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Abstract

Designing a generalist scientific agent capable001
of performing tasks in laboratory settings to as-002
sist researchers has become a key goal in recent003
Artificial Intelligence (AI) research. Unlike004
everyday tasks, scientific tasks are inherently005
more delicate and complex, requiring agents006
to possess a higher level of reasoning ability,007
structured and temporal understanding of their008
environment, and a strong emphasis on safety.009
Existing approaches often fail to address these010
multifaceted requirements. To tackle these011
challenges, we present DAVIS1. Unlike tradi-012
tional retrieval-augmented generation (RAG)013
approaches, DAVIS incorporates structured and014
temporal memory, which enables model-based015
planning. Additionally, DAVIS implements016
an agentic, multi-turn retrieval system, simi-017
lar to a human’s inner monologue, allowing018
for a greater degree of reasoning over past ex-019
periences. DAVIS demonstrates substantially020
improved performance on the ScienceWorld021
benchmark comparing to previous approaches022
on 8 out of 9 elementary science subjects. In023
addition, DAVIS’s World Model demonstrates024
competitive performance on the famous Hot-025
potQA and MusiqueQA dataset for multi-hop026
question answering. To the best of our knowl-027
edge, DAVIS is the first RAG agent to em-028
ploy an interactive retrieval method in a RAG029
pipeline.030

1 Introduction031

A core focus of current Artificial Intelligence032

(AI) research is the development of artificial agents033

capable of autonomously performing human tasks034

with high decision-making autonomy (Ahn et al.,035

2022; Zhao et al., 2024; Wang et al., 2024; Putta036

et al., 2024). While Reinforcement Learning (RL)037

has traditionally been used to create goal-oriented038

agents in Markovian environments (Mnih et al.,039

2013; Schrittwieser et al., 2020; Hafner et al.,040

1All code and prompts are available at Anonymous Github

Figure 1: Visualization of DAVIS’s inner monologue
during decision-making. The agent uses its World
Model to retrieve relevant subgraphs from a Tempo-
ral Knowledge Graph (TKG) for reasoning.

2020), it often suffers from sample inefficiency, 041

limited generalizability, and poor interpretabil- 042

ity, making real-world deployment challenging 043

(Dulac-Arnold et al., 2019). Recently, large lan- 044

guage models (LLMs) (Radford et al.; Touvron 045

et al., 2023) have revolutionized the creation of au- 046

tonomous agents by leveraging natural language un- 047

derstanding to enhance interpretability and general- 048

ization. These LLM-based agents have shown great 049

promise in critical domains such as healthcare (Qiu 050

et al., 2024) and scientific research (Schmidgall 051

et al., 2025) by mimicking human decision-making 052

processes and enabling more intuitive reasoning 053

and actions. 054

Several approaches have enhanced agentic rea- 055

soning and decision-making. SwiftSage (Lin et al., 056

2023) emulates the fast and slow thinking of hu- 057

mans with fine-tuned language models for plan- 058

ning. SayCan (Ahn et al., 2022) decomposes tasks 059

into subgoals, while ReAct (Yao et al., 2023) 2 060

2SwiftSage, Reflexion, SayCan, and ReAct are used under
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Figure 2: Overview of DAVIS’s decision-making process. The World Model generates a feasible course of actions,
which are translated by the actor and executed sequentially by the agent in the environment. The critic detects
discrepancies between expected and actual outcomes, identify failures, and suggest replanning.

integrates reasoning into execution. RAG-based061

systems like Reflexion (Shinn et al., 2023) and062

RAP3 (Kagaya et al., 2024) retrieve past experi-063

ences via semantic search, but their unstructured064

memory limits multi-hop reasoning and causal un-065

derstanding. These systems retrieve static infor-066

mation rather than engaging in agentic, multi-turn067

retrieval, preventing dynamic adaptation.068

Humans do not retrieve past knowledge stati-069

cally; instead, we actively reflect, question our un-070

derstanding, and refine our knowledge through in-071

ternal dialogues. Inspired by this, we introduce072

DAVIS, an agentic multi-turn retrieval system that073

mirrors human cognition by enabling iterative in-074

teractions between the agent and its memory dur-075

ing the planning stage. DAVIS actively engages076

with its World Model (WM), a temporal knowledge077

graph-based QA system, to refine its understanding078

before execution. DAVIS engages in conversation079

with its WM to retrieve past experiences, evaluate080

actions, identify gaps, and optimize strategies.081

DAVIS proves to be effective for iterative reason-082

ing within scientific domains. Specifically, DAVIS083

outperforms 4 other baselines (Ahn et al., 2022;084

Kagaya et al., 2024; Yao et al., 2023; Shinn et al.,085

2023) on 8 out of 9 science subjects in the Science-086

World (Wang et al., 2022) environment.4 DAVIS’s087

WM achieves competitive performance on the Hot-088

potQA (Yang et al., 2018) and MusiqueQA (Trivedi089

MIT license
3RAP is used under MIT license
4ScienceWorld is used under Apache 2.0 license

