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Abstract

Designing a generalist scientific agent capable
of performing tasks in laboratory settings to as-
sist researchers has become a key goal in recent
Artificial Intelligence (AI) research. Unlike
everyday tasks, scientific tasks are inherently
more delicate and complex, requiring agents
to possess a higher level of reasoning ability,
structured and temporal understanding of their
environment, and a strong emphasis on safety.
Existing approaches often fail to address these
multifaceted requirements. To tackle these
challenges, we present DAVIS'. Unlike tradi-
tional retrieval-augmented generation (RAG)
approaches, DAVIS incorporates structured and
temporal memory, which enables model-based
planning. Additionally, DAVIS implements
an agentic, multi-turn retrieval system, simi-
lar to a human’s inner monologue, allowing
for a greater degree of reasoning over past ex-
periences. DAVIS demonstrates substantially
improved performance on the ScienceWorld
benchmark comparing to previous approaches
on 8 out of 9 elementary science subjects. In
addition, DAVIS’s World Model demonstrates
competitive performance on the famous Hot-
potQA and MusiqueQA dataset for multi-hop
question answering. To the best of our knowl-
edge, DAVIS is the first RAG agent to em-
ploy an interactive retrieval method in a RAG
pipeline.

1 Introduction

A core focus of current Artificial Intelligence
(AI) research is the development of artificial agents
capable of autonomously performing human tasks
with high decision-making autonomy (Ahn et al.,
2022; Zhao et al., 2024; Wang et al., 2024; Putta
et al., 2024). While Reinforcement Learning (RL)
has traditionally been used to create goal-oriented
agents in Markovian environments (Mnih et al.,
2013; Schrittwieser et al., 2020; Hafner et al.,
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Figure 1: Visualization of DAVIS’s inner monologue
during decision-making. The agent uses its World
Model to retrieve relevant subgraphs from a Tempo-
ral Knowledge Graph (TKG) for reasoning.

2020), it often suffers from sample inefficiency,
limited generalizability, and poor interpretabil-
ity, making real-world deployment challenging
(Dulac-Arnold et al., 2019). Recently, large lan-
guage models (LLMs) (Radford et al.; Touvron
et al., 2023) have revolutionized the creation of au-
tonomous agents by leveraging natural language un-
derstanding to enhance interpretability and general-
ization. These LLM-based agents have shown great
promise in critical domains such as healthcare (Qiu
et al., 2024) and scientific research (Schmidgall
et al., 2025) by mimicking human decision-making
processes and enabling more intuitive reasoning
and actions.

Several approaches have enhanced agentic rea-
soning and decision-making. SwiftSage (Lin et al.,
2023) emulates the fast and slow thinking of hu-
mans with fine-tuned language models for plan-
ning. SayCan (Ahn et al., 2022) decomposes tasks
into subgoals, while ReAct (Yao et al., 2023) 2

SwiftSage, Reflexion, SayCan, and ReAct are used under
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Figure 2: Overview of DAVIS’s decision-making process. The World Model generates a feasible course of actions,
which are translated by the actor and executed sequentially by the agent in the environment. The critic detects
discrepancies between expected and actual outcomes, identify failures, and suggest replanning.

integrates reasoning into execution. RAG-based
systems like Reflexion (Shinn et al., 2023) and
RAP? (Kagaya et al., 2024) retrieve past experi-
ences via semantic search, but their unstructured
memory limits multi-hop reasoning and causal un-
derstanding. These systems retrieve static infor-
mation rather than engaging in agentic, multi-turn
retrieval, preventing dynamic adaptation.

Humans do not retrieve past knowledge stati-
cally; instead, we actively reflect, question our un-
derstanding, and refine our knowledge through in-
ternal dialogues. Inspired by this, we introduce
DAVIS, an agentic multi-turn retrieval system that
mirrors human cognition by enabling iterative in-
teractions between the agent and its memory dur-
ing the planning stage. DAVIS actively engages
with its World Model (WM), a temporal knowledge
graph-based QA system, to refine its understanding
before execution. DAVIS engages in conversation
with its WM to retrieve past experiences, evaluate
actions, identify gaps, and optimize strategies.

DAVIS proves to be effective for iterative reason-
ing within scientific domains. Specifically, DAVIS
outperforms 4 other baselines (Ahn et al., 2022;
Kagaya et al., 2024; Yao et al., 2023; Shinn et al.,
2023) on 8 out of 9 science subjects in the Science-
World (Wang et al., 2022) environment.* DAVIS’s
WM achieves competitive performance on the Hot-
potQA (Yang et al., 2018) and MusiqueQA (Trivedi

MIT license
SRAP is used under MIT license
*ScienceWorld is used under Apache 2.0 license

et al., 2022) dataset °. Our contributions can be
summarized as follows:

* We introduce DAVIS, an agentic reasoning
framework that leverages multi-turn retrieval and
self-reflection to improve decision-making.

Unlike static retrieval methods, DAVIS leverages
a structured temporal knowledge graph memory
system to enable multi-hop reasoning and causal
understanding.

Empirical evaluations show that DAVIS outper-
forms prior agentic reasoning models across sci-
entific benchmarks, demonstrating superior plan-
ning and execution.

2 Background & Related Work
2.1 LLM agentic systems

Recent advancements in LLM-based agentic sys-
tems have drawn heavily from human decision-
making processes and generally fall into two
paradigms: direct interaction via chain-of-thought
(CoT) reasoning or Retrieval-Augmented Genera-
tion (RAG).

The first paradigm involves agents interacting di-
rectly with their environment using CoT reasoning
(Yao et al., 2023; Ahn et al., 2022; Lin et al., 2023).
Chain-of-Thought prompting (Wei et al., 2023) en-
ables large language models to decompose complex
tasks into smaller, interpretable reasoning steps.

SThe HotpotQA dataset is distribued under the CC BY-SA
4.0 license. The MusiqueQA dataset is distribued under CC
BY 4.0 license
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Figure 3: DAVIS’s retrieval and reasoning process. Left: subgraph with relevant entities and their relationships.
Middle: temporal reordering of the retrieved information to establish a coherent sequence of actions. Right: DAVIS

generates a structured and interpretable response.

However, CoT-based systems lack robust memory
for long-term learning and adaptability across mul-
tiple tasks. The absence of memory has been linked
to increased hallucination and stochasticity in task
planning (Guerreiro et al., 2023), posing risks in
domains like scientific research.

The second paradigm, RAG-based systems, inte-
grates retrieval mechanisms with generative capa-
bilities, enabling agents to access relevant external
knowledge during task execution. In the Minecraft
domain, extensive work has been done on RAG-
based agents, with JARVIS-1 (Wang et al., 2023b)
and Voyager (Wang et al., 2023a) representing the
state-of-the-art. Since Minecraft is one of the most
popular video games in the world, these agents
leverage the extensive in-domain knowledge of
LLMs but face significant limitations in scientific
environments, where tasks often involve unknown
skills and cannot rely on pre-existing knowledge.
A more general and iterative approach involving
multiple trials is necessary in such cases.

