
Unfolding Videos Dynamics via Taylor Expansion

Anonymous Author(s)
Affiliation
Address
email

Abstract

Taking inspiration from physical motion, we present a new self-supervised dy-1

namics learning strategy for videos: Video Time-Differentiation for Instance2

Discrimination (ViDiDi). ViDiDi is a simple and data-efficient strategy, read-3

ily applicable to existing self-supervised video representation learning frameworks4

based on instance discrimination. At its core, ViDiDi observes different aspects5

of a video through various orders of temporal derivatives of its frame sequence.6

These derivatives, along with the original frames, support the Taylor series expan-7

sion of the underlying continuous dynamics at discrete times, where higher-order8

derivatives emphasize higher-order motion features. ViDiDi learns a single neural9

network that encodes a video and its temporal derivatives into consistent embed-10

dings following a balanced alternating learning algorithm. By learning consistent11

representations for original frames and derivatives, the encoder is steered to em-12

phasize motion features over static backgrounds and uncover the hidden dynamics13

in original frames. Hence, video representations are better separated by dynamic14

features. We integrate ViDiDi into existing instance discrimination frameworks15

(VICReg, BYOL, and SimCLR) for pretraining on UCF101 or Kinetics and test16

on standard benchmarks including video retrieval, action recognition, and action17

detection. The performances are enhanced by a significant margin without the need18

for large models or extensive datasets.19

1 Introduction20
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Figure 1: Method Overview. Left: Demonstration of ViDiDi. Right: ViDiDi enhances existing
instance discrimination methods significantly on action recognition.

Learning video representations is central to various aspects of video understanding, such as action21

recognition [1, 2], video retrieval [3, 4], and action detection [5]. While supervised learning requires22

expensive video labeling [6], recent works highlight the strengths of self-supervised learning (SSL)23

from unlabeled videos [7, 8, 9] with a large number of training videos. One popular strategy for24

SSL on video representations uses instance discrimination objectives, such as SimCLR [10], initially25

demonstrated for images [11, 10, 12, 13, 14]. When adapting this approach to videos, previous26

methods often treat time directly as an additional spatial dimension. This may neglect the special27
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Figure 2: Illustration of the ViDiDi framework. For a batch of videos I , we do two spatio-temporal
augmentations to obtain two batches of clips: V and V ′. X and X ′ are the 0th, 1st, or 2nd order
derivatives of V and V ′, decided via a balanced alternating learning strategy (alg. 1). They are the
inputs to the video encoder for learning the video encoder under SimCLR, BYOL, or VICReg.

feature of the temporal dimension in carrying dynamic information, causing models to prioritize28

static content (e.g., background scenes) over dynamic features (e.g., motion, action, and interaction),29

which are often essential to video understanding [1, 2, 6, 15, 16, 17, 18, 19].30

In contrast, we utilize the unique role of time in "unfolding" continuous real-world dynamics. We31

introduce a generalizable and data-efficient method, applicable to self-supervised video representation32

learning through instance discrimination including VICReg [13], BYOL [11], and SimCLR [10]. We33

view a video as a continuous and dynamic process and use the Taylor series expansion to express this34

continuous process as a weighted sum of its temporal derivatives at each frame. Based on this, we35

evaluate temporal derivatives of videos as hidden views apart from the original frames. Following a36

balanced alternating learning strategy, we train models to align representations for the original video37

and its temporal derivatives, such that the learned representations are steered to dynamic information38

in the images (section 1). Herein, we refer to this approach as Video Time-Differentiation for Instance39

Discrimination (ViDiDi). Our method demonstrates excellent generalizability and data efficacy on40

standard benchmarks including action recognition (section 1), video retrieval, and action detection.41

