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ABSTRACT

We study neural network compressibility by using singular learning theory to ex-
tend the minimum description length (MDL) principle to singular models like
neural networks. Through extensive experiments on the Pythia suite with quanti-
zation, factorization, and other compression techniques, we find that complexity
estimates based on the local learning coefficient (LLC) are closely and, in some
cases, linearly correlated with compressibility. Our results provide a path toward
rigorously evaluating the limits of model compression.

1 INTRODUCTION

A central challenge in deep learning is to measure a model’s complexity, that is, the amount of infor-
mation about the dataset that is encoded in its parameters. This cannot be trivially derived from the
loss because there are ways to achieve a given level of loss that involve different quantities of infor-
mation: for example, the network can memorize the training data (encoded using a relatively large
fraction of its weights) or discover a general solution (encoded using a small number of weights).
A measurement that could distinguish these two kinds of solutions would be useful, for example, in
predicting how a network will behave out of distribution. How then are we to measure this quantity?

One simple practical answer involves compression: given a loss tolerance ϵ > 0 and some compres-
sion scheme with parameter P (such that larger P means more compression) let Pmax be the amount
of compression that increases the loss from its original value L up to the threshold L+ ϵ. Intuitively,
if the network encoded its solution to the constraints in the data using a small fraction of its weights,
then it could “withstand” a large amount of compression and Pmax will be large. If the network has
used all of its capacity to encode the solution then we expect Pmax to be small. Given the practical
importance of compression techniques like quantization, this seems like a useful measure of model
complexity. However, the theoretical status of this notion of “compressibility” is a priori unclear.

The informal relationship between compressibility and complexity goes back to LeCun et al. (1989);
Hochreiter and Schmidhuber (1997) and has been the basis for theoretical bounds on generalization
error (Arora et al., 2018). It is clear that compressibility in the above sense must be related to ideas
like minimum description length (MDL) (Grünwald and Roos, 2019). In this paper we investigate
the relation between various practical compression schemes and MDL via singular learning theory
(SLT) (Watanabe, 2009) and the estimator for a measure of model complexity known as the local
learning coefficient (Lau et al., 2024) and in this way provide some theoretical basis for the intuitive
connection between compressibility and complexity in the setting of deep learning.

Contributions. We make the following contributions:

• We derive a singular MDL principle (Section 3): Using ideas from singular learning
theory (SLT; Watanabe 2009), we extend the minimum description length (MDL; Grünwald
and Roos 2019) principle to neural networks and prove that there is a two-part code for
which the asymptotic redundancy involves the local learning coefficient (LLC; Lau et al.
2024), a measure of model complexity from SLT. In contrast to the classical treatment of
MDL, where geometric invariants like the curvature determined by the Hessian appear in
the description length, the important geometric feature in the singular case is degeneracy
(Figure 1).
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Classical MDL: For regular models, curvature determines volume. Singular MDL: For NNs, degeneracy determines volume.
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Models that occupy 
more volume in the 
loss landscape are 
easier to compress.

Figure 1: Loss landscape volume determines model compressibility. We generalize the minimum
description length (MDL) principle to singular models like neural networks, which exhibit redun-
dancy in their loss landscape (right two panels). This redundancy, or “degeneracy”, is the leading
order contribution to model compressibility — not the curvature as determined by the Hessian (left
two panels). From left to right: (1) regular model with symmetric quadratic loss; (2) regular model
with elliptical quadratic loss showing different curvatures along principal axes; (3) minimally singu-
lar model with a redundant parameter, creating a valley of degenerate optima; (4) “normal-crossing”
singularity showing higher order degeneracy.

• We compare the LLC to compressibility: in the setting of compression via quantization
and factorization we study empirically the relation between compressibility and the LLC,
by plotting them against each other for a range of models form the Pythia family up to 6.9B
parameters, across training checkpoints. As expected we find that models with larger LLCs
tend to be less compressible. For quantization we observe a particularly close relationship:
over a large fraction of training steps there is a linear relationship between the estimated
LLC and the compressibility measured in bits.

From these results we draw two main conclusions. Firstly, the informal notion of compressibility as
a measure of model complexity is consistent with the LLC estimate, which has a sound theoretical
foundation. Secondly, compressibility in Pythia models serves as an independent check on the
practice of using LLC estimates for models at these scales; this is valuable since we lack theoretical
knowledge of the true LLC for large transformer models (see Appendix D.2).

2 RELATED WORK

Network compression in deep learning. There is a large literature on model compression, which
is evolving rapidly. A standard reference is Han et al. (2016), and newer surveys include Hoefler
et al. (2021); Wang et al. (2024b). It has long been recognized that the “effective dimension” of deep
neural networks is typically much smaller than the number of parameters (Maddox et al., 2020). This
is widely understood as one reason why model compression is possible (LeCun et al., 1989; Hassibi
et al., 1993; Denil et al., 2013). Pruning models by discarding small magnitude weights, or using the
spectrum of the Hessian to determine low saliency weights, coupled with the empirical success of
such pruning methods, has led to an informal working understanding of effective dimension in terms
of “how much compression can be done without sacrificing too much performance.” Nonetheless,
the theoretical basis for using, e.g., the Hessian spectrum to determine effective dimension remains
weak. The existence of “lottery tickets” (that is, sparse and trainable subnetworks at initialization)
also suggests a large degree of redundancy in the final trained parameter (Frankle and Carbin, 2019).

Intrinsic dimension of fine-tuning. Related to, but distinct from, the low effective dimension of
trained neural networks is the low observed “intrinsic dimension” of fine-tuning pretrained LLMs
(Li et al., 2018). Here the intrinsic dimension refers to the minimum dimension of a hyperplane
in the full parameter space in which the fine-tuning optimization problem can be solved to some
precision level. This can be many orders of magnitude smaller than the full dimension; for example,
Aghajanyan et al. (2021) note that 200 parameters are enough to solve a fine-tuning problem for a
RoBERTa model (with 335M parameters) to within 90% performance of the full model. This obser-
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vation that the update matrices in LLM fine-tuning have a low “intrinsic rank” led to the introduction
and widespread usage of low-rank adaptation for fine-tuning (Hu et al., 2022). The relation of this
intrinsic dimension to the effective dimension of the full pretrained model is unclear.

For additional related work see Appendix A.

3 THEORY: SINGULAR MDL

MDL is the canonical theoretical framework that relates compressibility and model complexity. The
idea of measuring the complexity of a trained model or at a given local minimum of the population
loss landscape is well-known in the literature on MDL (Grünwald and Roos, 2019) and was used
by Hochreiter and Schmidhuber (1997) in an attempt to quantify the complexity of a trained neural
network. However, these classical MDL treatments make the assumption that models are “regular”
meaning that the parameter-to-distribution map, w 7→ pw, is one-to-one (which implies that there is
a unique global minimum) and that the Fisher information matrix, I(w) is everywhere non-singular
(middle-left panel of Figure 2). Since this assumption is invalid for neural networks, the resulting
theory does not apply. In this section, we start from the MDL principles and use insights from SLT
to extend its applicability to singular models like ANNs.

3.1 SETUP

Let X denote a sample space and let q(n) ∈ ∆(Xn) be an unknown data-generating distribution on
the space of X -sequences x(n) = (x1, . . . , xn) ∈ Xn of length n ∈ N. We assume that X is finite
(e.g., the token vocabulary for modern transformer language models). Any distribution p(n) on Xn

gives rise to a prefix-free (thus uniquely decodable) encoding, Jx(n)Kp(n) , for any x(n) ∈ Xn with
code length given by len

(
Jx(n)Kp(n)

)
= − log p(n)

(
x(n)

)
. Conversely, every prefix-free encoding

can be used to define such distributions (Kraft, 1949; McMillan, 1956), which we shall call an
encoding distribution.

A central observation of the MDL principle is that any statistical pattern or regularity in q(n)

can be exploited to compress samples x(n) of q(n). If a learning algorithm can extract these
regularities through only samples x(n), then it has implicitly learned a good compression of
x(n). This is the oft-invoked principle of “learning as compression”. Throughout, we will con-
sider learning machines with a finite-dimensional parameterized statistical models, denoted as
M =

{
p
(n)
w ∈ ∆(Xn) | w ∈W

}
where W ⊂ Rd is a compact d-dimensional parameter space.

An important example for this work is the case of modern auto-regressive language models where
x(n) are the token sequences and the model p(n)w takes the form

p(n)w (x(n)) = pw(x1)pw(x2|x1)pw(x3|x1, x2) . . . pw(xn|x1, . . . , xn−1)

for some learned sequence-to-next-token model pw, such as a transformer (Vaswani et al., 2017).1
For exposition, we will focus on the case where both the data and model are independent and iden-
tically distributed (i.i.d., see discussion of assumptions in Appendix F). This means that, for every
n ∈ N, the data distribution and model distribution on Xn are respectively given by

q(n)
(
x(n)

)
=

n∏
i=1

q(xi) and p(n)w

(
x(n)

)
=

n∏
i=1

pw(xi)

for some unknown q and model {pw}. Under such assumptions, the unique minimum average code
length in the long-run (large n) is achieved by setting the data generating distribution itself as the
encoding distribution, i.e., setting p(n) = q(n). The expected per-symbol excess length compared to
this minimum is measured by the Kullback-Leibler (KL) divergence,

DKL (q∥pw) := Ex∼q

[
log

1

pw(x)

]
− Ex∼q

[
log

1

q(x)

]
= H (q, pw)−H(q),

where H denotes the (cross-)entropy. We will call the first parameter-dependent term above the
population loss and denote it as L(w). Note that the empirical estimate of L given by Ln(w) =

1This is an example of what is known as prequential code in MDL literature.
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− 1
n

∑n
i=1 log pw(xi) is the usual per-token cross-entropy criterion used for training modern trans-

former network, also known as the average negative log-likelihood at w.