Reflexion (Shinn et al., 2023) and RAP (Kagaya
et al., 2024) represent recent advances in agentic
reasoning, using memory logs or semantic retrieval
to guide decisions—Reflexion through reflective
trial histories and RAP through nearest-neighbor
search of past experiences. While these systems
address some shortcomings of chain-of-thought
(CoT) prompting, they rely heavily on unstructured
vector databases, which scatter information and
hinder multi-hop and causal reasoning. Addition-
ally, they lack the capacity for temporal reasoning
and iterative refinement. Also, neither approach in-
corporates internal validation or model-based plan-
ning, which limits their ability to make deliberate
and accurate decisions. Thus the need for hybrid
systems that combine structured memory, iterative
retrieval, and internal planning. DAVIS addresses

this gap by integrating a temporal knowledge graph
with agentic, multi-turn reasoning and critic-driven
reflection, offering a more robust framework for
complex scientific environments.

2.2 Graph Question Answering (Graph QA)

Graph Question Answering (Graph QA) sys-
tems have become effective tools for structured
reasoning and information retrieval. GraphReader
(Li et al., 2024) constructs a graph from docu-
ment chunks and deploys an agent for exploration.
HOLMES (Panda et al., 2024) extracts relevant doc-
uments, builds an entity-document graph, prunes it,
and uses cosine similarity for answers. GraphRAG
(Edge et al., 2024) generates an entity knowledge
graph, pregenerates community summaries, and
synthesizes responses. By encoding knowledge in
a graph format, these systems excel at multi-hop
reasoning over interconnected concepts, making
them particularly valuable for domains that require
relational understanding, such as scientific research.
Unlike unstructured vector-based retrieval systems,
Graph QA systems enable iterative retrieval, al-
lowing agents to retrieve information, reason over
it, and perform subsequent queries based on the
refined context.

3 DAVIS

DAVIS adopts a model-based planning approach
(Sutton and Barto, 1998), where the agent uses a
World Model (WM) as an internal representation
of its surrounding environment.

3.1 Problem Formulation

We define the planning problem for DAVIS in
a textual environment as a Partially Observable
Markov Decision Process (POMDP):

7) = (S7A7 T7R? Q’ 077)



Algorithm 1 Planning with Retrieval-Augmented

World Model
Input: 7,R  Parameters: L, k.  Output: 7
1: fort =1to L do

2: 8¢« f(7) > State estimation
3: &t < 7'l'(§,5,7?,7 k)

4: T4 TUay

5: Ot+1,Tt4+1 < TRANSITION(8¢,G¢) > Algorithm 2
6: T(—TU{6z+1,’f’t+1}

7: if (7) violates safety constraints (optional) then

8: Alert supervisor

9: end if

10: end for

11: return 7

In this formulation, S denotes the set of true
environment states, which are not directly observ-
able. A represents the set of available actions.
T (St41 | st,a¢) is the state transition probability
function, modeling the dynamics of the environ-
ment. R(s, a;) is the reward function, specifying
the immediate reward received after taking action
as in state s;. {2 is the set of possible observations.
O(0t4+1 | St+1,a¢) is the observation probability
function, defining the likelihood of observing o441
given the new state s;y; and action as. v € [0,1) is
the discount factor, determining the present value
of future rewards.

Since the true state s; is not directly observable,
the agent maintains a belief state b;, which is a
probability distribution over all possible states, rep-
resenting the agent’s estimate of the environment’s
state at time . The belief state is updated based on
the agent’s actions and received observations. The
agent selects an action a; € A based on its current
belief state, following a policy 7:

ay = W(bt)

After executing the action a;, the agent receives
a reward r; = R(s¢, a;) and transitions to a new
state s;41 according to the transition function 7.
The objective of the agent is to find an optimal
policy 7w* that maximizes the expected cumulative
discounted reward over time:

o0
7% = arg max E [Z yhre | W]
T t=0
3.2 World Model (WM)

The World Model (WM) of DAVIS is repre-
sented as a Temporal Knowledge Graph (TKGQG),
constructed through a combination of Stanford
CoreNLP® (Manning et al., 2014) for coreference

We used default hyperparameters provided by the Stanza
package for CoreNLP

resolution and LLLM prompting for knowledge ex-
traction. In textual environments, where state rep-
resentations are conveyed in natural language, con-
structing an effective WM requires methods that
can process and represent textual information effi-
ciently and accurately.

State representation methods in text-based en-
vironments include text encoding techniques us-
ing recurrent neural networks (Narasimhan et al.,
2015, He et al., 2016, Hausknecht et al., 2020),
transformers (Kim et al., 2022), and knowledge
graph (KG) representations (Ammanabrolu and
Hausknecht, 2020). KGs offer structured and in-
terpretable representations without requiring exten-
sive training. Ammanabrolu and Riedl’s (2021)
framed KG construction in text-based games as a
question-answering problem, where agents iden-
tified objects and their attributes. This approach
demonstrated that higher-quality KGs led to im-
proved control policies. DAVIS extends this con-
cept to Temporal Knowledge Graphs, incorporating
time-sensitive information to model dynamic en-
vironment changes. Temporal reasoning is critical
in such settings, and as noted in (Lee et al., 2023),
LLMs are highly effective in extrapolating TKGs
using in-context learning.

Let G; = (£, R, T) denote the Temporal Knowl-
edge Graph (TKG) at time ¢, where £ is the set of
entities at ¢, R is the set of relations representing
relationships between entities at, and T is the set
of timestamps associated with each relation e;.

During training, when DAVIS executes an action
a¢ and receives the subsequent observation o441,
the transition is stored as:

(o || ar || 0441)

We prompted an LLM to summarize the concate-
nated transition and applied Stanford CoreNLP for
coreference resolution. The resolved text is then
analyzed to extract entities V; and relations tuples
using LLLM-based parsing.

Each extracted tuple (v;, e;,vx, 7) is added to
the TKG, where the timestamp 7 records the time
at which the fact was introduced:

Gt+1 = Gt U {(Ui? €5, Uk, 7-)}
3.3 Retrieval-Augmented Model
Approximation

As demonstrated in Lee et al.’s (2023), LLMs ex-
cel at recognizing temporal patterns and extrapolat-
ing future events based on past data. DAVIS lever-
ages this capability to approximate future states



and rewards. For example, if sufficient past data
indicates that opening a cupboard often reveals a
kettle, the LLM can infer such transitions purely
from learned patterns without requiring explicit
pre-programmed rules. Unlike prior works (Ka-
gaya et al., 2024; Shinn et al., 2023) that rely on
vector-based retrieval of experiences, DAVIS em-
ploys a more agentic approach. Instead of passively
retrieving information, DAVIS engages in a conver-
sational process with its WM, iteratively querying
to fill knowledge gaps while retrieving relevant
subgraphs to generate informed responses. The
retrieval system is described in Section 3.4.