2 Approach42

2.1 A Thought Experiment on Physical Motion43

Our idea is analogous to and inspired by physical motion. Consider a 1-D toy example through a44

thought experiment. Imagine that we observe the free fall motion of a ball. The zeroth, first, and45

second derivatives are the position y(t), velocity v(t), and acceleration a(t), respectively. Given the46

physical law, the free fall motion is governed by y(t) = y0 + v0t − 1
2gt

2, including three latent47

factors: the initial position y0, the initial velocity v0, and the gravity g. Inferring the representation48

shared across these different views reveals gravity g, which is the defining feature of the dynamics.49

2.2 The ViDiDi Framework50

ViDiDi involves 1) creating multiple views from videos through augmentation and differentiation, 2)51

a balanced alternating learning strategy for pair-wise encoding of the different views into consistent52

representations, and 3) plugging this strategy into existing instance discrimination methods, including53

SimCLR [10], BYOL [11], and VICReg [13]. See fig. 2 for an overview.54

Creating multiple views from videos. i) Augmentation: Given a batch of videos, we sample55

each video by randomly cropping two clips. For each clip, we apply a random set of spatial56

augmentations such as random crops to create two batches of augmented clips, denoted as V and57

V ′. ii) Differentiation: We further conduct temporal differentiation on clips. For every augmented58

clip within either V or V ′, we evaluate its 0th, 1st, or 2nd temporal derivatives. We approximate59

temporal derivatives with finite forward differences. We make sure within one batch, the clips are all60

original frames or derivatives in the same order. Thus, we can now denote the three possible views61

for a batch of clips as V ,∂V∂t and ∂2V
∂t2 .62

Balanced alternating learning strategy. We design a paring schedule for learning representa-63

tions among different views. Specifically, we define seven pairs: (V ,V ′), (V , ∂V ′

∂t ), (∂V∂t ,V
′),64

(∂V∂t ,
∂V ′

∂t ), (∂V∂t ,
∂2V ′

∂t2 ), (∂
2V
∂t2 , ∂V ′

∂t ), (∂
2V
∂t2 , ∂2V ′

∂t2 ). (X,X ′) will be chosen from one of the seven65
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pairs above, and serve as inputs to the video encoder for learning using methods such as SimCLR.66

At each step, (X,X ′) is decided following alg. 1. Intuitively we choose this strategy to let learning67

of derivatives guide original frames. We empirically verify that this balanced alternating learning68

strategy plays an important role in the learning process in the ablation study in appendix C.69

Plug into existing instance discrimination methods. We plug ViDiDi into existing instance70

discrimination frameworks, namely ViDiDi-SimCLR, ViDiDi-BYOL, and ViDiDi-VIC. We describe71

ViDiDi-SimCLR below and refer to the appendix for details about other models. (X,X ′) is input72

to the video encoder f and then the projection head h, yielding paired embeddings (Z,Z ′) for73

evaluating the loss LNCE and training the networks. We discuss more details in appendix D.74

3 Experiments75

3.1 Experiment Setup76

We train and evaluate ViDiDi using human action video datasets. UCF101 [1] includes 13k videos77

from 101 classes. HMDB51 [2] contains 7k videos from 51 classes. In addition, we also use larger78

and more diverse datasets, K400 [6], aka Kinetics400, including 240k videos from 400 classes,79

and K200-40k, including 40k videos from 200 classes, as a subset of Kinetics 400, helps verify80

data-efficiency. In our experiments, we pretrain models with UCF101, K400, or K200-40k and then81

test them with UCF101 or HMDB51, using split 1 for both datasets. AVA contains 280K videos from82

60 action classes, each video is annotated with spatiotemporal localization of human actions. After83

pertaining on Kinetics or UCF101, we follow the evaluation protocol in previous works [3, 7, 8],84

including three types of downstream tasks. i) video retrieval on UCF101 and HMDB51, ii) action85

recognition, and iii) Action detection on AVA. More details are in appendix E.86

3.2 Results87

Table 1: Video retrieval using different methods.

