of Theorem 3.10, sample complexity rates in the noiseless and Gaussian noise setting can also
be derived and compared to the lower bounds proposed in Theorem 2.2 and Theorem 2.5. This is discussed
in Remark 3.11, Remark 3.12 and Theorem 3.15.

3.3 LCLS with Regular Partitions and Sample Complexity Upper Bound

In the previous section, we considered a general form of the LCLS algorithm and stated the conditions on the
design constraints of the input partition sequence and the sampling scheme required to ensure convergence.
Here, we assume that the input space is the d-dimensional hypercube [0, M ]d and consider the case where
every input partition HI is a regular hypercube partition of side-length M

I . The associated sampling scheme
is then defined based on the sampling condition given in Assumption 4 and the desired precision of the
Lipschitz constant estimate.

Under these additional constraints, the following finite sample guarantee can be obtained for the LCLS
algorithm.

Theorem 3.10 (Finite Sample Guarantee) Let X := [0, M ]d and (HI)I∈N>1 denote the regular partition
of sub-hypercubes of X with side-length M

I . If Assumptions (2)-(4) (for a given η ∈ (0, 1]) hold and if
∀ϵ > 0, δ ∈ (0, 1

2 ], the LCLS algorithm is set with a hypercube partition indexed by I ≥
(
C1(d) MK√

ηϵ

)
and with

∀H ∈ HI NH
I ≥

(
C2(d, q) σ2

ηδ
Id+2

M2ϵ2

)
for C1(d), C2(d, q) ∈ R+, then ∀ Dn

γ ∈ D(0, σ2):

inf
f∈C2(X ,K)

P(|Lp(f) − L̂I(f)| ≤ ϵ) ≥ 1 − δ. (1)

11
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where Lp(f) = L∗
p(f) for p = 1, 2 and Lp ≥ L∗

p for p > 2. Here C1(d) = 8d2
√

ddmax{ 1
q − 1

2 ,0} and C2(d, q) =
25dmax{ 2

q ,1} however these constants have not been optimized.

The theoretical guarantees of Theorem 3.10 can be extended to include any X ⊂ Rd that satisfies Assumption
1. Indeed, trivially there exists a hypercube [a, b]d ⊂ Rd with a, b ∈ R such that X ⊂ [a, b]d which can be
partitioned according to the iterative regular hypercube partitioning approach. The partition sequence
inputted into the LCLS algorithm then consists of the regular hypercube subsets partitions of [a, b]d that
intersect with X . In this case, under Assumptions (1)-(4), a modified version of Theorem 3.10 holds:
the condition on I remains the same, but the lower bound condition on NH

I can be weakened to become
NH

I ≥
(
C2(d, q) σ2

ηδ
Id+2−Γ
(b−a)2ϵ2

)
, ∀H ∈ HI , I ∈ N, where Γ = |{H ∈ HI

∣∣H ∩ X = ∅}|.

Since Theorem 3.10 holds under Assumption 5, i.e. for any Dn
γ ∈ D(0, σ2), n ∈ N and any f ∈ C2([0, M ]d, K)

it also holds for supDn
γ ∈D(0,σ2) supf∈C2([0,M ]d,K). Therefore, using Theorem 3.7, we can obtain the following

general sample complexity rate for the LCLS algorithm.

Remark 3.11 (Sample Complexity – Noisy) For p = 1, 2, assuming that the lower bounds: I ≥
(
C1(d) MK√

ηϵ

)
and ∀H ∈ HI NH

I ≥
(
C2(d, q) σ2

ηδ
Id+2

M2ϵ2

)
are satisfied with an equality, the total number n1 of points required

to ensure P(|Lp − L̂I | ≤ ϵ) ≥ 1 − δ is given by

n1 = |HI |NI = C2(d, q)σ2

ηδ

(
C1(d)
√

η

MK

ϵ

)2d+2 1
M2ϵ2 = O

((MK

ϵ

)2d+2 1
M2ϵ2

)
.

This sample complexity differs significantly from the lower bound on the sample complexity derived in Theorem
2.5. This is expected given the more general noise assumptions made in Theorem 3.10.

By slightly modifying the necessary conditions used in Theorem 3.10, we can also compare the sample
complexity of the LCLS algorithm implied by Theorem 3.10 in the noiseless sampling setting to the lower
bound on the sample complexity of the noiseless Lipschitz learning problem stated in Theorem 2.2. In order
to do so, we define

N(I) := max
H∈HI

min{|DH
I | : DH

I contains a disjointed δH
I -cover of H}

which is constant ∀I ∈ N when (HI)I∈N is defined as a sequence of regular hypercube partitions on [0, M ]d. In
this case, we remove the dependence on I and write N := N(I). We note that the following two inequalities
hold: (1) η ≤ 1

N (tight) and (2) N <
√

d
d (loose).

Remark 3.12 (Sample Complexity – Noiseless) In the case of noiseless sampling, the lower bound on NH
I

stated in Theorem 3.10 can be replaced by condition 3. of Corollary 3.9 and the definition of N given above,
i.e. ∀I ∈ N, H ∈ HI , NH

I = max(d + 1, N). Proceeding as in Remark 3.11, we have in this case:

n2 = |HI |NI = max(d + 1, N)
(
C1(d)MK

√
ηϵ

)d = O

((MK

ϵ

)d
)

.

This convergence rate corresponds exactly to the lower bound on the noiseless sample complexity rate stated
in the Theorem 2.2 and therefore implies that the sample complexity rate

(
MK

ϵ

)d is optimal (up to constant
factors dependent on d and p) in the sense that it characterises the minimum number of samples that are
needed to obtain an ϵ-precise Lipschitz constant estimate for any f ∈ C2(X , K).

As in Section 2, we can reformulate the sample complexity rates of the LCLS algorithm given in Remarks
3.11 and 3.12 as convergence rates and therefore as upper bounds on the convergence rate of the general
Lipschitz learning problem. This is done in the following corollary.
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Corollary 3.13 (Convergence Rate Comparison)

1. (Noiseless) Assume the same setting as Remark 3.12. Then,

inf
L̂∈Ln,p(X )

sup
f∈C2(X ,K)

|L̂(f) − L∗
p(f)| ≤ C(d, p)MK

d
√

n

where C(d, p) can be determined from Remark 3.12.
2. (Noisy) Assume the same setting as Remark 3.11. Then, ∀ distribution Dn

γ ∈ D(0, σ2):

sup
L̂∈Ln,p(X )

inf
f∈C2(X ,K)

PDn
γ

(|L̂(f) − L∗
p(f)| < C(σ2, δ, d)M

d
d+2 K

d+1
d+2

2d+4
√

n
) ≥ 1 − δ

where C(σ2, δ, d) can be determined from Remark 3.11.

An interesting consequence of Corollary 3.13 is that it provides a way of generating a sequence of feasible10

Lipschitz constant estimates that converge to the best Lipschitz constant if a potentially loose upper bound
on the second degree partial derivatives is known. More precisely, one can consider the Lipschitz constant
estimates:

• L̂up(f) := L̂(f) + C(d, p) MK
d
√

n
in the noiseless sampling setting

• L̂up(f) := L̂(f) + C(σ2, δ, d) M
d

d+2 K
d+1
d+2

2d+4√n
in the general noisy sampling setting

where L̂(f) denotes the Lipschitz constant estimate generated by the LCLS algorithm. Such an approach is
useful in practice as Lipschitz constant-based computational frameworks often rely on the assumption that
the estimated Lipschitz constant used is feasible. This is briefly discussed further in Section 4 where a direct
application of the LCLS algorithm in the context of nonparametric regression for system identification is
developed.

Remark 3.14 (Knowledge of K and Assumption 2) The theoretical results of the LCLS algorithm of this
section have been stated under Assumption 2 and the knowledge of a tight upper bound on the second-order
partial derivatives: K. This tightness is in fact not necessary and all result pertaining to LCLS hold for
any upper bound K ′ ≥ K. In this case, the LCLS algorithm simply ensures convergence for a larger class of
functions, C2(X , K) ⊂ C2(X , K ′), then required at a slightly slower rate of convergence. Furthermore, while
knowing an upper bound on K is necessary in order for the theoretical properties of the LCLS algorithm to
hold, the algorithm can still be implemented heuristically in practice without it.

We conclude this section by stating the asymptotic sample complexity rates of the LCLS algorithm under
Gaussian noise assumptions and providing a finite sample guarantee.

Theorem 3.15 (Asymptotic Sample Complexity – Gaussian Noise) Let M ∈ R+, d ∈ N, p ∈ {1, 2} and
(HI)I∈N denote the regular partition of sub-hypercubes of X with side-length M

I . Assume that Assumption
(2) holds, that one has access to a noisy oracle Ω̃ : X → R as specified in Assumption (3) and that the
sample inputs are uniformly and independently sampled on X . Setting the LCLS algorithm with a hypercube
partition indexed by I =

⌈
C1(d) MK

ϵ

⌉
for ϵ > 0 (see below for definition of C1(d)), there exists C > 0 such

that if

n ≥ C
σ2MdKd+2 log( MK

ϵ )
ϵd+4

Then,
lim

ϵ→0+
sup

f∈C2(X ,K)
P(Loss(xL̂I (f), f) > ϵ) = 0,

where xL̂I (f) denotes the the center of the hypercube associated to argmaxH∈HI
∥β̂H∥q computed in Algorithm

2. Here, C1(d) = 16d2√
dd

max{ 1
q

− 1
2 ,0}

√
η with η = vol(B1(0))

23d+13d
11.

10I.e. which upper bound the best Lipschitz constant and satisfy the Lipschitz continuity condition.
11vol(B1(0)) denotes the d-dimensional unit ball.
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The asymptotic sample complexity rates derived in Theorem 3.15 match exactly the rates derived in Theorem
2.5. This implies that Θ( σ2MdKd+2 log( MK

ϵ )
ϵd+4 ) is the optimal asymptotic sample complexity rate of the Lipschitz

learning (search) problem and that the LCLS algorithm is sample optimal in the noisy setting when the noise
is assumed to follow a Gaussian distribution. As done in Corollary 2.6, we can modify Theorem 3.15 in order

to show that the optimal asymptotic convergence rate is Θ(MK
(

log(MKn)
nM4K2σ2

) 1
d+4 ). We note that Theorem

3.15 holds more generally for any sub-Gaussian noise assumption on the sampling noise. In particular, the
same convergence rate holds in the settings where this noise is assumed to be bounded which are often
considered in Lipschitz-constant based applications (Canale et al. (2014), Sergeyev et al. (2020)).

Replacing the random uniform sampling assumption of Theorem 3.15 with Assumption 4 as done in Theorem
3.10, a small modification of the proof of Theorem 3.15 yields the following result on the finite-sample
guarantees of the LCLS algorithm in the noisy sampling setting with sub-Gaussian noise.

Corollary 3.16 (Finite Sample Guarantee – Gaussian Noise) Consider the setting of Theorem 3.15. As-
sume that Assumptions (2), (4) (for a given η ∈ (0, 1]) hold, that one has access to a noisy oracle Ω̃ : X → R
as specified in Assumption (3). ∀ϵ ∈ (0, C1(d)MK

3 ), δ ∈ (0, 1
2 ), setting I =

⌈
C1(d) MK

ϵ

⌉
and ∀H ∈ HI :

NH
I ≥ C∗(η, d) σ2K2

ϵ4 log( 2
2
d I

log( 1
1−δ )

1
d

) implies

sup
f∈C2(X ,K)

P(|L̂I(f) − L∗
p(f)| > ϵ) ≤ δ.

Here, C1 is defined as in Theorem 3.15 and C̃∗(η, d) := 210n2
qC1(d)2d2

η however these constants have not been
optimized.

As done for the general noise setting in Corollary 3.13, convergence rates for the LCLS in the Gaussian
noise setting can be obtained by reformulating the finite sample guarantees stated in Corollary 3.16. Then,
following the approach described above, a sequence of feasible Lipschitz constant estimates converging to
the best Lipschitz constant can be constructed;

• L̂Gauss
up := L̂(f) + C M

d
d+4 K

d+2
d+4

d+4
√

nσ2log(MKn)−1
in the Gaussian noise setting

where L̂(f) denotes the LCLS algorithm with the hyperparameters set in Corollary 3.16 and C ∈ R+ is a
constant that can be computed from C1(d), C̃∗(d, η). We observe that this sequence of feasible Lipschitz
constant estimates converges significantly faster than the one constructed above for the general noisy setting.

3.4 Empirical Performance:

The focus so far in this section has been on developing the theoretical properties of the LCLS algorithm.
While that discussion is useful in itself as it provides performance guarantees for LCLS as well as upper
bounds on the sample complexity of the general Lipschitz learning problem, we are also interested in how
the proposed algorithm performs empirically. In particular, we would like to compare the convergence speed
of the LCLS algorithm to other theoretically well-behaved methods and to verify whether the theoretical
computational advantage of LCLS (see Proposition 3.4) is observed in practice. In this subsection, we inves-
tigate these questions by illustrating the convergence rate and computation time of the proposed Lipschitz
constant estimation method and comparing it against existing Strongin-based algorithms on a set of test
functions with interesting properties in noiseless, bounded noise and unbounded noise sampling settings.

3.4.1 Experimental Setup

Table 1 provides an overview of the four test functions that are used in the experiments discussed in this
section. The choice of these functions represents different testing points that are of interest: Function (a)
reaches the maximum of the normed gradient in a single unique point of the input space, Function (b)
is a classical optimisation testing function which we have also defined to have large second degree partial
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Function Error (Log Scale) Estimation Computation time

(a)

(b)

(c)

(d)

Figure 2: Comparison between the performance of the LCLS algorithm (in orange) and the classical Strongin algorithm
(in green) in the noiseless setting. Each row corresponds to a different test function ((a) - (d)) and each column
represents a different point of comparison between the two algorithms. From left to right: Column 1: Illustration
of the target function where applicable. Column 2: Error of Lipschitz constant estimate - the bound on the sample
complexity rate derived in Corollary 2.3 is plotted (in black). Column 3: Behaviour of the sequence of Lipschitz
constant estimates. Column 4: Computation time required for each algorithm.

Function Expression Lipschitz Const. Key Property
(a) See Lemma A.1 3.054 Lipschitz constant reached in a unique point.
(b) e−(x2

1+x2
2)cos(x1)cos(x2) 8.5776 Large second degree partial derivatives (K).

(c) cos(5x1) 5 Simple test function.
(d) See Lemma A.1 30.5399 Higher dimensional input (R3).