et al., 2022) dataset 5. Our contributions can be 090

summarized as follows: 091

• We introduce DAVIS, an agentic reasoning 092

framework that leverages multi-turn retrieval and 093

self-reflection to improve decision-making. 094

• Unlike static retrieval methods, DAVIS leverages 095

a structured temporal knowledge graph memory 096

system to enable multi-hop reasoning and causal 097

understanding. 098

• Empirical evaluations show that DAVIS outper- 099

forms prior agentic reasoning models across sci- 100

entific benchmarks, demonstrating superior plan- 101

ning and execution. 102

2 Background & Related Work 103

2.1 LLM agentic systems 104

Recent advancements in LLM-based agentic sys- 105

tems have drawn heavily from human decision- 106

making processes and generally fall into two 107

paradigms: direct interaction via chain-of-thought 108

(CoT) reasoning or Retrieval-Augmented Genera- 109

tion (RAG). 110

The first paradigm involves agents interacting di- 111

rectly with their environment using CoT reasoning 112

(Yao et al., 2023; Ahn et al., 2022; Lin et al., 2023). 113

Chain-of-Thought prompting (Wei et al., 2023) en- 114

ables large language models to decompose complex 115

tasks into smaller, interpretable reasoning steps. 116

5The HotpotQA dataset is distribued under the CC BY-SA
4.0 license. The MusiqueQA dataset is distribued under CC
BY 4.0 license
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Figure 3: DAVIS’s retrieval and reasoning process. Left: subgraph with relevant entities and their relationships.
Middle: temporal reordering of the retrieved information to establish a coherent sequence of actions. Right: DAVIS
generates a structured and interpretable response.

However, CoT-based systems lack robust memory117

for long-term learning and adaptability across mul-118

tiple tasks. The absence of memory has been linked119

to increased hallucination and stochasticity in task120

planning (Guerreiro et al., 2023), posing risks in121

domains like scientific research.122

The second paradigm, RAG-based systems, inte-123

grates retrieval mechanisms with generative capa-124

bilities, enabling agents to access relevant external125

knowledge during task execution. In the Minecraft126

domain, extensive work has been done on RAG-127

based agents, with JARVIS-1 (Wang et al., 2023b)128

and Voyager (Wang et al., 2023a) representing the129

state-of-the-art. Since Minecraft is one of the most130

popular video games in the world, these agents131

leverage the extensive in-domain knowledge of132

LLMs but face significant limitations in scientific133

environments, where tasks often involve unknown134

skills and cannot rely on pre-existing knowledge.135

A more general and iterative approach involving136

multiple trials is necessary in such cases.137

Reflexion (Shinn et al., 2023) and RAP (Kagaya138

et al., 2024) represent recent advances in agentic139

reasoning, using memory logs or semantic retrieval140

to guide decisions—Reflexion through reflective141

trial histories and RAP through nearest-neighbor142

search of past experiences. While these systems143

address some shortcomings of chain-of-thought144

(CoT) prompting, they rely heavily on unstructured145

vector databases, which scatter information and146

hinder multi-hop and causal reasoning. Addition-147

ally, they lack the capacity for temporal reasoning148

and iterative refinement. Also, neither approach in-149

corporates internal validation or model-based plan-150

ning, which limits their ability to make deliberate151

and accurate decisions. Thus the need for hybrid152

systems that combine structured memory, iterative153

retrieval, and internal planning. DAVIS addresses154

this gap by integrating a temporal knowledge graph 155

with agentic, multi-turn reasoning and critic-driven 156

reflection, offering a more robust framework for 157

complex scientific environments. 158

2.2 Graph Question Answering (Graph QA) 159

Graph Question Answering (Graph QA) sys- 160

tems have become effective tools for structured 161

reasoning and information retrieval. GraphReader 162

(Li et al., 2024) constructs a graph from docu- 163

ment chunks and deploys an agent for exploration. 164

HOLMES (Panda et al., 2024) extracts relevant doc- 165

uments, builds an entity-document graph, prunes it, 166

and uses cosine similarity for answers. GraphRAG 167

(Edge et al., 2024) generates an entity knowledge 168

graph, pregenerates community summaries, and 169

synthesizes responses. By encoding knowledge in 170

a graph format, these systems excel at multi-hop 171

reasoning over interconnected concepts, making 172

them particularly valuable for domains that require 173

relational understanding, such as scientific research. 174

Unlike unstructured vector-based retrieval systems, 175

Graph QA systems enable iterative retrieval, al- 176

lowing agents to retrieve information, reason over 177

it, and perform subsequent queries based on the 178

refined context. 179

3 DAVIS 180

DAVIS adopts a model-based planning approach 181

(Sutton and Barto, 1998), where the agent uses a 182

World Model (WM) as an internal representation 183

of its surrounding environment. 184

3.1 Problem Formulation 185

We define the planning problem for DAVIS in 186

a textual environment as a Partially Observable 187

Markov Decision Process (POMDP): 188

P = (S,A, T ,R,Ω,O, γ) 189
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Algorithm 1 Planning with Retrieval-Augmented
World Model
Input: τ ,R Parameters: L, k Output: τ
1: for t = 1 to L do
2: ŝt ← f(τ) ▷ State estimation
3: ât ← π(ŝt,R, k)
4: τ ← τ ∪ ât

5: ôt+1, r̂t+1 ← TRANSITION(ŝt, ât) ▷ Algorithm 2
6: τ ← τ ∪ {ôt+1, r̂t+1}
7: if (τ) violates safety constraints (optional) then
8: Alert supervisor
9: end if

