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ABSTRACT

Mud pulse telemetry (MPT) enables real-time downhole data transmission by gen-
erating continuous pressure wave signals in drilling fluid, supporting measurement
and control during drilling. However, the signals are vulnerable to noise from
the downhole environment, mud channel, and surface equipment, causing atten-
uation, distortion, and phase errors that hinder accurate reconstruction. Recent
deep learning methods show promise but typically require large labeled datasets,
which are costly and difficult to obtain in the field. To address this issue, this
paper proposes the Deep Adaptive Cross Domain Learning Network (DACDL),
a framework featuring a novel noise adaptation mechanism that transitions from
model-level to input-level adaptation. Our approach introduces three core innova-
tions: (1) An Episodic Learning Framework (EL-Framework) that simulates do-
main shift by alternately learning from simulated (gaussian) and real-world (real-
world gaussian, pump or oilfield) domains, enhancing few-shot adaptation under
label scarcity; (2) A lightweight Adaptive Noise Learning Block (ANL-Block)
that introduces sample-specific perturbations to align target input noise distribu-
tions with the source domain, correcting amplitude attenuation and phase distor-
tion, thus alleviating generalization collapse due to unseen noise characteristics;
(3) A Frequency-aware Adversarial Alignment Block (FAA-Block) that aligns
spectral characteristics between source and target domains, effectively mitigating
phase errors and frequency-domain mismatches to enhance cross-domain signal
reconstruction. Moreover, the proposed ANL-Block is model-agnostic and can be
plug-and-play into most existing methods. Experimental results on three collected
datasets demonstrate the effectiveness of DACDL in practical field scenarios and
highlight the model-agnostic adaptability of the ANL-Block.

1 INTRODUCTION

In Mud Pulse Telemetry (MPT) systems (Fig. 1 (a)), pressure signals generated near the drill bit must
propagate through an extended, noise-susceptible fluid column to reach surface receivers Jia et al.
(2023); Berro & Reich (2019). During propagation, these signals undergo substantial degradation
due to three primary factors: (1) attenuation and dispersion induced by the viscous mud medium,
(2) multipath propagation resulting from reflections at pipe joints, and (3) contamination by both
periodic and stochastic noise sources Li & Xu (2023). The mud pump constitutes a dominant inter-
ference source, generating intense periodic noise that frequently spectrally overlaps with telemetry
signals in both temporal and frequency domains. Concurrently, random disturbances arising from
fluid turbulence and mechanical vibrations further degrade the signal-to-noise ratio (SNR) Shao
et al. (2017). These impairments accumulate proportionally with transmission distance, yielding
highly distorted and severely attenuated received signals. Consequently, accurate signal reconstruc-
tion proves particularly challenging in high-speed continuous pressure wave MPT systems due to
pronounced spectral interference within compound noise environments.

While deep learning techniques Chu et al. (2024); Qi et al. (2024); Zhang et al. (2024) have sub-
stantially mitigated this limitation, their effectiveness remains contingent upon the availability of
adequate labeled data. However, in practical drilling operations, acquiring pre-labeled datasets that
accurately characterize downhole mud channel properties entails prohibitive financial and material
expenditures, rendering this approach fundamentally impractical.
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(a) Illustration of the MPT system. (b) Noise model of continuous pressure wave.
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Figure 1: (a) MPT system for downhole drilling. The system is composed of three main modules: 1)
a downhole transmitter (signal generator and modulation encoder, located near the drill bit), 2) the
mud channel (drilling fluid inside the drill string, labeled as “Interference Mud Channel”), and 3)
the ground receiver, which is highlighted within the red box and includes the pressure sensor, signal
transceiver module, and ground processing unit. (b) Noise model of pressure wave signal.

To address this issue, we adopt episodic learning in a cross-domain setting: computer-generated
simulation data serve as the source domain, while lab data (collected on an indoor hydraulic cir-
culation setup) and field data (acquired in real drilling operations) serve as the target domain. The
proposed network architecture is designed to support alternating learning between the source and
target domains, thereby facilitating smoother adaptation from the source distribution to the target
distribution.

In this context, the Deep Adaptive Cross Domain Learning Network (DACDL) is proposed, which
introduces a novel noise adaptation mechanism that transitions from model-level to input-level adap-
tation. The framework comprises three principal components: (1) The Episode Learning Framework
(EL-Framework) offers a platform for alternately learning knowledge from the source domain and
the target domain. (2) The Adaptive Noise Learning Block (ANL-Block) introduces sample-specific
perturbations to mitigate generalization collapse caused by previously unseen noise characteristics.
(3) The Frequency-aware Adversarial Alignment Block (FAA-Block) employs a domain discrim-
inator to align the frequency distributions of source and target signals, thereby mitigating domain
shift under real-world noise conditions.