Table 1: Test Functions. Note: Functions (a), (d) are based on the function set utilised in proofs of the sample
complexity lower bounds of Section 2.

derivatives, Function (c) is a trigonometric function which provides an illustration of convergence for simple
target functions and finally, Function (d) is a higher dimensional version of Function (a) with 3 dimensional
inputs. We do not explore higher dimensional versions (>3) of Function (a) as the convergence speed with
respect to computation time of the Strongin-based benchmark algorithms is already very slow for Function
(d) - see Figure 4 and ensuing discussion.

15



Published in Transactions on Machine Learning Research (09/2023)

Function Error (Log Scale) Estimation Computation time

(a)

(b)

(c)

(d)

Figure 3: Comparison between the performance of the LCLS algorithm (in orange) and the modified-Strongin algo-
rithm with a correctly (in green) and incorrectly (in blue) specified hyper-parameter in the noisy setting. ach row
corresponds to a different test function ((a) - (d)) and each column represents a different point of comparison between
the two algorithms. From left to right: Column 1: Illustration of the target function where applicable. Column 2:
Error of Lipschitz constant estimate - the bound on the sample complexity rate derived in Corollary 2.6 is plotted (in
black). Column 3: Behaviour of the sequence of Lipschitz constant estimates. Column 4: Computation time required
for each algorithm.

As benchmarks we utilise the classical Strongin Lipschitz learning algorithm (Strongin (1973)) in the noiseless
setting and the popular modified Strongin-based Lipschitz constant estimator in the bounded noise setting
(see in particular Novara et al. (2013), Calliess et al. (2020) and Khajenejad et al. (2021) for applications in
control problems). We note that this modified Strongin estimator is strongly dependent on a precise estimate
of the smallest upper bound of the noise b̄ > 0 in order to properly specify ē ∈ R+ hyper-parameter. Indeed,
if ē is smaller than b̄, then the Lipschitz constant estimates generated by the modified Strongin estimator
converge to +∞ as the number of observations increases. In contrast, if ē is bigger then b̄ then the generated
Lipschitz constant estimates will converge to an underestimate of L∗

p(f) and never be feasible.

Benchmarking algorithms:

• (Noiseless Setting) Strongin Estimator:

L̂ := max
i ̸=j

|f̃i − f̃j |
∥xi − xj∥

.
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(a) (b) (c) (d)

Figure 4: Illustration of convergence speed relative to computation time in the bounded noise setting using the set
of test functions given in Table 1. We compare the LCLS algorithm (in orange) and the modified-Strongin algorithm
with a correctly (in green) and incorrectly (in blue) specified hyper-parameter. We observe that the LCLS algorithm
performs better on all test functions.

• (Noisy Setting) Modified Strongin Estimator:

L̂ := max
i ̸=j

|f̃i − f̃j | − 2ē

∥xi − xj∥

where ē is a hyper-parameter that estimates the tightest upper bound b̄ on the noise. We consider
modified Strongin Lipschitz estimators with a correctly specified hyper-parameter (ē = b̄) and a
hyper-parameter that is slightly larger than the true upper bound (ē = 1.2b̄) as benchmarks.

3.4.2 Discussion

In Figure 2, we illustrate the performance of the LCLS algorithm against the classical Strongin algorithm on
the proposed set of test functions. We plot the theoretical lower bounds on the sample complexity rate found
in Section 2 in order to provide an intuition for the theoretical bounds. As one would expect, due to the
fact that the Strongin algorithm was specifically designed for the noiseless setting, our proposed approach
converges more slowly in terms of number of samples on all four test functions. However the difference in
convergence speed is not significant and is mitigated by the substantial divergence in computation time. We
also note that the plotted sample complexity rate implied by the lower bound of Section 2 does not appear
to be tight which is unsurprising as it represents a min-max type bound.

Remark 3.17 (Link between the proof of Theorem 3.7 and convergence of LCLS) From the proof of Theorem
3.7, we have that the convergence of the LCLS algorithm depends on two factors:

1. (I ∈ N) the diameter of the subsets of the regular partition (upper bounded theoretically using a
Taylor expansion).

2. (NI , I ∈ N) the number of samples in each subset (upper bounded theoretically using a multivariate
Chebyshev inequality).

The relation between these two factors is essential for ensuring quick convergence of the LCLS algorithm.
In particular, for cases where the second derivatives of the target function f are large, NI can be decreased
and I increased so that the LCLS algrithm considers a finer partition of X (without having to increase the
number of sample points). This type of modification improves the linear approximation of the gradient of f
at the cost of increasing the noise in the local least squares estimates (see Function (b) - Easom function in
Figure 3).

In Figure 3, we observe the performance of the LCLS algorithm in the bounded noise setting. Here, the
convergence speed relative to sample size of the LCLS method differs more significantly from the convergence
speed of the correctly specified modified Strongin benchmark algorithm. This is again unsurprising as the
correctly specified modified Strongin algorithm makes use of additional information on the noise distribution
and the choice of a uniform noise distribution in the experiment is beneficial towards its convergence speed12.

12If a truncated Gaussian distribution had been used instead, the convergence speed of the modified Strongin estimator
could have been arbitrarily slowed by decreasing the variance of the distribution.
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(a) (b) (c) (d)

Figure 5: Illustration of the LCLS algorithm in bounded (in light orange) and unbounded noise settings (in dark
orange) using the set of test functions given in Table 1. We observe no significant impact of the unboundedness of
the noise distribution on the Lipschitz constant estimates produced by LCLS.

We note that the modified Strongin algorithm with a slightly incorrectly specified tightest upper bound fails
to show any sign of convergence and that the difference in computation time is more significant than in
the noiseless setting. The relation between computational complexity and convergence rate of the LCLS
and modified Strongin Lipschitz constant estimators is illustrated more precisely in Figure 4 by plotting the
convergence rate relative to computation time. We observe that the LCLS estimator performs better on all
functions in the test set despite the fact that the modified Strongin estimator utilises additional information
on the noise distribution. In particular, for Function (d) which takes inputs in R3, the LCLS algorithm
needs 8.5 seconds to generate estimates with an estimation error < 0.5, while the Strongin approach needs
approximately 4000 seconds. This suggests that for application settings with high sampling capacity and
time constraints, the LCLS method should be used even when the modified Strongin algorithm can be
properly specified.

In Figures 2, 3 and 4, the performance of the LCLS method seems to be more dependent on the value of the
maximum of the second degree partial derivatives than the Strongin-based methods. This can be observed
by noting the difference in convergence performance for Function (b) relative to the other test functions13

and is due to the fact that the LCLS algorithm depends on the maximum to define a sufficiently refined
partition of the input space in order to "localise" the computations and generate local Lipschitz constant
estimates, see Remark 3.8 and Theorem 3.10 for a precise characterisation of the relationship. In some sense,
the stronger dependency on the maximum of the second degree partial derivatives of the target function can
be interpreted as a trade-off for the improvement in computation time obtained by the LCLS algorithm.

The last illustration, provided in Figure 5, shows the convergence and computation time of the LCLS
algorithm in the unbounded noise setting. We do not provide a benchmark as no alternative theoretically
backed approaches exist in this setting: the approaches of Beliakov (2005) and Calliess (2017) could be used
but do not have any asymptotic convergence guarantees. Instead, we compare the convergence rate to the
one obtained by LCLS in the bounded noise setting and observe the fact that no significant performance loss
has occurred when the noise is unbounded on any of the test functions.

We conclude this section by remarking that throughout the experiments, our proposed method has been
relatively unaffected by the changes in sample setting assumptions and can be used with minimal fine-tuning.
Indeed, only the relation between the number of samples in each subset and the diameter of each of these
subsets needs to be modified (see Remark 3.17). This relation can be set in a theoretically principled manner
by considering the results given in Remarks 3.11, 3.12 and Corollary 3.16 or treated as a hyper-parameter
and set more heuristically. The flexibility of the LCLS algorithm is in contrast to existing asymptotically

13See also Figure 7 and ensuing discussion.
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consistent Lipschitz learning algorithms such as the benchmark approaches used in this section which either
only consider noiseless sampling settings or require prior knowledge of the noise distribution in order to be
applied.

4 Connections to Machine Learning and Related Fields

The theoretical results derived in Section 2 are fundamental in nature. They can be used as a benchmark
when developing novel Lipschitz constant estimators or more generally to provide a better theoretical un-
derstanding of algorithms that depend explicitly on Lipschitz constant estimates of an underlying target
function. Utilising Corollaries 2.3 and 2.6 the worst-case estimation errors of Lipschitz constant estimation
can be better understood and their negative impact on overall performance mitigated. This is particularly
important as Lipschitz constant dependent algorithms often rely on heuristic or experimental arguments
which might not always hold in practice to justify the Lipschitz constant estimation step.

In some settings, the LCLS estimator developed in Section 3 can be directly applied to improve existing
computational frameworks in which case the finite sample guarantees derived in Theorem 3.10 and Corollary
3.13 can be used. In particular, when a (loose) bound on the second order partial derivatives of the target
function is known, a sequence of feasible Lipschitz constants converging to the best Lispchitz constant at a
known convergence speed is obtainable. Unfortunately, while this approach is possible in all the sampling
set-ups considered in this paper, the convergence rates obtained for the noisy sampling set-up (see Corollaries
3.13 and 3.16) can be too slow to be useful in some practical applications. In these cases, the LCLS estimator
can be applied directly to estimate the Lipschitz constant without feasibility guarantees.

In the section below, we briefly discuss how the results and algorithms derived in this paper can be used in
the fields of system identification and global optimisation.

4.1 Global Optimisation:

A major subfield of global optimisation research focuses on sequential search methods that explicitly utilise
the Lipschitz constant of the target function to remove large sets in the search space and enhance the
efficiency of exploration (Shubert (1972), Mladineo (1986)). As a good estimate of the Lipschitz constant
is not always available in practice, work arounds must be be found (Jones et al. (1993)). In particular, a
number of these optimisation frameworks make use of a Lipschitz constant estimator (Kvasov and Sergeyev
(2012) and references therein, D’Agostino (2022)). The computation of these estimates is generally done
heuristically without convergence analysis or error-certificate of the Lipschitz constant estimates. Therefore,
the minimax bounds derived in Theorem 2.2 of Section 2 provide a context for the expected performance
of these methods. More precisely, given recent work by Malherbe and Vayatis (2017) and Bachoc et al.
(2021) which derives optimal sample complexity rates for Lipschitz Optimisation when a Lipschitz constant
is known, it becomes possible to derive a lower bound on the sample complexity of adaptive Lipschitz
Optimisation algorithms that separate the optimisation procedure and the Lipschitz constant estimation.
We derive such a lower bound below as an example of how this can be done.

Following the set-up of certified online learning algorithms described in Bachoc et al. (2021), we assume that
we have access to a black-box target function f that can be queried to obtain noiseless observations. The goal
of certified global optimisation is to design an algorithm that systematically queries f in order to generate
an output sequence ((xn, f(x∗

n), ζn))n∈N where xn is the n-th query point, f(x∗
n) is the generated estimate of

maxx∈X f(x) after n queries and ζn ≥ 0 is an error certificate that guarantees: maxx∈X f(x) − f(x∗
n) ≤ ζn.

Given an accuracy ϵ ∈ R+, we can then define the sample complexity 14 N(A, f, ϵ) of a certified global
optimisation algorithm A as the smallest number of queries needed in order to obtain an error certificate
smaller than ϵ for all f belonging to a function class C, or in other words:

N(A, f, ϵ) := min{n ∈ N ∪ {+∞}|ζn < ϵ}.

14Note: this differs slightly from the definition used in Bachoc et al. (2021).
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LCLS-KI LACKI LACKI-Wrong NN-KI

Figure 6: Illustration of several nonparametric methods applied to noisy data. The target function is f : x 7→
cos(4πx) + 2x and the noise is distributed according to a truncated Gaussian distribution (std: 1, upper/lower
bound: −2/2). The predictions of the trained methods are plotted in orange and the training data in light blue
(800 observations). From left to write: LCLS-KI: Kinky inference using the Lipschitz constant estimate generated
by the LCLS algorithm. LACKI: Adaptive Kinky Inference proposed by Calliess et al. (2020) with correctly set error
bounds. LACKI-wrong: LACKI method with error bounds set at the wrong observational error bound (i.e. at 1.3×
the true error bound). NN-KI: Kinky inference method using the Lipschitz constant of a fitted Neural Network model
with sigmoid activation as proposed by Milanese and Novara (2004).

Utilising this theoretical set-up, we can then combine the theoretical results of Bachoc et al. (2021) with
Corollary 2.3 in order to obtain the following statement on the worst case lower sample complexity bound
of the adaptive Lipschitz optimisation problem.

Proposition 4.1 (Sample Complexity - Adaptive Lipschitz Optimisation) Assume that X is the hypercube
and consider the set A of adaptive Lipschitz optimisation algorithms which combine classical Lipschitz opti-
misation methods with a separable15 feasible Lipschitz constant estimator. There exists constants C1, C2 > 0
such that ∀L∗ ≥ 0, A ∈ A and ϵ ∈ (0, ϵ0) where ϵ0 ∈ (0, 2d−1ML∗) :

sup
f∈C2(X ,K)∩Fp(L∗)

N(A, f, ϵ)

≥ C1αd(M, L∗, K)((1 + C2 max(min( 3
C2

,
1⌈

(1 + log2( ϵ0
ϵ )
⌉
) 1

d + β(L∗, K, ϵ)
), γd(M, L∗, ϵ)

β(L∗, K, ϵ) ) ) 1
2 − 1)d

(2)

where m := maxy∈X f(y), VX = Md, K is as defined in Assumption 2 and

• αd(M, L∗, K) := ( ML∗

K )d represents the problem’s general dependency on the input space size, true
best Lipschitz constant of the target function and desired precision of the optimisation algorithm and
second degree partial derivatives.

• β(L∗, K, ϵ) := (1+
⌈
log2( ϵ0

ϵ )
⌉
)1/d Kϵ

L∗2 represents the dependency on the true best Lipschitz constant of
the target function, the second degree partial derivatives and and desired precision of the optimisation
algorithm.

• γd(M, L∗, ϵ) := d

√
L∗ϵ(d−1)

M represents the dependency on the input space size, true best Lipschitz
constant of the target function and desired precision of the optimisation algorithm and second degree
partial derivatives.

To our knowledge, (2) is the first lower bound on the sample complexity of adaptive Lipschitz optimisation
frameworks (see Malherbe and Vayatis (2017) for a possible sample complexity upper bound provided by
the adaLIPO algorithm). It depends on the input space, desired precision and upper bounds on the first two
orders of differentiation of f . The structure of the proof of Proposition 4.1 as well as the two terms contained
in the max expression of the lower bound can be interpreted as a comparison between the sample complexity
arising from the optimisation procedure and the one arising from the Lipschitz constant estimation. In
particular, γd(L∗,M,ϵ)

β(L∗,K,ϵ) is computed by considering the subset of linear functions of C2(X , K) ∩ Fp(L∗) which
is trivial to optimise in the case where the Lipschitz constant is known but becomes complicated to certify
if the Lipschitz constant estimation is difficult.