10: end for
11: return τ

In this formulation, S denotes the set of true190

environment states, which are not directly observ-191

able. A represents the set of available actions.192

T (st+1 | st, at) is the state transition probability193

function, modeling the dynamics of the environ-194

ment. R(st, at) is the reward function, specifying195

the immediate reward received after taking action196

at in state st. Ω is the set of possible observations.197

O(ot+1 | st+1, at) is the observation probability198

function, defining the likelihood of observing ot+1199

given the new state st+1 and action at. γ ∈ [0, 1) is200

the discount factor, determining the present value201

of future rewards.202

Since the true state st is not directly observable,203

the agent maintains a belief state bt, which is a204

probability distribution over all possible states, rep-205

resenting the agent’s estimate of the environment’s206

state at time t. The belief state is updated based on207

the agent’s actions and received observations. The208

agent selects an action at ∈ A based on its current209

belief state, following a policy π:210

at = π(bt)211

After executing the action at, the agent receives212

a reward rt = R(st, at) and transitions to a new213

state st+1 according to the transition function T .214

The objective of the agent is to find an optimal215

policy π∗ that maximizes the expected cumulative216

discounted reward over time:217

π∗ = argmax
π

E

[ ∞∑
t=0

γtrt | π

]
218

3.2 World Model (WM)219

The World Model (WM) of DAVIS is repre-220

sented as a Temporal Knowledge Graph (TKG),221

constructed through a combination of Stanford222

CoreNLP6 (Manning et al., 2014) for coreference223

6We used default hyperparameters provided by the Stanza
package for CoreNLP

resolution and LLM prompting for knowledge ex- 224

traction. In textual environments, where state rep- 225

resentations are conveyed in natural language, con- 226

structing an effective WM requires methods that 227

can process and represent textual information effi- 228

ciently and accurately. 229

State representation methods in text-based en- 230

vironments include text encoding techniques us- 231

ing recurrent neural networks (Narasimhan et al., 232

2015, He et al., 2016, Hausknecht et al., 2020), 233

transformers (Kim et al., 2022), and knowledge 234

graph (KG) representations (Ammanabrolu and 235

Hausknecht, 2020). KGs offer structured and in- 236

terpretable representations without requiring exten- 237

sive training. Ammanabrolu and Riedl’s (2021) 238

framed KG construction in text-based games as a 239

question-answering problem, where agents iden- 240

tified objects and their attributes. This approach 241

demonstrated that higher-quality KGs led to im- 242

proved control policies. DAVIS extends this con- 243

cept to Temporal Knowledge Graphs, incorporating 244

time-sensitive information to model dynamic en- 245

vironment changes. Temporal reasoning is critical 246

in such settings, and as noted in (Lee et al., 2023), 247

LLMs are highly effective in extrapolating TKGs 248

using in-context learning. 249

Let Gt = (E ,R,T) denote the Temporal Knowl- 250

edge Graph (TKG) at time t, where E is the set of 251

entities at t, R is the set of relations representing 252

relationships between entities at, and T is the set 253

of timestamps associated with each relation ei. 254

During training, when DAVIS executes an action 255

at and receives the subsequent observation ot+1, 256

the transition is stored as: 257

(ot ∥ at ∥ ot+1) 258

We prompted an LLM to summarize the concate- 259

nated transition and applied Stanford CoreNLP for 260

coreference resolution. The resolved text is then 261

analyzed to extract entities Vt and relations tuples 262

using LLM-based parsing. 263

Each extracted tuple (vi, ej , vk, τ) is added to 264

the TKG, where the timestamp τ records the time 265

at which the fact was introduced: 266

Gt+1 = Gt ∪ {(vi, ej , vk, τ)} 267

3.3 Retrieval-Augmented Model 268

Approximation 269

As demonstrated in Lee et al.’s (2023), LLMs ex- 270

cel at recognizing temporal patterns and extrapolat- 271

ing future events based on past data. DAVIS lever- 272

ages this capability to approximate future states 273
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and rewards. For example, if sufficient past data274

