
Under review as a conference paper at ICLR 2023

TOWARDS DISCOVERING NEURAL ARCHITECTURES
FROM SCRATCH

Anonymous authors
Paper under double-blind review

ABSTRACT

The discovery of neural architectures from scratch is the long-standing goal of
Neural Architecture Search (NAS). Searching over a wide spectrum of neural
architectures can facilitate the discovery of previously unconsidered but well-
performing architectures. In this work, we take a large step towards discover-
ing neural architectures from scratch by expressing architectures algebraically.
This algebraic view leads to a more general method for designing search spaces,
which allows us to compactly represent search spaces that are 100s of orders of
magnitude larger than common spaces from the literature. Further, we propose a
Bayesian Optimization strategy to efficiently search over such huge spaces, and
demonstrate empirically that both our search space design and our search strategy
can be superior to existing baselines. We open source our algebraic NAS approach
and provide APIs for PyTorch and TensorFlow.

1 INTRODUCTION

Neural Architecture Search (NAS), a field with over 1 000 papers in the last two years (Deng &
Lindauer, 2022), is widely touted to automatically discover novel, well-performing architectural
patterns. However, while state-of-the-art performance has already been demonstrated in hundreds of
NAS papers (prominently, e.g., (Tan & Le, 2019; 2021; Liu et al., 2019a)), success in automatically
finding truly novel architectural patterns has been very scarce (Ramachandran et al., 2017; Liu et al.,
2020). For example, novel architectures, such as transformers (Vaswani et al., 2017; Dosovitskiy
et al., 2021) have been crafted manually and were not found by NAS.

There is an accumulating amount of evidence that over-engineered, restrictive search spaces (e.g.,
cell-based ones) are major impediments for NAS to discover truly novel architectures. Yang et al.
(2020b) showed that in the DARTS search space (Liu et al., 2019b) the manually-defined macro
architecture is more important than the searched cells, while Xie et al. (2019) and Ru et al. (2020)
achieved competitive performance with randomly wired neural architectures that do not adhere to
common search space limitations. As a result, there are increasing efforts to break these impedi-
ments, and the discovery of novel neural architectures has been referred to as the holy grail of NAS.

Hierarchical search spaces are a promising step towards this holy grail. In an initial work, Liu et al.
(2018) proposed a hierarchical cell, which is shared across a fixed macro architecture, imitating the
compositional neural architecture design pattern widely used by human experts. However, subse-
quent works showed the importance of both layer diversity (Tan & Le, 2019) and macro architecture
(Xie et al., 2019; Ru et al., 2020).

In this work, we introduce a general formalism for the representation of hierarchical search spaces,
allowing both for layer diversity and a flexible macro architecture. The key observation is that any
neural architecture can be represented algebraically; e.g., two residual blocks followed by a fully-
connected layer in a linear macro topology can be represented as the algebraic term

ω = Linear(Residual(conv, id, conv), Residual(conv, id, conv), fc) . (1)

We build upon this observation and employ Context-Free Grammars (CFGs) to construct large
spaces of such algebraic architecture terms. Although a particular search space is of course limited
in its overall expressiveness, with this approach, we could effectively represent any neural architec-
ture, facilitating the discovery of truly novel ones.

1

Under review as a conference paper at ICLR 2023

Due to the hierarchical structure of algebraic terms, the number of candidate neural architectures
scales exponentially with the number of hierarchical levels, leading to search spaces 100s of orders
of magnitudes larger than commonly used ones. To search in these huge spaces, we propose an
efficient search strategy, Bayesian Optimization for Algebraic Neural Architecture Terms (BANAT),
which leverages hierarchical information, capturing the topological patterns across the hierarchical
levels, in its tailored kernel design.

Our contributions are as follows:

• We present a novel technique to construct hierarchical NAS spaces based on an algebraic
notion views neural architectures as algebraic architecture terms and CFGs to create alge-
braic search spaces (Section 2).

• We propose BANAT, a Bayesian Optimization (BO) strategy that uses a tailored modeling
strategy to efficiently and effectively search over our huge search spaces (Section 3).

• After surveying related work (Section 4), we empirically show that search spaces of alge-
braic architecture terms perform on par or better than common cell-based spaces on dif-
ferent datasets, show the superiority of BANAT over common baselines, demonstrate the
importance of incorporating hierarchical information in the modeling, and show that we
can find novel architectural parts from basic mathematical operations (Section 5).

We open source our code and provide APIs for PyTorch (Paszke et al., 2019) and TensorFlow (Abadi
et al., 2015) at https://anonymous.4open.science/r/iclr23_tdnafs.

2 ALGEBRAIC NEURAL ARCHITECTURE SEARCH SPACE CONSTRUCTION

In this section we present an algebraic view on Neural Architecture Search (NAS) (Section 2.1) and
propose a construction mechanism based on Context-Free Grammars (CFGs) (Section 2.2 and 2.3).

2.1 ALGEBRAIC ARCHITECTURE TERMS FOR NEURAL ARCHITECTURE SEARCH

We introduce algebraic architecture terms as a string representation for neural architectures from a
(term) algebra. Formally, an algebra (A,F) consists of a non-empty set A (universe) and a set of
operators f : An → A ∈ F of different arities n ≥ 0 (Birkhoff, 1935). In our case, A corresponds
to the set of all (sub-)architectures and we distinguish between two types of operators: (i) nullary
operators representing primitive computations (e.g., conv() or fc()) and (ii) k-ary operators with
k > 0 representing topological operators (e.g., Linear(·, ·, ·) or Residual(·, ·, ·)). For sake of
notational simplicity, we omit parenthesis for nullary operators (i.e., we write conv). Term algebras
(Baader & Nipkow, 1999) are a special type of algebra mapping an algebraic expression to its string
representation. E.g., we can represent a neural architecture as the algebraic architecture term ω as
shown in Equation 1. Term algebras also allow for variables xi that are set to terms themselves that
can be re-used across a term. In our case, the intermediate variables xi can therefore share patterns
across the architecture, e.g., a shared cell. For example, we could define the intermediate variable
x1 to map to the residual block in ω from Equation 1 as follows:

ω′ = Linear(x1, x1, fc), x1 = Residual(conv, id, conv) . (2)

Algebraic NAS We formulate our algebraic view on NAS, where we search over algebraic archi-
tecture terms ω ∈ Ω representing their associated architectures Φ(ω), as follows:

argmin
ω∈Ω

f(Φ(ω)) , (3)

where f(·) is an error measure that we seek to minimize, e.g., final validation error of a fixed
training protocol. For example, we can represent the popular cell-based NAS-Bench-201 search
space(Dong & Yang, 2020) as algebraic search space Ω. The algebraic search space Ω is char-
acterized by a fixed macro architecture Macro(. . .) that stacks 15 instances of a shared cell
Cell(pi,pi,pi,pi,pi,pi), where the cell has six edges, on each of which one of five primi-
tive computations can be placed (i.e., pi for i ∈ {1, 2, 3, 4, 5} corresponding to zero, id,
conv1x1, conv3x3, or avg pool, respectively). By leveraging the intermediate variable x1

2

https://anonymous.4open.science/r/iclr23_tdnafs

Under review as a conference paper at ICLR 2023

Linear(S, S, S)

Linear(Residual(S, S, S),
Residual(S, S, S), fc)

Linear(Residual(conv, id, conv),
Residual(conv, id, conv), fc)

Level 1

Level 2

Level 3

Algebraic architecture terms Neural architectures
S S S

S S
S

S S
S

fc

conv conv

id

conv conv

id

fc

Figure 1: Derivations from Equation 6 of algebraic architecture terms (left) correspond to edge
replacements (Habel & Kreowski, 1983; 1987; Drewes et al., 1997) in the associated architecture
(right). Appendix A provides the vocabulary for topological operators and primitive computations.

we can effectively share the cell topology across the architecture. For example, we can express an
architecture ωi ∈ Ω from the NAS-Bench-201 search space Ω as:

ωi = Macro(x1, x1, ..., x1︸ ︷︷ ︸
15×

), x1 = Cell(p1,p2,p1,p5,p4,p3) . (4)

Algebraic NAS over such algebraic architecture terms then amounts to finding the best-performing
primitive computation pi for each edge, as the macro architecture is fixed. In contrast to this simple
cell-based algebraic space, the search spaces we consider can be much more expressive and, e.g., al-
low for layer diversity and a flexible macro architecture over several hierarchical levels (Section 5.1).

2.2 CONSTRUCTING NEURAL ARCHITECTURE TERMS WITH CONTEXT-FREE GRAMMARS

We propose to use Context-Free Grammars (CFGs) (Chomsky, 1956) since they can naturally gen-
erate (hierarchical) algebraic architecture terms. Compared to other search space designs, CFGs
give us a formally grounded way to naturally and compactly define very expressive hierarchical
search spaces (e.g., see Section 5.1). We can also unify popular search spaces from the literature
with our general search space design in one framework (Appendix E). They give us further a simple
mechanism to evolve architectures while staying within the defined search space (Section 3).

Formally, a CFG G = ⟨N,Σ, P, S⟩ consists of a finite set of nonterminals N and terminals Σ with
N ∩Σ = ∅, a finite set of production rules P = {A→ β|A ∈ N, β ∈ (N ∪Σ)∗}, where the asterisk
∗ denotes the Kleene star operation (Kleene et al., 1956), and a start symbol S ∈ N . To generate an
algebraic architecture term, starting from the start symbol S, we recursively replace nonterminals of
the current algebraic term with a right-hand side of a production rule consisting of nonterminals and
terminals, until the resulting string does not contain any nonterminals. For example, consider the
following CFG in extended Backus-Naur form (Backus, 1959) (see Appendix B for background):

S ::= Linear(S, S, S) | Residual(S, S, S) | conv | id | fc (5)

From this CFG, we can derive the algebraic architecture term ω (with three hierarchical levels) from
Equation 1 as follows:

S→ Linear(S, S, S) Level 1

→ Linear(Residual(S, S, S), Residual(S, S, S), fc) Level 2
(6)

→ Linear(Residual(conv, id, conv), Residual(conv, id, conv), fc) Level 3

Figure 1 makes the above derivation and the connection to the associated architecture explicit. The
set of all (potentially infinite) algebraic terms generated by a CFG G is the language L(G), which
naturally forms our search space Ω. Thus, the algebraic NAS problem from Equation 3 becomes:

argmin
ω∈L(G)

f(Φ(ω)) . (7)

3

Under review as a conference paper at ICLR 2023

2.3 EXTENSIONS TO THE CONSTRUCTION MECHANISM

Constraints In many search space designs, we want to adhere to some constraints, e.g., to limit
the number of nodes or to ensure that for all architectures in the search space there exists at least one
path from the input to the output. We can simply do so by allowing only the application of production
rules which guarantee compliance to such constraints. For example, to ensure that there is at least
one path from the input to the output, it is sufficient to ensure that each derivation connects its input
to the output due to the recursive nature of CFGs. Note that this makes CFGs context-sensitive w.r.t.
those constraints. For more details, please refer to Appendix D.

Fostering regularity through substitution To implement intermediate variables xi (Section 2.1)
we leverage that context-free languages are closed under substitution: we map terminals, represent-
ing the intermediate variables xi, from one language to algebraic terms of other languages, e.g., a
shared cell. For example, we can split a CFG G, constructing entire algebraic architecture terms, into
the CFGs Gmacro and Gcell for the macro- or cell-level, respectively. Further, we add a single (or
multiple) intermediate terminal(s) x1 to Gmacro which maps to an algebraic term ω1 ∈ L(Gcell), e.g.,
the searchable cell. Thus, we effectively search over the macro-level as well as a single, shared cell.
Note that by using a fixed macro architecture (i.e., |L(Gmacro)| = 1), we can represent cell-based
search spaces, e.g., NAS-Bench-201 (Dong & Yang, 2020), while also being able to represent more
expressive search spaces (e.g., see Section 5.1). More generally, we could extend this by adding
further intermediate terminals which map to other languages L(Gj), or by adding intermediate ter-
minals to G2 which map to languages L(Gj ̸=1). In this way, we can effectively foster regularity.

Representing common architecture patterns for object recognition Neural architectures for
object recognition commonly build a hierarchy of features that are gradually downsampled, e.g., by
pooling operations. However, previous works in NAS were either limited to a fixed macro architec-
ture (Zoph et al., 2018), only allowed for linear macro architectures (Liu et al., 2019a), or required
post-sampling testing for resolution mismatches (Stanley & Miikkulainen, 2002; Ru et al., 2020).
While this produced impressive performance on popular benchmarks (Tan & Le, 2019; 2021; Liu
et al., 2019a), it is an open research question whether a different type of macro architecture (e.g.,
one with multiple branches) could yield even better performance.

To accommodate flexible macro architectures, we propose to overload the nonterminals. In par-
ticular, the nonterminals indicate how often we apply downsampling operations in the subsequent
derivations of the nonterminal. Consider the production rule D2 → Residual(D1, D2, D1),
where Di with i ∈ {1, 2} are a nonterminals which indicate that i downsampling operations have to
be applied in their subsequent derivations. That is, in both paths of the residual the input features will
be downsampled twice and, consequently, the merging paths will have the same spatial resolution.
Thereby, this mechanism distributes the downsampling operations recursively across the architec-
ture. For the channels, we adopted the common design to double the number of channels whenever
we halve the spatial resolution in our experiments. Note that we could also handle a varying number
of channels by using, e.g., depthwise concatenation as merge operation.

3 BAYESIAN OPTIMIZATION FOR ALGEBRAIC NEURAL ARCHITECTURE
SEARCH

We propose a BO strategy, Bayesian Optimization for Algebraic Neural Architecture Terms (BA-
NAT), to efficiently search in the huge search spaces spanned by our algebraic architecture terms:
we introduce a novel surrogate model which combines a Gaussian Process (GP) surrogate with a
tailored kernel that leverages the hierarchical structure of algebraic neural architecture terms (see
below), and adopt expected improvement as the acquisition function (Mockus et al., 1978). Given
the discrete nature of architectures, we adopt ideas from grammar-guided genetic programming
(McKay et al., 2010; Moss et al., 2020) for acquisition function optimization. Furthermore, to
reduce wallclock time by leveraging parallel computing resources, we adapt the Kriging Believer
(Ginsbourger et al., 2010) to select architectures at every search iteration so that we can train and
evaluate them in parallel. Specifically, Kriging Believer assigns hallucinated values (i.e., posterior
mean) of pending evaluations at each iteration to avoid redundant evaluations. For a more detailed
explanation of BANAT, please refer to Appendix F.

4

Under review as a conference paper at ICLR 2023

Hierarchical Weisfeiler-Lehman kernel (hWL) Inspired by the state-of-the-art BO approach for
NAS (Ru et al., 2021), we adopt the WL graph kernel (Shervashidze et al., 2011) in a GP surrogate,
modeling performance of the algebraic architecture terms ωi with the associated architectures Φ(ωi).
However, modeling solely based on the final architecture ignores the useful hierarchical information
inherent in our algebraic representation. Moreover, the large size of the architectures also makes it
difficult to use a single WL kernel to capture the more global topological patterns.

Since our hierarchical construction can be viewed as a series of gradually unfolding architectures,
with the final architecture containing only primitive computations, we propose a novel hierarchical
kernel design assigning a WL kernel to each hierarchy and combine them in a weighted sum. To
this end, we introduce fold operators Fl, that removes algebraic terms beyond the l-th hierarchical
level. For example, the fold operators F1, F2 and F3 yield for the algebraic term ω (Equation 1)

F3(ω) = ω = Linear(Residual(conv, id, conv), Residual(conv, id, conv), fc),
(8)

F2(ω) = Linear(Residual, Residual, fc) , F1(ω) = Linear .

Note the similarity to the derivations in Figure 1. Furthermore note that, in practice, we also add
the corresponding nonterminals to integrate information from our hierarchical construction process.
We define our hierarchical WL kernel (hWL) for two architectures Φ(ωi) and Φ(ωj) with algebraic
architecture terms ωi or ωj , respectively, constructed over a hierarchy of L levels, as follows:

khWL(ωi, ωj) =

L∑
l=2

λl · kWL(Φ(Fl(ωi)),Φ(Fl(ωj))) , (9)

where the weights λl govern the importance of the learned graph information at different hierarchical
levels (granularities of the architecture) and can be tuned (along with other hyperparameters of the
GP) by maximizing the marginal likelihood. We omit l = 1 in the additive kernel as F1(ω) does not
contain any edge features which are required for our WL kernel kWL. For more details on our novel
hierarchical kernel design, please refer to Appendix F.2. Our proposed kernel efficiently captures
the information in all algebraic term construction levels, which substantially improves its search and
surrogate regression performance on our search space as demonstrated in Section 5.

Acquisition function optimization To optimize the acquisition function, we adopt ideas from
grammar-based genetic programming (McKay et al., 2010; Moss et al., 2020). For mutation, we
randomly replace a sub-architecture term with a new randomly generated term, using the same non-
terminal as start symbol. For crossover, we randomly swap two sub-architecture terms with the same
corresponding nonterminal. We consider two crossover operators: a novel self-crossover operation
swaps two sub-terms of a single architecture term, and the common crossover operation swaps sub-
terms of two different architecture terms. Importantly, all evolutionary operations by design only
result in valid terms. We provide examples for the evolutionary operations in Appendix F.

4 RELATED WORK

We discuss related works in NAS below and discuss works beyond NAS in Appendix G.

Neural Architecture Search Neural Architecture Search (NAS) aims to automatically discover
architectural patterns (or even entire architectures) (Elsken et al., 2019). Previous approaches, e.g.,
used reinforcement learning (Zoph & Le, 2017; Pham et al., 2018), evolution (Real et al., 2017),
gradient descent (Liu et al., 2019b), or Bayesian Optimization (BO) (Kandasamy et al., 2018; White
et al., 2021; Ru et al., 2021). To enable the effective use of BO on graph-like inputs for NAS,
previous works have proposed to use a GP with specialized kernels (Kandasamy et al., 2018; Ru
et al., 2021), encoding schemes (Ying et al., 2019; White et al., 2021), or graph neural networks as
surrogate model (Ma et al., 2019; Shi et al., 2020; Zhang et al., 2019). Different to prior works, we
explicitly leverage the hierarchical construction of architectures for modeling.