3.2 TWO-PART CODES

We will focus on the case of two-part codes to clarify the underlying geometrical phenomenon and
explain the direct relevance to neural network compression. To communicate with two-part codes,
the sender and receiver agree to first communicate an encoding distribution p by sending some
encoded representation JpK, before sending the data encoded with p, Jx(n)Kp. Once p is received,
the receiver can reconstruct the encoding distribution and decode any message encoded with p. The
result is a message of length

len(JpK) + len(Jx(n)Kp) = len(JpK) +
n∑

i=1

log
1

p(xi)
.

One measure of code performance, known as redundancy, is defined to be the excess code length as
compared to the encoding generated using the data distribution itself as encoding distribution. So, if
the data is drawn i.i.d. from q, then the redundancy of the two-part code is given by

Rn := len(JpK) + len(Jx(n)Kp)−
∑
i

log
1

q(xi)
= len(JpK) +

∑
i

log
q(xi)

p(xi)
. (1)

Notice that if the chosen encoding distribution p is sufficiently good in the sense of having small
KL-divergence, Eq

[
log q(x)

p(x)

]
= DKL (q∥p), from q, then it is worth paying len (JpK) bits to obtain

a cheap encoding for samples drawn from q.

Suppose the sender and receiver have a shared knowledge of a finite dimensional statistical model
(e.g. a neural network architecture). This allow them to communicate using codes specific to the
biases implicit in the model architecture. In other words, the model provides an implicit prior on
the set of distributionsM, allocating codes of varying length depending on which hypotheses are
considered simple or complex.

To the state the main theorem let M =
{
pw ∈ ∆̊m(X ) : w ∈W ⊂ Rd

}
be a statistical model

of finite dimension d ∈ N. We will assume some technical conditions on the model laid out in
Appendix (E.1). In particular, we require that all distributions in our models are in the restricted
simplex ∆̊m(X ) of uniformly lower bounded distributions where given m > 0 and a distribution p

over X we say p ∈ ∆̊m(X ) if minx∈X p(x) ≥ m.
Theorem 1. There exists a two-part code such that, for any realizable data generating distribution
q ∈M and dataset x(n) drawn i.i.d. from q, the asymptotic redundancy is

Rn = λ log n− (m− 1) log log n+Op(1)

where λ is the learning coefficient of q for the model and m is the multiplicity.

We refer to Watanabe (2009) for the definition of the learning coefficient λ and multiplicity m.

To establish this result, we need to specify a way for the sender to communicate a specific hypothesis
or distribution p in the model. We note that a model generally contains uncountably many distinct
distributions, yet any parameter encoding can specify at most countably many. Thus, discretization
is needed. We assume the sender and receiver have a way to construct, for any ϵ > 0, shared
finite sets Qϵ = {p1, p2, . . . , pNϵ

} ⊂ M such that any p ∈ M belongs to some set of the form
Pϵ(p

∗) := {p ∈M : DKL (p∥p∗) ≤ ϵ} where p∗ ∈ Qϵ
2. Let us define (R for Reversed)

V R
p (ϵ) := Vol ({w ∈W : DKL (pw∥p) ≤ ϵ}) .

Given p ∈ M, we assume a consistent and shared algorithm for choosing3 p∗ ∈ Qϵ such that
p ∈ Pϵ(p

∗) and V R
p∗(ϵ) = max

{
V R
p′ (ϵ) | p′ ∈ Qϵ and p ∈ Pϵ(p

′)
}

.

2This is a finite ϵ-net of the model in distribution space.
3breaking ties consistently when needed
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Observe that this produces a partition of the model, M, with each set in the partition represented

by a grid point p∗ in Qϵ
4. We will then assign probability5 ≈ V R

p∗ (ϵ)

Vol(W ) to p∗ and therefore a code of
length

len(Jp∗K) := log
Vol(W )

V R
p∗
n
(ϵ)

.

Notice that this is very different from putting the uniform distribution on M (e.g. by using the
Jeffrey’s prior on W if M is regular). We are deliberately assigning shorter codes to hypotheses
p∗ ∈ Qϵ that are simpler according to the model’s own implicit bias: a hypothesis is simpler to state
relative to a given model if it takes up more parameter volume (requires lower parameter-precision
to specify its distribution) up to ϵ error tolerance.

With such a construction, we can now calculate the two-part code length with respect to some
model M for i.i.d. data drawn from data distribution q that is realizable (q ∈ M) and satisfies
assumptions in Appendix (E.1). Let p̂ = argminp∈M

∑n
i=1 log

1
p(xi)

be the maximum likelihood
distribution and define p∗n be the grid point in Qϵ closest to p̂, p∗n := argminp∈Qϵ

DKL (p̂∥p). To
send the data x(n) we send the encoding of p∗n and the data encoded with this distribution. Writing
Kn(p) =

1
n

∑n
i=1 log

q(xi)
p(xi)

the redundancy of the code at tolerance ϵ is given by

Rn = log
Vol(W )

V R
p∗
n
(ϵ)

+ nKn(p
∗
n) (2)

= log
Vol(W )

V R
p∗
n
(ϵ)

+ nDKL (q∥p∗n)︸ ︷︷ ︸
(⋆)

+ n(Kn(p
∗
n)−DKL (q∥p∗n)) . (3)

Now, we introduce a dependency of the tolerance on n by ϵn = a
n for some a > 0. With this

assumption, both nDKL (q∥p∗n) and n(Kn −DKL (q∥p∗n)) are Op(1) by Theorem 5 and Theorem 3
respectively. Therefore, the redundancy is given asymptotically by

Rn = − log V R
p∗
n
(ϵn) +Op(1).

In (3) we see a fundamental tradeoff: decreasing the error tolerance ϵ (a finer grid) decreases the
excess code length (⋆) because we can find a grid point p∗n closer to p̂ and thus q, but decreasing
the tolerance will also decrease the volume V R

p∗
n
(ϵ) and thus increase the cost for communicating

p∗n. Similar to the case for regular models (see for example Balasubramanian (1996)), the optimal
grid size for data set of size n scale as ϵn = O

(
1
n

)
: any higher order rate of decay for ϵn implies

a finer distinguishability of grid points than the number of data points n can justify (the MLE itself
has DKL (q∥p̂) = Op(1/n), see further discussion in Appendix E.4).

It remains to determine the behavior of the V R
p∗
n
(ϵn). One difficulty is that the center p∗n is a random

variable depending on data and changes with ϵn. However, it is also clear that, as ϵn → 0, p∗n
approaches in KL-divergence to the data generating distribution q. Furthermore, the relevant volume
will also be similar to that of the set of parameter where pw is close to q defined by Vq(ϵ) :=
Vol ({w ∈W : DKL (q∥pw) ≤ ϵ}). Theorem 4 shows that there exist C > 0 such that for any
ϵ > 0 and p∗ ∈M such that DKL (q∥p∗) ≤ ϵ we get

Vq (ϵ) ≤ V R
p∗(Cϵ) ≤ Vq

(
C

2
(C + 1)ϵ

)
. (4)

This allows us to make conclusions about V R
p∗(ϵ), for p∗ such that DKL (q∥p∗) ≤ ϵ, by investigating

Vq(ϵ). To do that, we invoke a central result of SLT:

4possibly a smaller set, in which case we take Qϵ to be this non-redundant set. Ideally, we would like a tight
ϵ-KL-sphere packing. If M is a subset of the interior of ∆(X ) simplex, itself, with non-empty interior, we can
use construction similar to Balasubramanian (1996) to obtain such an ϵ-net.

5this is only an approximate equality because the true volume should be the volume of the partitions instead
of those of the ϵ-nets. However, their difference can be made small via careful selection of centers p∗ and
sphere packing arguments.
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Theorem 2 ((Watanabe, 2009; Arnold et al., 2012)). Let f : W → R≥0 be a non-negative analytic
function. Then there exist λ ∈ Q and m ∈ N, such that the volume of the ϵ-sublevel sets is given by
Vol ({w ∈W : f(w) ≤ ϵ}) ∼ c ϵλ (− log ϵ)

m−1 as ϵ→ 0 for some constant c > 0.

Applying this theorem to the map w 7→ Vq(ϵ) and using Equation (4), we get

cϵλ (− log ϵ)
m−1 ≤ V R

p∗(Cϵ) ≤ c

(
1

2
C(C + 1)

)λ

ϵλ
(
− log ϵ− log

1

2
C(C + 1)

)m−1

.

Using the fact that (− log ϵ+ a)m−1/(− log ϵ)m−1 → 1 as ϵ→ 0 for any a ∈ R, we conclude there
exist c′, c′′ > 0 such that for sufficiently small ϵ,

c′ϵλ (− log ϵ)
m−1 ≤ V R

p∗(Cϵ) ≤ c′′ϵλ(− log ϵ)m−1. (5)

This in turn implies6

− log V R
p∗(ϵ) = λ log

1

ϵ
− (m− 1) log log

1

ϵ
+Op(1). (6)

Finally, recalling that we took grid scale to be ϵn = a/n. For sufficiently large a > 0, this implies
that DKL (q∥p∗n) ≤ ϵn with high probability by Theorem 5. Therefore, the result about in Equation
(6) applies and plugging in expression for ϵn, we get

Rn = λ log n− (m− 1) log logm+Op(1)

which concludes the proof for Theorem 1. Notice that the leading order terms above can be in-
terpreted as model complexity: it is the code length required to communicate a sufficiently good
encoding distribution p∗n in the model while maintaining an O(1) excess length for the encoded
message even when the number of sample n→∞.