indicates that opening a cupboard often reveals a275

kettle, the LLM can infer such transitions purely276

from learned patterns without requiring explicit277

pre-programmed rules. Unlike prior works (Ka-278

gaya et al., 2024; Shinn et al., 2023) that rely on279

vector-based retrieval of experiences, DAVIS em-280

ploys a more agentic approach. Instead of passively281

retrieving information, DAVIS engages in a conver-282

sational process with its WM, iteratively querying283

to fill knowledge gaps while retrieving relevant284

subgraphs to generate informed responses. The285

retrieval system is described in Section 3.4.286

Although true state st is not directly observable287

as mentioned in Section 3.1, it is theoretically pos-288

sible to maintain a statistic f(τ) that approximates289

the belief state from the trajectory history. The290

statistic is updated recurrently, and captures all rel-291

evant information necessary for optimal decision-292

making (Nguyen et al., 2021; Åström, 1965). Ap-293

plying this to DAVIS, we approximate the belief294

state b̂t with equation:295

b̂t = f(τt′:t),296

where f(·) is a prompted LLM that extracts rele-297

vant information from the trajectory history, and298

is updated recurrently with new observations and299

actions. To further refine decision-making, DAVIS300

maintains an inner monologue Mt, a running list301

of iterative queries and answers exchanged between302

DAVIS and its WM, as illustrated in Figure 1. This303

monologue allows the system to dynamically up-304

date its WM based on retrieved insights.305

DAVIS optimizes its policy while simultane-306

ously learning approximations of the transition and307

reward models using its WM. The learned func-308

tions incorporating the inner monologue are:309

Policy: π(at | b̂t,Mt) (1)310

Transition Model: T̂ (ot+1 | b̂t, at,Mt) (2)311

Reward Model: R̂(rt | b̂t, at,Mt) (3)312

With the approximated belief b̂t, DAVIS’s WM313

estimates the transition and reward models using314

prior experiences retrieved from a TKG. DAVIS315

leverages prior experiences to directly inform its316

policy as defined in Equation (1). This retrieval-317

driven approximation enables DAVIS to construct318

an adaptive and context-aware model of the world,319

allowing for informed decision-making in complex,320

temporally dependent environments.321

Algorithm 2 Transition Prediction
Input: b̂t, ât, k Output: ôt+1, r̂t+1

1: M← ∅ ▷ Initialize inner monologue set
2: i← 0
3: while i < k or not predicted do
4: ôt+1, q ← T̂ (b̂t, ât,M)

5: r̂t+1, q ← R̂(b̂t, ât,M)
6: if q ̸= ∅ then
7: M←M∪ {(q, graphQA(q))}
8: end if
9: i← i+ 1

10: end while
11: return ôt+1, r̂t+1

3.4 Retrieval System 322

Given a query q, such as "Where can I find wa- 323

ter?", the WM first narrows its search to relevant 324

entity types such as Person (PER) and Location 325

(LOC). It then selects the two most relevant entities 326

from the available options. Limiting the scope to 327

two entities is computationally efficient and ensures 328

a manageable search space without sacrificing rel- 329

evant context. The query is then expanded and 330

processed as follows and illustrated in Figure 3: 331

1. We iteratively expand the current list of se- 332

lected entities by adding their neighbors, form- 333

ing a maximal subgraph as ignoring temporal 334

information might result in an infeasible path. 335

2. We reorder the edges in the maximal subgraph 336

based on timestamps. This reordering shows the 337

proper sequence of events. 338

3. The temporal sequence is then passed to an 339

LLM as in-context examples for extrapolation 340

and summarization, enabling the LLM to gener- 341

ate a coherent response. 342

3.5 Planning ane Execution with a WM 343

With the reward model and transition model ap- 344

proximated, we can now plan action trajectories 345

within the WM. Algorithm 1 describes the WM- 346

incorporated planning process of DAVIS. 347

For plan execution, we employ an actor-critic 348

structure, consisting of two distinct models: the 349

actor Ra and the critic Rc, integrated with the WM 350

architecture. The process is illustrated in Figure 2. 351

Below, we provide a formalized description of each 352

model and its role within DAVIS. 353

World Model (WM). The primary objective of 354

the WM is to generate a comprehensive plan or 355

trajectory for achieving a specific task within the 356

environment. Given an initial observation estimate 357
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ôt, the WM generates a predicted trajectory358

τt:t+L =
{
(ôi, âi, ôi+1, r̂i+1)

}t+L−1

i=t
359

of length L. This trajectory τt:t+L is passed to the360

actor-critic model for execution in the environment.361

Actor. The actor Ra decomposes each high-level362

action ât ∈ τ into executable commands within363

the given environment domain. It also predicts364

intermediate state transitions between actions:365

τ̂t:t+L′ = Ra(τt:t+L)366

where L′ ≥ L accounts for the expanded trajec-367

tory with executable low-level actions. The actor368

model is prompted with permissible commands in369

the current environment. After decomposition, the370

expanded trajectory τ̂t:t+L′ is executed step-by-step371

in the environment, producing actual environment372

responses:373

(ot, rt, ot+1) = E(ât)374

where E is the environment transition function that375

maps the executed action ât to the resulting obser-376

vation ot+1 and reward rt. These results are passed377

to the critic model.378

Critic. The critic Rc evaluates the actual execu-379

tion results against the predicted trajectory τ . The380

comparison is performed through an LLM-based381

evaluation function, which assesses the semantic382

consistency between the expected and actual ob-383

servations. At each timestep t, the critic receives384

the predicted state transition (ôt, r̂t, ôt+1) and the385

actual environment response (ot, rt, ot+1) obtained386

from executing ât in the environment.387

The LLM-based critic compares these compo-388

nents via a prompted evaluation function Rc:389

∆t = Rc

(
(ôt, r̂t, ôt+1), (ot, rt, ot+1)