Searching for novel architectural patterns Previous works mostly focused on finding a shared
cell (Zoph et al., 2018) with a fixed macro architecture while only few works considered more ex-
pressive hierarchical search spaces (Liu et al., 2018; 2019a; Tan et al., 2019). The latter works

5

Under review as a conference paper at ICLR 2023

considered hierarchical assembly (Liu et al., 2018), combination of a cell- and network-level search
space (Liu et al., 2019a; Zhang et al., 2020), evolution of network topologies (Miikkulainen et al.,
2019), factorization of the search space (Tan et al., 2019), parameterization of a hierarchy of ran-
dom graph generators (Ru et al., 2020), a formal language over computational graphs (Negrinho
et al., 2019), or a hierarchical construction of TensorFlow programs (So et al., 2021). Similarly,
our formalism allows to design search spaces covering a general set of architecture design choices,
but also permits the search for macro architectures with spatial resolution changes and multiple
branches. We also handle spatial resolution changes without requiring post-hoc testing or resizing
of the feature maps unlike prior works (Stanley & Miikkulainen, 2002; Miikkulainen et al., 2019;
Stanley et al., 2019). Other works proposed approaches based on string rewriting systems (Kitano,
1990; Boers et al., 1993), cellular (or tree-structured) encoding schemes (Gruau, 1994; Luke &
Spector, 1996; De Jong & Pollack, 2001; Cai et al., 2018), hyperedge replacement graph grammars
Luerssen & Powers (2003); Luerssen (2005), attribute grammars (Mouret & Doncieux, 2008), CFGs
(Jacob & Rehder, 1993; Couchet et al., 2007; Ahmadizar et al., 2015; Ahmad et al., 2019; Assunção
et al., 2017; 2019; Lima et al., 2019; de la Fuente Castillo et al., 2020), or And-Or-grammars (Li
et al., 2019). Different to these prior works, we construct entire architectures with spatial resolu-
tion changes across multiple branches, and propose techniques to incorporate constraints and foster
regularity. Orthogonal to the aforementioned approaches, Roberts et al. (2021) searched over neural
(XD-)operations, which is orthogonal to our approach, i.e., our predefined primitive computations
could be replaced by their proposed XD-operations.

5 EXPERIMENTS

In this section, we investigate potential benefits of hierarchical search spaces and our search strategy
BANAT. More specifically, we address the following questions:

Q1 Can hierarchical search spaces yield on par or superior architectures compared to cell-based
search spaces with a limited number of evaluations?

Q2 Can our search strategy BANAT improve performance over common baselines?
Q3 Does leveraging the hierarchical information improve performance?
Q4 Do zero-cost proxies work in vast hierarchical search spaces?
Q5 Can we discover novel architectural patterns (e.g., activation functions)?

To answer questions Q1-Q4, we introduce a hierarchical search space based on the popular NAS-
Bench-201 search space (Dong & Yang, 2020) in Section 5.1. To answer question Q5, we search
for activation functions (Ramachandran et al., 2017) and defer the search space definition to Ap-
pendix J.1. We provide complementary results and analyses in Appendix I.2 and J.3.

5.1 HIERARCHICAL NAS-BENCH-201

We propose a hierarchical variant of the popular cell-based NAS-Bench-201 search space (Dong
& Yang, 2020) by adding a hierarchical macro space (i.e., spatial resolution flow and wiring at the
macro-level) and parameterizable convolutional blocks (i.e., choice of convolutions, activations, and
normalizations). We express the hierarchical NAS-Bench-201 search space with CFG Gh as follows:

D2 ::= Linear3(D1, D1, D0) | Linear3(D0, D1, D1) | Linear4(D1, D1, D0, D0)

D1 ::= Linear3(C, C, D) | Linear4(C, C, C, D) | Residual3(C, C, D, D)

D0 ::= Linear3(C, C, CL) | Linear4(C, C, C, CL) | Residual3(C, C, CL, CL)
D ::= Linear2(CL, down) | Linear3(CL, CL, down) | Residual2(C, down, down)
C ::= Linear2(CL, CL) | Linear3(CL, CL) | Residual2(CL, CL, CL)

CL ::= Cell(OP, OP, OP, OP, OP, OP)

OP ::= zero | id | BLOCK | avg pool

BLOCK ::= Linear3(ACT, CONV, NORM)

ACT ::= relu | hardswish | mish
CONV ::= conv1x1 | conv3x3 | dconv3x3
NORM ::= batch | instance | layer .

(10)

6

Under review as a conference paper at ICLR 2023

See Appendix A for the terminal vocabulary of topological operators and primitive computations.
The productions with the nonterminals {D2, D1, D0, D} define the spatial resolution flow and
together with {C} define the macro architecture containing possibly multiple branches. The produc-
tions for {CL, OP} construct the NAS-Bench-201 cell and {BLOCK, ACT, CONV, NORM}
parameterize the convolutional block. To ensure that we use the same distribution over the primi-
tive computations as in NAS-Bench-201, we reweigh the sampling probabilities of the productions
generated by the nonterminal OP, i.e., all production choices have sampling probability of 20%,
but BLOCK has 40%. Note that we omit the stem (i.e., 3x3 convolution followed by batch nor-
malization) and classifier (i.e., batch normalization followed by ReLU, global average pooling, and
fully-connected layer) for simplicity. We implemented the merge operation as element-wise summa-
tion. Different to the cell-based NAS-Bench-201 search space, we exclude degenerated architectures
by introducing a constraint that ensures that each subterm maps the input to the output (i.e., in the
associated computational graph there is at least one path from source to sink).

Our search space consists of ca. 10446 algebraic architecture terms (please refer to Appendix C on
how to compute the search space size), which is significantly larger than other popular search spaces
from the literature. For comparison, the cell-based NAS-Bench-201 search space is just a minuscule
subspace of size 104.18, where we apply only the blue-colored production rules and replace the CL
nonterminals with a placeholder terminal x1 that will be substituted by the searched, shared cell.

5.2 EVALUATION DETAILS

For all search experiments, we compared the search strategies BANAT, Random Search (RS), Regu-
larized Evolution (RE) (Real et al., 2019; Liu et al., 2018), and BANAT (WL) (Ru et al., 2021). For
implementation details of the search strategies, please refer to Appendix H. We ran search for a total
of 100 evaluations with a random initial design of 10 on three seeds {777, 888, 999} on the hierar-
chical NAS-Bench-201 search space or 1000 evaluations with a random initial design of 50 on one
seed {777} on the activation function search space using 8 asynchronous workers each with a single
NVIDIA RTX 2080 Ti GPU. In each evaluation, we fully trained the architectures and recorded
their last validation error. For training details on the hierarchical NAS-Bench-201 search space and
activation function search space, please refer to Appendix I.1 or Appendix J.2, respectively.

To assess the modeling performance of our surrogate, we compared regression performance of GPs
with different kernels, i.e., our hierarchical WL kernel (hWL), (standard) WL kernel (Ru et al.,
2021), and NASBOT’s kernel (Kandasamy et al., 2018). We also tried the GCN encoding (Shi et al.,
2020) but it could not capture the mapping from the complex graph space to performance, resulting
in constant performance predictions. Further, note that the adjacency encoding (Ying et al., 2019)
and path encoding (White et al., 2021) cannot be used in our hierarchical search spaces since the
former requires the same amount of nodes across graphs and the latter scales exponentially in the
number of nodes. We ran 20 trials over the seeds {0, 1, ..., 19} and re-used the data from the search
runs. In every trial, we sampled a training and test set of 700 or 500 architecture and validation
error pairs, respectively. We fitted the surrogates with a varying number of training samples by
randomly choosing samples from the training set without replacement, and recorded Kendall’s τ
rank correlation between the predicted and true validation error. To assess zero-cost proxies, we
re-used the data from the search runs and recorded Kendall’s τ rank correlation.

5.3 RESULTS

In the following we answer all of the questions Q1-Q5. Figure 2 compares the results of the cell-
based and hierarchical search space design using our search strategy BANAT. Results with BANAT
are on par on CIFAR-10/100, superior on ImageNet-16-120, and clearly superior on CIFARTile and
AddNIST (answering Q1). We emphasize that the NAS community has engineered the cell-based
search space to achieve strong performance on those popular image classification datasets for over
a decade, making it unsurprising that our improvements are much larger for the novel datasets. Yet,
our best found architecture on ImageNet-16-120 from the hierarchical search space also achieves
an excellent test error of 52.78% with only 0.626MB parameters (Appendix I.2); this is superior
to the architecture found by the state-of-the-art method Shapley-NAS (i.e., 53.15%) (Xiao et al.,
2022) and on par with the optimal architecture of the cell-based NAS-Bench-201 search space
(i.e., 52.69% with 0.866MB). Figure 3 shows that our search strategy BANAT is also superior

7

Under review as a conference paper at ICLR 2023

0 25 50 75 100

Evaluations

8

9

10

11

V
al

er
ro

r
[%

] CIFAR-10

0 25 50 75 100

Evaluations

26

28

30

32

CIFAR-100

0 25 50 75 100

Evaluations

52

54

56

58

ImageNet-16-120

0 25 50 75 100

Evaluations

30

40

50

60

CIFARTile

0 25 50 75 100

Evaluations

7

8

9

10

AddNIST

hierarchical cell-based

Figure 2: Cell-based vs. hierarchical search space. We plot mean and ±1 standard error of the
validation error on the hierarchical (solid blue) and cell-based (dashed orange) NAS-Bench-201
search space. We compare results using the other search strategies in Appendix I.2.

0 25 50 75 100

Evaluations

8

9

10

11

V
al

er
ro

r
[%

] CIFAR-10

0 25 50 75 100

Evaluations

27

29

31

CIFAR-100

0 25 50 75 100

Evaluations

52

54

56

58

ImageNet-16-120

0 25 50 75 100

Evaluations

30

40

50

CIFARTile

0 25 50 75 100

Evaluations

7

8

9

10

AddNIST

BANAT (ours) RS RE BANAT (WL)

Figure 3: Comparison of search strategies on the hierarchical search space. We plot mean and ±1
standard error of the validation error on the hierarchical NAS-Bench-201 search space for our search
strategy BANAT (solid blue), RS (dashed orange), RE (dotted green), and BANAT (WL) (dash-
dotted red). We report test errors, best architectures, and conduct further analyses in Appendix I.2.

to common baselines (answering Q2) and leveraging hierarchical information clearly improves per-
formance (answering Q3). Further, the evaluation of surrogate performance in Figure 4 shows that
incorporating hierarchical information with our hierarchical WL kernel (hWL) improves modeling,
especially on smaller amounts of training data (further answering Q3). Table 1 shows that the base-
line zero-cost proxies flops and l2-norm yield competitive (or often superior) results to more
sophisticated zero-cost proxies; making hierarchical search spaces an interesting future research di-
rection for them (answering Q4). Finally, Table 2 shows that we can find novel well-performing
activation functions from basic mathematical operations with BANAT (answering Q5).

6 DISCUSSION AND LIMITATIONS

Search strategy Test error [%]

ReLU 8.93
Swish 8.61

RS 8.91
RE 8.47
BANAT (WL) 8.32
BANAT (ours) 8.31

Table 2: Results of the activation
function search on CIFAR-10 with
ResNet-20.

While our grammar-based construction mechanism is a pow-
erful mechanism to construct huge hierarchical search space,
we can not construct any architecture with our grammar-based
construction approach (Section 2.2 and 2.3) since we are lim-
ited to context-free languages; e.g., architectures of the type
{anbncn|n ∈ N>0} cannot be generated by CFGs (this can be
proven using Odgen’s lemma (Ogden, 1968)). Further, due to
the discrete nature of CFGs we can not easily integrate contin-
uous design choices, e.g., dropout probability. Furthermore,
our grammar-based mechanism does not (generally) support
simple scalability of discovered neural architectures (e.g., rep-
etition of building blocks) without special consideration in the
search space design. Nevertheless, our search spaces still sig-
nificantly increase the expressiveness, including the ability to
represent common search spaces from the literature (see Appendix E for how we can represent the
search spaces of DARTS, Auto-Deeplab, the hierarchical cell search space of Liu et al. (2018), the
Mobile-net search space, and the hierarchical random graph generator search space), as well as al-
lowing search for entire neural architectures based around the popular NAS-Bench-201 search space

8

Under review as a conference paper at ICLR 2023

0 200 400

#train samples

0.4

0.5

0.6

0.7

K
en

da
ll’

s
τ

CIFAR-10

0 200 400

#train samples

0.4

0.5

0.6

CIFAR-100

0 200 400

#train samples

0.3

0.4

0.5

0.6

0.7

ImageNet-16-120

0 200 400

#train samples

0.3

0.4

0.5

0.6

0.7

CIFARTile

0 200 400

#train samples

0.3

0.4

0.5

0.6

0.7

AddNIST

hWL w/o hWL NASBOT

Figure 4: Mean Kendall’s τ rank correlation with ±1 standard error achieved by a GP with our
hierarchical WL kernel (hWL), (standard) WL kernel (WL), and NASBOT (Kandasamy et al., 2018).

Table 1: Kendall’s τ rank correlation of zero-cost-proxies on our hierarchical NAS-Bench-201
space. Note that zen and nwot may not be suitable for our hierarchical search space, as they
are specifically designed for architectures with batch normalization and ReLU non-linearity, respec-
tively. We still report exemplary search results for NASWOT (Mellor et al., 2021) in Appendix I.2
since it is the best non-baseline zero-cost proxy across the datasets.

Zero-cost proxy CIFAR-10 CIFAR-100 ImageNet16-120 CIFARTile AddNIST

plain (Abdelfattah et al., 2021) -0.01 0.01 -0.08 -0.0 0.04
params (Ning et al., 2021) 0.39 0.31 0.13 0.28 0.5
flops (Ning et al., 2021) 0.46 0.51 0.47 0.47 0.49
l2-norm (Abdelfattah et al., 2021) 0.4 0.29 0.23 0.34 0.51
zen-score (Lin et al., 2021) 0.47 0.41 0.34 0.24 0.4
fisher (Turner et al., 2020) -0.06 -0.03 -0.05 0.03 0.2
grad-norm (Abdelfattah et al., 2021) 0.09 0.04 0.01 0.15 0.24
grasp (Wang et al., 2020) 0.08 0.17 0.19 0.02 0.03
snip (Lee et al., 2019) 0.17 0.06 -0.01 0.21 0.29
synflow (Tanaka et al., 2020) 0.06 0.24 0.28 -0.18 -0.08
epe-nas (Lopes et al., 2021) 0.34 0.29 0.26 0.23 0.09
jacov (Mellor et al., 2021) 0.4 0.34 0.34 0.25 0.12
nwot (Mellor et al., 2021) 0.32 0.44 0.58 0.34 0.22

(Section 5). Thus, our search space design can facilitate the discovery of novel well-performing neu-
ral architectures in those huge search spaces of algebraic architecture terms.

However, there is an inherent trade-off between the expressiveness and the difficulty of search.
The much greater expressiveness facilitates search in a richer set of architectures that may include
better architectures than in more restrictive search spaces, which however need not exist. Besides
that, the (potential) existence of such a well-performing architecture does not result in a search
strategy discovering it, even with large amounts of computing power available. Note that the trade-
off manifests itself also in the acquisition function optimization of our search strategy BANAT.

In addition, a well-performing neural architecture may not work with current training protocols and
hyperparameters due to interaction effects, i.e., training protocols and hyperparameters may be over-
optimized for specific types of neural architectures. To overcome this limitation, one could consider
a joint optimization of neural architectures, training protocols, and hyperparameters. However, this
further fuels the trade-off between expressiveness and the difficulty of search.

7 CONCLUSION

We introduced very expressive search spaces of algebraic architecture terms constructed with CFGs.
To efficiently search over the huge search spaces, we proposed BANAT, an efficient BO strategy
with a tailored kernel leveraging the available hierarchical information. Our experiments indicate
that both our search space design and our search strategy can yield strong performance over existing
baselines. Our results motivate further steps towards the discovery of neural architectures based on
even more atomic primitive computations. Furthermore, future works could (simultaneously) learn
the search space (i.e., learn the grammar) or improve search efficiency by means of multi-fidelity
optimization or gradient-based search strategies.

9

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we address all points of the best practices checklist for NAS research
(Lindauer & Hutter, 2020) in Appendix K.

ETHICS STATEMENT

NAS has immense potential to facilitate systematic, automated discovery of high-performing (novel)
architecture designs. However, the restrictive cell-based search spaces most commonly used in NAS
render it impossible to discover truly novel neural architectures. With our general formalism based
on algebraic terms, we hope to provide fertile foundation towards discovering high-performing and
efficient architectures; potentially from scratch. However, search in such huge search spaces is
expensive, particularly in the context of the ongoing detrimental climate crisis. While on the one
hand, the discovered neural architectures, like other AI technologies, could potentially be exploited
to have a negative societal impact; on the other hand, our work could also lead to advances across
scientific disciplines like healthcare and chemistry.

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, An-
drew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-
junath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,
Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems, 2015.

Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz Dudziak, and Nicholas D Lane. Zero-Cost
Proxies for Lightweight NAS. In International Conference on Learning Representations, 2021.

Qadeer Ahmad, Atif Rafiq, Muhammad Adil Raja, and Noman Javed. Evolving MIMO multi-
layered artificial neural networks using grammatical evolution. In Proceedings of the ACM Sym-
posium on Applied Computing, 2019.

Fardin Ahmadizar, Khabat Soltanian, Fardin AkhlaghianTab, and Ioannis Tsoulos. Artificial neural
network development by means of a novel combination of grammatical evolution and genetic
algorithm. Engineering Applications of Artificial Intelligence, 2015.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in Neural Information Processing Systems, 2016.

Filipe Assunção, Nuno Lourenço, Penousal Machado, and Bernardete Ribeiro. Automatic genera-
tion of neural networks with structured grammatical evolution. In IEEE Congress on Evolutionary
Computation, 2017.

Filipe Assunção, Nuno Lourenço, Penousal Machado, and Bernardete Ribeiro. DENSER: deep
evolutionary network structured representation. Genetic Programming and Evolvable Machines,
2019.

Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge university press, 1999.

John Warner Backus. The syntax and semantics of the proposed international algebraic language of
the zurich acm-gamm conference. In International Conference on Information Processing, 1959.

Irwan Bello, Barret Zoph, Vijay Vasudevan, and Quoc V. Le. Neural Optimizer Search with Rein-
forcement Learning. In International Conference on Machine Learning, 2017.

Garrett Birkhoff. On the structure of abstract algebras. Mathematical Proceedings of the Cambridge
Philosophical Society, 1935.

10

Under review as a conference paper at ICLR 2023

Egbert J. W. Boers, Herman Kuiper, Bart L. M. Happel, and Ida G. Sprinkhuizen-Kuyper. Biological
Metaphors In Designing Modular Artificial Neural Networks. In International Conference on
Artificial Neural Networks, 1993.

Eric Brochu, Vlad M. Cora, and Nando De Freitas. A Tutorial on Bayesian Optimization of Expen-
sive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement
Learning. arXiv, 2010.

Han Cai, Jiacheng Yang, Weinan Zhang, Song Han, and Yong Yu. Path-Level Network Transforma-
tion for Efficient Architecture Search. In International Conference on Machine Learning, 2018.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to Optimize: A Primer and A Benchmark. Journal of Machine Learning
Research, 2022a.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Yao Liu, Kaiyuan Wang, Cho-Jui Hsieh,
Yifeng Lu, and Quoc V. Le. Evolved Optimizer for Vision. In First Conference on Automated
Machine Learning (Late-Breaking Workshop), 2022b.

Yutian Chen, Matthew W Hoffman, Sergio Gómez Colmenarejo, Misha Denil, Timothy P. Lillicrap,
Matt Botvinick, and Nando Freitas. Learning to Learn without Gradient Descent by Gradient
Descent. In International Conference on Machine Learning, 2017.