We remark that Theorem 2 is a consequence of the celebrated theorem on the resolution of singu-
larities by Hironaka (1964). The scaling exponent λ is known as the real log canonical threshold
(RLCT) of the analytic function w 7→ DKL (q∥pw) and m is its multiplicity. Watanabe (2009) was
the first to make use of the resolution of singularities and thereby connect these geometrical invari-
ants to statistical learning, showing that λ log n gives the leading-order term for model complexity
and λ

n gives the leading-order term for generalization error in Bayesian learning. In machine learning
context, λ is refer to as the learning coefficient. For regular models, the sublevel sets looks ellip-
soidal (Figure 2 top-left), with volume ∼ ϵd/2 and thus the learning coefficient is λ = d

2 where d is
the parameter count. Its multiplicity is m = 1. Indeed, there are simpler two-part code construction
for regular model that achieves Rn = d

2 log n+Op(1) by just having regular rectangular grid in W

of scale O
(

1√
n

)
(corresponding to KL-divergence scale of O(1/n) in the space of distributions).

Observe that this leading order behavior of Rn for regular model is independent of data distribution
q. For singular model, λ < d

2 , which means models can potentially be much more compressible
than their explicit parameter count suggests. Figure 2 (top-middle and top-right) illustrates how the
sublevel sets can have complex geometry with degeneracies, resulting in larger sublevel set volume
that allow for higher level of compressibility.

3.3 RELATION TO COMPRESSIBILITY

In the previous section we established the existence of a two-part code in which the leading term
of asymptotic redundancy (excess code length compared to the encoding which we would use if we
knew the true data distribution) is λ log n where λ is the learning coefficient.

This is directly related to compression (Grünwald and Roos, 2019) as it tells us the number of bits
needed to communicate a set of samples x(n) between a sender and receiver who share a statistical
model. This MDL perspective captures the idea that a model class which allows for simpler repre-
sentations of a given data distribution (smaller λ) offers better compression of its samples. However,
it remains to explain how any given practical compression scheme (e.g. quantization) fits into this

6note that Equation (5) shows that
V R
p∗ (Cϵ)

V R
p∗ (ϵ)

= O(1) for ϵ → 0.
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Figure 2: Degeneracy determines volume and compressibility Left: The relationship between
error tolerance (ϵ) and the number of bits required to encode parameters for three different model
geometries shows that the volume-scaling exponent λ (“local learning coefficient,” LLC) deter-
mines compressibility. Right three panels show level set contours of the respective loss landscapes
at ϵ = 2, . . . , 2−8 (same as in Figure 1). 1. Regular: A model with elliptical level sets requiring
approximately d/2 log(1/ϵ) bits (λ = 1 for d = 2) to specify a point within tolerance ϵ. 2. Mini-
mally Singular: A model with free parameter, requiring only (d − 1)/2 log(1/ϵ) bits (λ = 1/2 for
d = 2) due to degeneracy along the w2 direction. 3. Singular: A model exhibiting a more complex
geometric structure requiring approximately λ log(1/ϵ) bits, with λ = 1/4.

story. In this section we provide a less formal argument based on the concepts introduced in the
previous section which aims to explain this connection in a straightforward way.

From a mathematical perspective parameters live in a continuous space W ⊆ Rd, but any realization
in a computer uses some kind of grid with spacing h > 0. Fix a local minimum w∗ of the population
loss L and define the local excess loss K(w) = L(w) − L(w∗). We consider only parameters in
a neighborhood near w∗ that is small enough that K(w) is non-negative. Invoking the sublevel-set
volume law (Theorem 2), there exist numbers λ(w∗) and m(w∗) such that

V (ϵ) := Vol ({w ∈W : K(w) ≤ ϵ}) ∼ cϵλ(w
∗)
(
− log ϵ

)m(w∗)−1
. (7)

Here λ(w∗) and m(w∗) are known as the local learning coefficient (LLC) and multiplicity, intro-
duced in Lau et al. (2024). Our in the remainder of this section is to connect the resolution h to the
loss tolerance ϵ through the LLC λ(w∗).

Consider the quantization cell Ch(w) = {u : ∥u − w∥2 ≤ h/2} around a parameter w with a
volume proportional to hd. To guarantee that quantization does not increase excess loss beyond ϵ,
it is sufficient that the cell containing w∗ be contained in the ϵ-sublevel set around w∗. A surrogate
for this containment is the volume condition Vol(Ch) ≤ V (ϵ) or

hd ≤ ϵλ(w
∗)
(
log 1

ϵ

)m(w∗)−1
. (8)

If we write nq for the number of intervals for each coordinate in our grid, then this behaves like
1/h. We denote by h∗ and n∗

q the level of quantization that reaches the loss tolerance ϵ and therefore
makes (8) an equality. Hence, writing the per-coordinate bit budget as b∗(ϵ) = log2 n

∗
q we have

b∗(ϵ) =
λ(w∗)

d
log2

1

ϵ
+O

( log log(1/ϵ)
d

)
. (9)

Thus, for a fixed loss tolerance ϵ the critical bits per coordinate grows linearly with the LLC. Intu-
itively with larger λ (less degeneracy), the admissible basin is smaller, so smaller cells (finer grids,
more bits) are needed to keep the entire cell inside the basin. This is illustrated in Figure 2.

4 METHODOLOGY

In order to complement the theory on the singular MDL principle, we study how compressibility
relates to local learning coefficient (LLC) estimates in practice. In the main text we focus on quan-
tization (Section 4.1). In the appendices, we also treat tensor factorization (Appendix C.2), pruning
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(Appendix C.5) and adding Gaussian noise to the model parameters (Appendix C.4). For estimating
the LLC, in Section 4.2, we describe a preconditioned variant of the estimator in Lau et al. (2024).

4.1 QUANTIZATION

We quantize models using a symmetric quantization scheme that includes 0. Given nq ∈ 2Z>0 and
m > 0 we divide the intervals [0,m] and [−m, 0] into 1

2nq intervals of length ∆ = m/( 12nq − 1) so
that in each interval there are 1

2nq possible values lying at the endpoints of subintervals (including
0 and ±m). Combining these to form [−m,m] and accounting for double counting of 0 there are
nq intervals and nq − 1 possible quantized values. To quantize a parameter w ∈ W ⊆ Rd with
w = (w1, . . . , wd) means firstly to “clamp” each wi to the interval [−m,m] and then round these
values to the nearest quantized value in this interval according to the above subdivision. More
precisely we define wquant

i := round
[
wi

∆

]
∆ and wquant = (wquant

1 , . . . , wquant
d ). Note that specifying

each wquant
i requires log2(nq) bits.

In Section 5 we treat m as a free parameter and search for a value that minimizes the loss of the
quantized model. This is our baseline method, inspired by a more sophisticated approach in Cheong
and Daniel (2019) where they allow for non-evenly spaced quantization intervals.

The increase in loss caused by quantization is a function ∆Loss = Ln(w
quant) − Ln(w) of nq and

w. This is typically larger when nq is smaller. We measure the compressibility of a language model
with parameter w by finding the smallest nq with ∆Loss(w) ≤ ϵ and call this value the critical
nq and denote it n∗

q . When n∗
q is large the model is less compressible (we hit the threshold with a

smaller amount of compression), and conversely when n∗
q is small the model is more compressible.

In Appendix C.3 we show results of the cruder quantization method of setting m to the largest
parameter absolute value, which is equivalent to the scheme used by Kumar et al. (2025).

4.2 LLC ESTIMATION

We consider a transformer neural network that models the conditional distribution p(y|x;w) of out-
puts y (next tokens) given inputs x (contexts), where w ∈W represents the network parameters in a
compact parameter space W . Given samples Dn from a true distribution with associated empirical
loss Ln, we define the estimated local learning coefficient at a parameter point w∗ to be:

λ̂(w∗) = nβ
[
Eβ
w|w∗,γ [Ln(w)]− Ln(w

∗)
]
, (10)

where Eβ
w|w∗,γ is the expectation with respect to the Gibbs posterior (Bissiri et al., 2016),

p(w|w∗, β, γ) ∝ exp
{
−nβLn(w)−

γ

2
∥w − w∗∥22

}
. (11)

The hyperparameters are the sample size n, the inverse temperature β, which controls the contribu-
tion of the loss, and the localization strength γ, which controls proximity to w∗. For a full account
of these hyperparameters, we refer the reader to Watanabe (2013); Lau et al. (2024); Hoogland et al.
(2025). Our LLC estimation procedure uses the preconditioned stochastic gradient Langevin dy-
namics (pSGLD) algorithm (Li et al., 2015). This combines RMSNorm-style adaptive step sizes
with SGLD (Welling and Teh, 2011). For more details on LLC estimation and its uncertainties, see
Appendix D.

5 RESULTS

In this section we give experimental results relating compressibility under quantization with LLC
estimates. For results on tensor factorization see Appendix C.2. As explained in Section 4.1, given
a loss threshold ϵ we measure compressibility by the critical number of quantization intervals n∗

q at
which the increase in loss ∆Loss hits the threshold.