15In other words, only knowledge of the Lipschitz constant estimate is used in the optimisation part of the algorithm.
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Figure 7: Mean absolute error of the nonparametric methods discussed in Figure 6 and the neural network utilised
to estimate the Lipschitz constant in the NN-KI method. The target functions are given by fλ : x 7→ cos(2λπx) + λx,
for λ = 1, 2, 4, 10 and associated maximum second derivative: K := maxx∈X f ′′

λ (x) = 40, 158, 632, 2526. The values
shown in the plot are computed on a test set containing 500 independently sampled observations.

Unfortunately, the proposed bound is loose as the sampling scheme for the Lipschitz optimisation algorithm
can differ significantly from the sampling scheme of Lipschitz constant estimator and is of moderate interest
as it only considers a subset of adaptive Lipschitz optimisation algorithms. It does however provide an
example of how the lower bounds derived in Section 2 of this paper can be utilised to theoretically analyse
existing computational frameworks that rely on Lipschitz learning and future work will consider refining the
lower bound given in (2).

Finally, we note that the lower bounds derived in Section 2 can also be considered in the application of recently
proposed batch Bayesian optimisation frameworks (González et al. (2016), Alvi et al. (2019)). Indeed, while
these methods provide interesting experimental results, the convergence bound stated in Corollary 2.3 shows
that in the worst case the Lipschitz constant estimate generated from the fitted Gaussian Process can differ
significantly from the true Lipschitz constant - severely impacting the performance of the algorithm in high
dimensional settings. At best, the Lipschitz constant estimate used in these papers: maxx∈X ∥µ∇(x)∥ must
be replaced by maxx∈X ∥µ∇(x)∥ + C(d, p) MK

d
√

n
in order to ensure that the estimated value is a feasible

Lipschitz constant. Here µ∇ denotes the mean function of the gradient function estimate associated to the
fitted GP which can be computed efficiently using the covariance function of the GP.

4.2 Nonparametric Regression for System Identification:

A popular system identification method in control settings known as Nonlinear Set Membership (Milanese
and Novara (2004)) and also referred to as Lipschitz interpolation (Beliakov (2006)) or Kinky inference
(Calliess et al. (2020)) by subsequent authors, explicitly utilises the Lipschitz constant of an underlying
Lipschitz continuous target function to define the smallest set of all possible systems that is consistent
with the observed data and to provide optimal16 point estimates. In the relevant literature, a number of
approaches have been used to estimate the Lipschitz constant however these either rely on heuristic estimation
(Milanese and Novara (2004), Calliess (2017)) or on knowledge of often unavailable hyper-parameters such as
tight bounds on the noise (Novara et al. (2013),Calliess et al. (2020)) which underestimate the true Lipschitz
constant. Utilising the LCLS algorithm developed in Section 3 would therefore be an interesting alternative
approach to constructing an adaptive Nonlinear Set Membership framework. As noted at the beginning of
the section, we directly utilise the Lipschitz estimate produced by the LCLS estimator as the worst-case
error guarantees stated in Corollaries 3.13 and 3.16 are too conservative to be useful in the considered use
case.

In Figure 6, we illustrate the performance of a hybrid LCLS - Kinky Inference method in comparison to
other nonparametric methods that depend explicitly on the Lipschitz constant of the target function. The
variation of the plotted nonparametric predictors is a direct function of the Lipschitz constant estimated from
the data – when the Lipschitz constant estimate underestimates the true Lipschitz constant flatter prediction
curves that do not fully capture the nonlinearity of the target function are produced while Lipschitz constant
estimates that overestimate the true Lipschitz constant produce overly input sensitive predictions. In fact,

16See Milanese and Novara (2004).
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the kinky inference framework converges to a nearest neighbour estimator as the Lispchitz constant goes to
infinity (Maddalena and Jones (2020)).

In Figure 7, we observe that under the truncated Gaussian noise assumptions, the proposed LCLS-KI
approach seems to perform best in comparison to the other nonparametric methods as long as the bound
on the second derivative K (see Assumption 2) is not too large relative to the number of observations in the
training data. As noted in Section 3.4, this is due to the fact that the LCLS algorithm is more dependent on
K than other classes of Lipschitz learning algorithms and can significantly underestimate the true Lipschitz
constant when K is too large. Therefore, when the second order derivatives are moderate and upper bounds
on the noise on the noise are not precisely known, the LCLS-KI algorithm provides an interesting alternative
to existing nonlinear set membership/Lipschitz interpolation methods. Applications of LCLS-KI to the
common-use case of such methods, e.g. in learning-based model predictive control (Canale et al. (2014),
Limon et al. (2017)), could be pursued in future work.

5 Conclusions

In this work, we have established precise lower and upper bounds on the sample complexity of the estimation
of Lipschitz constants under minimal parametric constraints on the target function. Instead, our bounds rely
on the assumption of C2 regularity of the target function which, given a compact input space, implies the
existence of an upper bound on the second degree partial derivatives (this type of assumption is unavoidable
as if the second degree partial derivatives are not assumed bounded, then the sample complexity can not
be guaranteed to be finite and any theoretical characterisation of the general Lipschitz learning problem is
trivial). The obtained bounds on the sample complexity are shown to be optimal in the noiseless sampling
setting and in the noisy sampling setting for a slightly modified but generally equivalent version of the
problem under Gaussian noise. These results can be used to provide a theoretical baseline for the Lipschitz
learning problem and to help drive the design of future black-box Lipschitz constant estimators.

In order to derive the upper bound on the sample complexity, we have proposed a new algorithm for Lipschitz
learning based on local least squares regression that is sample-optimal in the noiseless setting and in the noisy
setting with Gaussian noise. We have thoroughly investigated the theoretical properties of this algorithm
showing asymptotic consistency, guarantees on finite sample behaviour and computational complexity in
both noiseless and general noisy sampling settings.

A series of brief empirical experiments illustrate how these theoretical results could translate into practice
and how the LCLS algorithm can compare to existing classical Lipschitz constant estimators. The proposed
method provides a suitable solution for Lipschitz constant estimation when a theoretically principled and
computationally flexible approach is desired.

Forthcoming work on LCLS will focus on extending the algorithm to recursively compute local Lipschitz
constants on observed data and to provide theoretical guarantees on this extension. In addition, future
work on theoretical Lipschitz learning could look to improve the sample complexity bound in the noisy
setting derived in Section 2 under stronger assumptions on the target function and by restricting the class
of Lipschitz learning algorithms.
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A Proofs: Lower bounds on Sample Complexity

Lemma A.1 (Properties of F) For C1, C2 ∈ R, define the function g0 : Rd → R,

g0(x) =

C1e
− 1

1−C2
∑d

j=1
x2

j if C2
∑d

j=1 x2
j < 1

0 otherwise.
.

The following properties of g0 can be shown;

1. maxx∈Rd ∥∇g0(x)∥2 ≈ 0.8C1
√

C2

2. maxx∈Rd,i,j∈{1,...,d}
∣∣ ∂2g0

∂xixj
(x)
∣∣ ≈ 7.75C1C2.

Proof Let g0 be as described above. It follows from construction that g0 is a radial function and that
there exists u : [0, +∞) → R, such that ∀x ∈ Rd, u(

∑d
i=1 x2

i ) = g0(x) (and in other terms, ∀r ∈ [0, +∞),
u(r) := g0(

√
r, 0, ..., 0) ). We can compute the maximum magnitude (in ∥.∥2) of the gradient of g0 as follows;

max
x∈Rd

∥∇g0(x)∥2 = max
x∈Rd

∥

(
2x1u′

(
d∑

i=1
x2

i

)
, 2x2u′

(
d∑

i=1
x2

i

)
, ...

)
∥2 = max

x∈Rd
{

∣∣∣∣∣2u′

(
d∑

i=1
x2

i

)∣∣∣∣∣ ∥x∥2}

= max
r∈R+

|2u′(r2)r| = max
0≤r≤ 1√

C2

{
2C1C2r

e
− 1

1−C2r2

(1 − C2r2)2

}
= C1

√
C2 max

0≤r≤1

{
2r

e
− 1

1−r2

(1 − r2)2

}
.

Computing max0≤r≤1{2r e
− 1

1−r2

(1−r2)2 } gives max0≤r≤1{2r e
− 1

1−r2

(1−r2)2 } = 6 4√33e

− 1
1− 1√

3

(
√

3−3)2 . Since g0 is continu-
ously differentiable and the support of ∇g0 is compact, we have that there exists x∗ ∈ Rd such that
∥∇g0(x∗)∥2 = C1

√
C2

6 4√33

(
√

3−3)2 e
−

√
3√

3−1 ≈ 0.8C1
√

C2.

Similarly, we have that for i ∈ {1, ..., d}, x ∈ Rd;

∂2g0

∂x2
i

(x) = 2u′

(
d∑

i=1
x2

i

)
+ 4x2

i u′′

(
d∑

i=1
x2

i

)
.

Here it is clear that for x∗ ∈ argmaxx∈Rd | ∂2g0
∂x2

i
(x)| either (1) x∗

i = 0 or (2) x∗
j = 0, ∀i ̸= j. In the first case;

we can compute maxr∈R+ |2u′(r)| = 8C1C2
e2 ≈ 1.08C1C2. In the second case, setting x = rei, we consider the

computation of maxr∈R+ |2u′(r2) + 4r2u′′(r2)|. We have

2u′(r2) + 4r2u′′(r2) = 2C1C2e
− 1

1−r2 3C2
2 r4 − 1

(1 − C2r2)4

and can compute

max
r∈R+

|2u′(r2) + 4r2u′′(r2)| = C1C2 max
r∈R+

|2e
− 1

1−r2 3C2
2 r4 − 1

(1 − C2r2)4 | ≈ 7.75C1C2.

Therefore, we have maxx∈Rd | ∂2g0
∂x2

i
(x)| ≈ 7.75C1C2. Finally, we check ∀i ̸= j ∈ {1, ..., d}, maxx∈Rd | ∂2g0

∂xixj
(x)| =

maxx∈Rd |4xixju′′(
∑d

i=1 x2
i )|. Clearly, we can set x = rei +sej for r, s ∈ R+. Computing this quantity gives;

max
x∈Rd

∣∣∣∣∣4xixju′′(
d∑

i=1
x2

i )
∣∣∣∣∣ = C1C2

2 max
(r,s)∈R+×R+

∣∣∣∣∣ 4rse
− 1

1−C2(r2+s2)

(1 − C2(r2 + s2))3

∣∣∣∣∣ = C1C2
8
√

2e−2−
√

2

(
√

2 − 2)3
.

We obtain ∀i ̸= j ∈ {1, ..., d}, maxx∈Rd | ∂2g0
∂xixj

(x)| ≈ 1.85C1C2 ≤ maxx∈Rd | ∂2g0
∂x2

i
(x)|.

■
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Proof of Theorem 2.2 (Sample Complexity Bound – Noiseless).
Let p = 2. If we can show that there exists a set F ⊂ C2(X , K) ∩ Fp(L∗) of functions that can be constructed
such that

∀L̂ ∈ Ln,p(X ), sup
f∈F

|L̂(f) − L∗
p(f)| > ϵ

when n <
(
C(d, p) MK

ϵ )d, then Theorem 2.2 follows directly. This expression can be simplified to the
equivalent statement;

∀L̂ ∈ Ln,p(X ), ∃f ∈ F such that |L̂(f) − L∗
p(f)| > ϵ.

Consider the following functional family. For C1 ∈ R, C2 ∈ R+,

F0(C1, C2) :=
{

gz : Rd → R|z ∈ X , gz(x) =

C1e
− 1

1−C2
∑d

j=1
(xj −zj )2

if C2
∑d

j=1(xj − zj)2 < 1
0 otherwise.

}
.

For any L∗, we can consider the family FL∗(C1, C2) by adding a linear component, e.g. L∗x1 to
gz ∈ F0(C1, C2). In this case, we have by the construction of F0(C1, C2) that for all g0

z ∈ F0(C1, C2)
with support in X and gL∗

z ∈ FL∗(C1, C2), z ∈ X , maxx∈Rd ∥∇gL∗

z (x)∥2 = maxx∈Rd ∥∇g0
z(x)∥2 + L∗ and

maxx∈Rd,i,j∈{1,...,d}
∣∣∂2gL∗

z (x)
∂xixj

∣∣ = maxx∈Rd,i,j∈{1,...,d}
∣∣∂2g0

z(x)
∂xixj

∣∣. The second relation is obvious while the first
follows from the fact that all g0

z ∈ F(C1, C2) are radial functions which implies that all gradients of g0
z are

either pointing towards or away from z with equal magnitude along any hypersphere of fixed radius. There-
fore, by the properties g0

z shown in Lemma A.1, for any choice of linear component l : Rd → R, l(x) = ax + b
for a ∈ Rd, b ∈ R such that ∥a∥2 = L∗, there exists x∗ ∈ X such that maxx∈Rd ∥∇g0

z(x)∥2 = ∥∇g0
z(x∗)∥2

and ∇g0
z(x∗) and a have the same direction (if they have opposite direction it suffices to take x∗ that is

diametrically opposed on the same hypersphere). With this construction,

max
x∈Rd

∥∇gL∗

z (x)∥2 = ∥∇g0
z(x∗) + a∥2 = ∥∇g0

z(x)∥ + ∥a∥2 = max
x∈Rd

∥∇gL∗

z (x)∥ + L∗.

We can therefore restrict our proof to considering the case where L∗ = 0.

In the first part of the proof, we will show that for carefully selected values C∗
1 , C∗

2 ∈ R, X contains
∼ ( MK

ϵ )d disjointed ∥.∥2-hyperspheres B := {Bi}i∈{1,...,( MK
ϵ )d} of radius 1√

C∗
2

such that; ∀Bi, Bj ∈ B,
Bi ⊂ X , Bi ∩ Bj = ∅ if i ̸= j and a set F ⊂ F0 of associated functions with the following properties;
∀gz̄i

∈ F associated to Bi ∈ B,

1. supp(gz̄i
) = Bi,

2. maxx∈X ∥∇gz̄i
(x)∥2 ≥ 2ϵ (+L∗ if L∗ ̸= 0) ,

3. ∀k, j ∈ {1, ..., d}, maxx∈X | ∂2gz̄i

∂xkxj
(x)| ≤ K.