Method Pretrained UCF101 HMDB51

1 5 10 1 5 10

SimCLR UCF101 29.6 41.4 49.3 17.5 34.7 45.1
ViDiDi-SimCLR UCF101 38.3 54.6 64.5 17.5 38.9 52.4

BYOL UCF101 32.2 43.0 50.5 13.8 31.1 44.4
ViDiDi-BYOL UCF101 43.7 60.4 70.1 19.3 44.1 56.6

VICReg UCF101 31.1 43.6 50.9 15.7 33.7 44.5
ViDiDi-VIC UCF101 47.6 60.9 68.6 19.7 40.5 55.1

VICReg K400 41.9 56.5 64.8 21.7 44.1 56.1
ViDiDi-VIC K400 51.2 64.6 72.6 25.0 47.2 60.9
ViDiDi-VIC K200-40k 49.5 63.4 71.0 24.7 45.4 56.0

Table 2: Video retrieval using different backbones backbones.

Net Method UCF101 HMDB51

1 5 10 1 5 10

R(2+1)D-18 VICReg 30.2 44.1 51.4 15.8 33.6 45.5
ViDiDi-VIC 47.2 62.6 69.8 20.6 44.1 57.7

MC3-18 VICReg 31.9 44.4 51.4 15.6 35.6 46.1
ViDiDi-VIC 44.1 59.8 68.0 20.3 40.3 53.4

S3D VICReg 29.2 41.9 49.2 12.8 29.8 40.9
ViDiDi-VIC 42.9 59.0 67.5 18.4 38.4 51.4

Table 3: Action detection using different methods.
Method VICReg ViDiDi-VIC SimCLR ViDiDi-SimCLR BYOL ViDiDi-BYOL

mAP 0.089 0.106 0.079 0.094 0.087 0.118

Superior performance, generalizability, and data efficiency. ViDiDi learns effective video88

representations with limited data. It can be plugged into multiple existing frameworks based on89

instance discrimination, using multiple encoder architectures, and improving the performance of90

various downstream tasks significantly as shown in fig. 1, table 3, table 1, and table 2. Besides, as91
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presented in table 5, table 4, pretrained on small dataset UCF101 or K200-40k, ViDiDi surpasses92

prior video representation learning works pretrained on large-scale K400 or K600 dataset. Further,93

ViDiDi-VIC pretrained on UCF101 or K200-40k outperforms its baseline method VICReg pretrained94

on K400, and also reaches compatible performance as ViDiDi-VIC pretrained on K400, as shown in95

table 1. In summary, ViDiDi is highly generalizable, and efficiently uncovers dynamic features using96

limited data. To gain insights into how ViDiDi works, we further analyze the features and attention97

of video encoders learned via ViDiDi.98
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Figure 3: Silhouette scores and t-SNE of top 5 classes from VICReg (left) and ViDiDi-VIC (right).

Better separation based on dynamic features. We use t-SNE [20] to visualize the representations99

from five classes of videos. As shown in fig. 3, representations learned with ViDiDi are better100

clustered by action classes. We also use Silhouette score [21] in table 7 to quantify the degree of101

separation. To study whether such separation results from capturing better dynamic features, we102

visualize the spatiotemporal attention using Saliency Tubes [22]. ViDiDi leads the model to attend to103

dynamic aspects of the video, such as motions and interactions, rather than static backgrounds as104

shown in fig. 4. These results align with our intuition that ViDiDi attends to dynamic parts and avoids105

learning static content as a learning shortcut, resulting in efficient utilization of data. We attach more106

visualization and analysis results in appendix F.107

Frames Attn of VIC Attn of ViDiDi-VIC

Figure 4: Spatiotemporal attention on UCF and HMDB51.