)
390

where ∆t is a qualitative feedback score represent-391

ing the level of agreement between the predicted392

and actual transitions. Based on the LLM’s re-393

sponse, the critic determines whether replanning394

is necessary. If the predicted and actual observa-395

tions deviate significantly, the critic updates the396

reflection memory Rt and triggers replanning:397

Rt+1 = Rt ∪ {(ot, ŝt,∆t)}398

Algorithm 1 is then called to replan the new subtask.399

For instance, if the task is "using the stove to heat400

water" and the agent encounters an exception (e.g., 401

the stove is broken), the LLM evaluates the excep- 402

tion, updates Mt, and suggests a revised subtask 403

such as "find an alternative heating method." 404

4 Experiment 405

4.1 ScienceWorld environment 406

We selected ScienceWorld (Wang et al., 2022) as 407

the primary benchmark to evaluate DAVIS, as it is 408

currently the only environment designed for interac- 409

tive scientific reasoning. It features 30 tasks across 410

9 grade-school science subjects, set in a simulated 411

lab where agents must navigate 8 functional rooms 412

and use scientific tools to complete tasks. Each 413

task includes over 100 variations, some of which 414

significantly alter the setup by masking rooms or 415

removing equipment—requiring strong generaliza- 416

tion and adaptability. The environment demands 417

common sense reasoning, deduction, and procedu- 418

ral knowledge. Scores reflect progress toward task 419

completion (e.g., 75 indicates 75% progress be- 420

fore failure), enabling structured and interpretable 421

evaluation. Full details are in Appendix A. 422

4.2 Performance 423

We evaluated DAVIS on the ScienceWorld 424

benchmark, comparing its performance against 425

state-of-the-art baseline agents: SayCan, ReAct, 426

Reflexion, and RAP. Baselines were selected based 427

on their competitive performance, available imple- 428

mentations, and relevance to ScienceWorld. The 429

current state-of-the-art method on ScienceWorld, 430

SwiftSage (Lin et al., 2023), was excluded from 431

our replication baselines because discrepancies be- 432

tween the available code and the documented eval- 433

uation methods made direct replication infeasible. 434

For consistency, all baselines were reimplemented 435

to align with the latest ScienceWorld version. For 436

fairness, both RAP and DAVIS utilized memory 437

constructed from five episodes of golden trajecto- 438

ries rather than the ReAct-based approach proposed 439

in Kagaya et al.’s (2024). Performance was aver- 440

aged across subjects for comparison, with details 441

on tasks and subjects provided in Tables 4 and 6 in 442

the appendix. Figure 4 shows DAVIS outperform- 443

ing all baselines in 8 out of 9 subjects, achieving an 444

overall average score of 65.06—approximately 1.8 445

times higher than competing methods. Full results 446

for each task, including standard deviations, are in 447

the appendix Table 7. 448

Overall, DAVIS took fewer steps before converg- 449

ing to the final score when compared to SayCan, 450

6



Figure 4: Performance comparison of different agents (SayCan, ReAct, Reflexion, RAP, and DAVIS) across multiple
scientific domains. For full results, view table 7 in the Appendix.

Task D D + W
Long Tasks
Melt (1-2) 3.00 70.00
Determine Melting Point Unk. (2-3) 5.00 92.33
Medium Tasks
Mix Paint Secondary (6-1) 40.00 36.37
Test Conductivity (3-3) 55.00 58.33
Short Tasks
Lifespan Longest-Lived (7-1) 66.67 100.00
Find Living Thing (4-1) 25.00 100.00

Table 1: DAVIS performance with (D + W) and without
WM (D)

ReAct, and Reflexion. Compared to RAP, DAVIS451

was better at transferring knowledge from its train-452

ing to execution despite differences among varia-453

tions of the same task. Its World Model allows for454

multi-hop reasoning and inferences based on past455

training data.456

4.3 Ablation Study457

We systematically evaluate the system with indi-458

vidual modules removed—specifically the World459

Model (WM), Actor, and Critic—and compare460

their impact on performance using two metrics: (1)461

average task score (i.e., task progress before time-462

out) and (2) average number of steps per replanning463

cycle (steps/replan). To ensure representative cov-464

erage across task complexity, we select two tasks465

from each category of task length (short, medium,466

and long). For each task, results are averaged over467

three different environment variations.468

World Model: Table 1 compares DAVIS with469

and without its World Model. The WM serves as470

structured external memory in the form of a tempo-471

Table 2: Ablation study: Full model (D+W), w/o Actor
(D-A), and w/o Critic (D-C).

Type Task D+W D-A D-C

Long 1-2 70 (4.38) 25 (1.12) 23.3 (3.20)
2-3 92.3 (1.51) 79.7 (1.19) 33.3 (1.29)

Medium 6-1 36.4 (3.22) 100 (1.49) 86 (2.49)
3-3 58.3 (2.71) 28 (1.32) 49.3 (1.72)

Short 7-1 83.3 (2.00) 66.7 (2.00) 83.3 (2.00)
4-1 100 (2.50) 44.7 (2.94) 25 (2.50)

ral knowledge graph, enabling grounded and long- 472

horizon planning. Without this, the agent has to 473

rely solely on the internal capabilities of the LLM, 474

lacking access to temporal or multi-hop context. 475

Using the WM consistently improves perfor- 476

mance across all tasks, particularly in complex and 477

temporally grounded settings like Melt and Find 478

Living Thing. This supports our claim that temporal 479

and structured grounding is critical for high-fidelity 480

decision-making in scientific domains. 481

Actor-Critic. We ablate DAVIS by removing the 482

Actor or Critic module individually. In the no- 483

Actor setup, the World Model directly outputs exe- 484

cutable actions, skipping high-level goal decompo- 485

sition. In the no-Critic setup, reflection and subtask 486

updates are disabled, though replanning triggers 487

remain. Table 2 summarizes the results. 488

• No Actor: The agent struggles to produce 489

valid commands despite access to action for- 490

mats, resulting in low task scores and near-1.0 491

steps/replan—indicating constant replanning and 492

poor multi-step coherence. We observed that the 493
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performance in task 6-1 was due to luck, as the494