The main contributions are summarized as follows:

• This present a novel method named DACDL that realizess the joint learning of source
domain and target domain knowledge.

• The ANL-Block is a model-agnostic module designed for seamless integration into diverse
deep learning architectures, enabling robust correction of amplitude attenuation and wave-
form distortion across domains.

• The FAA-Block promotes cross-domain generalization by enforcing spectral invariance
through adversarial training in the fourier domain to enhance cross-domain signal recon-
struction.

• Our method has been evaluated across 3 datasets. The results have evaluated the efficiency
and the model-agnostic functionality of our method.
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2 RELEVANT CONCEPTIONS

To better explain the proposed DACDL for mud pulse signal denoising, several relevant concepts
are introduced in the rest of this section.

2.1 DOMAIN SHIFT IN SIGNAL RECOVERY

Since labeled data are scarce, signal recovery models are commonly trained on simulated data with
Gaussian noise, which can approximate some real-world conditions. However, real mud telemetry
signals often contain complex noise types such as periodic pump noise and impulsive disturbances,
which are difficult to reproduce in simulation and result in domain discrepancies in both temporal
and spectral characteristics. This domain gap limits the generalization of models trained only on
simulated data.

Inspired by progress in image processing, the cross-domain learning is introduced to pressure wave
signal denoising and recast the task as a domain generalization problem.

2.2 CROSS DOMAIN FEW SHOT LEARNING

Under the cross-domain FSL setting Chen et al. (2024a); Kang et al. (2025); Chen et al. (2024b),
two domain data sets are given: source domain data set DS with Gaussian noise distribution and
target domain data set with DT Pump noise distribution. According to whether the data are labeled,
target domain data set can further split into two parts: few-shot data set Df with labeled data and
test data set Dt with unlabeled data, and Df ∪ Dt = DT . The few-shot data set gets its name since
it is relatively small compared with the testing data set.

In DACDL, labeled target-domain samples are obtained by applying a sliding window of length 500
to a known M sequence. The M sequence is a known pressure wave signal transmitted periodically
from downhole.
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Figure 2: The overall architecture of the proposed Deep Adaptive Cross Domain Learning Network
(DACDL).

3 PROBLEM STATEMENT

As shown in Fig. 1 (b), in mud pulse telemetry systems, the received pressure signal is severely
degraded by multipath channel effects and various noise sources. These effects not only attenuate
the amplitude but also introduce significant phase distortion, severely complicating the recovery of
weak signals.

The observed pressure wave signal can be modeled as:
y(t) = s(t) ∗ h(t) +N(t), (1)

where s(t) is the transmitted phase-modulated signal, h(t) is the channel impulse response, and
N(t) is the aggregate noise.

The aggregate noise can be further expressed as Qu et al. (2021); Chen et al. (2021):
N(t) = [Nb(t) +Nm(t)] ∗ h(t) +Ns(t) +Np(t), (2)
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where Ns(t) (surface noise) and Nb(t) (downhole noise) are modeled as white noise, Np(t) (pump
noise) contains both periodic pulsating and white noise components, and Nm(t) (mechanical noise)
comprises non-periodic pulsating noise together with white noise.

In the frequency domain, the observed signal is:

X(u) = S(u)H(u) = |S(u)||H(u)| ej(ϕs(u)+ϕh(u)), (3)
where ϕh(u) denotes the channel-induced phase distortion.

The goal is to recover the original phase-modulated signal s(t) from the degraded observation y(t).

4 METHODOLOGY

4.1 OVERVIEW

To robustly denoise pressure-wave signals under real-world domain shifts, we propose DADCL, a
domain-adaptive meta-learning framework inspired by few-shot image classification Li et al. (2024;
2025). As outlined in Fig. 2, DADCL pretrains a denoiser on simulated pressure wave signals and
meta-adapts it using only a small set of real noisy samples. Because the simulator injects only
Gaussian noise, omitting key field characteristics such as phase distortion and waveform overlap,
our meta-learning procedure bridges this sim-to-real gap.