4 Conclusion108

In this paper, we introduce ViDiDi, a novel, data-efficient, and generalizable framework for self-109

supervised video representation. We utilize the Taylor series to unfold multiple views from a110

video through different orders of temporal derivatives and learn representations among these views111

following a balanced alternating learning strategy. ViDiDi steers the video encoder to dynamic112

features instead of static shortcuts, enhancing performance on common video representation learning113

tasks significantly. We identify multiple future directions as well, such as applying ViDiDi to other114

modalities, and exploring other vision tasks that require a more fine-grained understanding of video115

dynamics [23, 24]. Furthermore, a potentially fruitful direction is to use this approach to learn116

intuitive physics, better supporting agents to understand, predict, and interact with the physical world.117
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Malinowski, Viorica Pătrăaucean, Florent Altché, Michal Valko, Jean-Bastien Grill, Aäron van den Oord,244

and Andrew Zisserman. Broaden your views for self-supervised video learning. In ICCV, pages 1235–1245,245

2021.246

[52] Bruno Korbar, Du Tran, and Lorenzo Torresani. Cooperative learning of audio and video models from247

self-supervised synchronization. In NeurIPS, NeurIPS’18, page 7774–7785, Red Hook, NY, USA, 2018.248

Curran Associates Inc.249

[53] Tianhao Li and Limin Wang. Learning spatiotemporal features via video and text pair discrimination.250

ArXiv, abs/2001.05691, 2020.251

[54] A. Miech, J. Alayrac, L. Smaira, I. Laptev, J. Sivic, and A. Zisserman. End-to-end learning of visual252

representations from uncurated instructional videos. In CVPR, pages 9876–9886, Los Alamitos, CA, USA,253

jun 2020. IEEE Computer Society.254

[55] Peng Jin, Jinfa Huang, Fenglin Liu, Xian Wu, Shen Ge, Guoli Song, David A. Clifton, and Jie Chen.255

Expectation-maximization contrastive learning for compact video-and-language representations. In Alice H.256

Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, NeurIPS, 2022.257

[56] Rui Li, Yiheng Zhang, Zhaofan Qiu, Ting Yao, Dong Liu, and Tao Mei. Motion-focused contrastive258

learning of video representations*. ICCV, 2021.259

[57] Jingcheng Ni, Nana Zhou, Jie Qin, Qianrun Wu, Junqi Liu, Boxun Li, and Di Huang. Motion sensitive260

contrastive learning for self-supervised video representation. In ECCV, 2022.261

[58] X. Sui, S. Li, X. Geng, Y. Wu, X. Xu, Y. Liu, R. Goh, and H. Zhu. Craft: Cross-attentional flow transformer262

for robust optical flow. In CVPR, pages 17581–17590, Los Alamitos, CA, USA, jun 2022. IEEE Computer263

Society.264

7



[59] Kecheng Zheng, Yang Cao, Kai Zhu, Ruijing Zhao, and Zhengjun Zha. Famlp: A frequency-aware mlp-like265

architecture for domain generalization. ArXiv, abs/2203.12893, 2022.266

[60] Qinwei Xu, Ruipeng Zhang, Ya Zhang, Yanfeng Wang, and Qi Tian. A fourier-based framework for267

domain generalization. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),268

pages 14378–14387, 2021.269

[61] Ju-Hyeon Nam and Sang-Chul Lee. Frequency filtering for data augmentation in x-ray image classification.270

In 2021 IEEE International Conference on Image Processing (ICIP), pages 81–85, 2021.271

[62] Jinhyung Kim, Taeoh Kim, Minho Shim, Dongyoon Han, Dongyoon Wee, and Junmo Kim. Frequency272

selective augmentation for video representation learning. In AAAI, 2022.273

[63] Haoxin Li, Yuan Liu, Hanwang Zhang, and Boyang Li. Mitigating and evaluating static bias of action274

representations in the background and the foreground, 2023.275

[64] Lei Wang, Xiuyuan Yuan, Tom Gedeon, and Liang Zheng. Taylor videos for action recognition. In276

Forty-first International Conference on Machine Learning (ICML), 2024.277

[65] Dezhao Luo, Chang Liu, Yu Zhou, Dongbao Yang, Can Ma, Qixiang Ye, and Weiping Wang. Video cloze278

procedure for self-supervised spatio-temporal learning. In AAAI, 2020.279

[66] Tengda Han, Weidi Xie, and Andrew Zisserman. Video representation learning by dense predictive coding.280