To do so we consider the gradient and second order partial derivatives of the functions in F . Let g ∈ F ,
applying Lemma A.1, we have :

1. maxx∈Rd ∥∇g(x)∥2 ≈ 0.8C1
√

C2 (+L∗ if L∗ ̸= 0)

2. maxx∈Rd,i,j∈{1,...,d}
∣∣∂2g(x)

∂xixj

∣∣ ≈ 7.75C1C2.

Using these values, we can define the values of C∗
1 and C∗

2 discussed earlier in the proof. Firstly, in order
to have g ∈ C2(Rd, K), we need maxx∈Rd,i,j∈{1,...,d} | ∂2g

∂xixj
(x)| ≤ K. This implies the relation C1 = K

7.75C2
.

Secondly, we set C2 such that maxx∈X ∥∇g(x)∥2 = 0.8C1
√

C2 = 2ϵ. Plugging in the relation for C1 given
above;

0.1K√
C2

= 2ϵ ⇔ ( K

20ϵ
)2 = C∗

2 and C∗
1 = 51ϵ2

K
.
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Setting l = 1√
C∗

2
= 20ϵ

K we have

supp(g)17 :=
{

x ∈ Rd|C∗
2

d∑
i=1

x2
i < 1

}
= Bl(c)

where Bl(z) denotes the d-dimensional ball of radius l defined with respect to ∥.∥2 and centered in c ∈ X .
The last step before defining F is to count how many sphere of radius l can fit18 in X = [0, M ]d. Here, we
use a lower bound that is obtained by considering the regular hypercube partition of X of side-length l̃,
defined by; N :=

⌊
M
l

⌋
and l̃ = M

N . Let B denote the set of balls of radius l that can be inscribed in a subset
belonging to the hypercube partition of X . Then, for all Bi, Bj ∈ B, Bi ⊂ X and Bi ∩ Bj = ∅. Furthermore,
we have |B| = ( M

l̃
)d ≈

(
MK
20ϵ

)d (+ constant).

The associated set F of functions can be constructed by utilising the set Z of ball centers zi for Bi ∈ B and
the values C∗

1 , C∗
2 computed above to define

F := {gz ∈ F0(C∗
1 , C∗

2 )|z ∈ Z} ∪ {f0}

where f0 ≡ 0. Suppose that n < 1
20d

(
MK

ϵ

)d and consider an arbitrary L̂ ∈ Ln,p(X ). By construction, there
exists a ball B in the set B with associated ball center z ∈ Z (as defined above) such that no observations
are sampled in B. Therefore, if the unknown target function f ∈ {g0

z , f0} then ∀(x, Ω(x)) ∈ GL̂
X , Ω(x) = 0.

This implies that we can freely set the target function to either g0
z or f0 with no change to the Lipschitz

constant estimate generated by L̂. It then suffices to select g0
z if L̂ generates a prediction that is smaller

than ϵ and f0 otherwise. As the choice of L̂ was arbitrary, this implies that:

∀L̂ ∈ Ln,p(X ), ∃f ∈ F such that |L̂(f) − L∗
p(f)| > ϵ

and therefore:
inf

L̂∈Ln,p(X )
sup

f∈C2(X ,K)∩Fp(L∗)
|L̂(f) − L∗

p(f)| > ϵ.

Utilising norm equivalences and Lemma B.2, we can apply similar arguments to the ones given above to
obtain that in the case: p = 1, the sample complexity of the Lipschitz learning problem can be lower bounded
by
(
C(d) MK

ϵ

)d, where C(d) = 1
20d

1
2

.

■

Proof of Theorem 2.5 (Sample Complexity Bound – Noisy).
Let ϵ > 0 be sufficiently small such that 40ϵ

K < M (which implies that the packing number N(X , 20ϵ
K ) > 0).

Consider the maximal packing Bϵ of X of radius 20ϵ
K with respect to ∥.∥2 and the associated class of functions

F0 defined in Lemma A.1 which we denote Fϵ in this proof in order to explicitly mark the dependence on
ϵ (we only consider F∗

L defined above for L∗ = 0). We recall that for all B ∈ Bϵ and associated fB ∈ Fϵ;
maxx∈B ∥∇fB(x)∥q = 2ϵ and maxx∈X \B ∥∇fB(x)∥q = 0. Therefore, by construction of Fϵ, we have for any
distinct pair of functions f1, f2 ∈ Fϵ,

∀x ∈ X , max {Loss(x, f1), Loss(x, f2)} = max {|∥∇f1(x)∥q − L∗|, |∥∇f2(x)∥q − L∗|} ≥ ϵ.

with L∗ := 2ϵ. This implies that

inf
L̂∈Ln,p(X )

sup
f∈C2(X ,K)

P(Loss(xL̂(f), f) > ϵ) ≥ inf
Â∈H

sup
f∈Fϵ

P(f Â ̸= f).

17Which we define as the subset of X where g is non-zero.
18This is often referred to as a "packing" of X by balls of radius l and the maximum cardinality of such a set is called the

"packing number" denoted N(X , l).
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where H denotes the class of algorithms that utilise the data samples GL̂
X in order to select the correct f in

Fϵ. In order to lower bound the right hand side of the above equation, Fano’s Lemma can be applied. To do
so, we first estimate log(|Fϵ|) and supf1,f2∈Fϵ

KL (pf1∥pf2) where pf denotes the density defined on (X , Y) of
a noisy sample (x, f̃x) associated to f ∈ Fϵ (defined more precisely below). The first term: log(|Fϵ|) follows
directly from the proof of Theorem 2.2 where we obtained that |Fϵ| = |Bϵ| ≥

(
MK
20ϵ

)d which implies

log(|Fϵ|) ≥ d log(MK

20ϵ
).

Let f ∈ Fϵ. Denoting the density of the uniform measure on X as λu and the density of the Gaussian measure
on R with mean µ ∈ R and variance σ2 as νµ,σ2 , we have ∀x ∈ X , y ∈ R, pf (x, y) = λu(x)νf(x),σ2(y). Then,
the second term can be upper bounded as follows:

sup
f1,f2∈Fϵ

KL (pf1 ||pf2) =
∫

X ×R
pf1(x, y) log

(
pf1(x, y)
pf2(x, y)

)
d(x, y)

=
∫

X

∫
R

νf1(x),σ2(y) log
(

νf1(x),σ2(y)
νf2(x),σ2(y)

)
dyλu(x)dx

(i)= 1
2σ2

∫
X

|f1(x) − f2(x)|2λu(x)dx

(ii)
≤ 1

σ2 ∥f1 − f2∥2
∞

∫
vol(Bϵ)

λu(x)dx

where Bϵ denotes an arbitrary ball in the packing defined by Bϵ. (i) follows from the well-known KL-
divergence of univariate Gaussians and (ii) follows by construction of Fϵ. By the proof of Theorem 3.7, we
have for all B ∈ Bϵ and associated fB ∈ Fϵ, supx∈B |fB(x)| = C∗

1 = 51ϵ2

K . Furthermore,
∫

vol(Bϵ) λu(x)dx =
c̃ vol(Bϵ)

Md = c̃′ ( 20ϵ
MK

)d for some constants c̃, c̃′ := c(d) > 0. Therefore, there exists a constant c > 0 such that

sup
f1,f2∈Fϵ

KL (pf1∥pf2) ≤ c

σ2
ϵd+4

MdKd+2 .

Applying Fano’s Lemma, we obtain for an arbitrary ordering of Fϵ:

inf
L̂∈Ln,p(X )

sup
f∈C2(X ,K)

P(Loss(xL̂(f), f) > ϵ)

≥ 1 −
log(2) + n supf1,f2∈Fϵ

KL (pf1 ||pf2)
log(|Fϵ|)

≥ 1 −
log(2) + n c

σ2
ϵd+4

MdKd+2

d log( MK
20ϵ )

.

Therefore, for ϵ sufficiently small and any arbitrary δ ∈ (0, 1),

inf
L̂∈Ln,p(X )

sup
f∈C2(X ,K)

P(Loss(xL̂(f), f) > ϵ) ≤ δ =⇒ 1 −
log(2) + n c

2σ2
ϵd+4

MdKd+2

d log( MK
20ϵ )

≤ δ.

Taking the limit as ϵ goes to 0, we have that if n /∈ Ω
(

MdKd+2 log( MK
ϵ )

ϵd+4

)
, then limϵ→0+ 1 −

log(2)+n c
2σ2

ϵd+4
MdKd+2

d log( MK
20ϵ ) = 1 > δ. This implies that

n ∈ Ω
(

σ2MdKd+2 log( MK
ϵ )

ϵd+4

)

must necessarily hold in order for infL̂∈Ln,p(X ) supf∈C2(X ,K) P(Loss(xL̂(f), f) > ϵ) ≤ δ to hold and concludes
the proof.

■
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B Proofs: Theoretical Properties of LCLS

Proof of Proposition 3.4 (Computational Complexity of LCLS).
Follows directly from the computational complexity of the linear least squares regression algorithm which is
O(nsamples).

■

B.1 Technical Lemmas

The proof of Theorem 3.7 relies on the following technical lemmas.

Lemma B.1 (Fundamental logarithm inequalities) For all x > 0,

1 − 1
x

≤ log(x) ≤ x − 1.

Lemma B.2 Let X be as described in Assumption 1. If f verifies Assumption 2, then f is L∗
p-Lipschitz

with respect to ∥.∥p. Furthermore, for p = 1, 2, L∗
p = maxx∈X {∥∇f(x)∥q} and for p > 2, L∗

p ≤
maxx∈X {∥∇f(x)∥q} where q is the Hölder conjugate of p.

Proof f is L∗
p-Lipschitz follows directly from the fact that X is compact and f ∈ C1(X ).

∀p ∈ N, L∗
p ≤ maxx∈X {∥∇f(x)∥q} follows from the multidimensional mean-value theorem and an application

of the Hölder inequality.

For p = 1, 2, we show L∗
p ≥ maxx∈X {∥∇f(x)∥q}. Consider : ∀x ∈ X consider the Frechet derivative of f

at x; limt→0
|f(x+th)−f(x)−∇f(x)⊤(th)|

t = 0 ∀h ∈ Rd. Then, choosing h = ∇f(x) for p = 2 and h = ei∗ such
that |∇f(x)⊤ei∗ | = ∥∇f(x)∥∞ for p = 1 gives L∗

p ≥ maxx∈X {∥∇f(x)∥q}. (Note that this reasoning is well
defined because f ∈ C1(X̃ ) and X̃ is an open set that contains X which implies that f(x+ th) is well-defined
for any h ∈ Rd and small enough t).

■

Lemma B.3 Let δ ∈ (0, 1), then ∀x > 2 log( 1
1− δ

2
):

1

1 − x

√
1 − δ

2

≤ 2x

log( 1
1− δ

2
)
.

Proof Let x > 2 log( 1
1− δ

2
) be arbitrary, we have

1

1 − x

√
1 − δ

2

≤ 2x

log( 1
1− δ

2
)

⇐⇒ 1 ≤ 2x

log( 1
1− δ

2
)
(1 − x

√
1 − δ

2).

Then,
2x

log( 1
1− δ

2
)
(1 − x

√
1 − δ

2) = 2x

log( 1
1− δ

2
)
(1 − e

− 1
x log( 1

1− δ
2

)
)

Utilising the fact that ey ≤ 1 + y + y2 for all y < 1, we have that the above expression is greater or equal to:

2x

log( 1
1− δ

2
)

(
1
x

log( 1
1 − δ

2
) − 1

x2 log( 1
1 − δ

2
)2

)
= 2

(
1 − 1

x
log( 1

1 − δ
2

)
)

≥ 1

where last inequality follows from the fact that x > 2 log( 1
1− δ

2
).
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■

Lemma B.4 Consider a sequence of partitions (HI)I∈N used by LCLS and assume that for a given η ∈ (0, 1]
the sampling distribution satisfies Assumption 4. Then,

∀I ∈ N, ∀H ∈ HI , ∥
(

XH
I

⊤
XH

I

)−1
∥2 ≤ 16

ηδH
I

2
NH

I

.

Proof Let λmax(M) denote the maximum eigenvalue of a matrix M if it exists. ∀I ∈ N, ∀H ∈ HI , we have
∥
(

XH
I

⊤
XH

I

)−1
∥2 = 1

σmin(XH
I

⊤XH
I

)
where σmin(XH

I
⊤

XH
I ) denotes the smallest singular value of XH

I
⊤

XH
I .

Therefore, we can focus on showing the following relation that implies the Lemma statement:

σmin(XH
I

⊤
XH

I ) ≥ ηNH
I

16 δH
I

2
.

Let X̄H
I be the design matrix without the first column of ones, ie. X̄H

I =


x⊤

H1
x⊤

H2
...

x⊤
H

NH
I

, we have

σmin(XH
I

⊤
XH

I ) = σmin(XH
I

⊤)2 = min
∥u∥2=1

∥XH
I

⊤
u∥2

2 = min
∥u∥2=1

∥

[
1⊤

NH
I

X̄H
I

⊤

]
u∥2

2

≥ min
∥u∥2=1

∥

[
0⊤

NH
I

X̄H
I

⊤

]
u∥2

2 = min
∥u∥2=1

∥X̄H
I

⊤
u∥2

2 = σmin(X̄H
I

⊤
X̄H

I ).

Therefore we can consider the smallest singular value of X̄H
I instead of XH

I which allows for a direct use of
Assumption 4. We have

σmin(X̄H
I

⊤
X̄H

I ) = λmin(X̄H
I

⊤
X̄H

I ) = min
u∈Rd,∥u∥2=1

u⊤X̄H
I

⊤
X̄H

I u = min
u∈Rd,∥u∥2=1

NH
I∑

i=1
⟨xHi , u⟩2.

Let u∗
min ∈ Rd denote the eigenvector associated to λmin(X̄H

I

⊤
X̄H

I ) with ∥u∗
min∥2 = 1. Then, u∗

min satisfies∑NH
I

i=1⟨xHi
, u∗

min⟩2 = min
∥u∥2=1

∑NH
I

i=1⟨xHi
, u⟩2.

Using u∗
min, we can construct an orthonormal basis of {u∗

min, u2, ..., ud} of Rd (such a basis can be constructed
using the Gramm-Schmitt algorithm). Then, since DH

I contains ηNH
I points in each ball associated to

an element of an δH
I

8 -cover of H, we have that there exists at least ηNH
I pairs of datapoints (xHi , f̃Hj ),

(xHj , f̃Hj ) ∈ DH
I such that ∃{αi}i∈{1,...,d}, αi ∈ R with |α1| >

δH
I

2 and (xHi − xHj ) = α1u∗
min +

d∑
k=2

αkuk.