Although true state s; is not directly observable
as mentioned in Section 3.1, it is theoretically pos-
sible to maintain a statistic f(7) that approximates
the belief state from the trajectory history. The
statistic is updated recurrently, and captures all rel-
evant information necessary for optimal decision-
making (Nguyen et al., 2021; Astrom, 1965). Ap-
plying this to DAVIS, we approximate the belief
state by with equation:

lA?t = f(Tt/:t)>

where f(-) is a prompted LLM that extracts rele-
vant information from the trajectory history, and
is updated recurrently with new observations and
actions. To further refine decision-making, DAVIS
maintains an inner monologue M, a running list
of iterative queries and answers exchanged between
DAVIS and its WM, as illustrated in Figure 1. This
monologue allows the system to dynamically up-
date its WM based on retrieved insights.

DAVIS optimizes its policy while simultane-
ously learning approximations of the transition and
reward models using its WM. The learned func-
tions incorporating the inner monologue are:

Policy: m(ay | by, My) (1)
Transition Model: 7A’(Ot+1 | Et,at,Mt) 2)
Reward Model: 7%(7} | by, ag, My) 3)

With the approximated belief b, DAVIS’s WM
estimates the transition and reward models using
prior experiences retrieved from a TKG. DAVIS
leverages prior experiences to directly inform its
policy as defined in Equation (1). This retrieval-
driven approximation enables DAVIS to construct
an adaptive and context-aware model of the world,
allowing for informed decision-making in complex,
temporally dependent environments.

Algorithm 2 Transition Prediction

Input: by, G, k Output: 6;41, 741
I: M« 0 > Initialize inner monologue set
2: 140
3: while ¢ < k or not predicted do

4: ét+1,q — T(Zzt,dt,M)

5: ,'gt+17q — R(bt,dt,M)

6: if ¢ # 0 then

7: M MU {(q,graphQA(q))}
8: end if

9: 1141

10: end while
11: return 6¢y1, 7141

3.4 Retrieval System

Given a query ¢, such as "Where can [ find wa-
ter?"”, the WM first narrows its search to relevant
entity types such as Person (PER) and Location
(LOC) . It then selects the two most relevant entities
from the available options. Limiting the scope to
two entities is computationally efficient and ensures
a manageable search space without sacrificing rel-
evant context. The query is then expanded and
processed as follows and illustrated in Figure 3:

1. We iteratively expand the current list of se-
lected entities by adding their neighbors, form-
ing a maximal subgraph as ignoring temporal
information might result in an infeasible path.

2. We reorder the edges in the maximal subgraph
based on timestamps. This reordering shows the
proper sequence of events.

3. The temporal sequence is then passed to an
LLM as in-context examples for extrapolation
and summarization, enabling the LLM to gener-
ate a coherent response.

3.5 Planning ane Execution with a WM

With the reward model and transition model ap-
proximated, we can now plan action trajectories
within the WM. Algorithm 1 describes the WM-
incorporated planning process of DAVIS.

For plan execution, we employ an actor-critic
structure, consisting of two distinct models: the
actor R, and the critic R,, integrated with the WM
architecture. The process is illustrated in Figure 2.
Below, we provide a formalized description of each
model and its role within DAVIS.

World Model (WM). The primary objective of
the WM is to generate a comprehensive plan or
trajectory for achieving a specific task within the
environment. Given an initial observation estimate



0t, the WM generates a predicted trajectory

n A A R t+L—1

Tr L = (00, iy i1, i) by,
of length L. This trajectory 7;441, is passed to the
actor-critic model for execution in the environment.

Actor. The actor R, decomposes each high-level
action a; € 7 into executable commands within
the given environment domain. It also predicts
intermediate state transitions between actions:

7A't:t+L’ = Ra(Tt:t+L)

where L' > L accounts for the expanded trajec-
tory with executable low-level actions. The actor
model is prompted with permissible commands in
the current environment. After decomposition, the
expanded trajectory 7y 1 is executed step-by-step
in the environment, producing actual environment
responses:

(01, 7t, 0041) = E(ar)

where £ is the environment transition function that
maps the executed action a; to the resulting obser-
vation o441 and reward ;. These results are passed
to the critic model.

Critic. The critic R, evaluates the actual execu-
tion results against the predicted trajectory 7. The
comparison is performed through an LLM-based
evaluation function, which assesses the semantic
consistency between the expected and actual ob-
servations. At each timestep ¢, the critic receives
the predicted state transition (6, 7, 04+1) and the
actual environment response (o, 7', 0441 ) obtained
from executing a; in the environment.

The LLM-based critic compares these compo-
nents via a prompted evaluation function R.:

Ay = RC((ata Tt,0t41), (04, 7t 0t+1))

where A, is a qualitative feedback score represent-
ing the level of agreement between the predicted
and actual transitions. Based on the LLM’s re-
sponse, the critic determines whether replanning
is necessary. If the predicted and actual observa-
tions deviate significantly, the critic updates the
reflection memory R; and triggers replanning:

Rer1 = Re U {(o0r, 8, Ar) }

Algorithm 1 is then called to replan the new subtask.
For instance, if the task is "using the stove to heat

water" and the agent encounters an exception (e.g.,
the stove is broken), the LLM evaluates the excep-
tion, updates My, and suggests a revised subtask
such as "find an alternative heating method."

4 Experiment

4.1 ScienceWorld environment

We selected ScienceWorld (Wang et al., 2022) as
the primary benchmark to evaluate DAVIS, as it is
currently the only environment designed for interac-
tive scientific reasoning. It features 30 tasks across
9 grade-school science subjects, set in a simulated
lab where agents must navigate 8 functional rooms
and use scientific tools to complete tasks. Each
task includes over 100 variations, some of which
significantly alter the setup by masking rooms or
removing equipment—requiring strong generaliza-
tion and adaptability. The environment demands
common sense reasoning, deduction, and procedu-
ral knowledge. Scores reflect progress toward task
completion (e.g., 75 indicates 75% progress be-
fore failure), enabling structured and interpretable
evaluation. Full details are in Appendix A.

4.2 Performance

We evaluated DAVIS on the ScienceWorld
benchmark, comparing its performance against
state-of-the-art baseline agents: SayCan, ReAct,
Reflexion, and RAP. Baselines were selected based
on their competitive performance, available imple-
mentations, and relevance to ScienceWorld. The
current state-of-the-art method on ScienceWorld,
SwiftSage (Lin et al., 2023), was excluded from
our replication baselines because discrepancies be-
tween the available code and the documented eval-
uation methods made direct replication infeasible.
For consistency, all baselines were reimplemented
to align with the latest ScienceWorld version. For
fairness, both RAP and DAVIS utilized memory
constructed from five episodes of golden trajecto-
ries rather than the ReAct-based approach proposed
in Kagaya et al.’s (2024). Performance was aver-
aged across subjects for comparison, with details
on tasks and subjects provided in Tables 4 and 6 in
the appendix. Figure 4 shows DAVIS outperform-
ing all baselines in 8 out of 9 subjects, achieving an
overall average score of 65.06—approximately 1.8
times higher than competing methods. Full results
for each task, including standard deviations, are in
the appendix Table 7.