2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pages 1483–1492,281

2019.282

[67] Chengxu Zhuang, Tianwei She, Alex Andonian, Max Sobol Mark, and Daniel Yamins. Unsupervised283

learning from video with deep neural embeddings. In CVPR, June 2020.284

[68] Hanwen Liang, Niamul Quader, Zhixiang Chi, Lizhe Chen, Peng Dai, Juwei Lu, and Yang Wang. Self-285

supervised spatiotemporal representation learning by exploiting video continuity. AAAI, 36(2):1564–1573,286

Jun. 2022.287

[69] Wei Li, Dezhao Luo, Bo Fang, Yu Zhou, and Weiping Wang. Video 3d sampling for self-supervised288

representation learning. ArXiv, abs/2107.03578, 2021.289

[70] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing290

internal covariate shift. In Francis Bach and David Blei, editors, International Conference on Machine291

Learning (ICML), volume 37 of Proceedings of Machine Learning Research, pages 448–456, Lille, France,292

07–09 Jul 2015. PMLR.293

[71] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.294

[72] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks, 2017.295

[73] Herbert E. Robbins. A stochastic approximation method. Annals of Mathematical Statistics, 22:400–407,296

1951.297

[74] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: towards real-time object298

detection with region proposal networks. CoRR, abs/1506.01497, 2015.299

[75] Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR, abs/1711.05101,300

2017.301

8



Appendix302

Algorithm 1: Differentiation at Each Batch
Data: epoch ≥ 0, (V , V ′)
Result: (X , X ′)
// Deterministic differentiation step

1 if epoch%4 = 0 then (X , X ′)← (
∂V

∂t
,
∂V ′

∂t
) ;

2 else if epoch%4 = 1 then (X , X ′)← (
∂V

∂t
, V ′) ;

3 else if epoch%4 = 2 then (X , X ′)← (V ,
∂V ′

∂t
) ;

4 else (X , X ′)← (V , V ′) ;
// Additional random differentiation step

5 ϵ← rand(0, 1);

6 if ϵ < 0.5 then (X , X ′)← (
∂X

∂t
,
∂X ′

∂t
) ;

A Relationship to Prior Arts303

Current methods for SSL of video representations mainly utilize instance discrimination, pretext304

tasks, multimodal learning, and other ones. In the following, we discuss these results, and highlight305

the advantages of our method over existing ones.306

Instance discrimination. It is first applied to images [10, 11, 12, 14] and then to videos [25, 26, 8, 3,307

27, 7, 28]. Given either images or videos as instances, models learn to discriminate different instances308

versus different "views" of the same instance, where the views are generated by spatio-temporal309

augmentations [25, 8]. The learning process is driven by contrastive learning [8], clustering [25], or310

teacher-student distillation [26]. Recognizing the rich dynamics in videos, some prior works have311

further modified the loss function to consider each video’s temporal attributes, such as play speed [27],312

time differences [8, 29, 9, 26], frame order [30], and motion diversity [9, 31]. Such modifications313

do not fully capture the essence of videos as reflections of continuous real-world dynamics, and314

are usually designed for a specific instance discrimination method. Apart from being applicable to315

different frameworks of instance discrimination, our approach, is new for its extraction of continuous316

dynamics by unfolding a video’s hidden views via Taylor expansion and temporal differentiation.317

Pretext tasks. Another category of methods involves creating learning tasks from videos. These318

tasks have many possible variations, such as identifying transformations applied to videos [32, 33],319

predicting the speed of videos [34, 35, 36, 37, 38], identifying incorrect ordering of frames or clips320