This implies that max(|⟨xHi , u∗
min⟩|, |⟨xHj , u∗

min⟩|) ≥ δH
I

4 . Indeed, if |⟨xHi , u∗
min⟩| <

δH
I

4 , then

|⟨xHj
, u∗

min⟩| = |⟨xHj
− xHi

+ xHi
, u∗

min⟩| = |⟨xHj
− xHi

, u∗
min⟩ + ⟨xHi

, u∗
min⟩| ≥ δH

I

2 − δH
I

4 = δH
I

4

Using this inequality ηNH
I times we can conclude, σmin(X̄H

I

⊤
X̄H

I ) =
∑NH

I
i=1⟨xHi

, u∗
min⟩2 ≥ ηNH

I ( δH
I

4 )2.

■

Lemma B.5 Consider the constructions of Definition 3.3. The following relationship holds for all I ∈ N,
V (X )Γ( d

2 + 1)2d

π
d
2 maxH∈HI

(∆H
I )d

≤ |HI | ≤
V (X )Γ( d

2 + 1)2d

π
d
2 minH∈HI

(δn)d

where V (X ) denotes the volume of X .

31



Published in Transactions on Machine Learning Research (09/2023)

Proof Follows directly from the definition of {δH
I }H∈HI

, {∆H
I }H∈HI

and volume formula for the d-
dimensional ball.

■

Lemma B.6 Let the notation and assumptions be as described in Theorem 3.7 and define x∗ ∈ X as
x∗ ∈ argmaxx∈X ∥∇f(x)∥q. Then, ∀I ∈ N,

∣∣∥∇f(x∗)∥q − max
H∈HI

{∥E[β̂H
I ]∥q}

∣∣ ≤ 4
√

ddnqK
√

η
aI .

where nq = dmax{ 1
q − 1

2 ,0}.

Proof Note: such an x∗ exists by compactness of X and the fact that f ∈ C2(X ).

By definition, [b̂H
I , β̂H

I ]⊤ = (XH
I

⊤
XH

I )−1XH
I

⊤
f̃H

I . Computing the expectation of this expression yields

E
[
[b̂H

I , β̂H
I ]⊤

]
= E

[
(XH

I

⊤
XH

I )−1XH
I

⊤
f̃H

I

]
= E

[
(XH

I

⊤
XH

I )−1XH
I

⊤
fH

I

]
+ E

[
(XH

I

⊤
XH

I )−1XH
I

⊤
γH

I

]
= (XH

I

⊤
XH

I )−1XH
I

⊤
fH

I .

∀H ∈ HI , let cH ∈ H (closure of H) be such that ∥∇f(cH)∥q = maxx∈H̄{∥∇f(x)∥q} which exists by
compactness of H̄ and the fact that f ∈ C2(X ). Then, using the second order Taylor expansion of f around
ch, every coordinate fHk

of fH
I can be re-expressed as

fHk
= f(cH) + (xHk

− cH)⊤∇f(cH) + (xHk
− cH)⊤Hess(cH + rHk

(xHk
− cH))(xHk

− cH), (3)

where rHk
∈ [0, 1] and Hess denotes the Hessian matrix of f . To alleviate notation, let ∥.∥q̃ denote a

pseudo-norm on Rd+1 defined by; x ∈ Rd+1, ∥x∥q̃ := q

√∑d+1
i=2 xq

i if q < ∞ and ∥x∥∞̃ := maxi∈{2,...,d+1} |xi|
otherwise. Then, using the definition of XH

I ,

∥E[β̂H
I ]∥q = ∥

[
E[b̂H

I ]
E[β̂H

I ]

]
∥q̃ = ∥(XH

I

⊤
XH

I )−1XH
I

⊤
fH

I ∥q̃

= ∥(XH
I

⊤
XH

I )−1XH
I

⊤(XH
I


f(cH)− c⊤

H∇f(cH)
0
...
0

+ XH
I

[
0

∇f(cH)

]
+

(xH1 − cH)⊤Hess(rH1 )(xH1 − cH)
(xH2 − cH)⊤Hess(rH2 )(xH2 − cH)

...

)∥q̃

= ∥


f(cH)− c⊤

H∇f(cH)
0
...
0

+
[

0
∇f(cH)

]
+ (XH

I

⊤
XH

I )−1XH
I

⊤(

(xH1 − cH)⊤Hess(rH1 )(xH1 − cH)
(xH2 − cH)⊤Hess(rH2 )(xH2 − cH)

...

)

︸ ︷︷ ︸
=:J(H)

∥q̃

Plugging this expression into the theorem statement yields:∣∣∥∇f(x∗)∥q − max
H∈HI

{∥E[β̂H
I ]∥q}

∣∣ = ∥∇f(x∗)∥q − max
H∈HI

{∥E[β̂H
I ]∥q}

≤ ∥∇f(x∗)∥q − ( max
H∈HI

{∥
[

0
∇f(cH)

]
∥q̃} − max

H∈HI

{∥J(H)∥q̃}) ≤ ∥∇f(x∗)∥q − max
H∈HI

{∥∇f(cH)∥q}

+ max
H∈HI

{∥J(H)∥q} = max
H∈HI

{∥J(H)∥q}

where the last equality follows from the fact that there exists H ∈ HI such that x∗ ∈ H. As f ∈ C2(X , K),
we have ∀i, j ∈ {1, ..., d}, ∀x ∈ X that | ∂2f

∂xi∂xj
(x)| < K. This implies that ∥Hess(x)∥1 ≤ dK ∀x ∈ X and by
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matrix norm equivalence; ∥Hess(x)∥2 ≤
√

d∥Hess(x)∥1 ≤ d
√

dK, ∀x ∈ Rd. Therefore, since matrix p-norms are
sub-multiplicative;

∥J(H)∥q ≤ nq∥J(H)∥2 ≤ nq∥(XH
I

⊤
XH

I )−1XH
I

⊤∥2∥

(xH1 − c1)⊤Hess(rH1 )(xH1 − cH)
(xH2 − c2)⊤Hess(rH2 )(xH2 − cH)

...

 ∥2

where nq = d
max{ 1

q
− 1

2 ,0}. Using Lemma B.4 we have

∥(XH
I

⊤
XH

I )−1XH
I

⊤∥2 = ∥XH
I ((XH

I

⊤
XH

I )⊤)−1∥2 =
√

λmax((XH
I

⊤
XH

I )−1)

=
√
∥(XH

I
⊤

XH
I )−1∥2 ≤

4
δH

I

√
ηNH

I

where λmax denotes the maximum eigenvalue of (XH
I

⊤
XH

I )−1. Furthermore, the components of the vector on the
right-hand side can be upper bounded by using Cauchy-Schwartz and matrix-vector inequalities;

|(xH1 − c1)⊤Hess(rH1 )(xH1 − cH)| ≤ ∥(xH1 − c1)⊤∥2∥Hess(rH1 )(xH1 − cH)∥2

≤ ∥(xH1 − c1)⊤∥2∥Hess(rH1 )∥2∥(xH1 − cH)∥2 ≤ ∆H
I

2√
ddK.

Combining these two upper bounds we can conclude:∣∣∥∇f(x∗)∥q − max
H∈HI

{∥E[β̂H
I ]∥q}

∣∣ ≤ max
H∈HI

4
√

ddKnq√
η

∆H
I

2

δH
I

= 4
√

ddnqK
√

η
aI .

■

Lemma B.7 If the Assumptions of Theorem 3.7 hold, then ∀I ∈ N, the difference between the Lipschitz
estimate generated by the LCLS method with noisy sampling L̂I and the Lipschitz estimate generated by the
LCLS method with noiseless sampling L̄I can be upper bounded by;

P(|L̄I − L̂I | >
ϵ

2) ≤ 1 −
∏

H∈HI

(1 − 26σ2dmax{ 2
q ,1}

ηϵ2
1

NH
I δH

I
2 ). (4)

Proof Let I ∈ N. ∀H ∈ HI denote by [bH
I , βH

I ] the least squares coefficients computed using (XH
I , fH

I )
(instead of (XH

I , f̃H
I )), i.e. the noiseless least squares coefficients. Then,

E
[
[b̂H

I , β̂H
I ]⊤

]
= E

[
(XH

I

⊤
XH

I )−1XH
I

⊤
fH

I

]
= [bH

I , βH
I ]⊤

Therefore, we can write (with nq = dmax{ 1
q − 1

2 ,0})

P
(∣∣∣L̄I − L̂I

∣∣∣ >
ϵ

2

)
= P

(
| max

H∈HI

{∥[βH
I ]∥q} − max

H∈HI

{∥β̂H
I ∥q}| >

ϵ

2

)

= P
(∣∣∣∣max

H∈HI

{∥E
[
β̂H

I

]
∥q} − max

H∈HI

{∥β̂H
I ∥q}

∣∣∣∣ >
ϵ

2

)
≤ P

(∣∣∣∣max
H∈HI

{∥E
[
β̂H

I

]
∥q − ∥β̂H

I ∥q}
∣∣∣∣ >

ϵ

2

)
≤ P

(
max

H∈HI

{∥E
[
β̂H

I

]
− β̂H

I ∥q} >
ϵ

2

)
≤ P

(
max

H∈HI

{∥E
[
β̂H

I

]
− β̂H

I ∥2} >
ϵ

2nq

)
= 1 − P

(
max

H∈HI

{∥E
[
β̂H

I

]
− β̂H

I ∥2} <
ϵ

2nq

)
≤ 1 −

∏
H∈HI

P
(

∥E
[
β̂H

I

]
− β̂H

I ∥2 <
ϵ

2nq

)

= 1 −
∏

H∈HI

(
1 − P

(
∥E
[
β̂H

I

]
− β̂H

I ∥2 ≥ ϵ

2nq

))
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In order to upper bound the term given in product: P(∥E[β̂H
I ] − β̂H

I ∥2 ≥ ϵ
2nq

), we use the covariance matrix:
var([b̂H

I , β̂H
I ]) = σ2(XH

I
⊤

XH
I )−1 which follows from the fact that the components of γH

I are assumed to be
uncorrelated with mean 0 and variance σ2. We also denote by Tr(M) the trace of a matrix M ∈ Rd×d.
Then, by applying an extension of Chebyshev’s inequality to finite dimensional vectors (Ferentios (1982))
and Lemma B.4, we have

P
(

∥E
[
β̂H

I

]
− β̂H

I ∥2 ≥ ϵ

2nq

) Chebychev′s
Inequality

≤
4n2

qσ2Tr((XH
I

⊤
XH

I )−1)
ϵ2

≤
4n2

qσ2d∥
(

XH
I

⊤
XH

I

)−1
∥2

ϵ2

Lemma B.4
≤

4n2
qσ2d

ϵ2
16

ηδH
I

2
NH

I

=
26n2

qσ2d

ηϵ2
1

NH
I δH

I
2 .

Plugging this expression into the product given above concludes the proof.

P(|L̄I − L̂I | >
ϵ

2) ≤ 1 −
∏

H∈HI

(
1 − 26σ2dmax{ 2

q −1,0}d

ηϵ2
1

NH
I δH

I
2

)

■

B.2 Proof of Main Theoretical Properties of LCLS

Proof of Theorem 3.7 (General Convergence Rate).
We recall that ∀I ∈ N, the Lipschitz estimate L̂I is obtained by considering the partition HI and computing
maxH∈HI

{∥E[β̂H
I ]∥q}. Let ϵ > 0 be arbitrary. We need to show for p = 1, 2:

lim
I→∞

P(|L∗
p − L̂I | > ϵ) = 0

and for p > 2
lim

I→∞
P(|Lp − L̂I | > ϵ) = 0 with Lp ∈ R≥L∗

p
.

Since f verifies assumption 2 and X is convex and compact, Lemma B.2 guarantees the existence of x∗ ∈ X
such that ∥∇f(x∗)∥q = L∗

p for p = 1, 2 and Lp := ∥∇f(x∗)∥q = maxx∈X ∥∇f(x)∥p ≥ L∗
p for p > 2.

Therefore, for all p ≥ 1, we can consider the statement;

lim
I→∞

P(|∥∇f(x∗)∥q − L̂I | > ϵ) = 0

Let I ∈ N and consider P(|∥∇f(x∗)∥q − L̂I | > ϵ). This expression can be split into two terms:

P(|∥∇f(x∗)∥q − L̂I | > ϵ)

≤ P
(

|∥∇f(x∗)∥q − max
H∈HI

{∥E
[
β̂H

I

]
∥q}| >

ϵ

2

)
︸ ︷︷ ︸

(I)

+P
(

| max
H∈HI

{∥E
[
β̂H

I

]
∥q} − L̂I | >

ϵ

2

)
︸ ︷︷ ︸

(II)

.

In the following, we show that both (I) and (II) converge to 0 when I goes to infinity.

(I): From Lemma B.6,
∣∣∥∇f(x∗)∥q − maxH∈HI

{∥E
[
β̂H

I

]
∥q}
∣∣ ≤ 4

√
ddnqK√

η aI . Plugging this upper bound into
the above expression, we have

P
(

|∥∇f(x∗)∥q − max
H∈HI

{∥E
[
β̂H

I

]
∥q}| >

ϵ

2

)
≤ P(4

√
ddnqK
√

η
aI >

ϵ

2).
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By hypothesis 2. limI→∞ aI = 0 and therefore there exists I1 ∈ N sufficiently large such that 4
√

ddnqK√
η aI1 ≤ ϵ

2

and therefore P( 4
√

ddnqK√
η aI1 > ϵ

2 ) = 0.

(II): We show that P(| maxH∈HI
{∥E[β̂H

I ]∥q} − L̂I | > ϵ
2 ) converges to 0 as I goes to infinity. Let L̄ denote

the Lipschitz estimate generated by LCLS with noiseless samples. Then, applying Lemma B.7, we have the
following upper bound on P(| maxH∈HI

{∥E[β̂H
I ]∥q} − L̂I | > ϵ

2 ):

P(| max
H∈HI

{∥E[β̂H
I ]∥q} − L̂I | >

ϵ

2) = P(|L̄I − L̂I | >
ϵ

2) ≤ 1 −
∏

H∈HI

(1 − 16σ2dmax{ 2
q ,1}

ηϵ2
1

NH
I δH

I
2 )

≤ 1 − (1 − 26σ2dmax{ 2
q ,1}

ηϵ2 minH∈HI
(NH

I δH
I

2)
)|HI |.

As by Theorem hypothesis 2 limI→∞ maxH∈HI
(∆H

I ) = 0, applying Lemma B.5 implies that limI→∞ |HI | =
∞. Therefore using the fact that limI→∞ bI = 0, we have limI→∞ maxH∈HI

( 1
NH

I
δH

I
2

)
=

limI→∞
1

minH∈HI
NH

I
δH

I
2 = 0.