4.2 WAVELET BASED BACKBONE

In prior work, we introduced WaveU-Net, a wavelet-enhanced U-Net that achieved strong results in
signal restoration. Owing to its effectiveness, we adopt it here as the backbone feature extractor and
briefly summarize its design. The network augments U-Net with a Learnable Wavelet Denoising
Network (LWDNet) inserted between encoder and decoder. LWDNet performs a learnable multi-
level wavelet transform on intermediate features, enabling time–frequency analysis that improves
denoising and feature extraction.

4.3 EPISODE LEARNING FRAMEWORK

Real (target) and simulated (source) signals differ markedly in acquisition settings, instrumentation,
and noise, producing a domain gap that degrades “train-on-source, test-on-target” generalization.
Our module aligns the spectral features of model outputs across domains to support robust adaptation
in complex real-world settings.

Support and Query Sets To bridge the domain gap between the simulated (source) and real (tar-
get) signal distributions, this paper adopts an episodic training strategy. At each adaptation step, a
meta-task is constructed by sampling support-query pairs from either the source or target domain.
Specifically, we form a support set with K paired clean and noisy signals in the source domain or
the target domain, and a query set with a small number of test signals from the same domain.

Feature Update The feature extractor is implemented via the WaveU-Net denoising backbone,
followed by a temporal projection head to obtain latent prototypes Li et al. (2024). The denoising
loss between the predicted query output and ground truth is computed using an L1 loss:

Lfsl = ∥x̂− x∥2 (4)
where x̂ denotes the query output and x denotes the query ground truth, respectively.

Notably, the few shot learning (FSL) procedure is identical for both the source and target domains,
with the only difference being the number of support and query samples available in each case.

4.4 ADAPTIVE NOISE LEARNING BLOCK

The core component of the Adaptive Noise Learning Block (ANL-Blcok) is Phi-Net, a learnable
perturbation module that injects task-specific noise into the input. This allows the pre-trained model
to interpret the modified input as being drawn from the distribution of previously encountered noise,
thereby facilitating effective adaptation.
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Figure 3: Overview of the ANL-Block.

Process of Phi-Net We first formulate a new target domain noise as deviation from the source
noise distribution:

N t = Ns + ϵs→t (5)

where ϵs→t represents how much N t deviates from an arbitrary noise Ns sampled from Ds (source
domain); N t denotes the new target domain noise. Thus, a new noisy input signal in target domain
can be seen as follows:

yt = st +N t (6)

= st +Ns + ϵs→t. (7)

According to Eq. 6 and Eq. 7, it can be observed that we can mitigate the misalignment issues if we
can adapt a given noisy signal yt to its translated counterpart noisy signal ys→t with source noise
Ns ∼ Ds, by removing the deviations ϵs→t as:

yt→s := st +Ns (8)

= st +Ns + ϵs→t − ϵs→t (9)

= yt − ϵs→t (10)

Consequently, our objective is to estimate a deviation offset −ϵs→t that can be applied to a given
noisy signal yt, thereby aligning the underlying noise distribution with that encountered during
pretraining. To achieve this, we introduce a learnable parameter ϕ into the noisy signal yt, and
optimize ϕ such that it approximates the desired deviation offset −ϵs→t.

A simple schematic diagram of the network is shown in Fig. 3.

Self Supervised Learning To approximate an unknown −ϵs→t with ϕ, we train ϕ ti minimize a
self-supervision loss:

Lself =
∥∥fθ (D1(y

t)
)
−D2(y

t)
∥∥2
2

(11)

where D1 and D2 represent two different transformations such as down sampling and average pool-
ing; fθ denotes the pretrained network.

Overall, our objective function to train ϕ becomes:

ϕ∗ = argmin
ϕ

∥fθ• (D1(y
u + ϕ))−D2(y

u + ϕ)∥22 (12)

4.5 FREQUENCY-AWARE ADVERSARIAL ALIGNMENT BLOCK

Spectral Representation To explicitly align domain statistics between the source and target dis-
tributions, we introduce a frequency-aware discriminator operating on the spectral representation of

5
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denoised signals. Given a predicted output x̂, we compute its 1D Fourier transform and extract the
amplitude spectrum:

S(x̂) = |F(x̂)| (13)
where S(x̂) represents the spectral representation of (x̂).

Domain Discriminator The architecture of the domain discriminator D consists of two 1D con-
volutional layers with progressively increasing channel widths, followed by LeakyReLU activa-
tions and an adaptive average pooling layer that aggregates temporal features. The output is passed
through a fully connected layer and a sigmoid activation to yield a scalar domain confidence score:

D(x̂) = Sigmoid(Linear(Flatten(AvgPool(f(x̂))))) (14)
where f(x̂)) denotes the feature maps extracted by the convolutional layers.