In Figure 3, left side, we show the increase in loss due to compression as a function of the number
of quantized values, nq . We observe the loss curves featuring a knee at a loss increase of around
ϵ = 0.5, and we therefore choose this as our loss tolerance. In the appendix, we show a selection
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Figure 3: Sensitivity of Pythia models of different sizes to quantization. On the left, we show the
loss increase as a function of nq , with the black dashed line indicating our choice of loss tolerance
ϵ = 0.5. On the right, we show the critical nq , i.e. the nq for which ∆Loss = ϵ as a function of the
LLC for different training checkpoints of Pythia models. The transparent points are not included in
the linear fits. The checkpoints increase with the LLC, that is, training time moves from left to right
along all curves.

of other ϵ values, showing that they lead to similar results. In the panel to the right, we observe the
critical nq increasing linearly with the LLC for a large range of training steps, as expected from (9).
We find a linear fit with R2 = 0.98 for all the shown models. In Appendix C.1 we show results
for additional Pythia models, showing that these also feature ranges of training checkpoints with a
linear relation between critical nq and LLC.

6 CONCLUSION

We have established a theoretical foundation for understanding neural network compression through
the lens of singular learning theory, extending the minimum description length principle to account
for the degenerate geometry of neural network loss landscape. Our experiments demonstrate that
the local learning coefficient (LLC) provides a principled measure of compressibility, with model
checkpoints featuring larger estimated LLC proving to be less resistant to compression across mul-
tiple compression techniques including quantization and factorization.

The strong linear relationships observed between LLC estimates and critical compression thresh-
olds for quantization (R2 ≥ 0.98) is an independent check that our current SGLD-based estimates
are capturing meaningful information about model complexity for transformer models up to 6.9B
parameters. This is an encouraging signal for applications of SLT to large neurl networks, but signif-
icant methodological challenges remain for LLC estimation and similar techniques. The sensitivity
of LLC estimates to hyperparameters and the likely gap between estimated and true values represent
the primary limitations of our current framework.

Looking forward, the field is advancing along two complementary paths that will eventually con-
verge. From one direction, practical compression techniques continue to improve, pushing closer to
theoretical limits. From the other direction, the developing science of LLC estimation offers a path
toward more accurate estimation of these limits. As these approaches converge, we will gain precise
understanding of both the fundamental limits of compression and how closely practical techniques
are approaching them.
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Boston, Secaucus, NJ, 2012 edition, May 2012.

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. In International conference on machine learning, pages
254–263. PMLR, 2018.

Vijay Balasubramanian. A geometric formulation of occam’s razor for inference of parametric
distributions. arXiv [adap-org], January 1996.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pages 2397–2430. PMLR, 2023.

Pier Giovanni Bissiri, Chris C Holmes, and Stephen G Walker. A general framework for updating
belief distributions. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
78(5):1103–1130, 2016.

Dan Busbridge, Amitis Shidani, Floris Weers, Jason Ramapuram, Etai Littwin, and Russ Webb.
Distillation scaling laws. arXiv preprint arXiv:2502.08606, 2025.

Nicholas Carlini, Daphne Ippolito, Matthew Jagielski, Katherine Lee, Florian Tramer, and Chiyuan
Zhang. Quantifying memorization across neural language models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=TatRHT_1cK.

Liam Carroll, Jesse Hoogland, Matthew Farrugia-Roberts, and Daniel Murfet. Dynamics of tran-
sient structure in in-context linear regression transformers, 2025. URL https://arxiv.org/
abs/2501.17745.

Changyou Chen, Nan Ding, and Lawrence Carin. On the convergence of stochastic gradient mcmc
algorithms with high-order integrators. Advances in neural information processing systems, 28,
2015.

Z Chen, E Lau, J Mendel, S Wei, and D Murfet. Dynamical versus Bayesian Phase Transitions in a
Toy Model of Superposition. arXiv preprint arXiv, 2023.

Zhongtian Chen and Daniel Murfet. Modes of sequence models and learning coefficients. arXiv
preprint arXiv:2504.18048, 2025.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

10

https://aclanthology.org/2021.acl-long.568/
https://aclanthology.org/2021.acl-long.568/
https://ai.meta.com/blog/meta-llama-quantized-lightweight-models/
https://ai.meta.com/blog/meta-llama-quantized-lightweight-models/
https://www.anthropic.com/news/trainium2-and-distillation
https://openreview.net/forum?id=TatRHT_1cK
https://openreview.net/forum?id=TatRHT_1cK
https://arxiv.org/abs/2501.17745
https://arxiv.org/abs/2501.17745


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Robin Cheong and Robel Daniel. Compressing transformers with pruning and quantization. De-
partment of Computer Science, Stanford University, 2019.

Misha Denil, Babak Shakibi, Laurent Dinh, Marc’Aurelio Ranzato, and Nando De Freitas. Predict-
ing parameters in deep learning. Advances in neural information processing systems, 26, 2013.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws. In
International Conference on Machine Learning, pages 7750–7774. PMLR, 2023.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam McCandlish,
Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy models of superpo-
sition. arXiv [cs.LG], September 2022.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2019. URL https://
openreview.net/forum?id=rJl-b3RcF7.

Elias Frantar, Utku Evci, Wonpyo Park, Neil Houlsby, and Dan Alistarh. Compression scaling laws:
Unifying sparsity and quantization. arXiv preprint arXiv:2502.16440, 2025.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Peter Grünwald and Teemu Roos. Minimum description length revisited. International journal of
mathematics for industry, 11(01):1930001, 2019.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015a.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 28. Curran Associates, Inc.,
2015b. URL https://proceedings.neurips.cc/paper_files/paper/2015/
file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. In International Conference on Learning
Representations (ICLR), 2016.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pages 293–299. IEEE, 1993.

Heisuke Hironaka. Resolution of singularities of an algebraic variety over a field of characteristic
zero: II. Ann. Math., 79(2):205–326, 1964.

Sepp Hochreiter and Jürgen Schmidhuber. Flat Minima. Neural Computation, 9(1):1–42, 1997.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks. Journal of
Machine Learning Research, 22(241):1–124, 2021.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Thomas
Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Au-
relia Guy, Simon Osindero, Karén Simonyan, Erich Elsen, Oriol Vinyals, Jack Rae, and Lau-
rent Sifre. An empirical analysis of compute-optimal large language model training. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances in Neu-
ral Information Processing Systems, volume 35, pages 30016–30030. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf.

11

https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/ae0eb3eed39d2bcef4622b2499a05fe6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c1e2faff6f588870935f114ebe04a3e5-Paper-Conference.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Jesse Hoogland, George Wang, Matthew Farrugia-Roberts, Liam Carroll, Susan Wei, and Daniel
Murfet. Loss landscape degeneracy drives stagewise development in transformers, 2025. URL
https://arxiv.org/abs/2402.02364.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Leon Gordon Kraft. A device for quantizing, grouping, and coding amplitude-modulated pulses.
PhD thesis, Massachusetts Institute of Technology, 1949.

Tanishq Kumar, Zachary Ankner, Benjamin Frederick Spector, Blake Bordelon, Niklas Muen-
nighoff, Mansheej Paul, Cengiz Pehlevan, Christopher Re, and Aditi Raghunathan. Scaling laws
for precision. In The Thirteenth International Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=wg1PCg3CUP.

Edmund Lau, Zach Furman, George Wang, Daniel Murfet, and Susan Wei. The Local Learning
Coefficient: A Singularity-Aware Complexity Measure, September 2024.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Chunyuan Li, Changyou Chen, David Carlson, and Lawrence Carin. Preconditioned stochastic
gradient langevin dynamics for deep neural networks, 2015. URL https://arxiv.org/
abs/1512.07666.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. In International Conference on Learning Representations, 2018. URL
https://openreview.net/forum?id=ryup8-WCW.

Wesley J Maddox, Gregory Benton, and Andrew Gordon Wilson. Rethinking parameter counting in
deep models: Effective dimensionality revisited. arXiv preprint arXiv:2003.02139, 2020.

B McMillan. Two inequalities implied by unique decipherability. IEEE Trans. Inf. Theory, 2(4):
115–116, December 1956.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. Accelerating sparse deep neural networks, 2021. URL
https://arxiv.org/abs/2104.08378.

Chakshu Moar, Faraz Tahmasebi, Michael Pellauer, and Hyoukjun Kwon. Characterizing the
accuracy – efficiency trade-off of low-rank decomposition in language models, 2024. URL
https://arxiv.org/abs/2405.06626.

Neel Nanda and Joseph Bloom. TransformerLens, 2022. URL https://github.com/
neelnanda-io/TransformerLens.

Xu Ouyang, Tao Ge, Thomas Hartvigsen, Zhisong Zhang, Haitao Mi, and Dong Yu. Low-bit quanti-
zation favors undertrained llms: Scaling laws for quantized llms with 100t training tokens. arXiv
preprint arXiv:2411.17691, 2024.

Yee Whye Teh, Alexandre H Thiery, and Sebastian J Vollmer. Consistency and fluctuations for
stochastic gradient Langevin dynamics. The Journal of Machine Learning Research, 17(1):193–
225, 2016.

Einar Urdshals and Jasmina Urdshals. Structure development in list-sorting transformers. arXiv
preprint arXiv:2501.18666, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. arXiv [cs.CL], June 2017.