agent correctly guessed the critical action ‘focus495

on’ within the first 5 steps, skipping all the inter-496

mediate steps. This behavior was also observed497

in the D-C model.498

• No Critic: The agent is able to execute longer499

action chains without an Actor module, but its500

lack of introspective feedback (due to the absence501

of a Critic) limits its ability to recover from er-502

rors. While performance differences are minimal503

on short tasks—typically solvable within one or504

two replanning cycles—the gap widens on longer505

tasks that require more adaptive reasoning. Com-506

pared to the no-Actor condition, both task perfor-507

mance and steps per replan improve, but remain508

below those of the full DAVIS system.509

The Actor enables structured execution, and the510

Critic enhances adaptivity. A higher average steps511

per replan ratio, paired with strong task scores,512

demonstrates coherent, cost-efficient planning.513

4.4 Multi-hop Q&A514

We evaluated the performance of DAVIS’s World515

Model (WM) on the multi-hop QA benchmarks516

HotpotQA and MusiqueQA using 400 randomly517

sampled instances, following the evaluation pro-518

tocol of Li et al.’s (2024). As shown in Table 3,519

DAVIS (GPT-4o) achieves strong results, surpass-520

ing GraphReader and GraphRAG on HotpotQA521

with an F1 score of 73.8 and a competitive EM of522

56.25—approaching the state-of-the-art HOLMES.523

On MusiqueQA, DAVIS maintains strong perfor-524

mance (F1: 48.5, EM: 33.8), further demonstrating525

the effectiveness of its structured, temporal mem-526

ory in reasoning tasks. While HOLMES achieves527

the highest overall scores, its static hyper-relational528

graph architecture lacks DAVIS’s ability to support529

dynamic updates during inference, which is cru-530

cial for agents operating in evolving or interactive531

environments. For each system, we report results532

using the best-performing language model config-533

uration as documented in the respective original534

papers. We observe that retrieval-based systems are535

highly sensitive to the underlying LLM: DAVIS per-536

forms better with GPT-4o than with GPT-4-turbo,537

despite the latter’s generally stronger performance538

claims. This LLM sensitivity, though observed539

qualitatively, warrants further study; a systematic540

analysis of model-architecture alignment is left for541

future work as it lies beyond the scope of this paper.542

Table 3: WM comparison against SotA baselines.

Method HotpotQA MusiqueQA
EM F1 EM F1

GPT-4o 46.3 64.1 19.0 34.4
GPT-4-turbo 44.3 60.4 20.5 34.7
GraphReader (GPT-4) 55.0 70.0 38.0 47.4
HOLMES (GPT-4) 66.0 78.0 48.0 58.0
GraphRAG (GPT-4o-mini) 58.7 63.3 40.0 53.5
DAVIS (GPT-4o) 56.25 73.8 33.8 48.5
DAVIS (GPT-4-turbo) 55.25 71.0 34.0 47.1

5 Conclusion 543

DAVIS is an agent designed for scientific inter- 544

active reasoning tasks in complex environments. 545

DAVIS represents a novel approach that leverages 546

a structured World Model (WM) in the form of a 547

temporal knowledge graph, enabling iterative re- 548

trieval and reasoning over past experiences. This 549

structured representation allows DAVIS to approxi- 550

mate both the transition dynamics and reward mod- 551

els of its environment, facilitating more informed 552

decision-making. DAVIS also uniquely uses an 553

interactive retrieval process, which combines it- 554

erative querying with contextual reasoning to fill 555

knowledge gaps and refine understanding. This is 556

augmented by DAVIS’s ability to perform internal 557

planning and validation before interacting with the 558

environment. By engaging in pre-execution delib- 559

eration, DAVIS enables clearer inspection of its 560

planned actions, making it easier for human super- 561

visors to review its decision-making process. This 562

transparency facilitates stronger safeguards com- 563

pared to reinforcement learning (RL) agents, whose 564

policies are often opaque. DAVIS is ideal for scien- 565

tific tasks that demand precision, adaptability, and 566

strict adherence to experimental protocols. 567

Evaluations across several scientific domains, 568

including thermodynamics, biology, and physics, 569

demonstrate the efficacy of DAVIS’s structured 570

knowledge representation and retrieval methods. 571

DAVIS significantly outperforms baseline agents 572

by combining robust planning with the capacity 573

for iterative reasoning, enabling it to generalize 574

effectively from demonstrations to new tasks. 575

6 Limitations 576

While DAVIS demonstrates strong reasoning ca- 577

pabilities and improved performance over previous 578

agentic approaches, it has several limitations that 579

we will address in future research. 580
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6.1 High operational cost581

DAVIS heavily relies on Large Language Models582

(LLMs), making it computationally expensive. Due583

to its careful planning and reasoning process, it584

sends and receives an average of 43,000 tokens per585

action, resulting in an estimated cost of $0.43 per586

action. For tasks requiring 100 actions, this cost587

can escalate to $43 per episode, leading to a total588

experimental cost of approximately $3,000 for 90589

variations.590

6.2 Sensitive to LLM performance591

DAVIS’s reasoning and decision-making abil-592

ities fluctuate based on the underlying LLM’s593

performance. Factors such as model version up-594

dates, prompt engineering quality, and external API595

changes can lead to accuracy, consistency, and re-596

sponse time variability. This dependence on LLM597

stability makes DAVIS susceptible to unexpected598

performance shifts, which may impact reliability599

in dynamic or evolving environments.600

6.3 Biased Planning & Knowledge601

Dependence602

DAVIS’s decision-making process is heavily603

influenced by the Temporal Knowledge Graph604

(TKG), which serves as its structured memory.605

However, this dependence can lead to biased plan-606

ning, as DAVIS prioritizes information within the607

graph. Although efforts were made to increase608

data diversity by populating the knowledge graph609

with 150 different ScienceWorld task variations,610

the model still struggles when encountering novel611

scenarios or incomplete knowledge. Future work612

should explore adaptive knowledge integration to613

mitigate bias.614

6.4 Lack of Multimodal Capabilities615

DAVIS operates exclusively in textual environ-616

ments, limiting its applicability as an embodied617

agent. The absence of visual, auditory, or sensory618

perception restricts its ability to interact with real-619

world multimodal tasks. Future research should620

focus on integrating visual and sensor-based input621

processing to enhance generalization and deploy-622

ment in robotic or multimodal AI systems.623
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A ScienceWorld830