Noam Chomsky. Three models for the description of language. IRE Transactions on information
theory, 1956.

Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A Downsampled Variant of ImageNet as an
Alternative to the CIFAR Datasets. arXiv, 2017.

Jorge Couchet, Daniel Manrique, and Luis Porras. Grammar-Guided Neural Architecture Evolution.
In International Work-Conference on the Interplay Between Natural and Artificial Computation,
2007.

Guofeng Cui and He Zhu. Differentiable Synthesis of Program Architectures. In Advances in Neural
Information Processing Systems, 2021.

Edwin D. De Jong and Jordan B. Pollack. Utilizing Bias to Evolve Recurrent Neural Networks. In
International Joint Conference on Neural Networks, 2001.

Vı́ctor de la Fuente Castillo, Alberto Dı́az-Álvarez, Miguel-Ángel Manso-Callejo, and Francisco
Serradilla Garcia. Grammar Guided Genetic Programming for Network Architecture Search and
Road Detection on Aerial Orthophotography. Applied Sciences, 2020.

Difan Deng and Marius Lindauer. Literature on Neural Architecture Search. https://www.
automl.org/automl/literature-on-neural-architecture-search/, 2022.
[Online; accessed 25-September-2022].

Xuanyi Dong and Yi Yang. NAS-Bench-201: Extending the Scope of Reproducible Neural Archi-
tecture Search. In International Conference on Learning Representations, 2020.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale. In International Conference on Learning Representations, 2021.

Frank Drewes, Hans-Jörg Kreowski, and Annegret Habel. Hyperedge replacement graph gram-
mars. In Handbook Of Graph Grammars And Computing By Graph Transformation: Volume 1:
Foundations. World Scientific, 1997.

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural Architecture Search: A Survey.
Journal of Machine Learning Research, 2019.

Paul Erdős, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad.
Sci, 1960.

11

https://www.automl.org/automl/literature-on-neural-architecture-search/
https://www.automl.org/automl/literature-on-neural-architecture-search/

Under review as a conference paper at ICLR 2023

Alexander L Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Differentiable pro-
grams with neural libraries. In International Conference on Machine Learning, 2017.

Rob Geada, Stephen McGough, Amir A. Abarghouei, Isabelle Guyon, and Sébastien Treguer.
CVPR-NAS-Datasets (codebase for the “CVPR-NAS 2021 Unseen Data Track“). https:
//github.com/RobGeada/cvpr-nas-datasets, 2021.

David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. Kriging is well-suited to parallelize
optimization. In Computational Intelligence in Expensive Optimization Problems. Springer, 2010.

Frederic Gruau. Neural Network Synthesis Using Cellular Encoding And The Genetic Algorithm.
PhD thesis, Laboratoire de l’Informatique du Parallilisme, Ecole Normale Supirieure de Lyon,
1994.

Annegret Habel and Hans-Jörg Kreowski. On context-free graph languages generated by edge re-
placement. In Graph-Grammars and Their Application to Computer Science, 1983.

Annegret Habel and Hans-Jörg Kreowski. Characteristics of graph languages generated by edge
replacement. Theoretical Computer Science, 1987.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2016.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-Excitation Networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2018.

Christian Jacob and Jan Rehder. Evolution of neural net architectures by a hierarchical grammar-
based genetic system. In Artificial Neural Nets and Genetic Algorithms, 1993.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabás Póczos, and Eric P. Xing.
Neural Architecture Search with Bayesian Optimisation and Optimal Transport. In Advances in
Neural Information Processing Systems, 2018.

Hiroaki Kitano. Designing neural networks using genetic algorithms with graph generation system.
Complex systems, 1990.

Stephen C. Kleene et al. Representation of events in nerve nets and finite automata. Automata
studies, 1956.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning Multiple Layers of Features from Tiny Images,
2009.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. SNIP: Single-shot Network Pruning
based on Connection Sensitivity. International Conference on Learning Representations, 2019.

Ke Li and Jitendra Malik. Learning to Optimize. International Conference on Learning Represen-
tations, 2017.

Liam Li and Ameet Talwalkar. Random search and reproducibility for neural architecture search. In
Uncertainty in artificial intelligence, 2020.

Xilai Li, Xi Song, and Tianfu Wu. AOGNets: Compositional grammatical architectures for deep
learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2019.

Ricardo H. R. Lima, Aurora T. R. Pozo, and Roberto Santana. Automatic Design of Convolutional
Neural Networks using Grammatical Evolution. In Brazilian Conference on Intelligent Systems,
2019.

Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu Sun, Qi Qian, Hao Li, and Rong Jin.
Zen-NAS: A Zero-Shot NAS for High-Performance Image Recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2021.

12

https://github.com/RobGeada/cvpr-nas-datasets
https://github.com/RobGeada/cvpr-nas-datasets

Under review as a conference paper at ICLR 2023

Marius Lindauer and Frank Hutter. Best practices for scientific research on neural architecture
search. Journal of Machine Learning Research, 2020.

Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei Hua, Alan L. Yuille, and
Li Fei-Fei. Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmen-
tation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019a.

Hanxiao Liu, Karen Simonyan, Oriol Vinyals, Chrisantha Fernando, and Koray Kavukcuoglu. Hier-
archical Representations for Efficient Architecture Search. In International Conference on Learn-
ing Representations, 2018.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable Architecture Search. In
International Conference on Learning Representations, 2019b.

Hanxiao Liu, Andy Brock, Karen Simonyan, and Quoc V. Le. Evolving Normalization-Activation
Layers. Advances in Neural Information Processing Systems, 2020.

Vasco Lopes, Saeid Alirezazadeh, and Luı́s A Alexandre. EPE-NAS: Efficient Performance Estima-
tion Without Training for Neural Architecture Search. In International Conference on Artificial
Neural Networks, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In International Con-
ference on Learning Representations, 2019.

Martin H. Luerssen. Graph Grammar Encoding and Evolution of Automata Networks. In Aus-
tralasian Conference on Computer Science, 2005.

Martin H. Luerssen and David M. W. Powers. On the Artificial Evolution of Neural Graph Gram-
mars. University of New South Wales, 2003.

Sean Luke and Lee Spector. Evolving Graphs and Networks with Edge Encoding: Preliminary
Report. In Late-breaking Papers of the Genetic Programming 96 conference, 1996.

Lizheng Ma, Jiaxu Cui, and Bo Yang. Deep Neural Architecture Search with Deep Graph Bayesian
Optimization. In IEEE/WIC/ACM International Conference on Web Intelligence. IEEE Computer
Society Press, 2019.

Robert I. McKay, Nguyen Xuan Hoai, Peter A. Whigham, Yin Shan, and Michael O’neill. Grammar-
based genetic programming: a survey. Genetic Programming and Evolvable Machines, 2010.

Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley. Neural Architecture Search without
Training. In International Conference on Machine Learning, 2021.

Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink, Olivier Francon,
Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy, et al. Evolving Deep Neural
Networks. In Artificial Intelligence in the Age of Neural Networks and Brain Computing. Elsevier,
2019.

Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas. The Application of Bayesian Methods for
Seeking the Extremum. Towards Global Optimization, 1978.

Henry Moss, David Leslie, Daniel Beck, Javier González, and Paul Rayson. BOSS: Bayesian Opti-
mization over String Spaces. In Advances in Neural Information Processing Systems, 2020.

Jean-Baptiste Mouret and Stéphane Doncieux. MENNAG: a modular, regular and hierarchical en-
coding for neural-networks based on attribute grammars. Evolutionary Intelligence, 2008.

Renato Negrinho, Matthew Gormley, Geoffrey J. Gordon, Darshan Patil, Nghia Le, and Daniel Fer-
reira. Towards modular and programmable architecture search. Advances in Neural Information
Processing Systems, 2019.

Xuefei Ning, Changcheng Tang, Wenshuo Li, Zixuan Zhou, Shuang Liang, Huazhong Yang, and
Yu Wang. Evaluating Efficient Performance Estimators of Neural Architectures. Advances in
Neural Information Processing Systems, 2021.

13

Under review as a conference paper at ICLR 2023

William Ogden. A helpful result for proving inherent ambiguity. Mathematical systems theory,
1968.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems, 2019.

Hieu Pham, Melody Guan, Barret Zoph, Quoc V. Le, and Jeff Dean. Efficient Neural Architecture
Search via Parameters Sharing. In International Conference on Machine Learning, 2018.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for Activation Functions. arXiv,
2017.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V. Le, and Alexey Kurakin. Large-Scale Evolution of Image Classifiers. In International
Conference on Machine Learning, 2017.

Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized Evolution for Image
Classifier Architecture Search. In Proceedings of the National Conference on Artificial Intelli-
gence, 2019.

Esteban Real, Chen Liang, David So, and Quoc V. Le. AutoML-Zero: Evolving Machine Learning
Algorithms From Scratch. In International Conference on Machine Learning, 2020.

Nicholas Roberts, Mikhail Khodak, Tri Dao, Liam Li, Christopher Ré, and Ameet Talwalkar. Re-
thinking Neural Operations for Diverse Tasks. Advances in Neural Information Processing Sys-
tems, 2021.

Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable Neural Architecture
Search via Bayesian Optimisation with Weisfeiler-Lehman Kernels. In International Conference
on Learning Representations, 2021.

Robin Ru, Pedro Esperança, and Fabio Maria Carlucci. Neural architecture generator optimization.
In Advances in Neural Information Processing Systems, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2018.

Ameesh Shah, Eric Zhan, Jennifer Sun, Abhinav Verma, Yisong Yue, and Swarat Chaudhuri. Learn-
ing Differentiable Programs with Admissible Neural Heuristics. Advances in Neural Information
Processing Systems, 2020.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando De Freitas. Taking the
Human Out of the Loop: A Review of Bayesian Optimization. Proceedings of the IEEE, 2015.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M.
Borgwardt. Weisfeiler-Lehman Graph Kernels. Journal of Machine Learning Research, 2011.

Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James Kwok, and Tong Zhang. Bridging the Gap
between Sample-based and One-shot Neural Architecture Search with BONAS. In Advances in
Neural Information Processing Systems, 2020.

David So, Wojciech Mańke, Hanxiao Liu, Zihang Dai, Noam Shazeer, and Quoc V. Le. Searching
for Efficient Transformers for Language Modeling. In Advances in Neural Information Processing
Systems, 2021.

Kenneth O. Stanley and Risto Miikkulainen. Evolving Neural Networks through Augmenting
Topologies. Evolutionary Computation, 2002.

Kenneth O Stanley, Jeff Clune, Joel Lehman, and Risto Miikkulainen. Designing neural networks
through neuroevolution. Nature Machine Intelligence, 2019.

14

Under review as a conference paper at ICLR 2023

Mingxing Tan and Quoc V. Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks. In International Conference on Machine Learning, 2019.

Mingxing Tan and Quoc V. Le. EfficientNetV2: Smaller Models and Faster Training. In Interna-
tional Conference on Machine Learning, 2021.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V. Le. MnasNet: Platform-Aware Neural Architecture Search for Mobile. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019.

Hidenori Tanaka, Daniel Kunin, Daniel L. Yamins, and Surya Ganguli. Pruning neural networks
without any data by iteratively conserving synaptic flow. Advances in Neural Information Pro-
cessing Systems, 2020.

Jack Turner, Elliot J Crowley, Michael O’Boyle, Amos Storkey, and Gavin Gray. BlockSwap:
Fisher-guided Block Substitution for Network Compression on a Budget. International Confer-
ence on Learning Representations, 2020.

Lazar Valkov, Dipak Chaudhari, Akash Srivastava, Charles Sutton, and Swarat Chaudhuri. Houdini:
Lifelong Learning as Program Synthesis. Advances in Neural Information Processing Systems,
2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. Advances in Neural Information
Processing Systems, 2017.

Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking Winning Tickets Before Training by
Preserving Gradient Flow. International Conference on Learning Representations, 2020.

Ruochen Wang, Yuanhao Xiong, Minhao Cheng, and Cho-Jui Hsieh. Efficient Non-Parametric
Optimizer Search for Diverse Tasks. Advances in Neural Information Processing Systems, 2022.

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature,
1998.

Colin White, Willie Neiswanger, and Yash Savani. BANANAS: Bayesian Optimization with Neural
Architectures for Neural Architecture Search. In Proceedings of the National Conference on
Artificial Intelligence, 2021.

Han Xiao, Ziwei Wang, Zheng Zhu, Jie Zhou, and Jiwen Lu. Shapley-NAS: Discovering Operation
Contribution for Neural Architecture Search. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022.

Saining Xie, Alexander Kirillov, Ross Girshick, and Kaiming He. Exploring Randomly Wired Neu-
ral Networks for Image Recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019.

Antoine Yang, Pedro M Esperança, and Fabio M Carlucci. Nas evaluation is frustratingly hard.
International Conference on Learning Representations, 2020a.

Antoine Yang, Pedro M. Esperança, and Fabio M. Carlucci. NAS evaluation is frustratingly hard.
In International Conference on Learning Representations, 2020b.

Chris Ying, Aaron Klein, Esteban Real, Eric Christiansen, Kevin Murphy, and Frank Hutter. NAS-
Bench-101: Towards Reproducible Neural Architecture Search. In International Conference on
Machine Learning, 2019.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph HyperNetworks for Neural Architecture
Search. In International Conference on Learning Representations, 2019.

Haokui Zhang, Ying Li, Hao Chen, and Chunhua Shen. Memory-Efficient Hierarchical Neural Ar-
chitecture Search for Image Denoising. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020.

15

Under review as a conference paper at ICLR 2023

Barret Zoph and Quoc V. Le. Neural Architecture Search with Reinforcement Learning. In Interna-
tional Conference on Learning Representations, 2017.

Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning Transferable Architec-
tures for Scalable Image Recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018.

16

Under review as a conference paper at ICLR 2023

A FROM TERMINALS TO PRIMITIVE COMPUTATIONS AND TOPOLOGICAL
OPERATORS

Table 3 and Figure 5 describe the primitive computations and topological operators used throughout
our experiments in Section 5 and Appendix I, respectively. Note that by adding more primitive
computations and/or topological operators we could construct even more expressive search spaces.

Table 3: Primitive computations. ”Name” corresponds to the string terminals in our CFGs and
”Function” is the associated implementation of the primitive computation in pseudocode. The sub-
scripts g, k, s, and p are abbreviations for groups, kernel size, strides, and padding, respectively.
During assembly of neural architectures Φ(ω), we replace string terminals with the associated prim-
itive computation.

Name Function

avg pool AvgPoolk=3,s=1,p=1(x)
batch BN(x)
conv1x1 Convk=1,s=1,p=0(x)
conv3x3 Convk=3,s=1,p=1(x)
dconv3x3 Convg=C,k=3,s=1,p=1(x)
down conv3x3s=1(conv3x3s=2(x)) + Convk=1,s=1(AvgPoolk=2,s=2(x))
hardswish Hardswish(x)
id Identitiy(x)
instance IN(x)
layer LN(x)
mish Mish(x)
relu ReLU(x)
zero Zeros(x)

a b

(a) Linear2(a, b).

a b c

(b) Linear3(a, b, c).

a b c d

(c) Linear4(a, b, c, d).

a
b

c

(d) Residual2(a, b, c).

a
c
b d

(e) Residual3(a, b, c, d).

a
b

c
d

e

f

(f) Cell(a, b, c, d, e, f).

Figure 5: Topological operators. Each subfigure makes the connection between the topogolocial
operator and associated computational graph explicit, i.e., the arguments of the graph operators (a,
b, ...) are mapped to the respective edges in the computational graph.

B EXTENDED BACKUS-NAUR FORM

The (extended) Backus-Naur form (Backus, 1959) is a meta-language to describe the syntax of
CFGs. We use meta-rules of the form S ::= α where S ∈ N is a nonterminal and α ∈
(N ∪ Σ)∗ is a string of nonterminals and/or terminals. We denote nonterminals in UPPER CASE,
terminals corresponding to topological operators in Initial upper case/teletype, and
terminals corresponding to primitive computations in lower case/teletype, e.g., S ::=
Residual(S, S, id). To compactly express production rules with the same left-hand side nonter-
minal, we use the vertical bar | to indicate a choice of production rules with the same left-hand side,
e.g., S ::= Linear(S, S, S) | Residual(S, S, id) | conv.

17

Under review as a conference paper at ICLR 2023

C SEARCH SPACE SIZE

In this section, we show how to efficiently compute the size of our search spaces constructed by
CFGs. There are two cases to consider: (i) a CFG contains cycles (i.e., part of the derivation can
be repeated infinitely many times) , yielding an open-ended, infinite search space; and (ii) a CFG
contains no cycles, yielding in a finite search space whose size we can compute.

Consider a production A → Residual(B, B, B) where Residual is a terminal, and A
and B are nonterminals with B → conv | id. Consequently, there are 23 = 8 possible in-
stances of the residual block. If we add another production choice for the nonterminal A, e.g.,
A → Linear(B, B, B), we would have 23 + 23 = 16 possible instances. Further, adding a
production C → Linear(A, A, A) would yield a search space size of (23 + 23)3 = 4096.

More generally, we introduce the function PA that returns the set of productions for nonterminal
A ∈ N , and the function µ : P → N that returns all the nonterminals for a production p ∈ P . We
can then recursively compute the size of the search space as follows:

f(A) =
∑
p∈PA

{
1 , µ(p) = ∅,∏
A′∈µ(p)

f(A′) , otherwise . (11)

When a CFG contains some constraint, we ensure to only account for valid architectures (i.e., com-
pliant with the constraints) by ignoring productions which would lead to invalid architectures.

D MORE DETAILS ON SEARCH SPACE CONSTRAINTS

During the design of the search space, we may want to comply with some constraints, e.g., only con-
sider valid neural architectures or impose structural constraints on architectures. We can guarantee
compliance with constraints by modifying sampling (and evolution): we only allow the application
of production rules, which guarantee compliance with the constraint(s). In the following, we show
exemplary how this can be implemented for the former constraint mentioned above. Note that other
constraints can be implemented in a similar manner

To implement the constraint ”only consider valid neural architectures”, we note that our search space
design only creates neural architectures where neither the spatial resolution nor the channels can be
mismatched; please refer to Section 2.3 for details. Thus, the only way a neural architecture can
become invalid is through zero operations, which could remove edges from the computational
graph and possibly disassociate the input from the output. Since we recursively assemble neural
architectures, it is sufficient to ensure that the derived algebraic architecture term (i.e., the associated
computational graph) is compliant with the constraint, i.e.,there is at least one path from input to
output. Thus, during sampling (and similarly during evolution), we modify the current production
rule choices when an application of the zero operation would disassociate the input from the output.

E COMMON SEARCH SPACES FROM THE LITERATURE

In Section 5.1, we demonstrated how to construct the popular NAS-Bench-201 search space within
our algebraic search space design, and below we show how to reconstruct the following popular
search spaces: DARTS search space (Liu et al., 2019b), Auto-DeepLab search space (Liu et al.,
2019a), hierarchical cell search space (Liu et al., 2018), Mobile-net search space (Tan et al., 2019),
and hierarchical random graph generator search space (Ru et al., 2020). For implementation details
we refer to the respective works.