During training, we apply a binary cross-entropy loss to supervise the discriminator with domain
labels. For discriminator training, the predicted domain score D(S(x̂)) is compared with the ground-
truth domain label d ∈ {0, 1} (1 for source domain, 0 for target domain):

LD = − [d · logD(S(x̂)) + (1− d) · log(1−D(S(x̂)))] (15)

In parallel, the feature generator is updated adversarially using the reverse label 1 − d, forcing the
adapted prediction x̂ to be indistinguishable from the opposite domain:

Ladv = − [(1− d) · logD(S(x̂))] (16)

This adversarial learning process encourages the model to produce frequency-domain outputs that
are invariant across domains, thus facilitating improved generalization to real noisy conditions.

5 EXPERIMENTS

In this section, we present the experiments to address four questions:

Q1. How does DACDL perform in comparison to current SOTAs? (A1. See Tab. 1)

Q2. Is the ANL-Block genuinely model-agnostic, and what impact do they have? (A2. See Tab. 2)

Q3. How do different components in DACDL influence the outcomes? (A3. See Tab. 3)

Q4. What is the extra consumption of the ANL-Block for the existing method? (A4. See Tab. 4)

5.1 EXPERIMENTAL SETTINGS

Datasets and Evaluation Metric Evaluation is carried out on three benchmarks in this study: (1)
the Lab Dataset, in which real pump-induced noise is collected on a laboratory hydraulic-circulation
setup (see Supplementary Fig. 1); (2) the Lab De-Pump Dataset, obtained by time-domain averaging
of the Lab Dataset to suppress periodic pump components while primarily retaining stochastic noise
and phase disturbance; and (3) the Oilfield Dataset, consisting of field recordings acquired during
drilling operations in the Daqing Oilfield (the device is shown in Fig. 1). Additional dataset details
are provided in the supplementary material. Notably, during episodic learning, the source domain
dataset consists of Simulated Gaussian Dataset, while the target domain is the Lab Dataset, the Lab
De-Pump Dataset or the Oilfield Dataset. In the target domain, only a limited number of labeled
samples organized as M sequence are available.

To quantitatively evaluate the denoising performance of the proposed method, we employ three
widely-used metrics: Mean Squared Error (MSE), Signal-to-Noise Ratio (SNR), and Structural Sim-
ilarity Index Measure (SSIM).

Implementation As methods tailored to pressure wave signals are scarce, representative denoising
approaches from adjacent signal domains were selected as baselines. All models were trained with
AdamW (learning rate 1 × 10−4, weight decay 1 × 10−4). For fair comparison, each architecture
was first pretrained on simulated data and then fine-tuned using the M-sequence portion of the Lab,
Lab De-Pump, or Oilfield datasets. Experiments were executed on an NVIDIA RTX 4050 Laptop
GPU (8 GB) with a 16-vCPU Intel i7-144650HX; the batch size was set to 2.
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Method Parameters (M)
Oilfield Dataset Lab Dataset Lab De-Pump Dataset

MSE ↓ SNR ↓ SSIM ↑MSE ↓ SNR ↑SSIM ↑MSE ↓ SNR ↑ SSIM ↑
U-Net (MICCAI’15) Ronneberger et al. (2015) 10.82 0.417 5.59 0.37 0.172 8.73 0.63 0.300 8.00 0.47

MLWNet (CVPR’24) Gao et al. (2024b) 10.69 0.525 4.57 0.21 0.214 7.59 0.64 0.365 6.74 0.43
FADformer (ECCV’24) Gao et al. (2024a) 6.96 1.236 0.84 0.22 0.115 10.61 0.73 0.401 6.20 0.36
WaveFormer (AAAI’24) Wu et al. (2024) 0.21 1.496 0.01 0.05 1.216 0.02 0.01 1.491 0.01 0.05
SJDD-Net (AAAI’24) Dong et al. (2024) 0.03 1.298 0.63 0.22 0.391 4.96 0.26 0.624 3.86 0.12
APR-RD (AAAI’25) Kim & Cho (2025) 0.15 1.27 0.70 0.13 0.504 3.86 0.29 0.327 2.15 0.14

0.039 17.64 0.84 0.054 14.33 0.84 0.052 18.00 0.85
DACDL (Ours) 0.61

-0.378 †+12.05 † +0.47 † -0.061 †+3.72 † +0.11 † -0.248 †+10.00 † +0.38 †

Table 1: Quantitative evaluation on three benchmarks. ↓ indicates that a lower value of the metric
corresponds to better performance, whereas ↑ signifies that a higher value is preferable. The best-
performing results are presented in bold, while the second-best results are underlined. Improvements
the previous SOTA are highlighted by †.