12

https://arxiv.org/abs/2402.02364
https://openreview.net/forum?id=wg1PCg3CUP
https://arxiv.org/abs/1512.07666
https://arxiv.org/abs/1512.07666
https://openreview.net/forum?id=ryup8-WCW
https://arxiv.org/abs/2104.08378
https://arxiv.org/abs/2405.06626
https://github.com/neelnanda-io/TransformerLens
https://github.com/neelnanda-io/TransformerLens


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

George Wang, Jesse Hoogland, Stan van Wingerden, Zach Furman, and Daniel Murfet. Differenti-
ation and specialization of attention heads via the refined local learning coefficient, 2024a. URL
https://arxiv.org/abs/2410.02984.

Wenxiao Wang, Wei Chen, Yicong Luo, Yongliu Long, Zhengkai Lin, Liye Zhang, Binbin Lin,
Deng Cai, and Xiaofei He. Model compression and efficient inference for large language models:
A survey, 2024b. URL https://arxiv.org/abs/2402.09748.

Sumio Watanabe. Algebraic Geometry and Statistical Learning Theory. Cambridge University
Press, USA, 2009.

Sumio Watanabe. A Widely Applicable Bayesian Information Criterion. Journal of Machine Learn-
ing Research, 14:867–897, 2013.

Sumio Watanabe. Mathematical theory of Bayesian statistics. CRC Press, 2018.

M. Welling and Y. W. Teh. Bayesian Learning via Stochastic Gradient Langevin Dynamics. In
Proceedings of the 28th International Conference on Machine Learning, 2011.

Zifei Xu, Alexander Lan, Tristan Webb, Sayeh Sharify, Xin Wang, et al. Scaling laws for post-
training quantized large language models. arXiv preprint arXiv:2410.12119, 2024.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models, 2024. URL https://arxiv.org/abs/2308.07633.

13

https://arxiv.org/abs/2410.02984
https://arxiv.org/abs/2402.09748
https://arxiv.org/abs/2308.07633


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

APPENDIX

This appendix provides detailed information about our methodology, experimental setup, and addi-
tional results that supplement the main paper. We organize the appendix into the following sections:

• Appendix A: Additional related work and discussion.
• Appendix B: Descriptions of the Pythia model architectures used in our experiments.
• Appendix C: Additional experimental results:

– Additional quantization results with loss minimization, including more models, more
ϵ values and critical nq vs. steps (Appendix C.1)

– Results on tensor factorization (Appendix C.2)
– Quantization results without loss minimization, including loss increase plotted against
nq , three different ϵ values and critical nq vs. LLC and training step (Appendix C.3)

– Addition of Gaussian noise, loss increase plotted against strength of Gaussian noise,
three different ϵ values and critical amount of gaussian noise vs. LLCs and steps
(Appendix C.4)

– Structured pruning, our retraining protocol and loss increase as a function of pruning
amount (Appendix C.5)

• Appendix D: Details on our LLC estimation procedure, including hyperparameter settings
and computational resources required.

• Appendix E: Supplementary mathematical derivations and proofs that extend the theoreti-
cal framework presented in Section 3.

• Appendix F: Further details on the derivation of the singular MDL principle and its impli-
cations.

• Appendix G: Details on LLM usage.
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A ADDITIONAL RELATED WORK AND DISCUSSION

Model compression in industry. Model compression techniques are widely employed by industry
leaders to scale inference of large language models (LLMs), as they significantly reduce model size,
memory footprint, and inference latency. The connection to compression is due to the fact that mem-
ory and latency are primarily determined by the total number of bits in the parameters (Dettmers and
Zettlemoyer, 2023). Quantization is used by Meta to compress their LLaMA models, approximately
halving their memory footprint and doubling inference throughput (AI, 2024). Knowledge distilla-
tion has similarly been utilized by Anthropic to create smaller models like Claude 3 Haiku, which
achieves near-identical performance to its larger predecessor, Claude 3.5 Sonnet, while substantially
lowering deployment costs (Anthropic, 2024). Pruning, particularly structured sparsity supported
by NVIDIA GPUs, also shows empirical evidence of approximately doubling inference throughput
by eliminating around half of the model’s weights (Mishra et al., 2021).

Scaling laws and compression. The training of large-scale neural networks obeys empirical scal-
ing laws (Kaplan et al., 2020; Hoffmann et al., 2022), which relate test loss to parameter count and
tokens seen during training. Since model compression techniques work by reducing the effective
parameter count, at the cost of an increase in loss, it is natural to wonder how to incorporate com-
pression into the neural scaling laws. Most of the work to date has been on empirical scaling laws for
quantization (Dettmers and Zettlemoyer, 2023; Ouyang et al., 2024; Xu et al., 2024; Frantar et al.,
2025; Kumar et al., 2025), although there is some work on distillation (Busbridge et al., 2025).

Data-dependent compression bounds. Lossy compression is always defined relative to a spe-
cific loss function on a particular dataset, which implicitly chooses which capabilities to prioritize
and preserve. A corollary is that any attempts to derive compression bounds based on the pre-
training objective may be unnecessarily conservative: a large fraction of a model’s capacity goes
to memorization (Carlini et al., 2023), much of which may be irrelevant to particular capabilities.
Understanding compression requires data-dependent bounds such as those considered here.

Security implications. Our work establishes a theoretical connection between SLT and neural net-
work compressibility, providing a principled framework that could inform future security research.
By demonstrating that the local learning coefficient (LLC) correlates with practical compression
limits, we lay groundwork for developing rigorous bounds on how much specific capabilities can
be compressed. Future work building on these theoretical foundations could provide robust bounds
on the information required to transmit specific capabilities, helping calibrate security measures and
inform discussions about model weight protection.

Economic drivers & theoretical limits of compression Halving the memory cost of a model can
potentially double its operational value: under fixed GPU budgets, compressing parameters (e.g.,
pruning or quantization) directly raises the volume of token processing and thus revenue (Wang
et al., 2024b; Zhu et al., 2024). This incentive is driving substantial private research and development
so that the state of the art in model compression likely surpasses known public benchmarks (Cheng
et al., 2017; Han et al., 2015a). In this situation, it is particularly valuable to understand the theo-
retical limit to model compression since this limit is a key factor in the economic feedback loops
driving investment. This is particularly true as AI systems start to do autonomous research.

B MODEL DETAILS

We conduct experiments on models from the Pythia suite (Biderman et al., 2023), ranging from 14M
to 6.9B parameters for most experiments. For Pythia, we include model checkpoints ranging from
2k to 90k, excluding later checkpoints because of apparent instability in the original training runs.
Note that all Pythia models are trained on the same data in the same order from the Pile (Gao et al.,
2020).

We begin with an already (losslessly) compressed version of the Pythia models, in which layer
norm weights are folded into subsequent linear layers, following the default settings in our
TransformerLens-based implementation (Nanda and Bloom, 2022).
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C ADDITIONAL RESULTS

In this appendix, we provide quantization and factorization results for additional model sizes, as
well as quantization results for quantization without loss minimization, addition of Gaussian noise
to the parameters, and pruning.

C.1 QUANTIZATION WITH LOSS MINIMIZATION

We show results on additional models for the quantization method used in Section 5 in Figure 4,
showing linear fits with R2 ≥ 0.98 for checkpoint ranges across a wide range of Pythia models. The
comparison of LLC vs. critical nq for 3 different choices of ϵ is shown in Figure 5. As stated in the
main body, these curves are qualitatively ϵ-insensitive. For comparison, we show the critical nq as a
function of training step in Figure 6, and observe that the curves are qualitatively similar to the ones
with the LLC on the x-axis. This is expected, as the LLC is an increasing function of training steps,
as shown in Figure 21.

C.2 TENSOR FACTORIZATION

Tensor factorization techniques decompose weight matrices in neural networks into products of
smaller matrices, reducing the total number of parameters. We perform the factorization by per-
forming Singlar Value Decomposition on weight matrices W , and truncating a fixed fraction of the
singular values, leaving the weight matrix approximated as

W ← U × S × V (12)

where S is a diagonal matrix with n diagonal entries. We do this by following the heuristics outlined
in Moar et al. (2024): We target a selection of layers and factorize all matrices in those layers.
We avoid the very last and very first layers, and also avoid factorizing consecutive layers. In the
experiments shown in Section 5, we avoid factorizing the embedding and unembedding matrices. If
W has dimensions d1 by d2, then before factorization the matrix has d1 × d2 parameters, whereas
after factorization it has d1 × n+ n+ n× d2 parameters. The reported compression fraction is the
ratio between the total number of parameters in the model after and before factorization, i.e.

Compression Fraction =
# parameters after factorization

# parameters before factorization
(13)

For the smaller Pythia models where the embedding and unembedding matrix dominate the parame-
ter count of the model, the compression fraction is always close to 1. To measure the compressibility
of the models under factorization, we find the critical compression fraction, i.e. the value of the com-
pression fraction which causes a loss increase of ϵ.

In Figure 7, left side, we show the compression-induced loss increase as a function of compression
fraction. To a lesser extent than with quantization, we observe the loss curves featuring a knee at a
loss increase of around ϵ = 0.5. For consistency, we stick to the same value of ϵ for factorization
as for quantization. In the Appendix C.2, we show a selection of other ϵ values, showing that they
lead to qualitatively similar results. In the panel to the right, we observe the critical compression
fraction largely increasing with increasing LLC, with the exception of Pythia-6.9B where it seems
to flat-line at later steps. This might be related to Pythia-6.9B late in training featuring a knee at
considerably higher ϵ values, between 1 and 1.5.