DARTS SEARCH SPACE

The DARTS search space (Liu et al., 2019b) consists of a fixed macro architecture and a cell, i.e., a
seven node directed acyclic graph (Darts; see Figure 6 for the topological operator). We omit the
fixed macro architecture from our search space design for simplicity. Each cell receives the feature
maps from the two preceding cells as input and outputs a single feature map. All intermediate nodes

18

Under review as a conference paper at ICLR 2023

c {k-1} c {k-2}

Node3 Node4 Node5 Node6

c {k}

Figure 6: Visualization of the Darts topological operator.

(i.e., Node3, Node4, Node5, and Node6) is computed based on all of its predecessors. Thus, we
can define the DARTS search space as follows:

DARTS ::= Darts(NODE3, NODE4, NODE5, NODE6)

NODE3 ::= Node3(OP, OP)

NODE4 ::= Node4(OP, OP, OP)

NODE5 ::= Node5(OP, OP, OP, OP)

NODE6 ::= Node6(OP, OP, OP, OP, OP)

OP ::= sep conv 3x3 | sep conv 5x5 | dil conv 3x3 | dil conv 5x5

| max pool | avg pool | id | zero ,

(12)

where the topological operator Node3 receives two inputs, applies the operations separately on
them, and sums them up. Similarly, Node4, Node5, and Node6 apply their operations separately to
the given inputs and sum them up. The topological operator Darts feeds the corresponding feature
maps into each of those topological operators and finally concatenates all intermediate feature maps.

AUTO-DEEPLAB SEARCH SPACE

Auto-DeepLab (Liu et al., 2019a) combines a cell-level with a network-level search space to search
for segmentation networks, where the cell is shared across the searched macro architecture, i.e., a
twelve step (linear) path across different spatial resolutions. The cell-level design is adopted from
Liu et al. (2019b) and, thus, we can re-use the CFG from Equation 12. For the network-level,
we introduce a constraint that ensures that the path is of length twelve, i.e., we ensure exactly
twelve derivations in our CFG. Further, we overload the nonterminals so that they correspond to
the respective spatial resolution level, e.g., D4 indicates that the original input is downsampled by
a factor of four; please refer to Section 2.3 for details on overloading nonterminals. For the sake of
simplicity, we omit the first two layers and atrous spatial pyramid poolings as they are fixed, and
hence define the network-level search space as follows:

D4 ::= Same(CELL, D4) | Down(CELL, D8)

D8 ::= Up(CELL, D4) | Same(CELL, D8) | Down(CELL, D16)

D16 ::= Up(CELL, D8) | Same(CELL, D16) | Down(CELL, D32)

D32 ::= Up(CELL, D16) | Same(CELL, D32) ,

(13)

where the topological operators Up, Same, and Down upsample/halve, do not change/do not change,
or downsample/double the spatial resolution/channels, respectively. The placeholder variable CELL
maps to the shared DARTS cell from the language generated by the CFG from Equation 12.

HIERARCHICAL CELL SEARCH SPACE

The hierarchical cell search space (Liu et al., 2018) consists of a fixed (linear) macro architecture and
a hierarchically assembled cell with three levels which is shared across the macro architecture. Thus,
we can omit the fixed macro architecture from our search space design for simplicity. Their first,
second, and third hierarchical levels correspond to the primitive computations (i.e., id, max pool,
avg pool, sep conv, depth conv, conv, zero), six densely connected four node directed
acyclic graphs (DAG4), and a densely connected five node directed acyclic graph (DAG5), respec-
tively. The zero operation could lead to directed acyclic graphs which have fewer nodes. Therefore,

19

Under review as a conference paper at ICLR 2023

we introduce a constraint enforcing that there are always four (level 2) or five (level 3) nodes for
every directed acyclic graph. Further, since a densely connected five node directed acyclic graph
graph has ten edges, we need to introduce placeholder variables (i.e., M1, ..., M6) to enforce that
only six (possibly) different four node directed acyclic graphs are used, and consequently define a
CFG for the third level

LEVEL3 ::= DAG5(LEVEL2, ..., LEVEL2︸ ︷︷ ︸
×10

)

LEVEL2 ::= M1 | M2 | M3 | M4 | M5 | M6 | zero ,

(14)

mapping the placeholder variables M1, ..., M6 to the six lower-level motifs constructed by the first
and second hierarchical level
LEVEL2 ::= DAG4(LEVEL1, ..., LEVEL1)︸ ︷︷ ︸

×6

LEVEL1 ::= id | max pool | avg pool | sep conv | depth conv | conv | zero .

(15)

MOBILE-NET SEARCH SPACE

Factorized hierarchical search spaces, e.g., the Mobile-net search space (Tan et al., 2019), allow
for layer diversity. They factorize a (fixed) macro architecture – often based on an already well-
performing reference architecture – into separate blocks (e.g., cells). For the sake of simplicity, we
assume here a three sequential blocks (Block) architecture (Linear). In each of those blocks,
we search for the convolution operations (CONV), kernel sizes (KSIZE), squeeze-and-excitation
ratio (SERATIO) (Hu et al., 2018), skip connections (SKIP), number of output channels (FSIZE),
and number of layers per block (#LAYERS), where the latter two are discretized using a reference
architecture, e.g., MobileNetV2 (Sandler et al., 2018). Consequently, we can express this search
space as follows:

MACRO ::= Linear(BLOCK, BLOCK, BLOCK)

BLOCK ::= Block(CONV, KSIZE, SERATIO, SKIP, FSIZE, #LAYERS)

CONV ::= conv | dconv | mbconv
KSIZE ::= 3 | 5

SERATIO ::= 0 | 0.25
SKIP ::= pooling | id residual | no skip

FSIZE ::= 0.75 | 1.0 | 1.25
#LAYERS ::= -1 | 0 | 1 ,

(16)

where conv, donv and mbconv correspond to convolution, depthwise convolution, and mobile
inverted bottleneck convolution (Sandler et al., 2018), respectively.

HIERARCHICAL RANDOM GRAPH GENERATOR SEARCH SPACE

The hierarchical random graph generator search space (Ru et al., 2020) consists of three hierar-
chical levels of random graph generators (i.e., Watts-Strogatz (Watts & Strogatz, 1998) and
Erdõs-Rényi (Erdős et al., 1960)). We denote with Watts-Strogatz i the random graph
generated by the Watts-Strogatz model with i nodes. Thus, we can represent the search space as
follows:

TOP ::= Watts-Strogatz 3(K, Pt)(MID, MID, MID) | ...
| Watts-Strogatz 10(K, Pt)(MID, ..., MID︸ ︷︷ ︸

×10

)

MID ::= Erdõs-Rényi 1(Pm)(BOT) | ...
| Erdõs-Rényi 10(Pm)(BOT, ..., BOT︸ ︷︷ ︸

×10

)

BOT ::= Watts-Strogatz 3(K, Pb)(NODE, NODE, NODE) | ...
| Watts-Strogatz 10(K, Pb)(NODE ..., NODE︸ ︷︷ ︸

×10

)

K ::= 2 | 3 | 4 | 5 ,

(17)

20

Under review as a conference paper at ICLR 2023

Algorithm 1 Bayesian Optimization algorithm (Brochu et al., 2010).
Input: Initial observed data Dt, a black-box objective function f , total number of BO iterations
T
Output: The best recommendation about the global optimizer x∗

for t = 1, . . . , T do
Select the next xt+1 by maximizing acquisition function α(x|Dt)
Evaluate the objective function at ft+1 = f(xt+1)
Dt+1 ← Dt ∪ (xt+1, ft+1)
Update the surrogate model with Dt+1

end for

where each terminal Pt, Pm, and Pb maps to a continuous number in [0.1, 0.9]1 and the placeholder
variable NODEmaps to a primitive computation, e.g., separable convolution. Note that we omit other
hyperparameters, such as stage ratio, channel ratio etc., for simplicity.

F MORE DETAILS ON THE SEARCH STRATEGY

In this section, we provide more details and examples for our search strategy Bayesian Optimization
for Algebraic Neural Architecture Terms (BANAT) presented in Section 3.

F.1 BAYESIAN OPTIMIZATION

Bayesian Optimization (BO) is a powerful family of search techniques for finding the global opti-
mum of a black-box objective problem. It is particularly useful when the objective is expensive to
evaluate and thus sample efficiency is highly important (Brochu et al., 2010).

To minimize a black-box objective problem with BO, we first need to build a probabilistic surrogate
to model the objective based on the observed data so far. Based on the surrogate model, we design
an acquisition function to evaluate the utility of potential candidate points by trading off exploita-
tion (where the posterior mean of the surrogate model is low) and exploration (where the posterior
variance of the surrogate model is high). The next candidate points to evaluate is then selected
by maximizing the acquisition function (Shahriari et al., 2015). The general procedures of BO is
summarized in Algorithm 1.

We adopted the widely used acquisition function, expected improvement (EI) (Mockus et al., 1978),
in our BO strategy. EI evaluates the expected amount of improvement of a candidate point x over
the minimal value f ′ observed so far. Specifically, denote the improvement function as I(x) =
max(0, f ′ − f(x)), the EI acquisition function has the form

αEI(x|Dt) = E[I(x)|Dt] =

∫ f ′

−∞
(f ′ − f)N

(
f ;µ(x|Dt), σ

2(x|Dt)
)
df

= (f ′ − f)Φ
(
f ′;µ(x|Dt), σ

2(x|Dt)
)
+ σ2(x|Dt)ϕ(f

′;µ(x|Dt), σ
2(x|Dt)) ,

where µ(x|Dt) and σ2(x|Dt) are the mean and variance of the predictive posterior distribution at a
candidate point x, and ϕ(·) and Φ(·) denote the PDF and CDF of the standard normal distribution,
respectively.

To make use of ample distributed computing resource, we adopted Kriging Believer (Ginsbourger
et al., 2010) which uses the predictive posterior of the surrogate model to assign hallucinated func-
tion values {f̃p}p∈{1, ..., P} to the P candidate points with pending evaluations {x̃p}p∈{1, ..., P} and
perform next BO recommendation in the batch by pseudo-augmenting the observation data with
D̃p = {(x̃p, f̃p)}p∈{1, ..., P}, namely D̃t = Dt ∪ D̃p. The algorithm of Kriging Believer at one BO
iteration to select a batch of recommended candidate points is summarized in Algorithm 2.

1Theoretically, this is not possible with CFGs. However, we can extend the notion of substitution by substi-
tuting a string representation of a Python (float) variable for the placeholder variables Pt, Pm, and Pb.

21

Under review as a conference paper at ICLR 2023

Algorithm 2 Kriging Believer algorithm to select one batch of points.
Input: Observation data Dt, batch size b

Output: The batch points Bt+1 = {x(1)
t+1, . . . ,x

(b)
t+1}

D̃t = Dt ∪ D̃p

for j = 1, . . . , b do
Select the next x(j)

t+1 by maximizing acquisition function α(x|D̃t)

Compute the predictive posterior mean µ(x
(j)
t+1|D̃t)

D̃t ← D̃t ∪ (xt+1, µ(x
(j)
t+1|D̃t))

end for

Algorithm 3 Weisfeiler-Lehman subtree kernel computation (Shervashidze et al., 2011).
Input: Graphs G1, G2, maximum iterations H
Output: Kernel function value between the graphs
Initialize the feature vectors ϕ(G1) = ϕ0(G1), ϕ(G2) = ϕ0(G2) with the respective counts of
original node labels (i.e., the h = 0 WL features)
for h = 1, . . . H do

Assign a multiset Mh(v) = {lh−1(u)|u ∈ N (v)} to each node v ∈ G, where lh−1 is the node
label function of the h− 1-th WL iteration and N is the node neighbor function

Sort elements in multiset Mh(v) and concatenate them to string sh(v)
Compress each string sh(v) using the hash function f s.t. f(sh(v)) = f(sh(w)) ⇐⇒

sh(v) = sh(u)
Add lh−1 as prefix for sh(v)
Concatenate the WL features ϕh(G1), ϕh(G2) with the respective counts of the new labels:

ϕ(G1) = [ϕ(G1), ϕh(G1)], ϕ(G2) = [ϕ(G2), ϕh(G2)]
Set lh(v) := f(sh(v)) ∀v ∈ G

end for
Compute inner product k = ⟨ϕh(G1), ϕh(G2)⟩ between WL features ϕh(G1), ϕh(G2) in RKHS
H

F.2 HIERARCHICAL WEISFEILER-LEHMAN KERNEL

Inspired by Ru et al. (2021), we adopted the Weisfeiler-Lehman (WL) graph kernel (Shervashidze
et al., 2011) in the GP surrogate model to handle the graph nature of neural architectures. The
basic idea of the WL kernel is to first compare node labels, and then iteratively aggregate labels of
neighboring nodes, compress them into a new label and compare them. Algorithm 3 summarizes
the WL kernel procedure.

Ru et al. (2021) identified three reasons for using the WL kernel: (1) it is able to compare la-
beled and directed graphs of different sizes, (2) it is expressive, and (3) it is relatively efficient
and scalable. Our search space design can afford a diverse spectrum of neural architectures with
very heterogeneous topological structure. Therefore, reason (1) is a very important property of the
WL kernel to account for the diversity of neural architectures. Moreover, if we allow many hier-
archical levels, we can construct very large neural architectures. Therefore, reasons (2) and (3) are
essential for accurate and fast modeling. However, neural architectures in our search spaces may
be significantly larger, which makes it difficult for a single WL kernel to capture the more global
topological patterns. Moreover, modeling solely based on the final neural architecture ignores the
useful macro-level information from earlier hierarchical levels. In our experiments (Section 5 and
I), we have found stronger neural architectures by incorporating the hierarchical information in the
kernel design, which provides experimental support for above arguments.

However, modeling solely based on the (standard) WL graph kernel neglects the useful hierarchical
information from our assembly process. Moreover, the large size of neural architectures make it still
challenging to capture the more global topological patterns. We therefore propose to use hierarchical
information through a hierarchy of WL graph kernels that take into account the different granularities
of the architectures and combine them in a weighted sum. To obtain the different granularities, we
use the fold operators Fl that removes algebraic terms beyond the l-th hierarchical level. Thereby,

22

Under review as a conference paper at ICLR 2023

conv conv

id

conv conv

id

fc

(a) F3(ω) = ω = Linear(Residual(conv, id, conv), Residual(conv, id, conv), fc).
Residual Residual fc

(b) F2(ω) = Linear(Residual, Residual, fc).

Figure 7: Labeled graphs Φ(F2) and Φ(F3) of the folds F2 and F3.

we obtain the folds

F3(ω) = ω = Linear(Residual(conv, id, conv), Residual(conv, id, conv), fc),
(18)

F2(ω) = Linear(Residual, Residual, fc) , F1(ω) = Linear ,

for the algebraic architecture term ω. Note that we ignore the first fold since it does not represent
a labeled DAG. Figure 7 visualizes the labeled graphs Φ(F2) and Φ(F3) of the folds F2 or F3,
respectively. These graphs can be fed into (standard) WL graph kernels. Therefore, we can construct
a hierarchy of WL graph kernels kWL as follows:

khWL(ωi, ωj) =

L∑
l=2

λl · kWL(Φ(Fl(ωi)),Φ(Fl(ωj))) , (19)

where ωi and ωj are two algebraic architecture terms. Note that λl govern the importance of the
learned graph information across the hierarchical levels and can be optimized through the marginal
likelihood.

F.3 EXAMPLES FOR THE EVOLUTIONARY OPERATIONS

For the evolutionary operations, we adopted ideas from grammar-based genetic programming
(McKay et al., 2010; Moss et al., 2020). In the following, we will show how these evolutionary
operations manipulate algebraic terms, e.g.,

Linear(Residual(conv, id, conv), Residual(conv, id, conv), fc) , (20)

from the search space

S ::= Linear(S, S, S) | Residual(S, S, S) | conv | id | fc , (21)

to generate evolved algebraic terms. Figure 1 shows how we can derive the algebraic term in Equa-
tion 20 from the search space in Equation 21. For mutation operations, we first randomly pick a
subterm of the algebraic term, e.g., Residual(conv, id, conv). Then, we randomly sample a
new subterm with the same nonterminal symbol S as start symbol, e.g., Linear(conv, id, fc),
and replace the previous subterm, yielding

Linear(Linear(conv, id, fc), Residual(conv, id, conv), fc) . (22)

For (self-)crossover operations, we swap two subterms, e.g., Residual(conv, id, conv) and
Residual(conv, id, conv) with the same nonterminal S as start symbol, yielding

Linear(Residual(conv, id, conv), Residual(conv, id, conv), fc) . (23)

Note that unlike the commonly used crossover operation, which uses two parents, self-crossover has
only one parent. In future work, we could also add a self-copy operation that copies a subterm to
another part of the algebraic term, explicitly regularizing diversity and thus potentially speeding up
the search.

G RELATED WORK BEYOND NEURAL ARCHITECTURE SEARCH

While our work focuses exclusively on NAS, we will discuss below how it relates to the areas of
optimizer search (as well as from scratch automated machine learning) and neural-symbolic pro-
gramming.

23

Under review as a conference paper at ICLR 2023

Optimizer search is a closely related field to NAS, where we automatically search for an optimizer
(i.e., an update function for the weights) instead of an architecture. Initial works used learnable
parametric or non-parametric optimizers. While the former approaches (Andrychowicz et al., 2016;
Li & Malik, 2017; Chen et al., 2017; 2022a) have poor scalability and generality, the latter works
overcome those limitations. Bello et al. (2017) searched for an instantiation of hand-crafted patterns
via reinforcement learning, while Wang et al. (2022) proposed a tree-structured search space2 and
searched for optimizers via a modified Monte Carlo sampling approach. AutoML-Zero (Real et al.,
2020) took an even more general approach by searching over entire machine learning algorithms,
including optimizers, from a generic search space built from basic mathematical operations with an
evolutionary algorithm. Chen et al. (2022b) used RE to discover optimizers from a generic search
space (inspired by AutoML-Zero) for training vision transformers (Dosovitskiy et al., 2021).

Complementary to the above, there is recent interest in automatically synthesizing programs from
domain-specific languages. Gaunt et al. (2017) proposed a hand-crafted program template and si-
multaneously optimized the parameters of the differentiable program with gradient descent. The
HOUDINI framework (Valkov et al., 2018) proposed type-directed (top-down) enumeration and
evolution approaches over differentiable functional programs. Shah et al. (2020) hierarchically as-
sembled differentiable programs and used neural networks for the approximation of missing expres-
sion in partial programs. Cui & Zhu (2021) treated CFGs stochastically with trainable production
rule sampling weights, which were optimized with a gradient-based approach (Liu et al., 2019b).
However, naı̈vely applying gradient-based approaches does not work in our search spaces due to the
exponential explosion of supernet weights, but still renders an interesting direction for future work.