Overall, DAVIS took fewer steps before converg-
ing to the final score when compared to SayCan,



Biology

100
75
50 40.8

o e [

0

Score
Score

100
75

50
25 _25.2

Score
Score

0

Physics
100 100

75

Score
Score

50

25

0
@7 ReAct

B SayCan

Botany

BN Reflexion

Chemistry
100
75

51.4 51.0 33.4
50

Score

N 26.8
25 15.8 19.4

0

Lifespan and Life Stages
100

72.3 75

Score

50 a4.4

35.7
25 7 223 17.7
0

Thermodynamics
100

75

49.6

Score

50

20.8 25

0
EEE RAP

B DAVIS

Figure 4: Performance comparison of different agents (SayCan, ReAct, Reflexion, RAP, and DAVIS) across multiple
scientific domains. For full results, view table 7 in the Appendix.

Task D D+W
Long Tasks

Melt (1-2) 3.00 70.00
Determine Melting Point Unk. (2-3) 5.00 92.33
Medium Tasks

Mix Paint Secondary (6-1) 40.00 36.37
Test Conductivity (3-3) 55.00 58.33
Short Tasks

Lifespan Longest-Lived (7-1) 66.67 100.00
Find Living Thing (4-1) 25.00 100.00

Table 1: DAVIS performance with (D + W) and without
WM (D)

ReAct, and Reflexion. Compared to RAP, DAVIS
was better at transferring knowledge from its train-
ing to execution despite differences among varia-
tions of the same task. Its World Model allows for
multi-hop reasoning and inferences based on past
training data.

4.3 Ablation Study

We systematically evaluate the system with indi-
vidual modules removed—specifically the World
Model (WM), Actor, and Critic—and compare
their impact on performance using two metrics: (1)
average task score (i.e., task progress before time-
out) and (2) average number of steps per replanning
cycle (steps/replan). To ensure representative cov-
erage across task complexity, we select two tasks
from each category of task length (short, medium,
and long). For each task, results are averaged over
three different environment variations.

World Model: Table 1 compares DAVIS with
and without its World Model. The WM serves as
structured external memory in the form of a tempo-

Table 2: Ablation study: Full model (D+W), w/o Actor
(D-A), and w/o Critic (D-C).

Type Task D+W D-A D-C
Lone 12 70(438) 25(112) 233(3.20)
& 23 923(151) 797 (1.19) 333 (1.29)
61 364(322) 100(149) 86 (2.49)
Medium 5 3 Se'3071) 28(132) 493 (1.72)
ot 71 833(200) 66.7(2.00) 833 (2.00)
41 100(2.50) 447 (2.94) 25 (2.50)

ral knowledge graph, enabling grounded and long-
horizon planning. Without this, the agent has to
rely solely on the internal capabilities of the LLM,
lacking access to temporal or multi-hop context.
Using the WM consistently improves perfor-
mance across all tasks, particularly in complex and
temporally grounded settings like Melt and Find
Living Thing. This supports our claim that temporal
and structured grounding is critical for high-fidelity
decision-making in scientific domains.

Actor-Critic. We ablate DAVIS by removing the
Actor or Critic module individually. In the no-
Actor setup, the World Model directly outputs exe-
cutable actions, skipping high-level goal decompo-
sition. In the no-Ceritic setup, reflection and subtask
updates are disabled, though replanning triggers
remain. Table 2 summarizes the results.

* No Actor: The agent struggles to produce
valid commands despite access to action for-
mats, resulting in low task scores and near-1.0
steps/replan—indicating constant replanning and
poor multi-step coherence. We observed that the



performance in task 6-1 was due to luck, as the
agent correctly guessed the critical action ‘focus
on’ within the first 5 steps, skipping all the inter-
mediate steps. This behavior was also observed
in the D-C model.

* No Critic: The agent is able to execute longer
action chains without an Actor module, but its
lack of introspective feedback (due to the absence
of a Critic) limits its ability to recover from er-
rors. While performance differences are minimal
on short tasks—typically solvable within one or
two replanning cycles—the gap widens on longer
tasks that require more adaptive reasoning. Com-
pared to the no-Actor condition, both task perfor-
mance and steps per replan improve, but remain
below those of the full DAVIS system.

The Actor enables structured execution, and the
Critic enhances adaptivity. A higher average steps
per replan ratio, paired with strong task scores,
demonstrates coherent, cost-efficient planning.

4.4 Multi-hop Q&A

We evaluated the performance of DAVIS’s World
Model (WM) on the multi-hop QA benchmarks
HotpotQA and MusiqueQA using 400 randomly
sampled instances, following the evaluation pro-
tocol of Li et al.’s (2024). As shown in Table 3,
DAVIS (GPT-40) achieves strong results, surpass-
ing GraphReader and GraphRAG on HotpotQA
with an F1 score of 73.8 and a competitive EM of
56.25—approaching the state-of-the-art HOLMES.
On MusiqueQA, DAVIS maintains strong perfor-
mance (F1: 48.5, EM: 33.8), further demonstrating
the effectiveness of its structured, temporal mem-
ory in reasoning tasks. While HOLMES achieves
the highest overall scores, its static hyper-relational
graph architecture lacks DAVIS’s ability to support
dynamic updates during inference, which is cru-
cial for agents operating in evolving or interactive
environments. For each system, we report results
using the best-performing language model config-
uration as documented in the respective original
papers. We observe that retrieval-based systems are
highly sensitive to the underlying LLM: DAVIS per-
forms better with GPT-40 than with GPT-4-turbo,
despite the latter’s generally stronger performance
claims. This LLM sensitivity, though observed
qualitatively, warrants further study; a systematic
analysis of model-architecture alignment is left for
future work as it lies beyond the scope of this paper.

Table 3: WM comparison against SotA baselines.

Method HotpotQA | MusiqueQA
EM Fl |EM Fl
GPT-40 463 64.1[19.0 344
GPT-4-turbo 443 60.4|20.5 347
GraphReader (GPT-4) 55.0 70.0|38.0 474
HOLMES (GPT-4) 66.0 78.048.0 58.0
GraphRAG (GPT-40-mini) 58.7 63.3[40.0 53.5
DAVIS (GPT-40) 56.25 73.8|33.8 48.5
DAVIS (GPT-4-turbo) 55.25 71.0|34.0 47.1

5 Conclusion

DAVIS is an agent designed for scientific inter-
active reasoning tasks in complex environments.
DAVIS represents a novel approach that leverages
a structured World Model (WM) in the form of a
temporal knowledge graph, enabling iterative re-
trieval and reasoning over past experiences. This
structured representation allows DAVIS to approxi-
mate both the transition dynamics and reward mod-
els of its environment, facilitating more informed
decision-making. DAVIS also uniquely uses an
interactive retrieval process, which combines it-
erative querying with contextual reasoning to fill
knowledge gaps and refine understanding. This is
augmented by DAVIS’s ability to perform internal
planning and validation before interacting with the
environment. By engaging in pre-execution delib-
eration, DAVIS enables clearer inspection of its
planned actions, making it easier for human super-
visors to review its decision-making process. This
transparency facilitates stronger safeguards com-
pared to reinforcement learning (RL) agents, whose
policies are often opaque. DAVIS is ideal for scien-
tific tasks that demand precision, adaptability, and
strict adherence to experimental protocols.