To alleviate notation, let (αI)I∈N be the sequence defined by αI := 26σ2d
max{ 2

q
,1}

ηϵ2 minH∈HI
NH

I
δH

I
2 , then

limI→∞
1

minH∈HI
NH

I
δH

I
2 = 0 implies that ∃Ī ∈ N such that ∀I ≥ Ī, αI < 0.5. Utilising fundamental

logarithm inequalities, we obtain:

1 − (1 − αI)|HI | ≤ |HI | log( 1
1 − αI

) ≤ |HI | αI

1 − αI
≤ |HI |αI

2

= 25σ2dmax{ 2
q ,1}

ηϵ2
|HI |

minH∈HI
NH

I δH
I

2 =
(25σ2dmax{ 2

q ,1}

ηϵ2

)
bI

I→∞−→ 0.

■

Proof of Corollary 3.9 (Noiseless Oracle).
As in the proof of Theorem 3.7, we can consider the statement; p ∈ N,

lim
I→∞

P(|∥∇f(x∗)∥q − L̂I | > ϵ) = 0

where x∗ ∈ argmaxx∈X ∥∇f(x)∥p. Since the data samples contain no noise, L̂I = maxH∈HI
{∥E[β̂H

I ]∥q} and

P(|∥∇f(x∗)∥q − L̂I | > ϵ) = P(|∥∇f(x∗)∥q − max
H∈HI

{∥E[β̂H
I ]∥q}| > ϵ).

Then, applying Lemma B.6 and using limI→∞ aI = 0 as in the proof of Theorem 3.7 gives the desired
convergence result.
(Note: that the least squares estimation is well defined as NH

I ≥ d + 1 and Assumption 4 holds.)

■

Proof of Theorem 3.10 (Finite Sample Guarantee).
We show the equivalent statement; P(|Lp − L̂I | > ϵ) ≤ δ. where as in proof of Theorem 3.7, Lp := ∥∇f(x∗)∥q

with x∗ := argmaxx∈X ∥∇f(x)∥p and Lp = L∗
p for p = 1, 2, Lp ≥ L∗

p for p > 2.
In the hypercube set-up, we have ∀I ∈ N>1, ∀H ∈ HI , ∆H

I =
√

dM
I , δH

I = M
I and |HI | = Id. Let ϵ > 0, δ ∈

(0, 1
2 ]: From the proof of Theorem 3.7 we have that three following inequalities need to be satisfied in order for

(1) to hold. From (I) we need 4
√

ddnqK√
η

∆H
I

2

δH
I

≤ ϵ
2 in order for P(|∥∇f(x∗)∥q −maxH∈HI

{∥E[β̂H
I ]∥q}| > ϵ

2 ) = 0.

This implies that;

I ≥ 8d2
√

dnq√
η

MK

ϵ
.
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From (II), we have the following two inequalities that need to be satisfied;

(1) αI = 26σ2dmax{ 2
q ,1}

ηϵ2 minH∈HI
NH

I δH
I

2 < 0.5

(2) 25σ2dmax{ 2
q ,1}

ηϵ2
|HI |

minH∈HI
NH

I δH
I

2 < δ

The first implies that
27dmax{ 2

q ,1}σ2

η

I2

M2ϵ2 < min
H∈HI

NH
I

and the second expression gives

25dmax{ 2
q ,1}σ2

η

I2

M2ϵ2
|HI |

δ
< min

H∈HI

NH
I .

Since |HI | = Id, I ∈ N>1 and δ ∈ (0, 1
2 ], we have that if the minH∈HI

NH
I satisfies (2) then (1) is true as

well. Therefore, we have ∀H ∈ HI ;

25dmax{ 2
q ,1}σ2

η

Id+2

δM2ϵ2 < min
H∈HI

NH
I .

Setting C1(d) = 8d2
√

ddmax{ 1
q − 1

2 ,0} and C2(d, q) = 25dmax{ 2
q ,1}d concludes the proof.

■

Proof of Theorem 3.15 (Asymptotic Sample Complexity – Gaussian Noise).
Consider the setting described by Theorem 3.15 with I =

⌈
C1(d) MK

ϵ

⌉
when ϵ > 0. As described in the proof

of Theorem 3.10: in the the hypercube set-up we have ∀H ∈ HI , ∆H
I =

√
dM
I , δH

I = M
I and |HI | = Id.

For all ϵ > 0, let Aϵ denote the event that every H ∈ HI contains a number of samples NH
I equal or greater

than C(d) log( MK
ϵ )σ2K2

ϵ4 for a constant C(d) > 0 that depends on d (see (⋆) for the explicit definition of C(d))
and is ( δH

I

8 , η)-covered where η = vol(B1(0))
23d+13d where vol(B1(0)) denotes the volume of the d-dimensional unit

ball. More precisely,

Aϵ := {∀H ∈ HI : NH
I ≥ C(d)

log( MK
ϵ )σ2K2

ϵ4 ∧ H is (δH
I

8 , η)-covered}.

Let us assume that there exists ϵ̄ > 0 such that ∀ϵ ∈ (0, ϵ̄), P(Aϵ) > 0 (this will follow from (⋆⋆) given at the
end of the proof). Then,

sup
f∈C2(X ,K)

P(Loss(xL̂I (f), f) > ϵ) ≤ sup
f∈C2(X ,K)

P(Loss(xL̂I (f), f) > ϵ|Aϵ) + P(Ac
ϵ).

Therefore, in order to show Theorem 3.15, it suffices to show that both terms of the right-hand
expression given above converge to 0 as ϵ goes to 0. The first part of the proof considers
supf∈C2(X ,K) P(Loss(xL̂I (f), f) > ϵ|Aϵ). We will show that for all δ > 0, there exists ϵ̄∗ such that ∀ϵ ∈ (0, ϵ̄∗),

sup
f∈C2(X ,K)

P(Loss(xL̂I (f), f) > ϵ|Aϵ) < δ

Notation B.8 To alleviate notation, we omit the conditional dependence on Aϵ in the following computa-
tions.
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Fix an arbitrary δ > 0 and define ∀H ∈ HI , β̄H
I := [bH

I , βH
I ]⊤ = (XH

I
⊤

XH
I )−1XH

I
⊤

fH
I . As the noise and

the sampling distribution are independent and every input sample is selected independently, we have

β̄H
I = E

[
[b̂H

I , β̂H
I ]⊤

∣∣∣XH
I

]
= E

[
[b̂H

I , β̂H
I ]⊤

∣∣∣GX
I

]
where GX

I denotes the set of all sample inputs utilised by the LCLS algorithm.. (Note that β̄H
I is a random

variable as the sample inputs are randomly sampled). We have

P(Loss(xL̂I (f), f) > ϵ) = P
(∣∣∣L∗

p − ∥∇f(xL̂I (f))∥q

∣∣∣ > ϵ
)

≤ P
(∣∣∣L∗

p − L̂I(f)
∣∣∣ ≥ ϵ

2

)
+ P

(∣∣∣L̂I(f) − ∥∇f(xL̂I (f))∥q

∣∣∣ ≥ ϵ

2

)
≤ P

(∣∣∣∣∥∇f(x∗)∥q − max
H∈HI

{∥E
[
β̂H

I

∣∣∣GX
I

]
∥q}
∣∣∣∣ >

ϵ

4

)
+ P

(∣∣∣∣max
H∈HI

{∥E
[
β̂H

I

∣∣∣GX
I

]
∥q} − L̂I(f)

∣∣∣∣ >
ϵ

4

)
+P
(∣∣∣∥∇f(xL̂I (f))∥q − ∥E

[
β̂HL̂I (f)

I

∣∣∣GX
I

]
∥q}
∣∣∣ >

ϵ

4

)
+ P

(∣∣∣∥E [β̂HL̂I (f)

I

∣∣∣GX
I

]
∥q − L̂I(f)

∣∣∣ >
ϵ

4

)
.

where x∗ := argmaxx∈X |∥∇f(x)∥q = L∗
p by Lemma B.2 (for p = 1, 2) and β̂HL̂I (f)

I denotes parameters of the
linear regression associated to the hypercube argmaxH∈HI

∥β̂H∥q. By the arguments given at the beginning
of Lemma B.7, we have∣∣∣∣max

H∈HI

{∥E
[
β̂H

I

∣∣∣GX
I

]
∥q} − L̂I(f)

∣∣∣∣ ≤ nq max
H∈HI

{∥E
[
β̂H

I

∣∣∣GX
I

]
− β̂H

I ∥2}

where we recall nq = dmax{ 1
q − 1

2 ,0}. Similarly, by construction of LCLS, the reverse triangle inequality and
norm equivalence, ∣∣∣∣∥E [β̂HL̂I (f))

I

∣∣∣GX
I

]
∥q − L̂I

∣∣∣∣ =
∣∣∣∣∥E [β̂HL̂I (f))

I

∣∣∣GX
I

]
∥q − ∥β̂

HL̂I (f))
I ∥q

∣∣∣∣
≤ nq∥E

[
β̂

HL̂I (f))
I

∣∣∣GX
I

]
− β̂

HL̂I (f))
I ∥2 ≤ nq max

H∈HI

{∥E
[
β̂H

I

∣∣∣GX
I

]
− β̂H

I ∥2}.

Therefore,
P(Loss(xL̂I (f), f) > ϵ) ≤ P

(∣∣∣∣∥∇f(x∗)∥q − max
H∈HI

{∥E
[
β̂H

I

∣∣∣GX
I

]
∥q}
∣∣∣∣ >

ϵ

4

)
︸ ︷︷ ︸

(i)

+P
(∣∣∣∥∇f(xL̂I (f))∥q − ∥E

[
β̂HL̂I (f)

I

∣∣∣GX
I

]
∥q

∣∣∣ >
ϵ

4

)
︸ ︷︷ ︸

(ii)

+2P
(

max
H∈HI

{∥E
[
β̂H

I

∣∣∣GX
I

]
− β̂H

I ∥2} >
ϵ

4nq

)
︸ ︷︷ ︸

(iii)

.

The terms (i), (ii) in the above expression can be shown to be equal to 0 with similar arguments. For (i),
Lemma B.6 can be utilised (as Aϵ is assumed to hold) to obtain:∣∣∣∣∥∇f(x∗)∥q − max

H∈HI

{∥E
[
β̂H

I

∣∣∣GX
I

]
∥q}
∣∣∣∣ ≤ max

H∈HI

4
√

ddKnq√
η

∆H
I

2

δH
I

≤ 4
√

ddnqK
√

η
aI

and it follows from applying the same approach as the one used in the proof of Lemma B.6 (as Aϵ is assumed
to hold), that

∣∣∣∥∇f(xL̂I (f))∥q − ∥E
[
β̂HL̂I (f)

I

∣∣∣GX
I

]
∥q

∣∣∣ ≤ 4
√

ddKnq√
η

∆HL̂I (f)

I

2

δHL̂I (f)

I

≤ 4
√

ddnqK
√

η
aI .
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Note that η is defined in the omitted conditioning on Aϵ. Then, we have by definition of I =
⌈
C1(d) MK

ϵ

⌉
,

4
√

ddnqK
√

η
aI = 4

√
dd2nqK
√

η

M

I
≤ 4

√
dd2nq√

η

ϵ

C1(d) = ϵ

4 .

where the last line follows from the fact C1(d) = 16d2√
dnq√

η . Therefore, conditional on Aϵ, we have

P
(∣∣∣∣∥∇f(x∗)∥q − max

H∈HI

{∥E
[
β̂H

I

∣∣∣GX
I

]
∥q}
∣∣∣∣ >

ϵ

4

)
= P

(∣∣∣∥∇f(xL̂I (f))∥q − ∥E
[
β̂HL̂I (f)

I

∣∣∣GX
I

]
∥q}
∣∣∣ >

ϵ

4

)
= 0.

In order to show that (iii) converges to 0 as ϵ goes to 0, we define for all H ∈ HI : EH := {∥E[β̂H
I

∣∣∣GX
I ] −

β̂H
I ∥2 ≤ ϵ

4nq
}, consider an arbitrary ordering of HI := {H1, ..., H|HI |} and apply similar arguments as the

ones utilised in the proof of Lemma B.7 to obtain

P
(

max
H∈HI

{∥E
[
β̂H

I

∣∣∣GX
I

]
− β̂H

I ∥2} >
ϵ

4nq

∣∣Aϵ

)
= 1 − P(∀H ∈ HI , EH

∣∣Aϵ)

= 1 − P
(
EH1

∣∣Aϵ

) |HI |∏
i=2

P
(
EHi

∣∣Aϵ, EH1 , ..., EHi−1
)

The computation of the local linear regressions parameters is done independently with no data overlap im-
plying that the conditioning expression: {EH1 , ..., EHi−1} (for i = 1, ..., |HI |) can only impact the probability
by affecting the number of samples contained in Hi: NHi

I which are utilised in the local linear regression. As
the probabilities are also each conditioned on Aϵ which provides a fixed lower bound on NH

I for all H ∈ HI

and the remaining arguments for this part of the proof will only utilise this fact, we use a slight abuse of
notation in order to alleviate notation and omit the dependencies on {EH1 , ..., EHi−1} (for i = 1, ..., |HI |) in
the remainder of this part of the proof. Therefore, we can consider

1 −
∏

H∈HI

(
1 − P

(
∥β̄H

I − [b̂H
I , β̂H

I ]⊤∥2 ≥ ϵ

4nq

∣∣Aϵ

))
.

In order to upper bound P(∥β̄H
I − [b̂H

I , β̂H
I ]⊤∥2 ≥ ϵ

4nq
|Aϵ) a more refined bound than the general Cheby-

shev inequality used in the proof of Lemma B.7 is utilised. Instead, we apply Corollary 3 of (Pinelis and
Sakhanenko (1986)) to obtain an alternative bound (see (iv) below).

Remarking that 0 < ϵ < C1(d)MK
3 implies I =

⌈
C1(d) MK

ϵ

⌉
≤

√
2C1(d) MK

ϵ , we set ϵ̄1 := C1(d)MK
3 . Then, for

all ϵ ∈ (0, ϵ̄1),

P
(

∥β̄H
I − [b̂H

I , β̂H
I ]⊤∥2 ≥ ϵ

4nq

∣∣Aϵ

)
= P

(
∥(XH

I

⊤
XH

I )−1XH
I

⊤
γH

L ∥2 ≥ ϵ

4nq

∣∣Aϵ

)

(iv)
≤ 2e

−
( ϵ

4nq
)2

2E[∥(XH
I

⊤
XH

I
)−1XH

I
⊤

γH
L

∥2
2|Aϵ] .