Compared to these lines of work, we extended CFGs to handle changes in spatial resolution, promote
regularity, and (compared to most of them) incorporate constraints, the latter two of which could
also be applied in those domains. We also proposed a BO search strategy to search efficiently with
a tailored kernel design to handle the hierarchical nature of the search space (i.e., the architectures).

H IMPLEMENTATION DETAILS OF THE SEARCH STRATEGIES

BANAT & BANAT (WL) The only difference between BANAT and BANAT (WL) is that the
former uses our proposed hierarchy of WL kernels (hWL), whereas the latter only uses a single WL
kernel (WL) for the entire architecture (c.f., (Ru et al., 2021)). We ran BANAT asynchronously
in parallel throughout our experiments with a batch size of B = 1, i.e., at each BO iteration a
single architecture is proposed for evaluation. For the acquisition function optimization, we used
a pool size of P = 200, where the initial population consisted of the current ten best-performing
architectures and the remainder were randomly sampled architectures to encourage exploration in
the huge search spaces. During evolution, the mutation probability was set to pmut = 0.5 and
crossover probability was set to pcross = 0.5. From the crossovers, half of them were self-crossovers
of one parent and the other half were common crossovers between two parents. The tournament
selection probability was set to ptour = 0.2. We evolved the population at least for ten iterations and
a maximum of 50 iterations using a early stopping criterion based on the fitness value improvements
over the last five iterations.

Regularized Evolution (RE) RE (Real et al., 2019; Liu et al., 2018) iteratively mutates the best
architectures out of a sample of the population. We reduced the population size from 50 to 30 to
account for fewer evaluations, and used a sample size of 10. We also ran RE asynchronously for
better comparability.

I SEARCHING THE HIERARCHICAL NAS-BENCH-201 SEARCH SPACE

In this section, we provide training details (Section I.1) and provide complementary results as well
as conduct extensive analyses (Section I.2).

2Note that the tree-structured search space can equivalently be described with a CFG (with a constraint on
the number of maximum depth of the syntax trees).

24

Under review as a conference paper at ICLR 2023

Table 4: Licenses for the datasets we used in our experiments.

Dataset License URL

CIFAR-10 (Krizhevsky et al., 2009) MIT https://www.cs.toronto.edu/˜kriz/cifar.html
CIFAR-100 (Krizhevsky et al., 2009) MIT https://www.cs.toronto.edu/˜kriz/cifar.html
ImageNet-16-120 (Chrabaszcz et al., 2017) MIT https://patrykchrabaszcz.github.io/Imagenet32/
CIFARTile (Geada et al., 2021) GNU https://github.com/RobGeada/cvpr-nas-datasets
AddNIST (Geada et al., 2021) GNU https://github.com/RobGeada/cvpr-nas-datasets

I.1 TRAINING DETAILS

Training protocol We evaluated all search strategies on CIFAR-10/100 (Krizhevsky et al., 2009),
ImageNet-16-120 (Chrabaszcz et al., 2017), CIFARTile, and AddNIST (Geada et al., 2021). Note
that CIFARTile and AddNIST are novel datasets and therefore have not yet been optimized by the
research community. We provide further dataset details below. For training of architectures on
CIFAR-10/100 and ImageNet-16-120, we followed Dong & Yang (2020). We trained architectures
with SGD with learning rate of 0.1, Nesterov momentum of 0.9, weight decay of 0.0005 with cosine
annealing (Loshchilov & Hutter, 2019), and batch size of 256 for 200 epochs. The initial channels
were set to 16. For both CIFAR-10 and CIFAR-100, we used random flip with probability 0.5
followed by a random crop (32x32 with 4 pixel padding) and normalization. For ImageNet-16-
120, we used a 16x16 random crop with 2 pixel padding instead. For training of architectures on
AddNIST and CIFARTile, we followed the training protocol from the CVPR-NAS 2021 competition
(Geada et al., 2021): We trained architectures with SGD with learning rate of 0.01, momentum of
0.9, and weight decay of 0.0003 with cosine annealing, and batch size of 64 for 64 epochs. We set
the initial channels to 16 and did not apply any further data augmentation.

Dataset details In Table 4, we provide the licenses for the datasets used in our experiments. For
training of architectures on CIFAR-10, CIFAR-100 (Krizhevsky et al., 2009), and ImageNet-16-120
(Chrabaszcz et al., 2017), we followed the dataset splits and training protocol of NAS-Bench-201
(Dong & Yang, 2020). For CIFAR-10, we split the original training set into a new training set
with 25k images and validation set with 25k images following Dong & Yang (2020). The test set
remained unchanged. For evaluation, we trained architectures on both the training and validation set.
For CIFAR-100, the training set remained unchanged, but the test set was partitioned in a validation
set and new test set with each 5K images. For ImageNet-16-120, all splits remained unchanged.
For AddNIST and CIFARTile, we used the training, validation, and test splits as defined in the
CVPR-NAS 2021 competition (Geada et al., 2021).

I.2 EXTENDED SEARCH RESULTS AND ANALYSES

Supplementary to Figure 2, Figure 8 compares the cell-based vs. hierarchical NAS-Bench-201
search space from Section 6.1 using RS, RE, and BANAT (WL). The cell-based search space de-
sign shows on par or stronger performance on all datasets except for CIFARTile for the three search
strategies. In contrast, for our proposed search strategy BANAT we find on par (CIFAR-10/100) or
superior (ImageNet-16-120, CIFARTile, and AddNIST) performance using the hierarchical search
space design. This clearly shows that the increase of the search space does not necessarily yields the
discovery of stronger neural architectures. Further, it exemplifies the importance of a strong search
strategy to search effectively and efficiently in huge hierarchical search spaces (Q2), and provides
further evidence that the incorporation of hierarchical information is a key contributor for search
efficiency (Q3). Based on this, we believe that future work using, e.g., graph neural networks as a
surrogate, may benefit from the incorporation of hierarchical information.

We report the test errors of our best found architectures in Table 5. We observe that our search
strategy BANAT finds the strongest performing architectures across all dataset (Q2, Q3). Also note
that we achieve better (validation and) test performance on ImageNet-16-120 on the hierarchical than
the state-of-the-art search strategy on the cell-based NAS-Bench-201 search space (i.e., +0.37%p
compared to Shapley-NAS (Xiao et al., 2022)) (Q1).

25

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://patrykchrabaszcz.github.io/Imagenet32/
https://github.com/RobGeada/cvpr-nas-datasets
https://github.com/RobGeada/cvpr-nas-datasets

Under review as a conference paper at ICLR 2023

0 25 50 75 100

Evaluations

8

9

10

11

V
al

er
ro

r
[%

] CIFAR-10

0 25 50 75 100

Evaluations

26

28

30

32

CIFAR-100

0 25 50 75 100

Evaluations

52

54

56

58

ImageNet-16-120

0 25 50 75 100

Evaluations

30

40

50

60

CIFARTile

0 25 50 75 100

Evaluations

7

8

9

10

AddNIST

hierarchical cell-based
(a) Random Search (RS).

0 25 50 75 100

Evaluations

8

9

10

11

V
al

er
ro

r
[%

] CIFAR-10

0 25 50 75 100

Evaluations

26

28

30

32

CIFAR-100

0 25 50 75 100

Evaluations

52

54

56

58

ImageNet-16-120

0 25 50 75 100

Evaluations

30

40

50

60

CIFARTile

0 25 50 75 100

Evaluations

7

8

9

10

AddNIST

hierarchical cell-based
(b) Regularized Evolution (RE).

0 25 50 75 100

Evaluations

8

9

10

11

V
al

er
ro

r
[%

] CIFAR-10

0 25 50 75 100

Evaluations

26

28

30

32

CIFAR-100

0 25 50 75 100

Evaluations

52

54

56

58

ImageNet-16-120

0 25 50 75 100

Evaluations

30

40

50

60

CIFARTile

0 25 50 75 100

Evaluations

7

8

9

10

AddNIST

hierarchical cell-based
(c) BANAT (WL).

Figure 8: Cell-based vs. hierarchical search spaces. We plot mean and ±1 standard error of the
validation error on the cell-based (dashed orange) and hierarchical (solid blue) NAS-Bench-201
search space using Random Search (RS) (top), Regularized Evolution (RE) (middle), and BANAT
(WL) (bottom).

26

Under review as a conference paper at ICLR 2023

Ta
bl

e
5:

Te
st

er
ro

rs
(a

nd
±
1

st
an

da
rd

er
ro

r)
of

po
pu

la
r

ba
se

lin
e

ar
ch

ite
ct

ur
es

(e
.g

.,
R

es
N

et
(H

e
et

al
.,

20
16

)
an

d
E

ffi
ci

en
tN

et
(T

an
&

L
e,

20
19

)
va

ri
an

ts
),

an
d

ou
r

be
st

fo
un

d
ar

ch
ite

ct
ur

es
on

th
e

ce
ll-

ba
se

d
an

d
hi

er
ar

ch
ic

al
N

A
S-

B
en

ch
-2

01
se

ar
ch

sp
ac

e.
N

ot
e

th
at

w
e

pi
ck

ed
th

e
R

es
N

et
an

d
E

ffi
ci

en
tN

et
va

ri
an

tb
as

ed
on

th
e

te
st

er
ro

r,
co

ns
eq

ue
nt

ly
gi

vi
ng

an
ov

er
es

tim
at

e
of

th
ei

rt
es

tp
er

fo
rm

an
ce

.
†

op
tim

al
nu

m
be

rs
as

re
po

rt
ed

in
D

on
g

&
Y

an
g

(2
02

0)
.

(b
es

t)
te

st
er

ro
r(

an
d
±
1

st
an

da
rd

er
ro

r)
ac

ro
ss

th
re

e
se

ed
s
{7
7
7
,
8
8
8
,
9
9
9
}

of
th

e
be

st
ar

ch
ite

ct
ur

e
of

th
e

th
re

e
se

ar
ch

ru
ns

w
ith

lo
w

es
tv

al
id

at
io

n
er

ro
r.

M
et

ho
d

C
IF

A
R

-1
0

C
IF

A
R

-1
00

Im
ag

eN
et

-1
6-

12
0

C
IF

A
R

Ti
le

A
dd

N
IS

T
ce

ll-
ba

se
d

hi
er

ar
ch

ic
al

ce
ll-

ba
se

d
hi

er
ar

ch
ic

al
ce

ll-
ba

se
d

hi
er

ar
ch

ic
al

ce
ll-

ba
se

d
hi

er
ar

ch
ic

al
ce

ll-
ba

se
d

hi
er

ar
ch

ic
al

B
es

tR
es

N
et

(H
e

et
al

.,
20

16
)

06
.4

9
±

0.
24

(3
2)

27
.1

0±
0.

67
(1

10
)

53
.6

7
±

0.
18

(5
6)

57
.8

0±
0.

57
(1

8)
7.

78
±

0.
05

(3
4)

B
es

tE
ffi

ci
en

tN
et

(T
an

&
L

e,
20

19
)

11
.7

3
±

0.
10

(B
0)

35
.1

7
±

0.
42

(B
6)

77
.7

3
±

0.
29

(B
0)

61
.0

1
±

0.
62

(B
0)

13
.2

4
±

0.
58

(B
1)

N
A

S-
B

en
ch

-2
01

or
ac

le
†

5.
63

26
.4

9
52

.6
9

-
-

R
S

6.
39

±
0.

18
6.

77
±

0.
10

28
.7

5
±

0.
57

29
.4

9
±

0.
57

54
.8

3
±

0.
78

54
.7

0±
0.

82
52

.7
2
±

0.
45

40
.9

3
±

0.
81

7.
82

±
0.

36
8.

05
±

0.
29

N
A

SW
O

T
(N

=1
0)

(M
el

lo
re

ta
l.,

20
21

)
6.

55
±

0.
10

8.
18

±
0.

46
29

.3
5
±

0.
53

31
.7

3
±

0.
96

56
.8

0±
1.

35
58

.6
6
±

0.
29

41
.8

3
±

2.
29

49
.4

6
±

2.
95

10
.1

1
±

0.
69

11
.8

1
±

1.
55

N
A

SW
O

T
(N

=1
00

)(
M

el
lo

re
ta

l.,
20

21
)

6.
59

±
0.

17
8.

56
±

0.
87

28
.9

1
±

0.
25

31
.6

5
±

1.
95

55
.9

9
±

1.
30

58
.4

7
±

2.
74

41
.6

3
±

1.
02

43
.3

1
±

2.
00

10
.7

5
±

0.
23

14
.4

7
±

1.
44

N
A

SW
O

T
(N

=1
00

0)
(M

el
lo

re
ta

l.,
20

21
)

6.
68

±
0.

12
8.

26
±

0.
38

29
.3

7
±

0.
17

31
.6

6
±

0.
72

58
.9

3
±

2.
92

58
.3

3
±

0.
91

39
.6

1
±

1.
12

45
.6

6
±

1.
29

10
.6

8
±

0.
27

13
.5

7
±

1.
89

N
A

SW
O

T
(N

=1
00

00
)(

M
el

lo
re

ta
l.,

20
21

)
6.

98
±

0.
43

8.
40

±
0.

52
29

.9
5
±

0.
42

32
.0

9
±

1.
61

54
.2

0±
0.

49
57

.5
8
±

1.
53

39
.9

0±
1.

20
42

.4
5
±

0.
67

10
.7

2
±

0.
53

14
.8

2
±

0.
66

R
E

(R
ea

le
ta

l.,
20

19
;L

iu
et

al
.,

20
18

)
5.

76
±

0.
17

6.
88

±
0.

24
27

.6
8
±

0.
55

30
.0

0±
0.

32
53

.9
2
±

0.
60

55
.3

9
±

0.
54

52
.7

9
±

0.
59

40
.9

9
±

2.
89

7.
69

±
0.

35
7.

56
±

0.
69

B
A

N
A

T
(W

L
)(

R
u

et
al

.,
20

21
)

5.
68

±
0.

11
6.

98
±

0.
50

27
.6

6
±

0.
18

28
.7

0±
0.

64
53

.6
7
±

0.
39

53
.4

7
±

0.
86

52
.8

1
±

0.
27

35
.7

5
±

1.
58

7.
86

±
0.

41
8.

20
±

0.
37

B
A

N
A

T
5.

68
±

0.
11

6.
00

±
0.

16
27

.6
6
±

0.
18

27
.5

7
±

0.
46

53
.6

7
±

0.
39

53
.4

3
±

0.
61

52
.8

1
±

0.
27

32
.2

8
±

2.
39

7.
86

±
0.

41
6.

09
±

0.
34

B
A

N
A

T
(b

es
t)

5.
64

±
0.

14
5.

65
±

0.
09

27
.0

3
±

0.
23

27
.6

3
±

0.
20

53
.5

4
±

0.
43

52
.7

8
±

0.
23

53
.1

8
±

0.
91

30
.3

3
±

0.
77

8.
04

±
0.

45
6.

33
±

0.
59

27

Under review as a conference paper at ICLR 2023

B
A

N
A
T

(o
u
rs

) R
S

R
E

B
A

N
A
T

(W
L
)

10

15

20

V
a
l
er

ro
r

[%
]

CIFAR-10

B
A

N
A
T

(o
u
rs

) R
S

R
E

B
A

N
A
T

(W
L
)

30

40

50

CIFAR-100

B
A

N
A
T

(o
u
rs

) R
S

R
E

B
A

N
A
T

(W
L
)

50

75

100

ImageNet-16-120

B
A

N
A
T

(o
u
rs

) R
S

R
E

B
A

N
A
T

(W
L
)

25

40

55

CIFARTile

B
A

N
A
T

(o
u
rs

) R
S

R
E

B
A

N
A
T

(W
L
)

10

20

30

AddNIST

Figure 9: Density estimates for the validation error of all architecture candidates proposed by the
search strategies (i.e., BANAT, RS, RE, and BANAT (WL)) and across datasets (i.e., CIFAR-10/100,
ImageNet-16-120, CIFARTile, AddNIST) from our experiments in Section 5.

Search costs Search time varied across datasets from ca. 0.5 days (CIFAR-10) to ca. 1.8 days
(ImageNet-16-120) using eight asynchronous workers, each with an NVIDIA RTX 2080 Ti GPU,
for ca. 4 to ca. 14.4 GPU days in total.

Is our search strategy BANAT exploring well-performing architectures during search? To
investigate the question, we studied density estimates of the validation error of proposed candidates
for all search strategies across our experiments from Section 5. This provides a better view for
whether search strategies are exploring well-performing architectures or wasting computational re-
sources on low-performing architectures. Figure 9 shows that our proposed search strategy BANAT
explored better architecture candidates across all the datasets, i.e., it has smaller median validation
errors and the distributions are further shifted towards smaller validation errors than for the other
search strategies.

What distinguishes top-performing neural architectures from the other ones? To understand
what distinguishes top-performing neural architecture from other ones, we analyze the impact of
maximum depth on performance and the frequency of production rules in the worst-10%, top-10%,
or other neural architectures, respectively. In another analysis, we marginalize out the validation
error of every production rule; thereby relating the contribution of a production rule with the per-
formance of the architecture. Note, however, that both analyses ignore the topological information,
i.e., a topological operator or primitive computation may have a different effect at different stages of
the architecture.

Figure 10 shows no particular trend (e.g., more depth yields better performance) across the datasets,
indicating that depth may not be the most important factor for performance in our hierarchical search
space. In contrast, Figure 11 and Figure 12 show that particularly macro-level production rules (i.e.,
for the nonterminals D2, D1, D0, and D) have a large effect on the performance of an architecture.
Interestingly, we find that that top-performing architectures (almost exclusively) use the topological
operator Residual3 for derivations from the nonterminal D1 across search spaces. This hints
that a residual connection at the macro-level could be a strong topological structure, but remains
to be evaluated for a variety of architectures. Cell-level production choices have less effect on
performance. However, we hypothesize that this may also be due to the neglect of topological
information. We leave further analysis for future work.

What is the impact of flexible parameterization of convolutional blocks? To investigate the im-
pact of the flexible parameterization of the convolutional blocks (i.e., activation functions, normal-
izations, and type of convolution), we removed the flexible parameterization and allowed only the
same primitive computations as in the cell-based NAS-Bench-201 search space, while still search-
ing over the macro architecture. More explicitly, we only allow ReLU non-linearity as the activation
function, batch normalization as the normalization, and 1 × 1 or 3 × 3 convolutions. Figure 13
shows that for all datasets except CIFAR-100, flexible parameterization of the convolutional blocks
improves performance of the found architectures. Interestingly, we find an architecture on CIFAR-
100, which achieves 26.24% test error with 1.307MB and 167.172M number of parameters or
FLOPs, respectively. This architecture is superior to the optimal architecture in the cell-based NAS-
Bench-201 search space. Note that this architecture is also pareto-optimal for test error vs. number
of parameters and test error vs. number of FLOPs.