Evaluations across several scientific domains,
including thermodynamics, biology, and physics,
demonstrate the efficacy of DAVIS’s structured
knowledge representation and retrieval methods.
DAVIS significantly outperforms baseline agents
by combining robust planning with the capacity
for iterative reasoning, enabling it to generalize
effectively from demonstrations to new tasks.

6 Limitations

While DAVIS demonstrates strong reasoning ca-
pabilities and improved performance over previous
agentic approaches, it has several limitations that
we will address in future research.



6.1 High operational cost

DAVIS heavily relies on Large Language Models
(LLMs), making it computationally expensive. Due
to its careful planning and reasoning process, it
sends and receives an average of 43,000 tokens per
action, resulting in an estimated cost of $0.43 per
action. For tasks requiring 100 actions, this cost
can escalate to $43 per episode, leading to a total
experimental cost of approximately $3,000 for 90
variations.

6.2 Sensitive to LLM performance

DAVIS’s reasoning and decision-making abil-
ities fluctuate based on the underlying LLM’s
performance. Factors such as model version up-
dates, prompt engineering quality, and external API
changes can lead to accuracy, consistency, and re-
sponse time variability. This dependence on LLM
stability makes DAVIS susceptible to unexpected
performance shifts, which may impact reliability
in dynamic or evolving environments.

6.3 Biased Planning & Knowledge
Dependence

DAVIS’s decision-making process is heavily
influenced by the Temporal Knowledge Graph
(TKG), which serves as its structured memory.
However, this dependence can lead to biased plan-
ning, as DAVIS prioritizes information within the
graph. Although efforts were made to increase
data diversity by populating the knowledge graph
with 150 different ScienceWorld task variations,
the model still struggles when encountering novel
scenarios or incomplete knowledge. Future work
should explore adaptive knowledge integration to
mitigate bias.

6.4 Lack of Multimodal Capabilities

DAVIS operates exclusively in textual environ-
ments, limiting its applicability as an embodied
agent. The absence of visual, auditory, or sensory
perception restricts its ability to interact with real-
world multimodal tasks. Future research should
focus on integrating visual and sensor-based input
processing to enhance generalization and deploy-
ment in robotic or multimodal Al systems.

References

Michael Ahn, Anthony Brohan, Noah Brown, Yev-
gen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol
Hausman, Alex Herzog, Daniel Ho, Jasmine Hsu,
Julian Ibarz, Brian Ichter, Alex Irpan, Eric Jang,

Rosario Jauregui Ruano, Kyle Jeffrey, Sally Jes-
month, Nikhil J. Joshi, Ryan Julian, Dmitry Kalash-
nikov, Yuheng Kuang, Kuang-Huei Lee, Sergey
Levine, Yao Lu, Linda Luu, Carolina Parada, Pe-
ter Pastor, Jornell Quiambao, Kanishka Rao, Jarek
Rettinghouse, Diego Reyes, Pierre Sermanet, Nico-
las Sievers, Clayton Tan, Alexander Toshev, Vincent
Vanhoucke, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu,
Mengyuan Yan, and Andy Zeng. 2022. Do As I Can,
Not As I Say: Grounding Language in Robotic Af-
fordances. arXiv preprint. ArXiv:2204.01691 [cs].

Prithviraj Ammanabrolu and Matthew Hausknecht.
2020. Graph Constrained Reinforcement Learning
for Natural Language Action Spaces. arXiv preprint.
ArXiv:2001.08837 [cs, stat].

Prithviraj Ammanabrolu and Mark O. Riedl. 2021.
Learning Knowledge Graph-based World Mod-
els of Textual Environments. arXiv preprint.
ArXiv:2106.09608 [cs].

Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd
Hester. 2019. Challenges of Real-World Reinforce-
ment Learning. arXiv preprint. ArXiv:1904.12901
[cs].

Darren Edge, Ha Trinh, Newman Cheng, Joshua
Bradley, Alex Chao, Apurva Mody, Steven Truitt,
and Jonathan Larson. 2024. From Local to Global:
A Graph RAG Approach to Query-Focused Summa-
rization. arXiv preprint. ArXiv:2404.16130 [cs].

Nuno M. Guerreiro, Duarte Alves, Jonas Waldendorf,
Barry Haddow, Alexandra Birch, Pierre Colombo,
and André F. T. Martins. 2023. Hallucinations
in Large Multilingual Translation Models. arXiv
preprint. ArXiv:2303.16104 [cs].

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mo-
hammad Norouzi. 2020. Dream to Control: Learning
Behaviors by Latent Imagination. arXiv preprint.
ArXiv:1912.01603 [cs].

Matthew Hausknecht, Prithviraj Ammanabrolu, Marc-
Alexandre C6té, and Xingdi Yuan. 2020. Interactive
Fiction Games: A Colossal Adventure. Proceedings
of the AAAI Conference on Artificial Intelligence,
34(05):7903-7910. Number: 05.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Li-
hong Li, Li Deng, and Mari Ostendorf. 2016. Deep
Reinforcement Learning with a Natural Language
Action Space. arXiv preprint. ArXiv:1511.04636
[cs].

Tomoyuki Kagaya, Thong Jing Yuan, Yuxuan Lou,
Jayashree Karlekar, Sugiri Pranata, Akira Kinose,
Koki Oguri, Felix Wick, and Yang You. 2024.
RAP: Retrieval-Augmented Planning with Contex-
tual Memory for Multimodal LLM Agents. arXiv
preprint. ArXiv:2402.03610 [cs].