As the Gaussian vector (XH
I

⊤
XH

I )−1XH
I

⊤
γH

L has covariance matrix σ2(XH
I

⊤
XH

I )−1, we can utilise the
tower rule to observe that

E
[
∥(XH

I

⊤
XH

I )−1XH
I

⊤
γH

L ∥2
2

∣∣∣Aϵ

]
= E

[
E[∥(XH

I

⊤
XH

I )−1XH
I

⊤
γH

L ∥2
2|GX

I ]
∣∣∣Aϵ

]
= E

[
σ2Tr((XH

I

⊤
XH

I )−1)
∣∣∣Aϵ

]
≤ E

[
dσ2∥(XH

I

⊤
XH

I )−1∥2

∣∣∣Aϵ

]
≤ 16dσ2

ηδH
I

2
N̄I

.

38



Published in Transactions on Machine Learning Research (09/2023)

where N̄I := C(d) log( MK
ϵ )σ2K2

ϵ4 is given by Aϵ (with C(d) explicitly determined below). The last inequality
follows from Lemma B.4 which can be applied by definition of Aϵ. This implies:

P
(

∥β̄H
I − [b̂H

I , β̂H
I ]⊤∥2 ≥ ϵ

4nq

∣∣Aϵ

)
≤ 2e

−
ϵ2ηδH

I
2

N̄I

29n2
qdσ2 = 2e

− ϵ2ηM2N̄I
29n2

qI2dσ2 ≤ 2e
− ϵ4ηN̄I

210n2
qK2C1(d)2dσ2

.

Therefore, denoting C2(d) := η
210n2

qC1(d)2d and plugging the above expression into the initial upper bound,
we obtain

P
(

Loss(xL̂I (f), f) > ϵ
∣∣Aϵ

)
≤ 2 − 2

∏
H∈HI

(1 − 2e−C2(d) ϵ4N̄I
σ2K2 ) = 2 − 2(1 − 2e−C2(d) ϵ4N̄I

σ2K2 )|HI |.

Then, setting 2 − 2(1 − 2e−C2(d) ϵ4N̄I
σ2K2 )|HI | ≤ δ, we obtain that if

N̄I ≥ σ2K2

C2(d)ϵ4 log( 2

1 − |HI |
√

1 − δ
2

)

then P(Loss(xL̂I (f), f) > ϵ
∣∣Aϵ) ≤ δ. As |HI | is monotonically increasing and converges to infinity as ϵ goes

to 0, there exists ϵ̄2 > 0 such that ∀ϵ ∈ (0, ϵ̄2), |HI | ≥ 2 log( 1
1− δ

2
). This implies that we can apply Lemma

B.3 to obtain:
2

1 − |HI |
√

1 − δ
2

≤ 4|HI |
log( 1

1− δ
2

)
.

Therefore, we have that the following stronger condition on N̄I implies P(Loss(xL̂I (f), f) > ϵ) ≤ δ:

N̄I ≥ σ2K2

C2(d)ϵ4 log( 2

1 − |HI |
√

1 − δ
2

) ⇐= N̄I ≥ σ2K2

C2(d)ϵ4 log( 4|HI |
log( 1

1− δ
2

)
).

We can rewrite this lower bound with |HI | expressed in terms of ϵ:

σ2K2

C2(d)ϵ4 log( 4|HI |
log( 1

1− δ
2

)
) = σ2K2

C2(d)ϵ4 log(2d+2C1(d)d(MK

ϵ
)dlog( 1

1 − δ
2

)−1)

= σ2K2

C2(d)ϵ4 d log(C3(d) log( 1
1 − δ

2
)− 1

d
MK

ϵ
)

where C3(d) := 21+ 2
d C1(d). Finally, there exists ϵ̄3 > 0 such that ∀ϵ ∈ (0, ϵ̄3),

C3(d)
log( 1

1− δ
2

) 1
d

≤ MK

ϵ

which implies

N̄I ≥ C∗(d)σ2K2

ϵ4 log(MK

ϵ
) =⇒ P(Loss(xL̂I (f), f) > ϵ) ≤ δ

where C∗(d) := 2d
C2(d) . Therefore, as C∗(d) only depends on d (note that η depends only on d) we can set

C(d) = C∗(d) (⋆).

Selecting ϵ̄∗ := min(ϵ1, ϵ2, ϵ3), we have ∀ϵ ∈ (0, ϵ̄∗)

sup
f∈C2(X ,K)

P(Loss(xL̂I (f), f) > ϵ|Aϵ) < δ.

As the choice of δ > 0 was arbitrary, this concludes the first part of the proof.
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(⋆⋆) We now show limϵ→0+ P(Ac
ϵ) = 0 with C∗(d) as defined above in (⋆). Let ϵ ∈ (0, C1(d)MK) be arbitrary

and define the following events:

A1
ϵ :=

{
∀H ∈ HI : NH

I ≥ C∗(d)
log( MK

ϵ )σ2K2

ϵ4

}

A2
ϵ :=

{
∀H ∈ HI : H is (δH

I

8 , η)-covered
}

.

We recall:

Aϵ :=
{

∀H ∈ HI : NH
I ≥ C∗(d)

log( MK
ϵ )σ2K2

ϵ4 ∧ H is (δH
I

8 , η)-covered
}

=
{

A1
ϵ ∧ A2

ϵ

}
.

We can write:
P(Ac

ϵ) = 1 − P(Aϵ) = 1 − P(A2
ϵ |A1

ϵ)P(A1
ϵ)

which is well defined as we will show that P(A1
ϵ) > 0 for sufficiently small ϵ. Therefore, if we can show that

lim
ϵ→0+

P(A2
ϵ |A1

ϵ) = lim
ϵ→0+

P(A1
ϵ) = 1

then the proof of (⋆⋆) is concluded.

(I) We begin by showing limϵ→0+ P(A1
ϵ) = 1. For all H ∈ HI , we define

EH
ϵ (n) :=

{
H contains ≥ C∗(d)

log( MK
ϵ )σ2K2

ϵ4 for total sample points equal to n

}

where n denotes the total number of samples which was assumed to satisfy: n ≥ C
σ2MdKd+2 log( MK

ϵ )
ϵd+4

for a fixed constant C > 0 (defined explicitly below). Then, considering an arbitrary ordering of
HI := {H1, ..., H|HI |}, we have

P(A1
ϵ) = P

(
∀H ∈ HI , EH

ϵ (n)
)

=
(
EH1

ϵ (n)
) |HI |∏

i=2
P
(
EHi

ϵ (n)
∣∣EH1

ϵ (n), ..., EHi−1
ϵ (n)

)
As the inputs are sampled independently and the elements of HI are disjointed by construction, we have
∀i ∈ {2, ..., |HI |}

P
(
EHi

ϵ (n)
∣∣EH1

ϵ (n), ..., EHi−1
ϵ (n)

)
= P

(
EHi

ϵ (n − (i − 1)C∗(d)
log( MK

ϵ )σ2K2

ϵ4 )
)

.

It trivial to see that ∀i ∈ {1, ..., |Hi|}, P(EHi
ϵ (n)) is increasing in n. Thus, we have

P(A1
ϵ) ≥

|HI |∏
i=1

P

(
EHi

ϵ (n − |HI |C∗(d)
log( MK

ϵ )σ2K2

ϵ4 )
)

.

For ϵ > 0 satisfying ϵ < C1(d)MK, we have I ≤ 2C1(d) MK
ϵ . Therefore, using |HI | = Id ≤ (2C1(d)MK)d

ϵd , we
have

|HI |
C∗(d) log( MK

ϵ )σ2K2

ϵ4 ≤ (2C1(d)MK)d

ϵd

C∗(d) log( MK
ϵ )σ2K2

ϵ4

= (2C1(d))dC∗(d)
MdKd+2 log( MK

ϵ )
ϵd+4 ≤ (2C1(d))dC∗(d)

C
n
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where the last inequality follows from the theorem assumption: n ≥ C
σ2MdKd+2 log( MK

ϵ )
ϵd+4 . Therefore, defining

C̄1 := 2(2C1(d))dC∗(d), setting C ≥ C̄1, and utilising the upper bound derived above, we obtain

|HI |∏
i=1

P

(
EHi

ϵ (n − |HI |C∗(d)
log( MK

ϵ )σ2K2

ϵ4 )
)

≥
|HI |∏
i=1

P
(

EHi
ϵ (n − n

2 )
)

=
|HI |∏
i=1

P
(

EHi
ϵ (n

2 )
)

.

We now consider for all H ∈ HI the computation of P(EH
ϵ ( n

2 )) for which we will derive a lower bound.

For all H ∈ HI , denote MH
I (n) := |{i ∈ {0, ..., n} : xi ∈ H}| the random variable19 that counts the

number of sample inputs in H. As every sample input is sampled uniformly on X and for all H ∈ HI

vol(H) = ( M
I )d ≥ ϵd

(2C1(d)K)d , we have that the probability of a sample input being in H ∈ HI can be
modelled using a Bernouilli random variable with success probability p = vol(H)

vol(X ) ≥ ϵd

(2C1(d)MK)d . Therefore,
MH

I (n) can be modelled as a sum of independent Bernoulli variables with success probability p. From
Lemma 1 of (Stone (1982)), we have

P(MH
I (n) ≤ E[MH

I (n)]
2 ) ≤ (2

e
)

E[MH
I

(n)]
2 .

In order to apply this result, we observe that as C ≥ C̄1 = 2(2C1(d))dC∗(d) (by construction), the following
relations hold:

E[MH
I (n

2 )] = n

2 p ≥
σ2K2 log( MK

ϵ )
ϵ4

C

C1(d)d2d+1 ≥ C∗(d)
log( MK

ϵ )σ2K2

ϵ4

where the rightmost term corresponds to the bound stated in the definition of the EH
ϵ ( n

2 ) events. This implies
that P(EH

ϵ ( n
2 )) can be lower bounded as follows:

P
(

EH
ϵ (n

2 )
)

= P

(
MH

I (n

2 ) ≥ C∗(d)
log( MK

ϵ )σ2K2

ϵ4

)

= 1 − P

(
MH

I (n

2 ) ≤ C∗(d)
log( MK

ϵ )σ2K2

ϵ4

)
≥ 1 − P

(
MH

I (n

2 ) ≤
E[MH

I ( n
2 )]

2

)
≥ 1 − (2

e
)

E[MH
I

( n
2 )]

2

Plugging this expression into the initial bound, we obtain:
|HI |∏
i=1

P
(

EHi
ϵ (n

2 )
)

≥
|HI |∏
i=1

(
1 − (2

e
)

E[MH
I

( n
2 )]

2

)
.

As E[MH( n
2 )] ≥ σ2K2 log( MK

ϵ )
ϵ4

C
C1(d)d2d+1 and |HI | = Id (i.e. both terms increase polynomially with respect

to 1
ϵ ), the above expression can be shown to go to 1 as ϵ goes to 0. This implies that if C ≥ C̄1, then

lim
ϵ→0+

P(A1
ϵ) = 1.

(II) We now show that limϵ→0+ P(A2
ϵ |A1

ϵ) = 1.

By the law of total probability, we can derive:

P(A2
ϵ |A1

ϵ) =
∑

{N̄H
I

}H∈HI
∈VI (n)

P
(
A2

ϵ |{N̄H
I }H∈HI

)
P
(
{NH

I }H∈HI
= {N̄H

I }H∈HI

∣∣A1
ϵ

)

=
∑

{N̄H
I

}H∈HI
∈VI (n)

( ∏
H∈HI

P(H is (δH
I

8 , η)-covered|N̄H
I )
)
P
(
{NH

I }H∈HI
= {N̄H

I }H∈HI

∣∣A1
ϵ

)
19In essence, MH

I (n) = NH
I but makes explicit the dependency on n.
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where VI(n) := {{N̄H
I }H∈HI

∈ N≥c(ϵ)
|HI | :

∑
H∈|HI | NH

I = n} with c(ϵ) := C∗(d) log( MK
ϵ )σ2K2

ϵ4 defined as the
bound stated in A1

ϵ . The second equality follows from the definition of ( δH
I

8 , η)-covered and the disjointness
of the partition. Note that VI(n) is non-empty, i.e. n ≥ c(ϵ)|HI |, due to the inequality: C ≥ C̄1 set in (I).

For an arbitrary {N̄H
I }H∈HI

∈ VI(n), we now focus on lower bounding
∏

H∈HI
P(H is ( δH

I

8 , η)-covered |N̄H
I ).

In order to do so, for each H ∈ HI we define CH
I : the minimal cover of H with balls of radius δH

I

8 with
respect to ∥.∥2 and the associated set of hyperballs: BH

I .

Let I ∈ N, H ∈ HI be arbitrary, without loss of generality, we can assume that CH
I ⊂ H as H is a

hypercube. This implies that for all B ∈ BH
I , vol(B ∩ H) ≥ 2−dvol(B) = 2−dvol(B1(0))( δH

I

8 )d where
vol(B1(0)) corresponds to the volume of the unit ball and is a constant20 that depends on d. Utilising
{BH

I }H∈HI
, we construct the set B̃H

I as follows

B̃H
I :=

{
B̃H

I ⊂ H : ∃BH
I ∈ BH

I such that B̃H
I = H ∩ BH

I

}
.

We have
⋃

B∈B̃H
I

B = H, |B̃H
I | = |CH

I | and for all B ∈ B̃H
I , vol(B) ≥ vol(B1(0))( δH

I

16 )d. Furthermore, by
Theorem 14.2 of (Wu (2017)) , we have

|B̃H | = |CH
I | ≤ (233

δH
I

)d δH
I

d

vol(B1(0)) = 23d3d

vol(B1(0)) .

Clearly, if each set in B̃H
I contains ηNH

I sample inputs, then H is ( δH
I

8 , η)-covered.

For all BH ∈ B̃H , we define the event:

EBH

(N) := {BH contains ≥ ηN inputs if N samples are in H.}.

Then, we can apply the same arguments as the ones given in (I) to obtain:

P
(

H is (δH
I

8 , η)-covered|N̄H
I

)
≥ P

(
∀BH ∈ B̃H : EBH

(N̄H
I )
)

≥
∏

BH ∈B̃H

P
(

EBH

(N̄H
I − η|B̃H |N̄H

I )
)

≥
∏

BH ∈B̃H

P
(

EBH

(
N̄H

I (1 − η
23d3d

vol(B1(0)) )
))

=
∏

BH ∈B̃H

P
(

EBH

(1
2N̄H

I )
)

where the last equality follows from the fact that by assumption, η = vol(B1(0))
23d+13d . Following the same approach

as in (I): we consider the random variables MBH (N) := |{i ∈ {1, ..., N} : xi ∈ BH}| where xi are samples
that are selected uniformly on H. For all BH ∈ B̃H , MBH (N) can be modelled as the sum of independent

Bernouilli variables with success probability: p = vol(BH )
vol(H) ≥ vol(B1(0))(

δH
I

16 )d

δH
I

d = vol(B1(0))
16d and satisfying

E
[
MBH

(N̄H
I

2 )
]

= N̄H
I

2 p ≥ N̄H
I

vol(B1(0))
24d+1 .