ScienceWorld (Wang et al., 2022) is a bench-831

mark designed to evaluate interactive reasoning in832

digital agents through a realistic laboratory simu-833

lation. Developed by the Allen Institute for AI, it834

provides a text-based environment that emulates835

scientific experiments, requiring agents to inter-836

act with objects, collect observations, and apply837

reasoning skills to solve tasks. The framework838

consists of approximately 40,000 lines of SCALA839

code with a PYTHON interface, following standard840

RL benchmarking practices.841

The ScienceWorld environment consists of 10842

interconnected locations (Fig. 5), each populated843

with up to 200 distinct object types, including scien-844

tific instruments, electrical components, biological845

specimens, substances, and common environmen-846

tal elements like furniture and books. Agents can847

interact with objects through a predefined action848

space of 25 high-level actions, categorized into849

# Task
1-1 Changes of State (Boiling)
1-2 Changes of State (Melting)
1-3 Changes of State (Freezing)
1-4 Changes of State (Any)
2-1 Use Thermometer
2-2 Measuring Boiling Point (Known)
2-3 Measuring Boiling Point (Unknown)
3-1 Create a Circuit
3-2 Renewable vs Non-Renewable Energy
3-3 Test Conductivity (Known)
3-4 Test Conductivity (Unknown)
4-1 Find a Living Thing
4-2 Find a Non-Living Thing
4-3 Find a Plant
4-4 Find an Animal
5-1 Grow a Plant
5-2 Grow a Fruit
6-1 Mixing (Generic)
6-2 Mixing Paints (Secondary Colours)
6-3 Mixing Paints (Tertiary Colours)
7-1 Identify Longest-Lived Animal
7-2 Identify Shortest-Lived Animal
7-3 Identify Longest-Then-Shortest-Lived Animal
8-1 Identify Life Stages (Plant)
8-2 Identify Life Stages (Animal)
9-1 Inclined Planes (Determine Angle)
9-2 Friction (Known Surfaces)
9-3 Friction (Unknown Surfaces)
10-1 Mendelian Genetics (Known Plants)
10-2 Mendelian Genetics (Unknown Plants)

Table 4: Tasks in ScienceWorld.

domain-specific operations (e.g., using a thermome- 850

ter, measuring conductivity) and general interac- 851

tions (e.g., moving, opening containers, picking 852

up items). At each step, approximately 200,000 853

possible action-object combinations exist, though 854

only a subset is relevant based on the context. 855

ScienceWorld tasks are designed to assess sci- 856

entific reasoning across multiple disciplines. The 857

dataset includes 30 distinct tasks (Table 4), cov- 858

ering a range of experimental procedures and 859

problem-solving scenarios. These tasks are further 860

grouped into 9 science domains (Table 6), includ- 861

ing physics, chemistry, biology, and environmen- 862

tal science, allowing for targeted evaluation of an 863

agent’s ability to reason through various scientific 864

concepts, making ScienceWorld a robust bench- 865

mark for testing multi-step reasoning in dynamic, 866

interactive environments. 867

B DAVIS Implementation Details 868

We utilized GPT-4-turbo for reasoning, GPT-4o 869

for question answering, and LLaMA3-70B for the 870

Knowledge Graph construction pipeline. Agents 871

were run for a maximum of 80 steps per task. All 872
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Hyperparameter Value
Maximum Steps per Task 100
Simplification Level Easy
Knowledge Graph Pipeline LLaMA3-70B-Instruct
Reasoning Model GPT-4-Turbo
Maximum QA Turns 5
Predicted Trajectory Length 5

Table 5: Hyperparameter settings for DAVIS.

RAG-based agents were initialized with five vari-873

ations, a total of 150 variations, of rollouts using874

the golden trajectory for training, while three ran-875

domly sampled test variations, a total of 90 varia-876

tions, were drawn from the ScienceWorld test set.877

In contrast, all CoT agents were evaluated directly878

on the randomly drawn test set as intended.879

All experiments were conducted on a system880

equipped with a NVIDIA RTX 3060 GPU, an881

AMD Ryzen 9 7900X CPU, 64GB RAM, running882

Ubuntu 23.04 with Python 3.11.0. The full table883

of hyperparameters and settings for DAVIS is pro-884

vided in Table 5. Full results is available in table 7,885

and all code and prompts are available in the at-886

tached repository.887
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Figure 5: The ScienceWorld environment

Subject Description Tasks

Matter
Agents perform experiments to change the state of various
materials, such as transforming ice to water or water to steam

1-1, 1-2,
1-3, 1-4

Thermodynamics
Agents conduct experiments involving temperature
manipulation, such as heating or cooling objects.

2-1, 2-2,
2-3

Electricity
Agents relocate to a workshop and construct electrical
circuits to achieve specific objectives.