（a）Original Signal （b）U-Net Signal （c）MLW-Net Signal （d）FADFormer Signal

（e）WaveFormer Signal （f）SJDDNet Signal （g）APR-RD Signal （h）DACDL Signal (Ours)

Figure 4: Comparison of visualization results in the time domain and frequency domain by different
methods on Lab Dataset. The orange-red curves denote the ground-truth target signals, while the
blue curves represent the denoised outputs generated by each method.

5.2 COMPARISON WITH SOTAS

The comparative results on three datasets are presented in Tab. 1.

On Oilfield Dataset As summarized in Tab. 1, our proposed method DACDL significantly out-
performs all baseline approaches across all three metrics.

Specifically, DACDL achieves an MSE of 0.039, which is a dramatic reduction compared to the
previous best result (0.417 by U-Net Ronneberger et al. (2015)), indicating enhanced fidelity in
waveform recovery. Furthermore, it reaches an SNR of 17.64 dB, representing a gain of +12.05 dB
over the next-best model, and achieves the highest SSIM of 0.84, reflecting improved structural con-
sistency in the reconstructed signal. The improvements are indicated by † in the table, demonstrating
the superior capability of DACDL in adapting to complex real-field signal environments.

On Lab Dataset As shown in Tab. 1, our proposed method DACDL achieves the best results
across all metrics, significantly outperforming existing state-of-the-art approaches. Specifically,
DACDL attains the lowest MSE of 0.054, the highest SNR of 14.33 dB, and the best SSIM of 0.84.
Compared to the strongest baseline, FADFormer (ECCV’25), DACDL yields a 0.061 improvement
in MSE, a 3.72 dB gain in SNR, and a 0.11 increase in SSIM. These results demonstrate that incor-
porating our DACDL leads to substantially enhanced denoising performance, especially in retaining
structural fidelity and signal quality under challenging noise conditions.

On Lab De-Pump Dataset On the Lab De-Pump Dataset, DACDL again outperforms all com-
peting baselines by a significant margin. It achieves an MSE of 0.052, an SNR of 18.00 dB, and an

7
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SSIM of 0.85, surpassing the previous best method U-Net Ronneberger et al. (2015) by 0.248, 10.00
dB, and 0.38, respectively. Notably, the improvement in SNR indicates a major enhancement in
signal recovery quality, while the substantial gain in SSIM reflects better preservation of the original
signal structure.

Parts of visualization results on Lab Dataset are displayed in Fig. 4.

Method Lab Dataset
MSE ↓ SNR ↓ SSIM ↑

U-Net (MICCAI’15)
Reproduced 0.172 8.73 0.63

0.124 10.24 0.76
Reproduced + ANL-Block

-0.048 † +1.51 † +0.13 †

MLWNet (CVPR’24)
Reproduced 0.214 7.59 0.64

0.154 9.98 0.78
Reproduced + ANL-Block

-0.06 † +2.39 † +0.14 †

FADformer (ECCV’24)
Reproduced 0.115 10.61 0.73

0.089 11.87 0.79
Reproduced + ANL-Block

-0.026 † +1.26 † +0.06 †

Table 2: Evaluation of the model-agnostic functionality of the ANL-Block. Reproduced denotes
our reproduction of the baseline results. + ANL illustrates the enhanced baseline results on the
Pump Nosie Dataset with the addition of the ANL-Block. Improvements over the reproduction are
highlighted by †.

5.3 MODEL-AGNOSTIC FUNCTIONALITY OF THE ANL-BLOCK

As previously discussed, the proposed ANL-Block is designed to be model-agnostic, allowing seam-
less integration with a wide range of existing methods. To substantiate this claim and further demon-
strate the effectiveness of our approach, we selected three representative open-source models as
baselines. These baseline methods were first faithfully reproduced to ensure experimental con-
sistency, after which the ANL-Block was incorporated into each architecture. The corresponding
results are presented in Tab. 2.