[39, 40, 41, 42], resorting them in order [43, 44], and solving space-time puzzles [45, 46]. The above321

methods usually require a complex combination of different tasks to learn general representations,322

while some recent works utilize large transformer backbones and learn by reconstructing masked323

areas [47] and further incorporating motion guidance into masking or reconstruction [48, 49]. These324

tasks provide non-trivial challenges for models to learn but are unlikely to reflect the natural processes325

through which humans and machines alike may learn and interpret dynamic visual information. In326

contrast, ViDiDi uses simple learning objectives and models how the physical world can be intuitively327

processed and understood without the need for complex tasks.328

Others. In addition, prior methods also learn to align videos with other modalities, such as audio329

tracks [50, 51, 52], video captions [50, 53, 54, 55], and optical flows [7, 51, 56, 57, 58]. Optical flow330

also models changes between frames and is related to our method. However, our method is easy to331

calculate and intuitively generalize to higher orders of motion and guides the learning of the original332

frames within the same encoder in contrast to an additional encoder for optical flow [7]. Besides,333

our temporal differentiation strategy may be flexibly adapted to other dynamic data such as audio334

while optical flow explicitly models the movements of pixels. Incidentally, our proposed balanced335

alternating learning strategy as a simple yet novel way of learning different types of data, may inspire336

multimodal learning. Some other existing works manipulate frequency content to create augmented337

views of images [59, 60, 61] or videos [62, 63, 56] to make models more robust to out-of-domain338
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Table 4: ViDiDi surpasses previous works on action recognition after finetuning.
Method Net Input Pretrained UCF HMDB

VCOP [44] R3D-18 16 × 112 UCF101 64.9 29.5
VCP [65] R3D-18 16 × 112 UCF101 66.0 31.5

3D-RotNet [33] R3D-18 16 × 112 K600 66.0 37.1
DPC [66] R3D-18 25 × 128 K400 68.2 34.5

VideoMoCo [25] R3D-18 32 × 112 K400 74.1 43.6
RTT [32] R3D-18 16 × 112 K600 79.3 49.8
VIE [67] R3D-18 16 × 112 K400 72.3 44.8

RSPNet [35] R3D-18 16 × 112 K400 74.3 41.8
VTHCL [27] R3D-18 8 × 224 K400 80.6 48.6
CPNet [68] R3D-18 16 × 112 K400 80.8 52.8
CPNet [68] R3D-18 16 × 112 UCF101 77.2 46.3
CACL [3] T+C3D 16 × 112 K400 77.5 -
CACL [3] T+R3D 16 × 112 UCF101 77.5 43.8
TCLR [9] R3D-18 16 × 112 UCF101 82.4 52.9

ViDiDi-BYOL R3D-18 16 × 112 UCF101 83.4 58.0
ViDiDi-VIC R3D-18 16 × 112 UCF101 82.3 53.4
ViDiDi-VIC R3D-18 16 × 112 K200-40k 82.7 54.2
ViDiDi-VIC R3D-18 16 × 112 K400 83.2 55.8

VCOP [44] R(2+1)D-18 16 × 112 UCF101 72.4 30.9
VCP [65] R(2+1)D-18 16 × 112 UCF101 66.3 32.2

PacePred [36] R(2+1)D-18 16 × 112 K400 77.1 36.6
VideoMoCo [25] R(2+1)D-18 32 × 112 K400 78.7 49.2

V3S [69] R(2+1)D-18 16 × 112 K400 79.2 40.4
RSPNet [35] R(2+1)D-18 16 × 112 K400 81.1 44.6

RTT [32] R(2+1)D-18 16 × 112 UCF101 81.6 46.4
CPNet [68] R(2+1)D-18 16 × 112 UCF101 81.8 51.2
CACL [3] T+R(2+1)D 16 × 112 UCF101 82.5 48.8

ViDiDi-VIC R(2+1)D-18 16 × 112 UCF101 83.0 54.9

data. Related to but unlike these works, we seek a fundamental and computationally efficient strategy339

to construct views from videos that reflect the continuous nature of real-world dynamics. Besides,340

apart from a new way of processing data, we propose an alternating learning strategy that is pivotal to341

boosting learning and has not been explored in previous works. Upon wrapping up our work, we342

noticed a concurrent work [64] recovers views from videos inspired by the Taylor series expansion,343

but from a complementary perspective, where derivatives in different orders are combined together.344