In Figure 8 we show the loss increase as a function of compression fraction for all Pythia models
up to and including 6.9B. We compare different choices of ϵ in Figure 9 and Figure 10, and observe
the curves being largely ϵ-insensitive. We observe that the critical compression fraction is mostly an
increasing function of both LLC and training step.

C.3 QUANTIZATION WITHOUT LOSS MINIMIZATION

Here we quantize by setting m to the largest parameter value, rather than selecting it by minimizing
the post-quantization loss. We show the loss increase for this form of quantization in Figure 11.
A comparison of 3 critical nq for different choices of ϵ is shown in Figure 12 and Figure 13, and
we observe that the curves are largely ϵ-insensitive. We observe that this form of quantization also
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Figure 4: Sensitivity of Pythia models to Quantization. The panels show loss increase as a func-
tion of nq , with the lower right panel showing the critical nq as a function of LLC for ϵ = 0.5.
Note that for Pythia-14M and Pythia-70M, checkpoint 90k is not included since our quantization
algorithm fails for these checkpoints. We do a linear fit excluding the transparent points, finding R2

values of 0.98 and above.
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Figure 5: Critical nq vs. LLC for different ϵ values. We see that the curves are qualitatively
ϵ-insensitive. Note that for Pythia-14M and Pythia-70M, checkpoint 90k is not included since our
quantization algorithm fails for these checkpoints.
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70M, checkpoint 90k is not included since our quantization algorithm fails for these checkpoints.
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Figure 7: Sensitivity of Pythia models of different sizes to factorization. On the left, we show
the loss as a function of the compression fraction, with the black dashed line indicating our choice
of loss tolerance ϵ = 0.5. The data-points at (1,0) are the models before compression. On the right,
we show the critical compression fraction, i.e. the compression fraction for which ∆Loss = ϵ as a
function of the LLC.

features critical nq increasing as a function of LLC, but find worse linear fits for critical nq vs.
LLC than we find for quantization with loss minimization in Appendix C.1. This might be because
quantization with loss minimization better probes the loss landscape near the w∗.

C.4 ADDING GAUSSIAN NOISE

We have two ways of adding Gaussian noise. The first we call absolute Gaussian noise, and involves
updating the parameters of the model according to

w ← w∗ + σN(0, 1) . (14)

We use relative Gaussian noise to refer to adding noise proportional to the parameter,

w ← w∗ + w∗σN(0, 1) . (15)

In Figure 14 and Figure 15, we show the loss increase as a function of σ for absolute and relative
noise, respectively, with the lower right corner showing the critical σ for ϵ = 0.5 as a function of
LLC. We observe that for addition of relative noise, critical σ largely decreases with increasing LLC,
as expected. For absolute Gaussian noise, the picture is more complicated, and is probably impacted
by the change in magnitude of the model parameters over the course of training. In Figure 16
and Figure 17, we show critical σ as a function of LLC for different values of loss tolerance ϵ. We
observe that the qualitative shape of the curves are ϵ-insensitive. In Figure 18 and Figure 19 we plot
the critical σ as a function of training step. We observe a similar relation between the training steps
and critical σ as between the LLC and critical σ. Again, we observe that the curves are qualitatively
ϵ-insensitive.

C.5 PRUNING

Pruning techniques can be broadly categorized into structured and unstructured approaches. Un-
structured pruning involves removing individual weights throughout the network without any reg-
ular pattern, potentially achieving higher compression rates but requiring specialized hardware or
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Figure 8: Sensitivity of Pythia models to Factorization. The panels show loss increase as a func-
tion of compression fraction. We exclude checkpoint 90000 of Pythia-14M due to believed training
instability causing a very large estimated LLC.
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Figure 9: Critical compression fraction vs. LLC for different choices of ϵ. Checkpoint 90000 of
Pythia-14M is excluded due to suspected training instability.
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Figure 10: Critical compression fraction vs. training step for different choices of ϵ. Checkpoint
90000 of Pythia-14M is excluded due to suspected training instability.

software to realize computational speedups. Structured pruning, on the other hand, removes en-
tire structured components (e.g., neurons, filters, or attention heads), resulting in models that are
inherently smaller and faster on standard hardware.

For our experiments, we focus on structured pruning of attention heads in transformer models. When
pruning a model, we first specify a desired fraction of heads to keep p. From this, we compute the
number of heads to prune n as:

n = ⌊(1− p)Nh⌋ , (16)

where Nh is the total number of attention heads in the model. We then select Nh heads at random and
set their weight matrices to zero (excluding biases). Following pruning, we implement a retraining
phase with the following specifications (Han et al., 2015b):

• The gradients of the weight matrices in pruned heads are fixed to zero to maintain the
pruning structure.

• We use a learning rate 1/10th of the one used during initial training.

• We retrain for 1000 steps, taking the post-retraining loss to be the minimal training loss
during retraining.

In Figure 20, we show how the loss changes during pruning of a selection of Pythia models. Since
several of these curves are very rugged, we refrain from plotting LLC vs critical values of p.

D LLC ESTIMATION DETAILS

Sanity checks for LLCs. It was shown in Lau et al. (2024) that variations in training hyperparam-
eters (learning rate, batch size and momentum) affect LLC estimates in the way one would expect
for a measure of model complexity. Outside of the limited cases where theoretical values of the
LLC for large neural networks are available (principally deep linear networks, Aoyagi 2024), such
experiments serve as a crucial “sanity check” on LLC estimates. The experimental results on the
effect of compression on the LLC in this paper serve as a complementary set of sanity checks for
LLC estimation in models up to 6.9B parameters.

D.1 IMPLEMENTATION OF THE LLC ESTIMATOR

Computational Resources. LLC estimation for our largest models required substantial computa-
tional resources. For reference, a single LLC estimation for the Pythia-6.9B model required approx-
imately 3.5 hours on an H200 GPU with 140GB memory.

Hyperparameters. We estimate the LLC of the Pythia models on the Pile (Gao et al., 2020),
using the full context of 2048 tokens, with localization γ = 300, inverse temperature nβ = 30 and 4
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Figure 11: Sensitivity of Pythia models to Quantization without loss optimization. The panels
show loss increase as a function of nq , with the lower right panel showing the critical nq as a
function of LLC for ϵ = 0.5. Note that for Pythia-14M, checkpoint 90k is not included due to
suspected training instability. Transparent data-points are not included in the linear fits.
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Figure 12: Critical nq vs. LLC for different ϵ values for quantization without loss optimization.
We see that the curves are qualitatively ϵ-insensitive. Note that for Pythia-14M, checkpoint 90k is
not included due to suspected training instability. Transparent data-points are not included in the
linear fits.
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Figure 13: Critical nq vs. training step for different ϵ values for quantization without loss
optimization. We see that the curves are qualitatively ϵ-insensitive. Note that for Pythia-14M,
checkpoint 90k is not included due to suspected training instability.
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Figure 14: Sensitivity of Pythia models to absolute Gaussian noise. As in the other settings, we
exclude checkpoint 90000 of Pythia-14M.
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Figure 15: Sensitivity of Pythia models to relative Gaussian noise. As in the other settings, we
exclude checkpoint 90000 of Pythia-14M.
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Figure 16: Critical σ as a function of the LLC for absolute Gaussian noise.
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Figure 17: Critical σ as a function of the LLC for relative Gaussian noise.
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Figure 18: Critical σ as a function of the training step for absolute Gausian noise.
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Figure 19: Critical σ as a function of the training step for relative Gaussian noise.
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Figure 20: Sensitivity of Pythia models to pruning. The panels shows loss increase as a function
of fraction of heads remaining. We here include checkpoint 90000 of Pythia-14M, as we here don’t
consider critical fractions.
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Figure 21: LLC vs. training step for the Pythia models.

SGLD chains with 200 steps for models smaller than 1B parameters and 100 steps for models equal
to or larger than 1B parameters. We use a batch size of 32, and use 8 batches to calculate Ln(w

∗).
The SGLD learning rate varies with model size, and we use 10−3 for Pythia-14M, 3 × 10−4 for
Pythia-31M and Pythia-70M, 10−4 for Pythia-160M and Pythia-410M, 3× 10−5 for Pythia-1B and
Pythia-1.4B, 10−5 for Pythia-2.8B and 3× 10−6 for Pythia-6.9B.

Estimated LLCs for Pythia models. In Figure 21 we show the LLC as function of training step
for the Pythia models. We see that with the exception of Pythia-14M through 70M, the LLC rises
smoothly as function training step.

D.2 (CHALLENGES IN) ESTIMATING THE LLC

The main obstacle to using the LLC in practice as a tool for evaluating compression techniques is that
we usually do not have direct access to the true LLC, λ, but must instead estimate its value, λ̂, and
these estimates may be systematically biased. Currently, the only scalable approach to estimating
LLCs for large neural networks is via gradient-based approximate posterior sampling methods like
SGLD (Lau et al., 2024). The resulting estimates have been found in recent years to be useful in
practice for understanding the development of neural networks (Hoogland et al., 2025; Wang et al.,
2024a; Carroll et al., 2025; Urdshals and Urdshals, 2025).

However, while there is a deep mathematical theory behind the definition of the LLC, there are
several serious problems with the current state of empirical practice:

1. There are gaps in the theory of SGLD. Although there is a theoretical literature (Welling
and Teh, 2011; Chen et al., 2015; Teh et al., 2016), which provides conditions (for example,
decaying step size and long chains) under which gradient-based posterior sampling meth-
ods converge weakly to the true posterior for some classes of statistical models, some of
the technical conditions in these theorems do not hold for all neural networks. Thus, the
theoretical status of SGLD-based estimation is unclear.