The findings indicate that, in the vast majority of cases, integrating the ANL-Block yields noticeable
performance improvements over the original models, with gains ranging from 0.02 to 2.39. These
results underscore the flexibility and practical value of the ANL-Block1 as a plug-and-play module.

5.4 ABLATION STUDY

Overall To comprehensively evaluate the contributions of each proposed component within the
DACDL architecture, we conduct a series of ablation studies on the Lab Dataset, as presented in
Tab. 3. As shown in row ①, the baseline model trained only on simulated data without any enhance-
ment modules, yields modest performance with an MSE of 0.339, SNR of 6.84 dB, and SSIM of
0.44. When progressively incorporating the EL-Framework, ANL-Block, and FAA-Block, we ob-
serve consistent improvements across all evaluation metrics. Notably, the complete model (row ⑧)
that integrates all three components achieves the best performance with an MSE of 0.054, SNR of
14.33 dB, and SSIM of 0.84, demonstrating the synergistic effectiveness of our design.

Episode Learning Framework The EL-Framework plays a pivotal role in bridging the domain
gap between simulated and real noise conditions. As shown in row ②, enabling the EL-Framework
alone significantly improves performance over the baseline, reducing the MSE from 0.339 to 0.251
and boosting the SNR from 6.84 dB to 10.84 dB. This confirms that the EL-Framework successfully
facilitates domain adaptation by learning a more robust initialization from simulated data while
effectively leveraging a small amount of real data through latent distribution alignment.

Adaptive Noise Learning Block The Adaptive Noise Learning Block (ANL-Block) introduces
a self-guided mechanism for modeling input noise perturbations. When used independently, as
presented in row ③, the ANL-Block improves performance compared to the baseline, yielding an
MSE of 0.287, SNR of 9.78dB, and SSIM of 0.58. Furthermore, when jointly used with the EL-
Framework, as illustrated in row ⑤, the model attains stronger performance with an MSE of 0.128
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and SNR of 13.09 dB. These results demonstrate the ANL-Block’s capacity to extract domain-aware
noise characteristics that enhance the generalizability of the denoising network.

Frequency-aware Adversarial Alignment Block The Frequency-aware Adversarial Alignment
Block (FAA-Block) is designed to emphasize informative spectral bands relevant to noise suppres-
sion. As shown in row ④, the inclusion of FAA alone achieves improved performance over the
baseline (MSE: 0.309, SNR: 8.35 dB, SSIM: 0.51). When combined with the EL-Framework (see
row ⑥) or the ANL-Block (see row ⑦), the model further benefits from multi-scale spectral guid-
ance, leading to notable gains in denoising quality. Ultimately, the combination of all three modules,
as reported in row ⑧, confirms that FAA-Block complements EL-Framework and ANL-Block in a
synergistic manner.

EL-Framework ANL-Block FAA-Block
Lab Dataset

MSE ↓ SNR ↑ SSIM ↑
① 0.339 6.84 0.44

② ✓ 0.251 10.84 0.69

③ ✓ 0.287 9.78 0.58

④ ✓ 0.309 8.35 0.51

⑤ ✓ ✓ 0.128 13.09 0.76

⑥ ✓ ✓ 0.154 11.64 0.71

⑦ ✓ ✓ 0.143 12.78 0.73

⑧ ✓ ✓ ✓ 0.054 14.33 0.84

Table 3: Ablation studies of different components in DACDL on Lab Dataset. ① denotes the pre-
trained model.

5.5 EXTRA CONSUMPTION

As mentioned earlier, the proposed ANL-Block is a model-agnostic module that can be easily in-
tegrated into most existing architectures. Its integration introduces only minimal computational
overhead. As reported in Tab. 4, taking U-Net Ronneberger et al. (2015) as an example, the original
model has 10.82M parameters and requires 65.17 seconds for execution. With the ANL-Block incor-
porated, the parameter count increases slightly to 10.88M, and the runtime extends to 67.23 seconds.
This corresponds to an overhead of just 0.06M parameters and 2.06 seconds in runtime. Given its
minimal computational overhead and the substantial performance gains it enables, the ANL-Block
offers a highly efficient and practically valuable enhancement to existing models.

Method Param (M) Training Time
Lab Dataset

MSE ↓ SNR ↑ SSIM ↑
U-Net 10.82 65.17s 0.172 8.73 0.63

U-Net + ANL 10.88 67.23s 0.124 10.24 0.76

Table 4: Experiments of consumption with one 4050 Laptop GPU on Lab Dataset. The training time
specified covers pre-training time and fine-tuning time.