Minsoo Kim, Yeonjoon Jung, Dohyeon Lee, and Seung-
won Hwang. 2022. PLM-based World Models for


http://arxiv.org/abs/2204.01691
http://arxiv.org/abs/2204.01691
http://arxiv.org/abs/2204.01691
http://arxiv.org/abs/2204.01691
http://arxiv.org/abs/2204.01691
https://doi.org/10.48550/arXiv.2001.08837
https://doi.org/10.48550/arXiv.2001.08837
https://doi.org/10.48550/arXiv.2001.08837
https://doi.org/10.48550/arXiv.2106.09608
https://doi.org/10.48550/arXiv.2106.09608
https://doi.org/10.48550/arXiv.2106.09608
https://doi.org/10.48550/arXiv.1904.12901
https://doi.org/10.48550/arXiv.1904.12901
https://doi.org/10.48550/arXiv.1904.12901
https://doi.org/10.48550/arXiv.2404.16130
https://doi.org/10.48550/arXiv.2404.16130
https://doi.org/10.48550/arXiv.2404.16130
https://doi.org/10.48550/arXiv.2404.16130
https://doi.org/10.48550/arXiv.2404.16130
https://doi.org/10.48550/arXiv.2303.16104
https://doi.org/10.48550/arXiv.2303.16104
https://doi.org/10.48550/arXiv.2303.16104
http://arxiv.org/abs/1912.01603
http://arxiv.org/abs/1912.01603
http://arxiv.org/abs/1912.01603
https://doi.org/10.1609/aaai.v34i05.6297
https://doi.org/10.1609/aaai.v34i05.6297
https://doi.org/10.1609/aaai.v34i05.6297
https://doi.org/10.48550/arXiv.1511.04636
https://doi.org/10.48550/arXiv.1511.04636
https://doi.org/10.48550/arXiv.1511.04636
https://doi.org/10.48550/arXiv.1511.04636
https://doi.org/10.48550/arXiv.1511.04636
https://doi.org/10.48550/arXiv.2402.03610
https://doi.org/10.48550/arXiv.2402.03610
https://doi.org/10.48550/arXiv.2402.03610
https://doi.org/10.18653/v1/2022.emnlp-main.86
https://doi.org/10.18653/v1/2022.emnlp-main.86

Text-based Games. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1324-1341, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Dong-Ho Lee, Kian Ahrabian, Woojeong Jin, Fred
Morstatter, and Jay Pujara. 2023.  Temporal
Knowledge Graph Forecasting Without Knowl-
edge Using In-Context Learning. arXiv preprint.
ArXiv:2305.10613 [cs].

Shilong Li, Yancheng He, Hangyu Guo, Xingyuan Bu,
Ge Bai, Jie Liu, Jiaheng Liu, Xingwei Qu, Yang-
guang Li, Wanli Ouyang, Wenbo Su, and Bo Zheng.
2024. GraphReader: Building Graph-based Agent to
Enhance Long-Context Abilities of Large Language
Models. arXiv preprint. ArXiv:2406.14550 [cs].

Bill Yuchen Lin, Yicheng Fu, Karina Yang, Faeze Brah-
man, Shiyu Huang, Chandra Bhagavatula, Prithviraj
Ammanabrolu, Yejin Choi, and Xiang Ren. 2023.
SwiftSage: A Generative Agent with Fast and Slow
Thinking for Complex Interactive Tasks. arXiv
preprint. ArXiv:2305.17390 [cs].

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The Stanford CoreNLP Natural Language
Processing Toolkit. In Proceedings of 52nd Annual
Meeting of the Association for Computational Lin-
guistics: System Demonstrations, pages 55-60, Bal-
timore, Maryland. Association for Computational
Linguistics.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Alex Graves, loannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. arXiv preprint.
ArXiv:1312.5602 [cs] version: 1.

Karthik Narasimhan, Tejas Kulkarni, and Regina Barzi-
lay. 2015. Language Understanding for Text-based
Games using Deep Reinforcement Learning. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1-11,
Lisbon, Portugal. Association for Computational Lin-
guistics.

Hai Nguyen, Brett Daley, Xinchao Song, Christopher
Amato, and Robert Platt. 2021. Belief-Grounded Net-
works for Accelerated Robot Learning under Partial
Observability. arXiv preprint. ArXiv:2010.09170
[cs].

Pranoy Panda, Ankush Agarwal, Chaitanya Devagup-
tapu, Manohar Kaul, and Prathosh Ap. 2024.
HOLMES: Hyper-Relational Knowledge Graphs for
Multi-hop Question Answering using LLMs. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 13263-13282, Bangkok, Thailand.
Association for Computational Linguistics.

Pranav Putta, Edmund Mills, Naman Garg, Sumeet
Motwani, Chelsea Finn, Divyansh Garg, and Rafael

10

Rafailov. 2024. Agent Q: Advanced Reasoning and
Learning for Autonomous Al Agents. arXiv preprint.
ArXiv:2408.07199 [cs].

Jianing Qiu, Kyle Lam, Guohao Li, Amish Acharya,
Tien Yin Wong, Ara Darzi, Wu Yuan, and Eric J.
Topol. 2024. LLM-based agentic systems in
medicine and healthcare. Nature Machine Intelli-
gence, 6(12):1418-1420. Publisher: Nature Publish-
ing Group.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. Improving Language Understanding
by Generative Pre-Training.

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng
Sun, Jialian Wu, Xiaodong Yu, Jiang Liu, Zicheng
Liu, and Emad Barsoum. 2025. Agent Laboratory:
Using LLM Agents as Research Assistants. arXiv
preprint. ArXiv:2501.04227 [cs].

Julian Schrittwieser, loannis Antonoglou, Thomas Hu-
bert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, Timothy Lillicrap, and David Silver.
2020. Mastering Atari, Go, chess and shogi by plan-
ning with a learned model. Nature, 588(7839):604—
609. Publisher: Nature Publishing Group.

Noah Shinn, Federico Cassano, Edward Berman, Ash-
win Gopinath, Karthik Narasimhan, and Shunyu
Yao. 2023. Reflexion: Language Agents with
Verbal Reinforcement Learning. arXiv preprint.
ArXiv:2303.11366 [cs].

Richard S Sutton and Andrew G Barto. 1998. Rein-
forcement Learning: An Introduction.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. LLaMA: Open
and Efficient Foundation Language Models. arXiv
preprint. ArXiv:2302.13971 [cs].

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot,
and Ashish Sabharwal. 2022. MuSiQue: Multi-
hop Questions via Single-hop Question Composition.
arXiv preprint. ArXiv:2108.00573 [cs].

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man-
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and
Anima Anandkumar. 2023a. Voyager: An Open-
Ended Embodied Agent with Large Language Mod-
els. arXiv preprint. ArXiv:2305.16291 [cs].

Ruoyao Wang, Peter Jansen, Marc-Alexandre Coté,
and Prithviraj Ammanabrolu. 2022. ScienceWorld:
Is your Agent Smarter than a Sth Grader? arXiv
preprint. ArXiv:2203.07540 [cs].