3-1, 3-2, 3-3
3-4

Biology
Agents relocate to a garden and identify animals
based on various queries.

4-1, 4-2, 4-3
4-4

Botany
Agents relocate to a greenhouse and perform tasks
such as growing plants or observing their growth.

5-1, 5-2

Chemistry
Agents engage in standard chemistry tasks, such as
mixing substances to create new compounds

6-1, 6-2, 6-3

Lifespan and
Life Stages

Agents observe and report the life stages of plants and
animals, such as germination, flowering, or molting.

7-1, 7-2, 7-3
8-1, 8-2

Physics
Agents use physics knowledge to measure angles or
explore physical properties of materials

9-1, 9-2
9-3

Genetics
Agents identify genetic traits of plants, such as dominant
or recessive characteristics, based on observations.

10-1
10-2

Table 6: Description of subjects and corresponding tasks in ScienceWorld. Each subject represents a unique domain of inquiry,
with tasks designed to evaluate agents’ reasoning, planning, and execution capabilities in diverse scientific scenarios.
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Task SayCan ReAct Reflexion RAP DAVIS

Mean Std Mean Std Mean Std Mean Std Mean Std

State of Matter 15.42 17.92 20.83 5.42 49.58
1-1 (L) 1.67 1.5 2.67 2.5 27.67 41.0 13.33 20.55 25.67 19.6
1-2 (L) 23.33 40.4 25.67 40.2 1.00 1.7 1.67 2.89 70.00 0.0
1-3 (L) 3.33 5.8 19.33 25.3 19.33 25.3 6.67 5.78 32.00 27.7
1-4 (L) 33.33 57.7 24.00 39.0 35.33 56.0 0.00 0.00 70.67 0.6
Thermodynamics 24.89 12.67 10.67 20.44 85.00
2-1 (M) 6.00 3.0 4.00 3.5 9.00 0.0 30.33 47.43 83.00 29.4
2-2 (M) 7.67 0.6 6.33 0.6 17.33 18.8 8.67 15.02 79.67 35.2
2-3 (L) 61.00 48.3 27.67 39.3 5.67 0.6 22.33 20.40 92.33 13.3
Electricity 21.58 27.00 36.08 43.42 68.50
3-1 (S) 30.33 40.4 30.33 40.4 23.33 34.5 39.00 33.05 82.33 15.7
3-2 (M) 22.67 26.4 19.33 29.3 14.33 20.6 35.33 27.31 68.67 27.1
3-3 (M) 23.33 27.5 5.00 5.0 39.00 34.5 38.00 35.03 58.33 2.9
Biology 29.92 41.83 91.00 44.42 95.83
4-1 (S) 11.33 9.8 17.00 0.0 72.33 47.9 61.00 38.1 100.00 0.0
4-2 (S) 36.00 34.8 58.33 28.9 100.00 0.0 19.33 9.8 83.33 14.4
4-3 (S) 22.33 4.6 75.00 0.0 91.67 14.4 58.33 36.0 100.00 0.0
4-4 (S) 50.00 43.3 17.00 0.0 100.00 0.0 39.00 38.1 100.00 0.0
Botany 14.83 40.83 38.17 33.00 26.83
5-1 (L) 16.67 14.4 9.00 3.6 3.67 4.6 50.00 73.99 35.67 2.9
5-2 (L) 13.00 4.6 72.67 47.3 72.67 47.3 16.00 13.89 18.00 6.2
Chemistry 15.78 19.44 51.44 51.00 53.44
6-1 (M) 16.67 11.5 23.33 11.5 56.67 37.9 53.33 5.78 36.67 5.8
6-2 (S) 26.33 2.3 20.67 18.0 83.33 28.9 22.67 21.60 53.67 40.5
6-3 (M) 4.33 2.3 14.33 5.1 14.33 7.5 77.00 0.00 70.00 0.0
Lifespan and Life Stages 44.40 35.67 22.47 17.67 57.80
7-1 (S) 75.00 43.3 66.67 28.9 50.00 0.0 16.67 28.86 100.00 0.0
7-2 (S) 83.33 28.9 66.67 28.9 33.33 14.4 16.67 28.86 83.33 28.9
7-3 (S) 33.00 0.0 22.00 19.1 22.33 9.2 5.67 9.81 83.00 0.0
8-1 (S) 13.33 6.1 15.00 22.6 4.00 4.0 38.00 25.98 2.67 2.3
8-2 (S) 17.33 4.6 8.00 0.0 2.67 4.6 11.33 9.81 20.00 0.0
Physics 7.78 3.89 27.78 34.48 64.44
9-1 (L) 5.00 5.0 0.00 0.0 36.67 54.8 30.00 30.00 76.67 40.4
9-2 (L) 6.67 7.6 11.67 12.6 8.33 2.9 30.00 0.00 60.00 34.6
9-3 (L) 11.67 16.1 0.00 0.0 38.33 53.5 43.44 23.28 56.67 37.9
Genetics 5.83 25.17 6.33 6.83 72.33
10-1 (L) 6.00 9.5 39.00 53.5 6.33 9.2 3.33 5.78 100.00 0.0
10-2 (L) 5.67 9.8 11.33 9.8 6.33 9.2 10.33 10.50 44.67 47.9

Table 7: Full results on ScienceWorld. The average score for each category is displayed in the grey bar on the same
row as the category label.
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