6 CONCLUSION

In this paper, we presented DACDL, a Deep Adaptive Cross Domain Learning framework tailored
for robust signal recovery in real-world mud pulse telemetry applications. The framework integrates
three key innovations: an Episode Learning Framework (EL-Framework) for cross-domain adap-
tation, a plug-and-play Adaptive Noise Learning Block (ANL-Block) for input-level noise trans-
formation, and a Frequency-aware Adversarial Alignment Block (FAA-Block) for spectral domain
alignment. Experiments across three datasets have demonstrated the effectiveness of the proposed
method and the value of each component.
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7 REPRODUCIBILITY STATEMENT

Our method is reproducible. The model architecture is illustrated in Fig. 2, and the hyperparameters
as well as training details are described in Sec. 5. Fig. 5 and Fig. 6 in the appendix demonstrate
the hydraulic circulation setup utilized for Lab Dataset collection and the signal characteristics of
the datasets used, respectively. In addition, the source code will be made publicly available in the
future.
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A RELEVANT CONCEPTIONS

In this section, a detailed introduction to the time-domain averaging method mentioned in the main
text is provided below.

A.1 TIME-DOMAIN AVERAGING

Time-Domain Averaging (TDA) McFadden (1987); Braun (2011) is a classical signal processing
technique widely used to suppress periodic or quasi-periodic noise and enhance the underlying sig-
nal features. In the context of mud pulse telemetry or other pressure-based transmission systems,
TDA operates by segmenting the raw signal into multiple cycles aligned to a common reference,
and subsequently averaging these segments point-by-point across time. This process effectively re-
inforces the consistent components of the signal while attenuating uncorrelated noise and random
disturbances, such as Gaussian noise and non-periodic artifacts. The assumption underlying TDA is
that the desired signal exhibits strong periodicity or repeatable patterns, whereas the noise is stochas-
tic and varies across cycles. As a result, TDA serves as a powerful preprocessing step for improving
signal quality and reliability prior to further analysis, decoding, or denoising via learning-based
models.
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Figure 5: Hydraulic Circulation Setup. The system mainly consists of a circulating water pool,
a perfusion pump, a mud pump, a buffer tank, a pressure wave generator, a hydraulic circulation
pipeline, pressure and flow sensors (PT1, PT2, FT) and a data acquisition system.

De-Pump SignalLab Pressure Signal

Lab Pressure Signal De-Pump Signal

Lab Pressure Signal De-Pump Signal

Lab Pressure Signal De-Pump Signal

Figure 6: Illustration of representative time-domain waveforms (top row) and frequency spectra
(bottom row) for three types of signals: Lab Pressure Signal, De-Pump Signal, and Oilfield Signal.

B SUPPLEMENTED EXPERIMENTS

B.1 DATASETS DESCRIPTION

This section will provide a detailed introduction to the characteristics of each dataset.

Lab Dataset The Lab Dataset was collected using the experimental setup shown in Fig. 5. The
pressure source comprised two centrifugal pumps that provided a stable flow. The loop pipeline was
composed of two sections of stainless-steel pipes with lengths of 72.7 m and 82.1 m and diameters
of 60 mm and 50 mm, respectively. Pressure transmitters were installed at the ends of the mud pulser
and upstream of the pipeline. The rotary valve continuous wave mud pulser that we developed can
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generate mud pulses of up to 30 Hz. Since drilling mud or water did not change the propagation law
of pressure waves, the circulating fluid was replaced with water according to laboratory conditions.

Pressure transmitters were installed at two key locations: one at the outlet of the mud pulser (PT2),
serving as the reference measurement minimally affected by transmission noise, and one at the end
of the pipeline (PT1), recording the received signal after propagation through the entire loop, thus
containing accumulated noise from pumps, turbulence, and environmental disturbances. All signals
were synchronously recorded using an acquisition system. As drilling mud and water exhibit similar
pressure wave propagation properties, water was used as the circulating fluid for convenience under
laboratory conditions. The resulting dataset provides paired noisy and clean pressure waveforms
under fixed operating conditions, enabling realistic evaluation of denoising and signal reconstruction
algorithms in mud pulse telemetry scenarios.

Lab De-Pump Dataset The Lab De-Pump Dataset was obtained after performing the TDA
method on the Pump Noise Dataset. Despite the denoising process, it still contains residual Gaussian
noise and phase distortion.