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xi-
aojian Ma, and Yitao Liang. 2024. Describe, Explain,
Plan and Select: Interactive Planning with Large
Language Models Enables Open-World Multi-Task
Agents. arXiv preprint. ArXiv:2302.01560 [cs].


https://doi.org/10.18653/v1/2022.emnlp-main.86
https://doi.org/10.48550/arXiv.2305.10613
https://doi.org/10.48550/arXiv.2305.10613
https://doi.org/10.48550/arXiv.2305.10613
https://doi.org/10.48550/arXiv.2305.10613
https://doi.org/10.48550/arXiv.2305.10613
https://doi.org/10.48550/arXiv.2406.14550
https://doi.org/10.48550/arXiv.2406.14550
https://doi.org/10.48550/arXiv.2406.14550
https://doi.org/10.48550/arXiv.2406.14550
https://doi.org/10.48550/arXiv.2406.14550
https://doi.org/10.48550/arXiv.2305.17390
https://doi.org/10.48550/arXiv.2305.17390
https://doi.org/10.48550/arXiv.2305.17390
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.3115/v1/P14-5010
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.18653/v1/D15-1001
https://doi.org/10.18653/v1/D15-1001
https://doi.org/10.18653/v1/D15-1001
https://doi.org/10.48550/arXiv.2010.09170
https://doi.org/10.48550/arXiv.2010.09170
https://doi.org/10.48550/arXiv.2010.09170
https://doi.org/10.48550/arXiv.2010.09170
https://doi.org/10.48550/arXiv.2010.09170
https://doi.org/10.18653/v1/2024.acl-long.717
https://doi.org/10.18653/v1/2024.acl-long.717
https://doi.org/10.18653/v1/2024.acl-long.717
https://doi.org/10.48550/arXiv.2408.07199
https://doi.org/10.48550/arXiv.2408.07199
https://doi.org/10.48550/arXiv.2408.07199
https://doi.org/10.1038/s42256-024-00944-1
https://doi.org/10.1038/s42256-024-00944-1
https://doi.org/10.1038/s42256-024-00944-1
https://doi.org/10.48550/arXiv.2501.04227
https://doi.org/10.48550/arXiv.2501.04227
https://doi.org/10.48550/arXiv.2501.04227
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.48550/arXiv.2303.11366
https://doi.org/10.48550/arXiv.2303.11366
https://doi.org/10.48550/arXiv.2303.11366
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2108.00573
https://doi.org/10.48550/arXiv.2108.00573
https://doi.org/10.48550/arXiv.2108.00573
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.48550/arXiv.2305.16291
https://doi.org/10.48550/arXiv.2203.07540
https://doi.org/10.48550/arXiv.2203.07540
https://doi.org/10.48550/arXiv.2203.07540
https://doi.org/10.48550/arXiv.2302.01560
https://doi.org/10.48550/arXiv.2302.01560
https://doi.org/10.48550/arXiv.2302.01560
https://doi.org/10.48550/arXiv.2302.01560
https://doi.org/10.48550/arXiv.2302.01560
https://doi.org/10.48550/arXiv.2302.01560
https://doi.org/10.48550/arXiv.2302.01560

Zihao Wang, Shaofei Cai, Anji Liu, Yonggang Jin, Jin-
bing Hou, Bowei Zhang, Haowei Lin, Zhaofeng
He, Zilong Zheng, Yaodong Yang, Xiaojian Ma,
and Yitao Liang. 2023b.  JARVIS-1: Open-
World Multi-task Agents with Memory-Augmented
Multimodal Language Models. arXiv preprint.
ArXiv:2311.05997 [cs].

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-Thought Prompting
Elicits Reasoning in Large Language Models. arXiv
preprint. ArXiv:2201.11903 [cs].

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W. Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. 2018. HotpotQA: A
Dataset for Diverse, Explainable Multi-hop Ques-
tion Answering. arXiv preprint. ArXiv:1809.09600

[cs].

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
ReAct: Synergizing Reasoning and Acting in Lan-
guage Models. arXiv preprint. ArXiv:2210.03629
[cs].

Haiteng Zhao, Chang Ma, Guoyin Wang, Jing Su,
Lingpeng Kong, Jingjing Xu, Zhi-Hong Deng, and
Hongxia Yang. 2024. Empowering Large Language
Model Agents through Action Learning. arXiv
preprint. ArXiv:2402.15809 [cs].

K. J Astrom. 1965. Optimal control of Markov pro-
cesses with incomplete state information. Journal of
Mathematical Analysis and Applications, 10(1):174—
205.

A ScienceWorld

ScienceWorld (Wang et al., 2022) is a bench-
mark designed to evaluate interactive reasoning in
digital agents through a realistic laboratory simu-
lation. Developed by the Allen Institute for Al, it
provides a text-based environment that emulates
scientific experiments, requiring agents to inter-
act with objects, collect observations, and apply
reasoning skills to solve tasks. The framework
consists of approximately 40,000 lines of SCALA
code with a PYTHON interface, following standard
RL benchmarking practices.

The ScienceWorld environment consists of 10
interconnected locations (Fig. 5), each populated
with up to 200 distinct object types, including scien-
tific instruments, electrical components, biological
specimens, substances, and common environmen-
tal elements like furniture and books. Agents can
interact with objects through a predefined action
space of 25 high-level actions, categorized into
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Task

Changes of State (Boiling)

Changes of State (Melting)

Changes of State (Freezing)
Changes of State (Any)

Use Thermometer

Measuring Boiling Point (Known)
Measuring Boiling Point (Unknown)
Create a Circuit

Renewable vs Non-Renewable Energy
Test Conductivity (Known)

Test Conductivity (Unknown)

Find a Living Thing

Find a Non-Living Thing

Find a Plant

Find an Animal

Grow a Plant

Grow a Fruit

Mixing (Generic)

Mixing Paints (Secondary Colours)
Mixing Paints (Tertiary Colours)
Identify Longest-Lived Animal
Identify Shortest-Lived Animal
Identify Longest-Then-Shortest-Lived Animal
Identify Life Stages (Plant)

Identify Life Stages (Animal)
Inclined Planes (Determine Angle)
Friction (Known Surfaces)

Friction (Unknown Surfaces)

10-1 Mendelian Genetics (Known Plants)
10-2 Mendelian Genetics (Unknown Plants)

O OO0 00T TN R BB R 000 L) 0D B B = — | 3
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Table 4: Tasks in ScienceWorld.

domain-specific operations (e.g., using a thermome-
ter, measuring conductivity) and general interac-
tions (e.g., moving, opening containers, picking
up items). At each step, approximately 200,000
possible action-object combinations exist, though
only a subset is relevant based on the context.

ScienceWorld tasks are designed to assess sci-
entific reasoning across multiple disciplines. The
dataset includes 30 distinct tasks (Table 4), cov-
ering a range of experimental procedures and
problem-solving scenarios. These tasks are further
grouped into 9 science domains (Table 6), includ-
ing physics, chemistry, biology, and environmen-
tal science, allowing for targeted evaluation of an
agent’s ability to reason through various scientific
concepts, making ScienceWorld a robust bench-
mark for testing multi-step reasoning in dynamic,
interactive environments.