28

Under review as a conference paper at ICLR 2023

100 200

Depth

10

15

20

V
al

er
ro

r
[%

]

CIFAR-10

100 200

Depth

30

35

40

CIFAR-100

100 200

Depth

50

60

70

ImageNet-16-120

100 200

Depth

30

40

50

60

CIFARTile

100 200

Depth

5

10

15

20

AddNIST

Worst-10% Other Top-10% Best

Figure 10: Validation error over maximal depth of all architecture candidates proposed by the
search strategies (i.e., BANAT, RS, RE, and BANAT (WL)) and across datasets (i.e., CIFAR-10/100,
ImageNet-16-120, CIFARTile, AddNIST) from our experiments in Section 5.

Test error vs. number of parameters and FLOPs Figure 14 shows the test error vs. the number
of parameters or FLOPs. Our best found architectures fall well within the parameter and FLOPs
ranges of the cell-based NAS-Bench-201 search space across all datasets, except for the parameters
on CIFAR-10. Note that our best found architecture on ImageNet-16-120 is pareto-optimal for test
error vs. number of parameters and test error vs. number of FLOPs.

Best architectures Below we report the best found architecture per dataset on the hierarchical
NAS-Bench-201 search space (Section 5.1) for each dataset. Figure 15 visualizes the novel and
diverse design of the architectures (including stem and classifier head).

CIFAR-10 (mean test error 5.65%, #params 2.204MB, FLOPs 127.673M):

Linear4(Residual3(Residual2(Cell(id, zero, Linear1(Linear3(hardswish, conv1x1,
layer)), Linear1(Linear3(hardswish, conv3x3, layer)), zero, Linear1(Linear3(mish,
conv3x3, instance))), Cell(Linear1(Linear3(relu, dconv3x3, layer)), id, avg pool, Lin-
ear1(Linear3(relu, dconv3x3, layer)), id, zero), Cell(zero, Linear1(Linear3(relu, conv1x1,
layer)), id, Linear1(Linear3(hardswish, conv1x1, instance)), Linear1(Linear3(hardswish,
conv3x3, layer)), Linear1(Linear3(hardswish, dconv3x3, layer)))), Residual2(Cell(id,
zero, Linear1(Linear3(relu, conv1x1, layer)), Linear1(Linear3(mish, conv1x1,
layer)), Linear1(Linear3(hardswish, conv3x3, layer)), zero), Cell(id, zero, id,
Linear1(Linear3(relu, conv3x3, batch)), id, id), Cell(Linear1(Linear3(hardswish,
conv3x3, layer)), Linear1(Linear3(hardswish, conv1x1, layer)), Linear1(Linear3(relu,
conv1x1, layer)), Linear1(Linear3(relu, conv3x3, layer)), zero, id)), Resid-
ual2(Cell(Linear1(Linear3(hardswish, conv1x1, instance)), Linear1(Linear3(hardswish,
dconv3x3, batch)), Linear1(Linear3(mish, dconv3x3, instance)), Linear1(Linear3(relu,
conv1x1, batch)), id, id), down, down), Residual2(Cell(Linear1(Linear3(hardswish,
conv1x1, layer)), Linear1(Linear3(hardswish, dconv3x3, batch)), Linear1(Linear3(relu,
conv1x1, batch)), Linear1(Linear3(hardswish, conv3x3, layer)), id, avg pool), down,
down)), Residual3(Residual2(Cell(id, zero, Linear1(Linear3(hardswish, conv1x1,
layer)), Linear1(Linear3(hardswish, conv3x3, layer)), id, Linear1(Linear3(mish,
conv3x3, instance))), Cell(Linear1(Linear3(relu, dconv3x3, layer)), id, avg pool, Lin-
ear1(Linear3(relu, dconv3x3, layer)), id, zero), Cell(zero, Linear1(Linear3(relu, conv1x1,
layer)), id, Linear1(Linear3(hardswish, conv1x1, instance)), Linear1(Linear3(hardswish,
conv1x1, layer)), Linear1(Linear3(hardswish, dconv3x3, layer)))), Residual2(Cell(id, zero,
Linear1(Linear3(mish, conv1x1, layer)), Linear1(Linear3(mish, conv3x3, layer)), Lin-
ear1(Linear3(hardswish, dconv3x3, batch)), zero), Cell(id, zero, id, Linear1(Linear3(relu,
conv3x3, batch)), id, id), Cell(Linear1(Linear3(hardswish, conv3x3, layer)), Lin-
ear1(Linear3(hardswish, conv1x1, layer)), Linear1(Linear3(mish, conv1x1, batch)), Lin-
ear1(Linear3(relu, conv3x3, instance)), zero, id)), Residual2(Cell(Linear1(Linear3(relu,
conv1x1, batch)), Linear1(Linear3(hardswish, dconv3x3, batch)), id, Linear1(Linear3(relu,
conv1x1, batch)), id, id), down, down), Residual2(Cell(Linear1(Linear3(hardswish,
conv1x1, layer)), Linear1(Linear3(hardswish, dconv3x3, batch)), Linear1(Linear3(relu,
conv1x1, batch)), Linear1(Linear3(hardswish, conv3x3, layer)), id, avg pool), down,
down)), Linear3(Residual2(Cell(Linear1(Linear3(hardswish, conv3x3, batch)), Lin-
ear1(Linear3(relu, conv1x1, instance)), Linear1(Linear3(relu, conv1x1, layer)),
Linear1(Linear3(relu, conv1x1, layer)), Linear1(Linear3(relu, conv1x1, layer)),
id), Cell(Linear1(Linear3(relu, conv1x1, batch)), id, id, Linear1(Linear3(relu,

29

Under review as a conference paper at ICLR 2023

L
in

ea
r3

(D
1

L
in

ea
r3

(D
0

L
in

ea
r4

0.0

0.5

1.0
P

ro
po

rt
io

n
CIFAR-10

L
in

ea
r3

(D
1

L
in

ea
r3

(D
0

L
in

ea
r4

0.0

0.5

1.0

CIFAR-100

L
in

ea
r3

(D
1

L
in

ea
r3

(D
0

L
in

ea
r4

0.0

0.5

1.0

ImageNet-16-120

L
in

ea
r3

(D
1

L
in

ea
r3

(D
0

L
in

ea
r4

0.0

0.5

1.0

CIFARTile

L
in

ea
r3

(D
1

L
in

ea
r3

(D
0

L
in

ea
r4

0.0

0.5

1.0

AddNIST
Worst-10% Other Top-10%

(a) D2 ::= Linear3(D1, D1, D0) | Linear3(D0, D1, D1) | Linear4(D1, D1, D0, D0).

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

0.0

0.5

1.0

P
ro

po
rt

io
n

CIFAR-10
L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

0.0

0.5

1.0

CIFAR-100

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

0.0

0.5

1.0

ImageNet-16-120

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

0.0

0.5

1.0

CIFARTile

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

0.0

0.5

1.0

AddNIST
Worst-10% Other Top-10%

(b) D1 ::= Linear3(C, C, D) | Linear4(C, C, C, D) | Residual3(C, C, D, D).

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

0.0

0.5

1.0

P
ro

po
rt

io
n

CIFAR-10

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

0.0

0.5

1.0

CIFAR-100
L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

0.0

0.5

1.0

ImageNet-16-120

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

0.0

0.5

1.0

CIFARTile

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

0.0

0.5

1.0

AddNIST
Worst-10% Other Top-10%

(c) D0 ::= Linear3(C, C, CL) | Linear4(C, C, C, CL) | Residual3(C, C, CL, CL).

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

0.0

0.5

1.0

P
ro

po
rt

io
n

CIFAR-10

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

0.0

0.5

1.0

CIFAR-100

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

0.0

0.5

1.0

ImageNet-16-120

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

0.0

0.5

1.0

CIFARTile

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

0.0

0.5

1.0

AddNIST
Worst-10% Other Top-10%

(d) D ::= Linear2(CL, down) | Linear3(CL, CL, down) | Residual2(C, down, down).

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

0.0

0.5

1.0

P
ro

po
rt

io
n

CIFAR-10

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

0.0

0.5

1.0

CIFAR-100

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

0.0

0.5

1.0

ImageNet-16-120

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

0.0

0.5

1.0

CIFARTile

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

0.0

0.5

1.0

AddNIST
Worst-10% Other Top-10%

(e) C ::= Linear2(CL, CL) | Linear3(CL, CL) | Residual2(CL, CL, CL).

ze
ro id

B
L
O

C
K

a
v
g
_

p
o
o
l

0.0

0.5

1.0

P
ro

po
rt

io
n

CIFAR-10

ze
ro id

B
L
O

C
K

a
v
g
_

p
o
o
l

0.0

0.5

1.0

CIFAR-100

ze
ro id

B
L
O

C
K

a
v
g
_

p
o
o
l

0.0

0.5

1.0

ImageNet-16-120

ze
ro id

B
L
O

C
K

a
v
g
_

p
o
o
l

0.0

0.5

1.0

CIFARTile

ze
ro id

B
L
O

C
K

a
v
g
_

p
o
o
l

0.0

0.5

1.0

AddNIST
Worst-10% Other Top-10%

(f) OP ::= zero | id | BLOCK | avg pool.

30

Under review as a conference paper at ICLR 2023

re
lu

h
a
rd

sw
is

h

m
is

h

0.0

0.5

1.0

P
ro

po
rt

io
n

CIFAR-10

re
lu

h
a
rd

sw
is

h

m
is

h

0.0

0.5

1.0

CIFAR-100

re
lu

h
a
rd

sw
is

h

m
is

h

0.0

0.5

1.0

ImageNet-16-120

re
lu

h
a
rd

sw
is

h

m
is

h

0.0

0.5

1.0

CIFARTile

re
lu

h
a
rd

sw
is

h

m
is

h

0.0

0.5

1.0

AddNIST
Worst-10% Other Top-10%

(g) ACT ::= relu | hardswish | mish.

co
n
v
1
x
1

co
n
v
3
x
3

d
co

n
v
3
x
3

0.0

0.5

1.0

P
ro

po
rt

io
n

CIFAR-10

co
n
v
1
x
1

co
n
v
3
x
3

d
co

n
v
3
x
3

0.0

0.5

1.0

CIFAR-100

co
n
v
1
x
1

co
n
v
3
x
3

d
co

n
v
3
x
3

0.0

0.5

1.0

ImageNet-16-120

co
n
v
1
x
1

co
n
v
3
x
3

d
co

n
v
3
x
3

0.0

0.5

1.0

CIFARTile

co
n
v
1
x
1

co
n
v
3
x
3

d
co

n
v
3
x
3

0.0

0.5

1.0

AddNIST
Worst-10% Other Top-10%

(h) CONV ::= conv1x1 | conv3x3 | dconv3x3.

b
a
tc

h

in
st

a
n
ce

la
y
er

0.00

0.25

0.50

0.75

1.00

P
ro

po
rt

io
n

CIFAR-10

b
a
tc

h

in
st

a
n
ce

la
y
er

0.00

0.25

0.50

0.75

1.00

CIFAR-100

b
a
tc

h

in
st

a
n
ce

la
y
er

0.00

0.25

0.50

0.75

1.00

ImageNet-16-120

b
a
tc

h

in
st

a
n
ce

la
y
er

0.00

0.25

0.50

0.75

1.00

CIFARTile
b
a
tc

h

in
st

a
n
ce

la
y
er

0.00

0.25

0.50

0.75

1.00

AddNIST
Worst-10% Other Top-10%

(i) NORM ::= batch | instance | layer.

Figure 11: Comparison of the proportion of production rules in the worst-10% (blue), top-10%
(green) and other (orange) neural architectures from our experiments in Section 5.

31

Under review as a conference paper at ICLR 2023

L
in

ea
r3

(D
1

L
in

ea
r3

(D
0

L
in

ea
r4

25

50

75
V
a
l
er

ro
r

[%
]

CIFAR-10

L
in

ea
r3

(D
1

L
in

ea
r3

(D
0

L
in

ea
r4

50

100

CIFAR-100

L
in

ea
r3

(D
1

L
in

ea
r3

(D
0

L
in

ea
r4

60

80

100

ImageNet-16-120

L
in

ea
r3

(D
1

L
in

ea
r3

(D
0

L
in

ea
r4

40

60

CIFARTile

L
in

ea
r3

(D
1

L
in

ea
r3

(D
0

L
in

ea
r4

10

20

30

AddNIST

(a) D2 ::= Linear3(D1, D1, D0) | Linear3(D0, D1, D1) | Linear4(D1, D1, D0, D0).

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

25

50

75

V
a
l
er

ro
r

[%
]

CIFAR-10

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

50

100

CIFAR-100

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

60

80

100

ImageNet-16-120

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

40

60

CIFARTile

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

10

20

30

AddNIST

(b) D1 ::= Linear3(C, C, D) | Linear4(C, C, C, D) | Residual3(C, C, D, D).

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

25

50

75

V
a
l
er

ro
r

[%
]

CIFAR-10

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

50

100

CIFAR-100
L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

60

80

100

ImageNet-16-120

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

40

60

CIFARTile

L
in

ea
r3

L
in

ea
r4

R
es

id
u
a
l3

10

20

30

AddNIST

(c) D0 ::= Linear3(C, C, CL) | Linear4(C, C, C, CL) | Residual3(C, C, CL, CL).

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

25

50

75

V
a
l
er

ro
r

[%
]

CIFAR-10

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

50

100

CIFAR-100

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

60

80

100

ImageNet-16-120

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

40

60

CIFARTile

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

10

20

30

AddNIST

(d) D ::= Linear2(CL, down) | Linear3(CL, CL, down) | Residual2(C, down, down).

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

25

50

75

V
a
l
er

ro
r

[%
]

CIFAR-10

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

50

100

CIFAR-100

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

60

80

100

ImageNet-16-120

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

40

60

CIFARTile

L
in

ea
r2

L
in

ea
r3

R
es

id
u
a
l2

10

20

30

AddNIST

(e) C ::= Linear2(CL, CL) | Linear3(CL, CL) | Residual2(CL, CL, CL).

ze
ro id

B
L
O

C
K

a
v
g
_

p
o
o
l

25

50

75

V
a
l
er

ro
r

[%
]

CIFAR-10

ze
ro id

B
L
O

C
K

a
v
g
_

p
o
o
l

50

100

CIFAR-100

ze
ro id

B
L
O

C
K

a
v
g
_

p
o
o
l

60

80

100

ImageNet-16-120

ze
ro id

B
L
O

C
K

a
v
g
_

p
o
o
l

40

60

CIFARTile

ze
ro id

B
L
O

C
K

a
v
g
_

p
o
o
l

10

20

30

AddNIST

(f) OP ::= zero | id | BLOCK | avg pool.

32

Under review as a conference paper at ICLR 2023

re
lu

h
a
rd

sw
is

h

m
is

h
25

50

75

V
a
l
er

ro
r

[%
]

CIFAR-10

re
lu

h
a
rd

sw
is

h

m
is

h

50

100

CIFAR-100

re
lu

h
a
rd

sw
is

h

m
is

h

60

80

100

ImageNet-16-120

re
lu

h
a
rd

sw
is

h

m
is

h

40

60

CIFARTile

re
lu

h
a
rd

sw
is

h

m
is

h

10

20

30

AddNIST

(g) ACT ::= relu | hardswish | mish.

co
n
v
1
x
1

co
n
v
3
x
3

d
co

n
v
3
x
3

25

50

75

V
a
l
er

ro
r

[%
]

CIFAR-10
co

n
v
1
x
1

co
n
v
3
x
3

d
co

n
v
3
x
3

50

100

CIFAR-100

co
n
v
1
x
1

co
n
v
3
x
3

d
co

n
v
3
x
3

60

80

100

ImageNet-16-120

co
n
v
1
x
1

co
n
v
3
x
3

d
co

n
v
3
x
3

40

60

CIFARTile

co
n
v
1
x
1

co
n
v
3
x
3

d
co

n
v
3
x
3

10

20

30

AddNIST

(h) CONV ::= conv1x1 | conv3x3 | dconv3x3.

b
a
tc

h

in
st

a
n
ce

la
y
er

25

50

75

V
a
l
er

ro
r

[%
]

CIFAR-10

b
a
tc

h

in
st

a
n
ce

la
y
er

40

60

80

100

CIFAR-100

b
a
tc

h

in
st

a
n
ce

la
y
er

60

80

100

ImageNet-16-120

b
a
tc

h

in
st

a
n
ce

la
y
er

40

60

CIFARTile

b
a
tc

h

in
st

a
n
ce

la
y
er

10

20

30

AddNIST

(i) NORM ::= batch | instance | layer.

Figure 12: Marginalized performance of every production rule in our hierarchical NAS-Bench-201
search space from Section 5.

0 25 50 75 100

Evaluations

8

9

10

11

V
al

er
ro
r
[%

] CIFAR-10

0 25 50 75 100

Evaluations

26

28

30

32

CIFAR-100

0 25 50 75 100

Evaluations

52

54

56

58

ImageNet-16-120

0 25 50 75 100

Evaluations

30

40

50

60

CIFARTile

0 25 50 75 100

Evaluations

7

8

9

10

AddNIST

hierarchical hierarchical without flexible parameterization

Figure 13: Impact of flexible parameterization of convolutional blocks in the hierarchical NAS-
Bench-201 search space.

33

Under review as a conference paper at ICLR 2023

0.2 1.2 2.2

#params [MB]

0

25

50

75

100

T
es

t
er

ro
r

[%
] CIFAR-10

0.2 0.9 1.6

#params [MB]

25

50

75

100

CIFAR-100

0.2 0.9 1.6

#params [MB]

50

60

70

80

90

100

ImageNet-16-120

all cells best cell ours

(a) Test error vs. number of parameters (#params (MB)).

0 100 200

#FLOPs [M]

0

25

50

75

100

T
es

t
er

ro
r

[%
] CIFAR-10

0 100 200

#FLOPs [M]

25

50

75

100

CIFAR-100

0 20 40 60

#FLOPs [M]

50

60

70

80

90

100

ImageNet-16-120

all cells best cell ours

(b) Test error vs. number of FLOPs (#FLOPs (M)).