Oilfield Dataset The Oilfield Dataset was collected from an operational mud pulse telemetry
(MPT) system deployed in a field drilling environment, as illustrated in Fig. 1 (a). In this sys-
tem, downhole pressure pulses are generated at the drill bit by a signal generator and transmitted
upward through the drilling fluid column to the surface. The pressure signals propagate along the
mud channel, where they are subjected to complex noise sources and interference arising from tur-
bulent fluid flow, mechanical vibrations, and interactions with the drilling assembly. A mud pump
circulates the drilling fluid, further introducing structured and unstructured noise components. Pres-
sure transducers installed at the surface continuously record the received pressure waveforms, which
are then transmitted to the ground processing unit for further analysis.

Signal Characteristic Description Fig. 6 presents representative time-domain waveforms and
frequency spectra from three datasets. The Lab Pressure Signal is characterized by strong periodic
noise components that dominate the waveform and obscure the underlying signal structure. In the
frequency domain, this is reflected by pronounced and narrow spectral peaks, indicative of stable and
repetitive interference. The phase information in this signal is largely ambiguous due to the over-
whelming presence of periodic noise, which renders accurate interpretation of the original waveform
difficult.

The De-Pump Signal created by time-domain averaging of the Lab Dataset presents a compara-
tively cleaner waveform in which the periodic components have been significantly suppressed. Its
frequency spectrum shows a more continuous distribution of energy with reduced peak dominance,
suggesting the presence of background Gaussian noise rather than structured interference. However,
residual phase distortion and low-amplitude fluctuations remain, indicating that the signal is not
entirely free from noise contamination.

The Oilfield Signal collected from actual oilfield operations exhibits complex structure. It con-
tains irregular, non-repetitive interference patterns and displays substantial spectral spreading in the
frequency domain. The energy is dispersed across a wider range of frequencies, and the signal
exhibits severe phase distortion and high variability. These characteristics reflect the diverse and
unpredictable noise conditions encountered in real-world downhole environments.

The three datasets collectively encompass a range of noise complexities, from structured periodic
interference to unstructured and irregular noise, thereby providing a comprehensive basis for evalu-
ating signal analysis and recovery methods under increasingly challenging conditions.

The Reason for not Choosing Public Datasets In this study, we do not use any publicly available
mud pulse telemetry datasets for evaluation. This decision is primarily due to the following reasons:

Lack of Public Benchmarks: To the best of our knowledge, there are currently no publicly accessible,
standardized datasets for mud pulse telemetry signal recovery. Most existing datasets are proprietary
and have not been released for open research.

Confidentiality and Intellectual Property: Mud pulse telemetry data are often considered sensitive
due to commercial interests and intellectual property concerns. The field data used in this work were
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（a）Original Signal （b）U-Net Signal （c）MLW-Net Signal （d）FADFormer Signal

（e）WaveFormer Signal （f）SJDDNet Signal （g）APR-RD Signal （h）DACDL Signal (Ours)

Figure 7: Comparison of visualization results in the time domain and frequency domain by different
methods on Real Gaussian Dataset. The orange-red curves denote the ground-truth target signals,
while the blue curves represent the denoised outputs generated by each method.

（a）Original Signal （b）U-Net Signal （c）MLW-Net Signal （d）FADFormer Signal

（e）WaveFormer Signal （f）SJDDNet Signal （g）APR-RD Signal （h）DACDL Signal (Ours)

Figure 8: Comparison of visualization results in the time domain and frequency domain by different
methods on Real Oilfield Dataset. The orange-red curves denote the ground-truth target signals,
while the blue curves represent the denoised outputs generated by each method.
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obtained in collaboration with industrial partners under non-disclosure agreements, which preclude
public sharing.

Practical Relevance: The datasets collected in this study closely reflect the complexities and noise
characteristics encountered in real-world drilling operations, providing a realistic and challenging
testbed for evaluating the proposed methods.

As a result, all experiments in this paper are conducted on our in-house datasets, which are described
in detail in the above section. We encourage future work to promote the development and open
sharing of standardized benchmarks for mud pulse telemetry research.

B.2 MORE VISUALIZATION RESULTS

We perform additional visualizations on the other two datasets, as illustrated in Fig. 7 and Fig. 8.

C THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used a large language model (LLM) for language polishing of this manuscript (grammar correc-
tion, wording clarity, and minor stylistic edits) and for coding assistance (e.g., clarifying error mes-
sages, suggesting syntax fixes, minor refactoring, and correcting small implementation mistakes).
These supports made our research processsmoother and more effective.
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