B DAVIS Implementation Details

We utilized GPT-4-turbo for reasoning, GPT-40
for question answering, and LLaMA3-7@B for the
Knowledge Graph construction pipeline. Agents
were run for a maximum of 80 steps per task. All
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Hyperparameter Value
Maximum Steps per Task 100
Simplification Level Easy
Knowledge Graph Pipeline | LLaMA3-70B-Instruct
Reasoning Model GPT-4-Turbo
Maximum QA Turns 5

Predicted Trajectory Length 5

Table 5: Hyperparameter settings for DAVIS.

RAG-based agents were initialized with five vari-
ations, a total of 150 variations, of rollouts using
the golden trajectory for training, while three ran-
domly sampled test variations, a total of 90 varia-
tions, were drawn from the ScienceWorld test set.
In contrast, all CoT agents were evaluated directly
on the randomly drawn test set as intended.

All experiments were conducted on a system
equipped with a NVIDIA RTX 3060 GPU, an
AMD Ryzen 9 7900X CPU, 64GB RAM, running
Ubuntu 23.04 with Python 3.11.0. The full table
of hyperparameters and settings for DAVIS is pro-
vided in Table 5. Full results is available in table 7,
and all code and prompts are available in the at-
tached repository.
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Figure 5: The ScienceWorld environment

Subject Description Tasks

Agents perform experiments to change the state of various 1-1, 1-2,

Matter materials, such as transforming ice to water or water to steam 1-3, 1-4
. Agents conduct experiments involving temperature 2-1,2-2,
Thermodynamics . . . . .
manipulation, such as heating or cooling objects. 2-3
.. Agents relocate to a workshop and construct electrical 3-1,3-2,3-3
Electricity R . . .
circuits to achieve specific objectives. 3-4
. Agents relocate to a garden and identify animals 4-1,4-2,4-3
Biology . .
based on various queries. 4-4
Bty Agents reloce.lte to a greenhouse e.md peIiform tasks 51,52
such as growing plants or observing their growth.
Chemistry Age‘ntS engage in standard chemistry tasks, such as 6-1,6-2. 6.3
mixing substances to create new compounds
Lifespan and Agents observe and report the life stages of plants and 7-1,7-2,7-3
Life Stages animals, such as germination, flowering, or molting. 8-1, 8-2
. Agents use physics knowledge to measure angles or 9-1,9-2
Physics . . .
explore physical properties of materials 9-3
. Agents identify genetic traits of plants, such as dominant 10-1
Genetics . . .
or recessive characteristics, based on observations. 10-2

Table 6: Description of subjects and corresponding tasks in ScienceWorld. Each subject represents a unique domain of inquiry,
with tasks designed to evaluate agents’ reasoning, planning, and execution capabilities in diverse scientific scenarios.
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Task | SayCan | ReAct | Reflexion | RAP | DAVIS

| Mean Std | Mean Std | Mean  Std | Mean  Std | Mean  Std
State of Matter 15.42 17.92 20.83 5.42 49.58
1-1 (L) 1.67 1.5 2.67 2.5 27.67 41.0 | 13.33 20.55 | 25.67 19.6
1-2 (L) 2333 404 | 25.67 40.2 1.00 1.7 1.67 2.89 70.00 0.0
1-3 (L) 3.33 5.8 19.33 253 19.33 253 6.67 5.78 32.00 27.7
1-4 (L) 3333 57.7 | 2400 39.0 | 3533 56.0 | 0.00 0.00 70.67 0.6
Thermodynamics 24.89 12.67 10.67 20.44 85.00
2-1 (M) 6.00 3.0 4.00 3.5 9.00 0.0 | 3033 4743 | 83.00 294
2-2 (M) 7.67 0.6 6.33 0.6 17.33 18.8 8.67 15.02 | 79.67 352
2-3 (L) 61.00 483 | 27.67 39.3 5.67 0.6 | 2233 2040 | 9233 133
Electricity 21.58 27.00 36.08 43.42 68.50
3-1(S) 30.33 404 | 30.33 404 | 2333 345 | 39.00 33.05| 8233 157
3-2(M) 22.67 264 | 1933 29.3 1433 20.6 | 35.33 27.31 68.67 27.1
3-3 (M) 23.33  27.5 | 5.00 5.0 39.00 345 | 38.00 35.03 | 58.33 2.9
Biology 29.92 41.83 91.00 44.42 95.83
4-1(S) 1133 98 | 17.00 0.0 7233 479 | 61.00 38.1 100.00 0.0
4-2(S) 36.00 34.8 | 58.33 289 | 100.00 0.0 | 19.33 9.8 83.33 144
4-3(S) 2233 4.6 | 75.00 0.0 91.67 144 | 5833 36.0 | 100.00 0.0
4-4 (S) 50.00 433 | 17.00 0.0 | 100.00 0.0 | 39.00 38.1 100.00 0.0
Botany 14.83 40.83 38.17 33.00 26.83
5-1(L) 16.67 144 | 9.00 3.6 3.67 4.6 | 50.00 73.99 | 35.67 2.9
5-2 (L) 13.00 4.6 | 72.67 473 | 7267 47.3 | 16.00 13.89 | 18.00 6.2
Chemistry 15.78 19.44 51.44 51.00 53.44
6-1 (M) 16.67 11.5 | 2333 115 | 56.67 379 | 5333 5.78 36.67 5.8
6-2(S) 2633 23 | 20.67 18.0 | 83.33 289 | 22.67 21.60 | 53.67 40.5
6-3 (M) 4.33 2.3 1433 5.1 14.33 7.5 | 77.00 0.00 70.00 0.0
Lifespan and Life Stages 44.40 35.67 22.47 17.67 57.80
7-1(S) 75.00 43.3 | 66.67 28.9 | 50.00 0.0 | 16.67 28.86 | 100.00 0.0
7-2(S) 83.33 289 | 66.67 289 | 3333 144 | 16.67 28.86 | 83.33 289
7-3 (S) 33.00 0.0 | 22.00 19.1 | 22.33 9.2 5.67 9.81 83.00 0.0
8-1(S) 13.33 6.1 15.00 22.6 4.00 4.0 | 38.00 25.98 2.67 2.3
8-2(S) 17.33 4.6 8.00 0.0 2.67 46 | 11.33  9.81 20.00 0.0
Physics 7.78 3.89 27.78 34.48 64.44
9-1(L) 5.00 5.0 0.00 0.0 36.67 54.8 | 30.00 30.00 | 76.67 404
9-2 (L) 6.67 7.6 11.67 12.6 8.33 2.9 | 30.00 0.00 60.00 34.6
9-3 (L) 11.67 16.1 | 0.00 0.0 38.33 535 | 43.44 2328 | 56.67 379
Genetics 5.83 25.17 6.33 6.83 72.33
10-1 (L) 6.00 9.5 | 39.00 53.5 6.33 9.2 3.33 5.78 | 100.00 0.0
10-2 (L) 5.67 9.8 | 11.33 9.8 6.33 9.2 10.33  10.50 | 44.67 479

Table 7: Full results on ScienceWorld. The average score for each category is displayed in the grey bar on the same

row as the category label.
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