2. We do not fully understand the role of hyperparameters like inverse temperature. In
practice, we know that varying the inverse temperature β used for estimation does affect
the estimates. In principle, any inverse temperature is valid (since the effect due to the
tempering of the posterior should be canceled by the nβ occurring as a prefactor), but in
practice, SGLD-based estimation appears sensitive to this factor. Since the only principled
setting is 1/log n (Watanabe, 2013), which is too small for stable estimation in our settings,
we know that the LLC estimates can, at best, be meaningful up to whatever effect this
variation has on estimates. Chen and Murfet (2025) prove that the temperature acts as
a resolution dial on the loss landscape, so that we sample from an effectively truncated
posterior, but this effect is not yet fully understood; this explains why we have focused
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on applications of LLC estimation to a single model with the same hyperparameters across
training, under the hypothesis that this effect does not confound comparisons of LLC values
at different training timesteps.

3. Unrealistic values for large networks. SGLD-based LLC estimation can produce accurate
estimates for deep linear networks (Lau et al., 2024). Keeping in mind the previous point,
the hyperparameters we select for the Pythia suite lead to LLC estimates that are on the
order of hundreds, for models with parameter counts ranging from millions to billions.

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

E THEORETICAL RESULTS FOR SINGULAR MDL

E.1 ASSUMPTIONS

In this section, we list the sufficient conditions for the results discussed in this work to hold.
Recall that we have an outcome space X , data distribution q ∈ ∆(X ) and model M ={
pw ∈ ∆(X ) : w ∈W ⊂ Rd

}
.

Finite outcome space. We assume that the outcome space X is finite so that the data distribution,
q and distributions pw in a model are members of the finite dimensional simplex ∆(X ). This is a
severe restriction stated for expository ease. There isn’t any fundamental limitation from relaxing
this criterion to the continuous case.

Conditions for SLT. As we rely heavily on the core result of SLT, we require similar sufficient
conditions as stated by Watanabe (2009, Definition 6.1 and 6.3) and the relaxation of the realisability
assumptions stated in Watanabe (2018, Chapter 3.1).

Importantly, we require that

• The parameter space is a compact subset of Rd with non-empty interior.

• The data distribution q satisfies relatively finite variance condition set out in Watanabe
(2018, Definition 7).

• The loss function w 7→ (x 7→ log 1
pw(x) ) can be extended to a L2(q)-valued complex

analytic function.

Uniformly bounded away from boundary. This is a technical condition that allow us to treat
KL-divergence as almost a metric onM. We require that the model we considered to be a subset of
the restricted simplex ∆̊m(X ) for some m > 0 defined as follow.

Definition 1. Let X be a finite set and m be a number 0 < m < 1
|X | . We define ∆̊m(X ) as the set

of distributions in the interior of the simplex ∆(X ) that is uniformly bounded away from the simplex
boundary by m. That is

∆̊m(X ) :=
{
p ∈ ∆(X ) : min

x∈X
p(x) ≥ m

}
.

E.2 LEMMAS

Lemma 1. Let 0 < m ≤ 1
|X | be fixed. There exist constants c, c′ > 0 such that for any q, p ∈

∆̊m(X ),
c ∥p− q∥22 ≤ DKL (q∥p) ≤ c′ ∥p− q∥22

where ∥·∥2 denotes the ℓ2-norm.

Proof. Let r(x) := q(x)
p(x) . Note that r(x) ∈ [m, 1/m]. Now,

DKL (q∥p) =
∑
x∈X

p(x)r(x) log r(x) =
∑
x∈X

p(x) (r(x) log r(x)− r(x) + 1)

since
∑

x p(x)r(x) = 1. Let f(z) := z log z − z + 1. Taylor expanding f at z = 1 up to order 2
with Lagrange remainder give us f(z) = 1

2t (z − 1)2 for some t ∈ (1, z). Therefore,

1

2max(1, z)
(z − 1)2 ≤ f(z) ≤ 1

2min(1, z)
(z − 1)2
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Now, from the calculation above, we have DKL (q∥p) =
∑

x∈X p(x)f(r(x)) and therefore

1

2

∑
x∈X

p(x)
(

q(x)
p(x) − 1

)2
max

(
1, q(x)

p(x)

) ≤ DKL (q∥p) ≤
1

2

∑
x∈X

p(x)
(

q(x)
p(x) − 1

)2
min

(
1, q(x)

p(x)

)
=⇒ 1

2

∑
x∈X

(q(x)− p(x))
2

max (q(x), p(x))
≤ DKL (q∥p) ≤

1

2

∑
x∈X

(q(x)− p(x))
2

min (q(x), p(x))

where we have used the fact that p(x)min(1, r(x)) = min(q(x), p(x)) and p(x)max(1, r(x)) =
max(q(x), p(x)). Finally, maxx max(p(x), q(x)) ≤ 1 and minx min(p(x), q(x)) ≥ m, we get

1

2
∥p− q∥22 ≤ DKL (q∥p) ≤

1

2m
∥p− q∥22 .

The above result allows us to show that the KL-divergence on this restricted space of distribution
satisfies a form of triangle inequality.
Lemma 2. With the same assumption as Lemma (1), there exist C > 0 such that for any q, p, p′ ∈
∆̊m(X )

DKL (p∥p′) ≤ C (DKL (q∥p) +DKL (q∥p′)) .
Since this holds over all q, p, p′, the ordering of the arguments for each KL-divergence above does
not matter.

Proof. Applying the Lemma (1), once in each direction of inequality, together with the fact that
(a+ b)2 ≤ 2a2 + 2b2 give

DKL (p∥p′) ≤
1

2m
∥p− p′∥22

≤ 1

2m
(∥p− q∥2 + ∥q − p′∥2)

2

≤ 1

m

(
∥p− q∥22 + ∥p

′ − q∥22
)

≤ 1

m

(
1

2
DKL (q∥p) +

1

2
DKL (q∥p′)

)
=

1

2m
(DKL (q∥p) +DKL (q∥p′))

which is the desired result with C = 1
2m . We note that C ≥ 1 whenever X has more than 1

elements.

Lemma 3. Let q, p ∈ ∆(X ) and M := supx log
q(x)
p(x) and m := infx log

q(x)
p(x) . Suppose |m| and M

are both finite, then there exist constants c, c′ > 0, independent of q, p, such that

(c−DKL (q∥p))DKL (q∥p) ≤ Vq

(
log

q(x)

p(x)

)
≤ (c′ −DKL (q∥p))DKL (q∥p) .

Proof. Let ℓ(x) = log q(x)
p(x) . Using Taylor’s theorem with Lagrange remainder, there exist α ∈ (0, 1)

such that

e−ℓ(x) + ℓ(x)− 1 =
e−αℓ(x)

2
ℓ(x)2.

Furthermore, observe that

Eq

[
e−ℓ(x) + ℓ(x)− 1

]
=
∑
x

q(x)
p(x)

q(x)
+ q(x) log

q(x)

p(x)
− q(x)

=
∑
x

q(x) log
q(x)

p(x)
+
∑
x

p(x)− q(x)

= DKL (q∥p) .

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Combining the above, we have that for some α ∈ (0, 1)

DKL (q∥p) = Eq

[
e−αℓ(x)

2
ℓ(x)2

]
.

Given the condition on ℓ(x), we have

1

2
min(1, e−M ) ≤ 1

2
e−αℓ(x) ≤ 1

2
max(1, e−m)

=⇒ 1

2
min(1, e−M )Eq

[
ℓ(x)2

]
≤ DKL (q∥p) ≤

1

2
max(1, e−m)Eq

[
ℓ(x)2

]
=⇒ 2

max(1, e−m)
DKL (q∥p) ≤ Eq

[
ℓ(x)2

]
≤ 2

min(1, e−M )
DKL (q∥p) .

Taking c = 2/max(1, e−m) and c′ = 2/min(1, e−M ), we get

cDKL (q∥p) ≤ Eq

[
ℓ(x)2

]
≤ c′DKL (q∥p)

=⇒ cDKL (q∥p)−DKL (q∥p)2 ≤ Eq

[
ℓ(x)2

]
−DKL (q∥p)2 ≤ c′DKL (q∥p)−DKL (q∥p)2

=⇒ (c−DKL (q∥p))DKL (q∥p) ≤ Vq

(
log

q(x)

p(x)

)
≤ (c′ −DKL (q∥p))DKL (q∥p)

Note that this implies Vq

(
log q(x)

p(x)

)
= O(DKL (q∥p)) as DKL (q∥p)→ 0.

E.3 THEOREMS

A rather straight forward application of Bernstein inequality together with the variance bound above
give the following result.

Theorem 3. Let q, p ∈ ∆(X ) and x(n) be a data sequence of size n drawn i.i.d. from q. Define the

random variable Kn := 1
n

∑n
i=1 log

q(xi)
p(xi)

. Suppose maxx

∣∣∣log q(x)
p(x) −DKL (q∥p)

∣∣∣ ≤ M <∞ and

DKL (q∥p) ≤ c
n + o( 1n ) for some constant c > 0, then for sufficiently large n,

P (n |Kn −DKL (q∥p)| ≥ t) ≤ exp

(
− t2

C + 1
3Mt

)
for some constant C > 0 independent of p, q. In other words, n (Kn −DKL (q∥p)) = Op(1).