Figure 14: Test error vs. number of parameters (a) and FLOPs (b) for each architecture candidate in
the cell-based search space (blue dots), the best cell (orange cross), and our best found architecture
(green star).

conv1x1, layer)), id, id), Cell(id, Linear1(Linear3(relu, conv1x1, instance)), Lin-
ear1(Linear3(relu, conv1x1, instance)), Linear1(Linear3(relu, conv1x1, layer)), zero, Lin-
ear1(Linear3(hardswish, conv3x3, batch)))), Residual2(Cell(Linear1(Linear3(hardswish,
conv3x3, layer)), Linear1(Linear3(relu, conv3x3, instance)), Linear1(Linear3(mish,
conv1x1, layer)), Linear1(Linear3(relu, conv1x1, layer)), Linear1(Linear3(relu, conv3x3,
layer)), id), Cell(Linear1(Linear3(relu, conv1x1, batch)), id, id, Linear1(Linear3(relu,
conv3x3, batch)), id, id), Cell(id, Linear1(Linear3(relu, conv1x1, instance)), Lin-
ear1(Linear3(relu, conv1x1, instance)), Linear1(Linear3(relu, dconv3x3, layer)), zero,
Linear1(Linear3(hardswish, dconv3x3, layer)))), Cell(Linear1(Linear3(relu, dconv3x3,
instance)), zero, zero, id, zero, id)), Linear4(Residual2(Cell(Linear1(Linear3(hardswish,
conv3x3, layer)), Linear1(Linear3(relu, conv3x3, layer)), Linear1(Linear3(relu,
conv1x1, layer)), Linear1(Linear3(relu, conv1x1, layer)), Linear1(Linear3(relu, conv3x3,
layer)), id), Cell(Linear1(Linear3(relu, conv1x1, batch)), id, id, Linear1(Linear3(relu,
conv3x3, batch)), id, id), Cell(id, Linear1(Linear3(relu, conv1x1, instance)), Lin-
ear1(Linear3(relu, conv1x1, instance)), Linear1(Linear3(relu, conv1x1, layer)), zero, Lin-
ear1(Linear3(hardswish, conv3x3, batch)))), Residual2(Cell(Linear1(Linear3(hardswish,
conv3x3, layer)), Linear1(Linear3(relu, conv3x3, layer)), Linear1(Linear3(relu,
conv1x1, layer)), Linear1(Linear3(relu, conv1x1, layer)), Linear1(Linear3(relu, conv3x3,
layer)), id), Cell(Linear1(Linear3(relu, conv1x1, batch)), id, id, Linear1(Linear3(relu,
conv3x3, batch)), id, id), Cell(id, Linear1(Linear3(relu, conv1x1, instance)), Lin-
ear1(Linear3(relu, conv1x1, instance)), Linear1(Linear3(relu, conv1x1, layer)), zero, Lin-
ear1(Linear3(hardswish, conv3x3, layer)))), Residual2(Cell(Linear1(Linear3(hardswish,
conv3x3, layer)), Linear1(Linear3(relu, conv3x3, layer)), Linear1(Linear3(relu,
conv1x1, layer)), Linear1(Linear3(relu, conv1x1, layer)), Linear1(Linear3(relu, conv3x3,
layer)), id), Cell(Linear1(Linear3(relu, conv1x1, batch)), id, id, Linear1(Linear3(relu,
conv3x3, batch)), id, id), Cell(id, Linear1(Linear3(relu, conv1x1, instance)), Lin-
ear1(Linear3(relu, conv1x1, instance)), Linear1(Linear3(relu, conv1x1, layer)), zero,
Linear1(Linear3(hardswish, conv3x3, layer)))), Cell(id, Linear1(Linear3(hardswish,
conv1x1, layer)), Linear1(Linear3(mish, conv1x1, batch)), id, zero, id))) .

CIFAR-100 (mean test error 27.63%, #params 0.962MB, FLOPs 115.243M):

34

Under review as a conference paper at ICLR 2023

Linear3(Residual3(Linear3(Cell(Linear3(mish, conv3x3, layer), avg pool, Lin-
ear3(hardswish, conv1x1, instance), zero, Linear3(mish, conv3x3, batch), zero),
Cell(Linear3(hardswish, dconv3x3, batch), zero, Linear3(hardswish, dconv3x3, batch),
Linear3(relu, dconv3x3, batch), id, id), Cell(Linear3(mish, conv3x3, batch), zero,
id, zero, Linear3(hardswish, dconv3x3, batch), id)), Linear2(Cell(id, zero, Lin-
ear3(mish, conv3x3, batch), zero, zero, Linear3(mish, conv1x1, batch)), Cell(zero,
zero, zero, id, zero, avg pool)), Cell(Linear3(relu, conv3x3, batch), zero, Lin-
ear3(hardswish, conv3x3, instance), id, id, avg pool), Cell(id, id, zero, zero, id,
id)), Residual3(Linear3(Cell(Linear3(mish, conv3x3, layer), id, Linear3(hardswish,
dconv3x3, layer), Linear3(hardswish, dconv3x3, batch), Linear3(mish, conv3x3, in-
stance), Linear3(mish, conv3x3, batch)), Cell(Linear3(hardswish, conv1x1, layer),
id, Linear3(hardswish, dconv3x3, batch), Linear3(relu, conv3x3, layer), id, id),
Cell(Linear3(relu, conv3x3, instance), zero, id, zero, Linear3(mish, conv3x3, batch),
avg pool)), Linear3(Cell(zero, id, Linear3(hardswish, conv1x1, layer), Linear3(mish,
conv3x3, instance), Linear3(mish, conv3x3, instance), zero), Cell(Linear3(hardswish,
conv1x1, layer), id, Linear3(hardswish, dconv3x3, batch), Linear3(relu, conv3x3,
batch), id, id), Cell(Linear3(relu, conv3x3, instance), zero, id, zero, Linear3(mish,
conv3x3, layer), avg pool)), Residual2(Cell(zero, id, zero, Linear3(mish, conv3x3,
layer), avg pool, Linear3(mish, conv3x3, layer)), down, down), Residual2(Cell(zero, id,
zero, Linear3(mish, conv3x3, batch), avg pool, Linear3(mish, conv3x3, layer)), down,
down)), Residual3(Linear3(Cell(Linear3(mish, conv3x3, layer), id, Linear3(hardswish,
dconv3x3, layer), Linear3(hardswish, dconv3x3, batch), Linear3(mish, conv3x3, in-
stance), Linear3(mish, conv3x3, batch)), Cell(Linear3(hardswish, conv1x1, layer),
id, Linear3(hardswish, dconv3x3, batch), Linear3(relu, conv3x3, layer), id, id),
Cell(Linear3(relu, conv3x3, instance), zero, id, zero, Linear3(mish, conv3x3, batch),
avg pool)), Linear3(Cell(Linear3(mish, conv3x3, batch), id, Linear3(hardswish, conv1x1,
batch), Linear3(mish, conv3x3, instance), Linear3(mish, conv3x3, instance), zero),
Cell(Linear3(hardswish, conv1x1, layer), id, Linear3(hardswish, dconv3x3, batch),
Linear3(hardswish, dconv3x3, batch), id, id), Cell(Linear3(relu, conv3x3, instance),
zero, id, zero, Linear3(mish, conv3x3, layer), avg pool)), Residual2(Cell(zero, id, zero,
Linear3(mish, conv3x3, layer), avg pool, Linear3(mish, conv3x3, layer)), down, down),
Residual2(Cell(zero, id, zero, Linear3(mish, conv3x3, batch), avg pool, Linear3(mish,
conv3x3, layer)), down, down)))

ImageNet-16-120 (mean test error 52.78%, #params 0.626MB, FLOPs 23.771M):

Linear3(Linear4(Residual2(Cell(id, avg pool, id, id, Linear3(relu, dconv3x3, layer),
zero), Cell(Linear3(hardswish, conv1x1, batch), zero, zero, Linear3(mish, dconv3x3,
layer), zero, zero), Cell(Linear3(relu, dconv3x3, layer), Linear3(mish, dconv3x3, layer),
zero, Linear3(hardswish, conv3x3, layer), Linear3(relu, dconv3x3, instance), Lin-
ear3(hardswish, conv3x3, instance))), Linear2(Cell(zero, Linear3(relu, conv3x3, layer),
Linear3(mish, conv1x1, batch), Linear3(mish, conv1x1, batch), avg pool, Linear3(relu,
conv3x3, layer)), Cell(id, id, Linear3(mish, conv3x3, layer), Linear3(relu, conv3x3, in-
stance), id, id)), Residual2(Cell(zero, avg pool, Linear3(mish, conv1x1, batch), Lin-
ear3(mish, conv1x1, layer), zero, zero), Cell(id, Linear3(relu, dconv3x3, layer), zero,
zero, Linear3(relu, dconv3x3, instance), zero), Cell(id, Linear3(relu, conv3x3, layer),
id, zero, zero, id)), Cell(zero, Linear3(hardswish, conv3x3, layer), avg pool, zero, Lin-
ear3(hardswish, conv1x1, layer), id)), Residual3(Residual2(Cell(Linear3(relu, conv1x1,
instance), Linear3(mish, conv1x1, layer), Linear3(mish, conv1x1, instance), zero, Lin-
ear3(hardswish, dconv3x3, layer), id), Cell(id, avg pool, avg pool, Linear3(relu, conv1x1,
instance), id, zero), Cell(avg pool, Linear3(mish, conv3x3, instance), Linear3(mish,
conv1x1, instance), Linear3(relu, dconv3x3, batch), id, Linear3(hardswish, conv3x3,
instance))), Linear2(Cell(zero, Linear3(relu, conv3x3, layer), Linear3(mish, conv1x1,
batch), Linear3(mish, conv1x1, batch), avg pool, Linear3(relu, conv3x3, instance)),
Cell(id, zero, Linear3(mish, conv3x3, layer), Linear3(relu, conv3x3, instance), id,
id)), Residual2(Cell(Linear3(mish, conv3x3, layer), Linear3(mish, conv1x1, batch), id,
Linear3(mish, conv1x1, layer), zero, id), down, down), Residual2(Cell(Linear3(relu,
conv3x3, layer), zero, Linear3(relu, dconv3x3, layer), Linear3(mish, conv1x1, layer),
zero, id), down, down)), Residual3(Residual2(Cell(Linear3(mish, conv1x1, instance),
Linear3(mish, conv1x1, layer), Linear3(mish, conv1x1, instance), avg pool, Lin-
ear3(hardswish, dconv3x3, layer), id), Cell(id, avg pool, avg pool, Linear3(relu, conv1x1,
instance), id, zero), Cell(avg pool, Linear3(mish, conv3x3, instance), Linear3(mish,
conv1x1, instance), Linear3(relu, dconv3x3, batch), id, Linear3(hardswish, conv3x3,
instance))), Linear2(Cell(zero, Linear3(relu, conv3x3, layer), Linear3(mish, conv1x1,
batch), Linear3(mish, conv1x1, batch), avg pool, Linear3(relu, conv3x3, layer)), Cell(id,

35

Under review as a conference paper at ICLR 2023

zero, Linear3(mish, conv3x3, layer), Linear3(relu, conv3x3, instance), id, id)), Resid-
ual2(Cell(Linear3(relu, conv3x3, layer), avg pool, id, Linear3(mish, conv3x3, instance),
zero, id), down, down), Residual2(Cell(Linear3(relu, conv3x3, layer), zero, Linear3(relu,
dconv3x3, instance), Linear3(mish, conv1x1, layer), zero, id), down, down)))

CIFARTile (mean test error 30.33%, #params 2.356MB, FLOPs 372.114M):

Linear4(Residual3(Residual2(Cell(Linear3(hardswish, conv3x3, instance), id, zero,
Linear3(relu, dconv3x3, instance), Linear3(mish, conv1x1, instance), avg pool),
Cell(avg pool, avg pool, id, zero, Linear3(hardswish, conv3x3, batch), avg pool),
Cell(Linear3(relu, dconv3x3, instance), zero, id, Linear3(relu, dconv3x3, layer), id, id)),
Residual2(Cell(zero, zero, Linear3(mish, conv1x1, instance), Linear3(mish, conv3x3,
batch), zero, id), Cell(Linear3(mish, conv3x3, instance), zero, Linear3(relu, dconv3x3,
batch), id, Linear3(mish, conv3x3, batch), id), Cell(Linear3(hardswish, dconv3x3, batch),
Linear3(relu, conv3x3, batch), Linear3(relu, conv1x1, batch), zero, Linear3(relu, conv3x3,
batch), id)), Linear2(Cell(Linear3(relu, dconv3x3, layer), Linear3(mish, conv1x1, layer),
id, zero, Linear3(mish, conv3x3, batch), Linear3(relu, dconv3x3, layer)), down), Lin-
ear2(Cell(id, Linear3(hardswish, conv1x1, layer), id, Linear3(relu, conv1x1, instance),
avg pool, Linear3(relu, conv1x1, layer)), down)), Residual3(Residual2(Cell(id, avg pool,
avg pool, Linear3(hardswish, dconv3x3, instance), Linear3(mish, conv1x1, layer), Lin-
ear3(hardswish, dconv3x3, instance)), Cell(id, id, Linear3(relu, dconv3x3, layer), id,
id, zero), Cell(Linear3(relu, conv3x3, layer), id, avg pool, Linear3(mish, dconv3x3, in-
stance), Linear3(relu, conv1x1, layer), zero)), Residual2(Cell(Linear3(mish, conv3x3,
batch), Linear3(mish, conv3x3, instance), zero, avg pool, avg pool, Linear3(mish,
conv1x1, batch)), Cell(Linear3(mish, conv1x1, batch), Linear3(relu, dconv3x3, layer),
zero, id, avg pool, avg pool), Cell(avg pool, Linear3(hardswish, conv1x1, instance), id,
avg pool, avg pool, Linear3(hardswish, conv1x1, instance))), Residual2(Cell(Linear3(relu,
dconv3x3, batch), avg pool, id, avg pool, id, zero), down, down), Residual2(Cell(zero,
zero, Linear3(relu, dconv3x3, batch), avg pool, Linear3(hardswish, conv1x1, instance),
avg pool), down, down)), Linear4(Linear3(Cell(Linear3(hardswish, conv3x3, batch), Lin-
ear3(hardswish, conv3x3, batch), Linear3(relu, conv1x1, instance), id, Linear3(relu,
conv1x1, layer), Linear3(relu, conv3x3, layer)), Cell(id, Linear3(relu, conv3x3, in-
stance), Linear3(hardswish, conv1x1, instance), Linear3(relu, conv3x3, layer), avg pool,
Linear3(mish, conv1x1, layer)), Cell(zero, zero, id, Linear3(relu, conv3x3, batch),
id, Linear3(relu, conv1x1, layer))), Linear3(Cell(Linear3(hardswish, conv3x3, batch),
Linear3(hardswish, conv3x3, batch), Linear3(relu, conv1x1, instance), Linear3(relu,
dconv3x3, layer), Linear3(mish, conv1x1, layer), Linear3(relu, conv3x3, batch)), Cell(id,
Linear3(relu, conv3x3, instance), Linear3(hardswish, conv1x1, instance), Linear3(relu,
dconv3x3, instance), avg pool, Linear3(mish, conv1x1, layer)), Cell(zero, zero, id, Lin-
ear3(relu, conv3x3, batch), id, avg pool)), Linear3(Cell(id, id, avg pool, Linear3(mish,
conv1x1, layer), Linear3(mish, conv3x3, batch), zero), Cell(id, Linear3(relu, conv1x1,
batch), avg pool, Linear3(relu, conv1x1, layer), avg pool, zero), Cell(zero, Linear3(relu,
conv1x1, batch), Linear3(mish, dconv3x3, batch), Linear3(mish, conv1x1, batch), id, id)),
Cell(id, Linear3(hardswish, conv1x1, layer), zero, id, zero, id)), Linear3(Linear2(Cell(id,
zero, Linear3(mish, dconv3x3, instance), Linear3(mish, conv3x3, batch), Linear3(mish,
dconv3x3, instance), Linear3(relu, conv1x1, instance)), Cell(Linear3(relu, dconv3x3, in-
stance), avg pool, Linear3(mish, conv1x1, instance), Linear3(hardswish, dconv3x3, in-
stance), id, Linear3(hardswish, conv1x1, layer))), Linear2(Cell(zero, zero, Linear3(mish,
dconv3x3, instance), Linear3(relu, conv3x3, instance), Linear3(hardswish, conv3x3,
batch), avg pool), Cell(id, id, Linear3(hardswish, conv1x1, instance), avg pool, zero, Lin-
ear3(hardswish, conv3x3, batch))), Cell(avg pool, Linear3(mish, dconv3x3, layer), zero,
avg pool, avg pool, zero))) .

AddNIST (mean test error 6.33%, #params 2.853MB, FLOPs 593.856M):

Linear4(Residual3(Linear3(Cell(id, Linear3(hardswish, dconv3x3, batch), Linear3(relu,
conv1x1, layer), Linear3(mish, conv3x3, batch), avg pool, zero), Cell(zero, zero, avg pool,
id, avg pool, Linear3(hardswish, conv1x1, instance)), Cell(Linear3(relu, conv3x3, layer),
id, zero, Linear3(mish, conv3x3, instance), id, avg pool)), Linear2(Cell(id, Linear3(relu,
conv3x3, layer), Linear3(relu, conv3x3, layer), Linear3(hardswish, conv3x3, batch),
id, Linear3(relu, conv3x3, layer)), Cell(Linear3(mish, conv3x3, instance), id, Lin-
ear3(mish, conv3x3, batch), id, avg pool, id)), Linear3(Cell(zero, id, Linear3(relu,
dconv3x3, instance), Linear3(relu, dconv3x3, layer), Linear3(relu, dconv3x3, instance),
Linear3(mish, conv3x3, batch)), Cell(Linear3(mish, conv1x1, instance), zero, Lin-
ear3(relu, conv3x3, instance), id, zero, Linear3(relu, conv3x3, batch)), down), Lin-

36

Under review as a conference paper at ICLR 2023

ear3(Cell(zero, avg pool, Linear3(hardswish, dconv3x3, layer), Linear3(relu, conv3x3,
layer), Linear3(hardswish, conv1x1, instance), Linear3(hardswish, conv3x3, batch)),
Cell(Linear3(hardswish, conv3x3, batch), Linear3(hardswish, conv1x1, layer), Lin-
ear3(mish, conv1x1, batch), id, Linear3(hardswish, conv3x3, batch), zero), down)),
Residual3(Linear2(Cell(Linear3(mish, conv1x1, layer), avg pool, Linear3(hardswish,
dconv3x3, batch), Linear3(mish, dconv3x3, batch), id, Linear3(mish, conv3x3, layer)),
Cell(zero, Linear3(relu, dconv3x3, layer), Linear3(hardswish, conv3x3, instance),
avg pool, avg pool, zero)), Linear3(Cell(Linear3(relu, conv3x3, batch), id, Linear3(relu,
conv3x3, layer), Linear3(mish, conv1x1, instance), id, Linear3(relu, dconv3x3, batch)),
Cell(Linear3(mish, conv3x3, batch), Linear3(mish, conv1x1, instance), Linear3(mish,
conv3x3, instance), zero, Linear3(mish, dconv3x3, layer), Linear3(relu, conv3x3,
batch)), Cell(avg pool, Linear3(mish, conv1x1, instance), Linear3(relu, conv3x3, batch),
avg pool, id, Linear3(mish, dconv3x3, batch))), Linear3(Cell(zero, avg pool, Lin-
ear3(hardswish, dconv3x3, layer), Linear3(relu, conv3x3, batch), Linear3(hardswish,
conv1x1, batch), Linear3(hardswish, conv3x3, batch)), Cell(avg pool, Linear3(hardswish,
dconv3x3, layer), Linear3(mish, conv1x1, batch), id, Linear3(hardswish, conv3x3,
batch), zero), down), Residual2(Cell(zero, Linear3(mish, conv1x1, instance), Lin-
ear3(hardswish, conv1x1, instance), avg pool, Linear3(relu, conv1x1, layer), Lin-
ear3(hardswish, dconv3x3, batch)), down, down)), Linear4(Linear2(Cell(Linear3(relu,
conv3x3, instance), id, Linear3(relu, conv3x3, batch), avg pool, zero, id), Cell(avg pool,
Linear3(hardswish, conv3x3, layer), avg pool, Linear3(mish, conv3x3, batch), Lin-
ear3(relu, conv3x3, batch), id)), Linear2(Cell(Linear3(mish, conv1x1, layer), avg pool,
Linear3(hardswish, dconv3x3, batch), Linear3(mish, dconv3x3, batch), id, Linear3(mish,
conv3x3, layer)), Cell(zero, Linear3(relu, dconv3x3, layer), Linear3(hardswish, conv3x3,
instance), avg pool, avg pool, zero)), Linear2(Cell(id, Linear3(relu, conv3x3, instance),
Linear3(relu, conv3x3, layer), Linear3(hardswish, dconv3x3, batch), id, Linear3(relu,
conv3x3, layer)), Cell(Linear3(mish, conv1x1, batch), id, avg pool, id, avg pool,
id)), Cell(id, Linear3(relu, conv3x3, layer), Linear3(mish, conv1x1, instance), Lin-
ear3(hardswish, conv3x3, batch), Linear3(mish, dconv3x3, instance), Linear3(hardswish,
conv1x1, instance))), Linear4(Linear2(Cell(Linear3(relu, conv3x3, instance), id, Lin-
ear3(relu, conv3x3, batch), avg pool, zero, id), Cell(zero, Linear3(relu, conv3x3, batch),
avg pool, Linear3(mish, conv3x3, batch), Linear3(relu, dconv3x3, instance), id)), Lin-
ear3(Cell(Linear3(relu, conv3x3, batch), id, Linear3(relu, conv3x3, layer), Linear3(mish,
conv1x1, layer), id, Linear3(relu, dconv3x3, instance)), Cell(Linear3(mish, conv3x3,
batch), Linear3(mish, conv1x1, instance), Linear3(hardswish, dconv3x3, instance), zero,
Linear3(mish, dconv3x3, layer), Linear3(relu, conv3x3, batch)), Cell(avg pool, Lin-
ear3(mish, conv1x1, instance), Linear3(relu, conv3x3, batch), avg pool, id, Linear3(mish,
dconv3x3, batch))), Linear2(Cell(id, Linear3(relu, conv3x3, layer), Linear3(hardswish,
conv3x3, layer), Linear3(hardswish, dconv3x3, batch), id, Linear3(relu, conv3x3, layer)),
Cell(Linear3(mish, conv3x3, batch), id, avg pool, id, avg pool, id)), Cell(id, Linear3(relu,
conv3x3, layer), Linear3(mish, conv1x1, instance), Linear3(hardswish, conv3x3, batch),
Linear3(mish, dconv3x3, instance), Linear3(mish, conv3x3, instance)))) .