Using this inequality, we observe:

ηN̄H
I = vol(B1(0))

23d+13d
N̄H

I ≤ N̄H
I

vol(B1(0))
24d+1 ≤ E[MBH

(N̄H
I

2 )].

Therefore, leveraging the same arguments as the ones utilised in (I), we can apply Lemma 1 of Stone (1982)
to obtain:

P
(

EBH

(1
2N̄H

I )
)

≥ 1 − (2
e

)N̄H
I

vol(B1(0))
24d+2 .

20In fact, a closed form for vol(B1(0)) is known, vol(B1(0)) = π
d
2

Γ( d
2 +1)

.
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By construction, we have that for all ϵ > 0 and I = I(ϵ) ∈ N, {N̄H
I }H∈HI

∈ VI(n) which implies that for all
H ∈ HI , N̄H

I ≥ c(ϵ). Combining this bound with the lower bound derived above, we obtain for all H ∈ HI :

P(H is
(

δH
I

8 , η)-covered|N̄H
I

)
≥

∏
BH ∈B̃H

P
(

EBH

(1
2N̄H

I )
)

≥
∏

BH ∈B̃H

1 − (2
e

)N̄H
I

vol(B1(0))
24d+2

≥
(

1 − (2
e

)c̄(ϵ) vol(B1(0))
24d+2

)|B̃H |

≥
(

1 − (2
e

)c̄(ϵ) vol(B1(0))
24d+2

) 23d3d

vol(B1(0))

.

As the lower bound derived above does not depend on {N̄H
I }H∈HI

∈ VI(n), we plug it into the initial
expression to obtain

∑
{N̄H

I
}H∈HI

∈VI (n)

( ∏
H∈HI

P(H is (δH
I

8 , η)-covered|N̄H
I )
)
P({NH

I }H∈HI
= {N̄H

I }H∈HI

∣∣A1
ϵ)

≥
∏

H∈HI

(
1 − (2

e
)c̄(ϵ) vol(B1(0))

24d+2

) 23d3d

vol(B1(0)) ∑
{N̄H

I
}H∈HI

∈VI (n)

P({NH
I }H∈HI

= {N̄H
I }H∈HI

∣∣A1
ϵ)

=
∏

H∈HI

(
1 − (2

e
)c̄(ϵ) vol(B1(0))

24d+2

) 23d3d

vol(B1(0))

≥
(

1 − (2
e

)c̄(ϵ) vol(B1(0))
24d+2

) 24d3d(C1(d)MK)d

vol(B1(0))ϵd

where the last inequality follows from: for all ϵ > 0 satisfying ϵ < C1(d)MK, we have I ≤ 2C1(d) MK
ϵ

implying |HI | = Id ≤ (2C1(d)MK)d

ϵd . It is relatively straightforward to see that the lower bound derived above
converges to 1 as ϵ goes to 0. Therefore:

1 ≥ lim
ϵ→0+

P(A2
ϵ |A1

ϵ) ≥ lim
ϵ→0+

(
1 − (2

e
)c̄(ϵ) vol(B1(0))

24d+2

) 24d3d(C1(d)MK)d

vol(B1(0))ϵd

= 1.

This shows:
lim

ϵ→0+
P(Ac

ϵ) = 1 − lim
ϵ→0+

P(A2
ϵ |A1

ϵ) lim
ϵ→0+

P(A1
ϵ) = 1 − 1 · 1 = 0

and concludes the proof of Theorem 3.15.

■

Proof of Corollary 3.16 (Finite Sample Guarantee – Gaussian Noise).

The assumptions of Corollary 3.16 imply that the event Aϵ defined in the proof of Theorem 3.15 holds with
constants specified in the statement of the corollary: η ∈ (0, 1) and C1(d) = 16d2√

dd
max{ 1

q
− 1

2 ,0}
√

η .

Therefore, the same arguments as the ones used in the first part of the proof of Theorem 3.15 can be applied
in order to obtain ∀ϵ ∈ (0, C1(d)MK

3 ):

sup
f∈C2(X ,K)

P(|L̂I(f) − L∗
p(f)| > ϵ) ≤ P

(
max

H∈HI

{∥E
[
β̂H

I

∣∣∣GX
I

]
− β̂H

I ∥2} >
ϵ

4nq

)

where we note that as we consider P(|L̂I(f) − L∗
p(f)| > ϵ) instead of P(Loss(xL̂I (f), f) > ϵ), a factor 2

disappears.

This implies that we can consider the statement ∀δ ∈ (0, 1
2 ):

P
(

max
H∈HI

{∥E
[
β̂H

I

∣∣∣GX
I

]
− β̂H

I ∥2} >
ϵ

4nq

)
≤ δ
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in order to show Corollary 3.16.

Let ϵ ∈ (0, C1(d)MK
3 ) and δ ∈ (0, 1

2 ) be arbitrary. Again applying the arguments of Theorem 3.15, with δ,
we obtain that the above expression holds if ϵ ≤ ϵ̄∗ := min(ϵ1, ϵ2, ϵ3) where ϵ1, ϵ2, ϵ3 > 0 depend on δ and ϵ.
We consider each of the epsilon separately:

(ϵ1). By construction, ϵ1 = C1(d)MK
3 and by assumption: ϵ ∈ (0, C1(d)MK

3 ). Therefore, ϵ < ϵ1 holds.

(ϵ2). ϵ2 is set such that the relation: |HI | ≥ 2 log( 1
1−δ ) holds (in order to apply Lemma B.3). Substituting

|HI | = Id and δ ≤ 1
2 into the expression yields:

|HI | ≥ 2 log( 1
1 − δ

) ⇐= Id ≥ 2 log(2).

As ϵ ∈ (0, C1(d)MK
3 ) and I is defined to be I =

⌈
C1(d) MK

ϵ

⌉
, I ≥ 3 and the above holds. Therefore, ϵ < ϵ2

holds.

(ϵ3). ϵ3 is defined such that the following relation holds:

∀H ∈ HI , N̄H
I ≥ σ2K2

C2(d)ϵ4 log( 4|HI |
log( 1

1−δ )
)

where N̄H
I is guaranteed number of samples in H ∈ HI . By the assumptions of Corollary 3.16, we have N̄H

I =
C̃∗(η, d) σ2K2

ϵ4 log( 4
1
d I

log( 1
1−δ )

1
d

) for all H ∈ HI . By construction, C̃∗(d) = 210n2
qC1(d)2d2

η = d
C2(d) . Therefore:

N̄H
I ≥ σ2K2

C2(d)ϵ4 log( 4|HI |
log( 1

1−δ )
) ⇐⇒ N̄H

I ≥ dσ2K2

C2(d)ϵ4 log( 4 1
d I

log( 1
1−δ ) 1

d

)

holds by design for all ϵ ∈ (0, C1(d)MK
3 ) . Therefore, ϵ < ϵ3 holds.

Thus, we have shown: ∀ϵ ∈ (0, C1(d)MK
3 ), δ ∈ (0, 1

2 )

sup
f∈C2(X ,K)

P(|L̂I(f) − L∗
p(f)| > ϵ) ≤ δ.

■

C Proofs: Sample Complexity of Adaptive Lipschitz Optimisation

In this section we prove the lower bound on the sample complexity of certified adaptive Lipschitz optimisation
algorithms given in Section 4.

Proof of Proposition 4.1 (Sample Complexity of Adaptive Lipschitz Optimisation).

Fix ϵ > 0, L∗ ≥ 0 and let A be a non-adaptive certified optimisation algorithm which takes a given Lipschitz
constant L̄ > L∗ as a hyperparameter. Using the notation given in Section 4: with n-queries to the oracle,
A outputs a triplet ((xn, f(x∗

n), ζn))n∈N where xn is the n-th query point, f(x∗
n) is the generated estimate of

maxx∈X f(x) after n queries and ζn ≥ 0 is an error certificate that guarantees: maxx∈X f(x) − f(x∗
n) ≤ ζn.

From Theorem 3 of Bachoc et al. (2021) with ϵ0 < 2d−1ML∗ (this follows from the fact that X is a
hypercube), we have that for all f ∈ {h : X → |h is Lipschitz cont. and L∗

p(h) < L̄}:

N(A, f, ϵ) ≥
cdL∗d(1 − L∗

L̄
)d

1 +
⌈
log2( ϵ0

ϵ )
⌉ ∫

X

dx

(f(x∗) − f(x) + ϵ)d
. (5)

where cd > 0 (It is important to note that the term cdL∗d is not optimised in (Bachoc et al. (2021)) and
could be improved in future work). Now, consider an adaptive Lipschitz optimisation algorithm Ã with a

44



Published in Transactions on Machine Learning Research (09/2023)

separable Lipschitz constant estimator L̃Ã(f). If L̃Ã(f) can be guaranteed to be feasible (e.g. see discussion
after Corollary 3.13) then equation (5) holds for Ã and ∀f ∈ C2(X , K) ∩ Fp(L∗) with L̄ replaced by L̃Ã(f)
21. The precision at which L̃Ã(f) estimates L∗(f) therefore directly impacts the lower bound on N(Ã, f, ϵ).
From the Corollary 2.3 given in Section 2, we have that ∀n ∈ N, any Lipschitz learning algorithm L̃ ∈ Ln,p

that guarantees feasible Lipschitz constants must satisfy

sup
f∈C2(X ,K)∩Fp(L∗)

L̃(f) − L∗ ≥ C
MK

d
√

n
.

for some C > 0. This implies that for all A ∈ A, there exists a non-empty set GA ⊂ C2(X , K) ∩ Fp(L∗)
such that ∀f∗ ∈ GA, L̃A(f∗) − L∗ ≥ C

2
MK

d
√

n
. Then, denoting I(f) := cdL∗d

1+⌈log2( ϵ0
ϵ )⌉

∫
X

dx
(f(x∗)−f(x)+ϵ)d in order

to alleviate notation, we have ∀A ∈ A,

N(A, ϵ) := sup
f∈C2(X ,K)∩Fp(L∗)

N(A, f, ϵ) ≥ sup
f∈C2(X ,K)∩Fp(L∗)

{
(1 − L∗

L̃A(f)
)dI(f)

}

≥

1 − L∗

L∗ + C
2

MK
d
√

N(A,ϵ)

d

sup
f∈GA

{
I(f)

}
.

Re-arranging the terms in the above expression, we can obtain:

C

2 MK sup
f∈GA

{
d
√

I(f)
}

≤ L∗( d
√

N(A, ϵ))2 + C

2 MK d
√

N(A, ϵ)

which can be solved to give the lower bound

d
√

N(A, ϵ) ≥ C1
MK

L∗ (

√
1 + C1

L∗ supf∈GA

{
d
√

I(f)
}

MK
− 1)

where C1 > 0 is a constant. In order to conclude the proof, a lower bound on supf∈GA

{
d
√

I(f)
}

is needed. To
do so, we note that I(f) is minimised when f is constant. We therefore consider the set of functions F0 defined
in the proof of Theorem 2.2. From the proof of Theorem 2.2, we have that if N(A, ϵ) ≤ ( MK

L∗ )d( C2
2 )d, then

L∗ ≤ C2
2

MK
d
√

N(A,ϵ)
which implies F0( (L∗)2

0.8K , 0.8
7.75 ( K

L∗ )2) ⊂ GA. Using f(x∗) = (L∗)2

0.8K , ∀f ∈ F0( (L∗)2

0.8K , 0.8
7.75 ( K

L∗ )2),
we obtain the lower bound:

sup
f∈GA

{
I(f)

}
≥ cdL∗d

1 +
⌈
log2( ϵ0

ϵ )
⌉ VX

(ϵ + (L∗)2

0.8K )d
.

Therefore, if N(A, ϵ) ≤ ( MK
L∗ )d( C2

2 )d, the above expression can be plugged into the lower bound on d
√

N(A, ϵ).
We obtain

d
√

N(A, ϵ) ≥ C1
MK

L∗ (
√√√√1 + C3

1
d

√
(1 +

⌈
log2( ϵ0

ϵ )
⌉
)( ϵK

L∗2 + 1)
− 1)

(for some constant C3 > 0) which corresponds to the first half of the lower bound stated in the Proposition
4.1. In order to derive the second part of the expression, we consider the case where N(A, ϵ) > ( MK

L∗ )d( C2
2 )d.

In this case, an alternative lower bound on supf∈GA

{
I(f)

}
needs to be derived. In order to do so, we

consider the following class of functions,

{g : X ⊂ Rd → R|∀x ∈ X , g(x) = f(x) + (L∗ − C2

2
MK

d
√

N(A, ϵ)
)x1 where f ∈ F0

(
(L∗)2

0.8K
,

0.8
7.75( K

L∗ )2
)

}

which belongs to GA by construction. However, as obtaining a tight lower bound on supf∈GA

{
d
√

I(f)
}

is technically infeasible for this class, we simplify the problem by removing the functional input from
21Note: this is only possible as we are considering adaptive Lipschitz optimization algorithms which are separable.
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F0( (L∗)2

0.8K , 0.8
7.75 ( K

L∗ )2) and considering the simple linear function f∗ : X ⊂ Rd → R, f∗(x) = L∗x1 which
belongs trivially to GA. In this case, we can compute the lower-bound

sup
f∈GA

{
I(f)

}
≥ cd

L∗d+1Md−1

(1 +
⌈
log2( ϵ0

ϵ )
⌉
)ϵd−1 (d − 1)

( LM
ϵ + 1)d−1 − 1
( LM

ϵ + 1)d−1 ≥ cd(d − 1)
2

L∗d+1Md−1

(1 +
⌈
log2( ϵ0

ϵ )
⌉
)ϵd−1

where the last inequality follows from the fact that LM ≥ ϵ since ϵ ∈ (0, ϵ0). Plugging this expression into
the lower bound on d

√
N(A, ϵ), we obtain

d
√

N(A, ϵ) ≥ C1
MK

L∗ (

√√√√1 + C4
L∗2

ϵK
d

√
L∗(d − 1)ϵ

M(1 +
⌈
log2( ϵ0

ϵ )
⌉
)

− 1)

(for some constant C4 > 0) which corresponds to the second half of the lower bounding expression. Note:
in the statement of the proposition we simply set C2 = min(C3, C4) as the used constant.

■
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