Proof. We apply Bernstein inequality on the centered random variable Xi = log q(xi)
p(xi)

−DKL (q∥p)
with norm bounded by M to get

P

(
n∑

i=1

Xi ≥ t

)
≤ exp

(
− t2∑

i Eq[X2
i ] +

1
3Mt

)
.

Unpacking definition, we get

P (n (Kn −DKL (q∥p)) ≥ t) ≤ exp

− t2

nVq

(
log q(x)

p(x)

)
+ 1

3Mt

 .

Using the result from Lemma (3), we get know that for sufficiently large n there exist c′ > 0 such
that

Vq

(
log

q(x)

p(x)

)
≤ c′

2
DKL (q∥p) ≤

cc′

2n
.

Choose C = cc′/2 and we get the required result. We can apply the same argument to X ′
i := −Xi

to get the lower tail bound.
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Theorem 4. LetM =
{
pw ∈ ∆̊m(X ) : w ∈W ⊂ Rd

}
be a model consisting of distributions with

uniform lower bound m > 0. There exist constant C > 0 such that for any ϵ > 0 and any q, p∗ ∈M
satisfying DKL (q∥p∗) ≤ ϵ the following holds

{w ∈W : DKL (q∥pw) ≤ ϵ} ⊆ {w ∈W : DKL (pw∥p∗) ≤ Cϵ} ⊆
{
w ∈W : DKL (q∥pw) ≤

C

2
(C + 1)ϵ

}
.

Proof. Applying Lemma (2) gives us a constant C ′ > 0 such that

DKL (p∥p′) ≤ C ′ (DKL (p
′′∥p) +DKL (p

′′∥p))

for any p, p′, p′′ ∈M.

Now, set C = 2C ′. Let ϵ > 0, q, p∗ ∈ M be given such that DKL (q∥p∗) ≤ ϵ. For any given
w ∈W such that DKL (q∥pw) ≤ ϵ, we get

DKL (pw∥p∗) ≤ C ′ (DKL (q∥pw) +DKL (q∥p∗)) ≤ C ′ (ϵ+ ϵ) ≤ 2C ′ϵ = Cϵ.

This proves the first inclusion.

Similarly, whenever DKL (pw∥p∗) ≤ Cϵ

DKL (q∥pw) ≤ C ′ (DKL (pw∥p∗) +DKL (q∥p∗)) ≤ C ′(Cϵ+ ϵ) =
C

2
(C + 1)ϵ.

This proves the second inclusion.

Theorem 5. LetM =
{
pw ∈ ∆̊m(X ) : w ∈W ⊂ Rd

}
be a model consisting of distributions with

uniform lower bound m > 0 and q be a data distribution inM (realizable). Given any c > 0 and
n ∈ N, we suppose there exist sets Qn ⊂ M such that for every p ∈ M there exist p∗ ∈ Qn

with DKL (p∥p∗) ≤ ϵn where ϵn = O( 1n ). Given any i.i.d. samples x(n) ∼ q of size n, let
p̂ = argminp∈M log 1

p(xi)
be the maximum likelihood hypothesis inM and define p∗n ∈ Qn be the

closest grid point to p̂, i.e. DKL (p̂∥p∗n) = minp∈Qn
DKL (p̂∥p) ≤ c

n . Then the random variable
DKL (q∥p∗n) is satisfies

rn ≤ DKL (q∥p∗n) ≤ Rn

for some sequences of random variables rn and Rn that are both of order Op

(
1
n

)
. Furthermore,

nDKL (q∥p∗n) is bounded with high probability.

Proof. Using the inequality from Lemma twice (2), we get

DKL (q∥p∗n) ≤ C (DKL (q∥p̂) +DKL (p̂∥p∗n)) ≤ CDKL (q∥p̂) + Cϵn

DKL (q∥p̂) ≤ C (DKL (q∥p∗n) +DKL (p̂∥p∗n)) ≤ CDKL (q∥p∗n) + Cϵn

for some constant C > 0. This jointly implies

aDKL (q∥p̂)− bϵn ≤ DKL (q∥p∗n) ≤ CDKL (q∥p̂) + Cϵn (17)

for some constants a, b > 0. Now, Watanabe (2009, Main theorem 6.4) shows that nDKL (q∥p̂) →
R where R is a non-zero random variable with non-zero expectation. So, DKL (q∥p̂) = Op(1/n).
Combined with the fact that ϵn = O(1/n), we get the desired result.

Finally, to show that nDKL (q∥p∗n) is bounded with high probability, we observe that Watanabe
(2009, Main theorem 6.4) also shows that the random variable R, being a maximum of a Gaussian
process with continuous sample paths on a compact parameter space W , is almost surely bounded.
Hence, for sufficiently large n, we have nDKL (q∥p∗n) ≤ CnDKL (q∥p̂) + Cnϵn which is bounded
with high probability.
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E.4 JUSTIFICATION FOR ϵn = O(1/n)

Equation (17) shows that even if ϵn ≪ 1
n , then nDKL (q∥p∗n) will still converge to a non-zero

random variable (with non-zero expectation) since DKL (q∥p̂) will then be the sole dominant term
instead, which is still Op(1/n). For the purpose of minimizing the redundancy in Eq (1), we would
not want ϵn that decays faster than O(1/n) since that would increase the cost of the model descrip-
tion term − log V R

p∗
n
(ϵ) without saving message length.

On the other hand, if ϵn ≫ 1/n, i.e. ϵn = g(n)/n for some g(n) that diverges to infinity, then
DKL (q∥p∗n) can be dominated by the discretisation cost, leaving nDKL (q∥p∗n) = Op(g(n)). Yet,
assuming − log V R

p∗
n
(ϵ) = −C log ϵ+ o(log ϵ) for some C > 0, then, relative to ϵn = O(1/n), this

only provide saving for the model description term of order O(log g(n)) and is thus not optimal.

F FURTHER THEORETICAL DISCUSSION ON SINGULAR MDL

F.1 PHASES AND PHASE TRANSITION IN CODE LENGTHS

In regular models, regardless of the underlying data distribution being modeled and regardless of
the minimum of the population loss under consideration, the complexity, as measured by LLC, is
always d/2, where d is the model parameter count. The difference in complexity only shows up in
lower-order terms in the form of local curvature. In contrast, the geometry of the loss landscape can
change drastically for singular models with even small changes in the data distribution, and each
minimum of the population loss can have a different LLC value.

Importantly for compression, there can be sudden reversals in the balance of loss-complexity trade-
off when the data size n increases. This is a consequence of the fact that for different minima w∗

of L(w), the associated total code length has leading-order terms fj(n) = nL(w∗
j ) + λj(w

∗) log n.
For low n, minima with lower complexity but higher loss can be preferred since that can give rise to
a lower code length. But as n increases, the O(n) term will dominate, and it is increasingly favored
to pay a high λ(w∗) log n upfront cost for specifying a high complexity set of weights, which is then
amortized by having a lower marginal cost for using those weights to send more symbols. This is
the usual model selection procedure statisticians perform to balance model complexity and fit, but
for singular models, this process can happen implicitly and internally to the model.

These phenomena are collectively known as phase transitions in statistical learning. Watanabe
(2009) first described these phase transitions, which have since been observed and measured in
various settings. For example, Chen et al. (2023) track phase transitions in a toy model of neural
network superposition (Elhage et al., 2022). They find that loss decreases as the LLC increases in a
Bayesian-learning setting (performing Bayesian updates on increasing numbers of data points) and
also in an SGD-training setting (taking an increasing number of gradient steps for a fixed dataset
size). While there are mature theoretical explanations for the Bayesian setting, the observations
in the SGD setting remain empirical results (Urdshals and Urdshals, 2025; Hoogland et al., 2025;
Wang et al., 2024a). Nonetheless, those results provide an important context for the present work
where the trade-off between loss and model complexity – thus compressibility – is also a primary
concern.

F.2 I.I.D. ASSUMPTION

Needing to assume i.i.d. is a severe theoretical weakness for applications of the theory in linguistic
domains. Neither the data-generating distribution q(n) nor the auto-regressive training objective
treats sequences of tokens as i.i.d. sequences. Results in MDL and SLT can be generalized to
non-i.i.d. settings like Markovian processes, but usually some form of ergodicity assumptions are
needed. Those are likely violated by natural language-generating processes.

This is less of a theoretical issue when we are mainly discussing pretraining loss as we can treat each
chunk of text the size of the maximum context window, M , as a single data point and treat them as
i.i.d. data. This means our outcome space is X = VocabM . While the underlying data-generating
process for internet text certainly does not have this structure, it is reasonable to use this model for
some pretraining data-loading process where the chunks are fed in as independent data points.
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The critical caveats are thus:

• Our framework has yet to explain any capabilities gains via post-training methods like
various forms of fine-tuning and reinforcement learning.

• This framework is also not strong enough to discuss the base model capability (as op-
posed to their ability for compressing internet text) as most capabilities measures require
modeling a joint distribution of the form p(long token sequence|prompt), which are likely
non-stationary distributions.

It is plausible that leading order indicators like loss and LLC are unaffected by these considerations,
but that is an open theoretical and empirical question at this stage. There is evidence that the emer-
gence of certain algorithmic capabilities correlates sharply with changes in the LLC Wang et al.
(2024a); Urdshals and Urdshals (2025)
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G LLM USAGE

In the process of writing this paper, LLMs were used for literature search and copy-editing.
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