The above reported architectures already yield strong performance. In particular, on ImageNet-
16-120, CIFARTile, and AddNIST we find superior architectures with comparable number of pa-
rameters and FLOPs to architectures from common cell-based search spaces. When running the
search for 50 additional evaluations, we further improved performance to a test error of 51.98% on
ImageNet-16-120, which is superior to the optimal architecture in the cell-based NAS-Bench-201
search space by 0.71%p. We also found an architecture on CIFAR-100, when only allowing for the
same primitive computations as in the cell-based NAS-Bench-201 search space, that achieves a test
error of 26.24% and, thus, is also superior to the optimal architecture in the cell-based NAS-Bench-
201 search space by 0.25%p. The found architectures from our huge hierarchical search spaces
show that the search over a larger variety of architectures can indeed improve performance with a
small search budget, even though the search problem is significantly more difficult.

37

Under review as a conference paper at ICLR 2023

idid mimi

id

do

id

apmi

mi

m
i dc

ha
apmi re

c3
do

idid mimi

id
do

id ha

ap

mi
mi

m
i dc

ha
apmi re

c3

do

id id

m
i

c3

re

rere

id

ap

c1

c3

m
i

c3

c3

c1 m
idc

inba

la la c1in la

m
ic3

ba
in

m
i

iddo

c3
do

c1c3

idhac1
in

c3la
ba

ha
c1

la

lala

ap

la

la

ap

la

id

ha

ap
mi

m
i mi

dc

ha

id

c3

re

remi

id

ap

c1
c3

c1

m
i

c3

c3

c1 m
i

dc

inba

la la

ap

ap

ba

c1

inla

m
ic3

la

in
m

i

iddo

c3

do

c1c3

idhac1
in

c3la
ba

ha
c1

la

lala

ap

la

la

ap

la

id mim
imi dc

mi

id

c3
ap apmi

c1

m
i

c3

c3
c1

m
idc

in
ba

lala

ap
ap

ba

c1

in la

idmi hadc

ididid
in

c1

c3

la

la

ba

c3
ap apmi

c3c1

m
i

dc

in

ba

la
la

idmi m
i

dc

ididid
in

c1

c3

la cls
la

ba

stm

(a) CIFAR-10.

38

Under review as a conference paper at ICLR 2023

idremi

id

mi rere
mi re

rec3

c3

idre mi

id

c3 c3

c3
idre mi

id
mi rerem

i

id m
i

c3

c3

id hare mimi

c3 c3

c3

re
apre

c3

c3

id re

do

re rec1 c3

c3 c3

c1

ba

ba

bala

re
c3

ba

ba hadc
la

laba

id
ap

ham
i

id

c1

reha c3c3
in

id

la

la

laba

do

c3

ba

ba

re c1

rere c1c3
dc

c1

ba

ba
la

re
c3

ba

bahadc
la

la ba

do

dc lain

id

hare mi mi
mire c3

c3

c3

c1

mire c3

c3

c3

c1

ap

re re

id
c1

c3

c3
c1

ba
ba

la

re
c3

ba

baha
c3

la

laba

id
ap

ham
i

id

c1

reha c3c3
in

id

la

la

la

ba

do

c3

ba

ba

id re

do

re c1

rere c1

c3

c3c3

id
ba

ba
ba

la

re
c3

ba

la

ba

ha dc
la

la ba

do

dc lain

idre mi

id

mi

idm
i

c3

c3

ha

id

re

re rec1

c3

c3c3

id
ba

ba
ba

la

re
c3

ba

laba

hadc
la

laba

c3

re

c3

ap

rere

id

c1c3

c3
c1

ba

ba
la

re
c3

ba

bam
ic3

la

la ba

idha

c3
ba

c3 la

cls

in

ba

stm

(b) CIFAR-100.

39

Under review as a conference paper at ICLR 2023

id

id
mi re

re

m
i ha

dc

remi

id

remimimi

do

c1c1

apmi re

id

c1

c3c1c1

mi mi

ap id

rere
ap

mi

do

remi c3c1
dc dc c3

dc

la

la re hadc
la

c3
la

la
in in

mi idc1 re

ha

id

id

re

mi

id
id

c3

re
c3

la

ba
la

c3

in

la

c3

id re

id c3

la dc
inid

la

id
la

c1 c1

apmi re

id

c1

c3

id

c3

cls

remi c3c1

mi

id

c3 dc

mi hac1 dc

in

id

la

in

la

in

c1
hac3

in

ba

in

in

do

id
id

labala

re mi

do

c3
id

c1

idre m
i

id

id

c3

re
c3

la

ba

in

c3

in la

do

redc
la

lala

remi c3c1

m
i

id

c3 dc

miha c1dc
in

id

lain

la

in

c1
hac3

in

ba
in

in

do
id

la

in

re mi

do

c3
id

c1
idre

mi

id
id

c3

re
c3

la

ba

la

c3

in la

do

redc
la

lain

stm

(c) ImageNet16-120.

40

Under review as a conference paper at ICLR 2023

ha id

re apapre mic3

ap

dc id ha

ap

mim
i

id

dc c1
do

id apha

id
id

re
ap

do
apmi hadc

id

mi mi

ap

mi re

id

dc

do

ha

ha
id

c3c3

id

idha re

re redc

id

dc

m
i c1

in

inin c3

ba

id id

in

la

id

m
i rec3

la

dc
la

ba la

id

ap

c1 c1

hare dcc3
ba

re midc c3
in

ba

ba

re rec1 c3

ba
id

ba

baba

do

rec1

la
inla

c3c3

id re re
c3 c3

ap

ha

ap

c1 dc

apdo

remi c3dc

c1

dc
in

la

in

rec1
la

in la

id

ba

do

id

ap

c1

ap

m
i

ba c1
in

ba

ap ap

ba la

hac1

in

in

idmi
mimi

re

c3

ha
hare c3c3dc

ha
ap

c3
c3

re rec1
c1

ba

rec3
ba

in
lala

rec3

c1

m
ic1

in
la

in

la
ba

idmi m
ic1

id re reha
ap

c3

dc

re mic1

c1

ba

rec3
ba

la in
laba

rec3

c1

m
ic1

in
in

in

la
ba

haid

c1

id re
ap

c1
c3

la ba

remi c1c1

la

id

ba

ba

id

la

rec3

re

ap

ha dc

ha

dc

dcdc

c1ba

in

in

in

m
i

id

c1
in

c1

in in

la

apap

apcls

idid

ap

ha

ha
in

c1

c3

in

ba

stm

(d) CIFARTile.

41

Under review as a conference paper at ICLR 2023

re

ap

ap

ha

ap

idhadc m
i

ap

ha

c3

ha

reap
ap

ha

ap

mi mic3

do
re

id
ap

c1
re

ap

dcm
i

ap

ha

c3

re

m
i

do

ap

dc
hac3

in c1

la la
ha rec3

dc
ba

c3

la

lala ba

c1

c3rec1

la la

bala

dc

ap

dc

ha

c3

inc1

la

la

ha

ap

c3
in

c3

la

la ba

do

la

mi hac1 c3
re ha

ap

ha

ap

dc c3

apha
c3

re

re ap

ap

ha

ap

hac1
in

c1
la

ba

dc

id

apha

c3

re

mido

apdc

ha m
ic3

in

c1
la

la la

ha

ap

c3

in

c3
la

laba

dc

apdc

hac3
in

la

ha

ap

c3

in

c3
la

inba

do

la

re
ap
ap

ha ha hadc

m
i

apha

c3 c3

c3

re ha

ap

ha hadc c3

apha

c3

re

c3

idap

ha

ap

la

la

c3

ba

mi mic1 dc

apdc

ha m
ic3

in

c1
la

la la

ha

ap

c3

in

c3 in

la

laba

miid

c3

id
re

ap

c1

mic1
ba

laba

re mic1 c1

la

ap

ba

ba

id

la
rec3

apdc

idhac3

in

c1

la la

ha

ap

c3

in

rec3

la

la

la

lala

id

ha

ap

haha dc
cls

idap

ha

in

c3

ba

c3c3 rec1

lala
in la

stm

(e) AddNIST.

Figure 15: Visualization of the best found architectures in our hierarchical NAS-Bench-201 search
space. Abbreviations are defined as follows: ap=avg pool, ba=batch, c1=conv1x1, c3=conv3x3,
cls=classifier, dc=dconv3x3, ha=hardswish, in=instance, la=layer, mi=mish, re=relu, and stm=stem.
Best viewed with zoom.

42

Under review as a conference paper at ICLR 2023

Table 6: Definition of the binary and unary operations in the activation function search space Gact.
The symbol β indicates a per-channel trainable parameter and σ(·) is the sigmoid function.

add x1 + x2 bgaussian sq exp(−β(x1 − x2)
2) cubic x3 cos cosx umax max(x, 0)

multi x1 · x2 bgaussian abs exp(−β|x1 − x2|) square root
√
x sinh sinhx umin min(x, 0)

sub x1 − x2 wavg βx1 + (1− β)x2 mconst β cosh cosh(x) sigmoid σ(x)
div x1

x2+ϵ id x aconst x+ β tanh tanh(x) logexp log(1 + exp(x))

bmax max(x1, x2) neg −x log log(|x|+ ϵ) asinh sinh−1(x) gaussian exp(−x2)
bmin min(x1, x2) abs |x| exp exp(x) atanh tanh−1(x) erf erf(x)

bsigmoid σ(x1) · x2 square x2 sin sin(x) sinc sinc(x) const β

J SEARCHING FOR ACTIVATION FUNCTIONS

J.1 SEARCH SPACE

To search for activation functions, we adopted the search space from Ramachandran et al. (2017).
More specifically, we define the following CFG Gact:

L2 ::= BinTopo(L1, L1, BINOP) | UnTopo(L1)
L1 ::= BinTopo(UNOP, UNOP, BINOP) | UnTopo(UNOP)

BINOP ::= add | multi | sub | div | bmax | bmin | bsigmoid | bgaussian sq

| bgaussian abs | wavg
UNOP ::= id | neg | abs | square | cubic | square root | mconst | aconst

| log | exp | sin | cos | sinh | cosh | tanh | asinh | atanh | sinc
| umax | umin | sigmoid | logexp | gaussian | erf | const ,

(24)

where the binary operations (BINOP) and unary operations (UNOP) are specified in Table 6 and
BinTopo and UnTopo define the topology of binary or unary operations, respectively. The
search space L(Gact) comprises ca. 108.6 potential activation functions. Note that the search
space size can be varied by adding more levels or by using a recursive formulation, i.e., L ::=
BinOp(L,L) | UnOp(L) | id.

J.2 TRAINING DETAILS

Similar to Ramachandran et al. (2017), we trained a ResNet-20 (He et al., 2016) on CIFAR-103

(Krizhevsky et al., 2009). Specifically, we trained the network with SGD with learning rate of 0.1,
momentum of 0.9, and weight decay of 0.0001, with a batch size of 128 for 64K steps. The learning
rate is divided by 10 after 32K and 48K steps. We used random flip with probability 0.5 followed
by a random crop (32x32 with 4 pixel padding) and normalization. We split the training data into
45K training or 5K validation samples, respectively, and report final test error on the unseen test set
(10K samples).

J.3 EXTENDED SEARCH RESULTS

Search costs The search cost was ca. 5 GPU days using eight asynchronous workers, each with
an NVIDIA RTX 2080 Ti GPU, for ca. 40 GPU days in total.

Best found activation function Our best found activation function for ResNet-20 is as follows:

β(σ(−x) ·min(x, 0)) + (1− β)(min(max(x, 0), erf x)) . (25)

Figure 16 visualizes and compares the found activation function with common activation functions
from the literature.

K BEST PRACTICES CHECKLIST FOR NAS RESEARCH

NAS research has faced challenges with reproducibility and fair empirical comparisons for a long
time (Li & Talwalkar, 2020; Yang et al., 2020a). In order to promote fair and reproducible NAS

3Table 4 provides the license of CIFAR-10.

43

Under review as a conference paper at ICLR 2023

−2 −1 0 1 2

x

−1

0

1

y

Best found activation function

β = 0

β = 0.5

β = 1

−2 −1 0 1 2

x

0.0

0.5

1.0

1.5

2.0

Common activation functions

ReLU
Sigmoid
GELU
Swish

Figure 16: Visualization of our best found activation function (see Equation 25) for different values
of the trainable parameter β (left) and common activation function from the literature (right).

research, Lindauer & Hutter (2020) created a best practices checklist for NAS research. Below, we
address all points on the checklist.

1. Best Practices for Releasing Code
(a) Did you release code for the training pipeline used to evaluate the final architec-

tures?, Did you release code for the search space?, Did you release code for your
NAS method? [Yes] All code can be found at https://anonymous.4open.
science/r/iclr23_tdnafs.

(b) Did you release the hyperparameters used for the final evaluation pipeline, as well as
random seeds? [Yes] We provide experimental details (including hyperparameters as
well as random seeds) in Section 5, Appendix I.1 and J.2.

(c) Did you release hyperparameters for your NAS method, as well as random seeds?
[Yes] We discuss implementation details (including hyperparameters as well as ran-
dom seeds) of our NAS method in Section 5 and Appendix H.

2. Best practices for comparing NAS methods
(a) For all NAS methods you compare, did you use exactly the same NAS benchmark,

including the same dataset (with the same training-test split), search space and code
for training the architectures and hyperparameters for that code? [Yes] We always
used the same training pipelines during search and final evaluation.

(b) Did you control for confounding factors (different hardware, versions of deep learn-
ing libraries, different runtimes for the different methods)? [Yes] We kept hardware,
software versions, and runtimes fixed across our experiments to reduce effects of con-
founding factors.

(c) Did you run ablation studies? [Yes] We compared different kernels (hWL, WL, NAS-
BOT, and GCN) and investigated the surrogate performance in Section 5. We also an-
alyzed the distribution of architectures during search, frequency of production rules,
impact of the flexible parameterization of the convolutional blocks, test error vs. num-
ber of parameters and FLOPs in Appendix I.2.

(d) Did you use the same evaluation protocol for the methods being compared? [Yes]
(e) Did you compare performance over time? [Yes] We plotted results over the number of

iterations, as typically done for black-box optimizers, and report the total search cost
in Appendix I.2. For the activation function search, we do not compare performance
over time.

(f) Did you compare to random search? [Yes]
(g) Did you perform multiple runs of your experiments and report seeds? [Yes] We ran

all search runs on the hierarchical or cell-based NAS-Bench-201 over three seeds, the
search run for an activation function for one seed, and surrogate regression experi-
ments over 20 seeds.

(h) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] At the
time of this work, there existed no surrogate benchmark for hierarchical NAS.

44

https://anonymous.4open.science/r/iclr23_tdnafs
https://anonymous.4open.science/r/iclr23_tdnafs

Under review as a conference paper at ICLR 2023

3. Best practices for reporting important details
(a) Did you report how you tuned hyperparameters, and what time and resources this

required? [N/A] We have not tuned any hyperparameter.
(b) Did you report the time for the entire end-to-end NAS method (rather than, e.g., only

for the search phase? [Yes] We report search times in Appendix I.2 and J.3. For the
hierarchical NAS-Bench-201 experiments, the training protocols are exactly the same
for the search and final evaluation (except for CIFAR-10), there are no additional costs
for final evaluation. For the activation function search experiment, we used the same
training protocol for training and evaluation.

(c) Did you report all the details of your experimental setup? [Yes] We report all experi-
mental details in Section 5, Appendix I.1, and J.2.

45

	Introduction
	Algebraic neural architecture search space construction
	Algebraic architecture terms for neural architecture search
	Constructing neural architecture terms with context-free grammars
	Extensions to the construction mechanism

	Bayesian Optimization for algebraic neural architecture search
	Related work
	Experiments
	Hierarchical NAS-Bench-201
	Evaluation details
	Results

	Discussion and limitations
	Conclusion
	From terminals to primitive computations and topological operators
	Extended Backus-Naur form
	Search space size
	More details on search space constraints
	Common search spaces from the literature
	More details on the search strategy
	Bayesian Optimization
	Hierarchical Weisfeiler-Lehman kernel
	Examples for the evolutionary operations

	Related work beyond neural architecture search
	Implementation details of the search strategies
	Searching the hierarchical NAS-Bench-201 search space
	Training details
	Extended search results and analyses

	Searching for activation functions
	Search space
	Training details
	Extended search results

	Best practices checklist for NAS research