Besides, they utilize the augmented input in a supervised way, while ours focuses on a generalizable345

self-supervised framework including creating new views and a learning strategy.346

B Comparisons with Previous Works347

Results on both video retrieval (table 5) and action recognition (table 4) suggest that ViDiDi outper-348

forms prior models. Compared to other models trained on Kinetics, ViDiDi-VIC achieves the highest349

accuracy using K400, while also reaching compatible performance using UCF101 or K200-40k350

subset for pretraining. Besides, ViDiDi-BYOL achieves the best performance in action recognition351

on HMDB51, by a significant margin of 5.1% over the recent TCLR method [9]. Importantly, ViDiDi352

supports efficient use of data. Its performance gain is most significant in the scenario of training with353

smaller datasets. We discuss this with more details in the following section.354

C Ablation Study355

ViDiDi involves multiple methodological choices, including 1) the order of derivatives, 2) how to356

pair different orders of derivatives as the input to two-stream video encoders, and 3) how to prescribe357

the learning schedule over different pairings. We perform ablation studies to test each design choice.358

For the order of derivatives, we consider up to the 2nd derivative. For pairing, we consider pairing359

derivatives in the same order (1st vs. 1st, 2nd vs. 2nd, etc.) or between different orders (1st vs. 0th,360

1st vs. 2nd, etc.), respectively. For scheduling, we consider either random vs. scheduled selection of361

input pairs. With random selection, temporal differentiation is essentially treated as additional data362

augmentation. In contrast, the scheduled selection (alg. 1) aims to provide a balanced and structured363

way for the model to learn from various orders of temporal derivatives, where higher order derivatives364

are intuitively used as guidance of learning the original frames.365

10



Table 5: ViDiDi surpasses previous SSL models on video retrieval. T + C3D means training with
an additional transformer.

Method Net Pretrained UCF101 HMDB51

1 5 10 1 5 10

SpeedNet [34] S3D-G K400 13.0 28.1 37.5 - - -
RTT [32] R3D-18 K600 26.1 48.5 59.1 - - -

RSPNet [35] R3D-18 K400 41.1 59.4 68.4 - - -
CoCLR [7] S3D K400 46.3 62.8 69.5 20.6 43.0 54.0
CACL [3] T+C3D K400 44.2 63.1 71.9 - - -

ViDiDi-VIC R3D-18 K200-40k 49.5 63.4 71.0 24.7 45.4 56.0
ViDiDi-VIC R3D-18 K400 51.2 64.6 72.6 25.0 47.2 60.9

VCOP [44] R3D-18 UCF101 14.1 30.3 40.0 7.6 22.9 34.4
VCP [65] R3D-18 UCF101 18.6 33.6 42.5 7.6 24.4 33.6

PacePred [36] R3D-18 UCF101 23.8 38.1 46.4 9.6 26.9 41.1
PRP [37] R3D-18 UCF101 22.8 38.5 46.7 8.2 25.8 38.5
V3S [69] R3D-18 UCF101 28.3 43.7 51.3 10.8 30.6 42.3
CACL [3] T+R3D UCF101 41.1 59.2 67.3 17.6 36.7 48.4

ViDiDi-VIC R3D-18 UCF101 47.6 60.9 68.6 19.7 40.5 55.1

As shown in table 6, results demonstrate a progressive improvement in the model’s performance in366

video retrieval, given a higher order of derivatives (from the 1st to 2nd order), given mixed pairing,367

and given scheduled selection of input pairs. Therefore, temporal differentiation is not merely another368

data augmentation trick. Invariance to different orders of temporal derivatives is a valuable principle369

for SSL of video representations that lead to better performance in downstream tasks. To leverage370

this principle, it is beneficial to design mixed pairing and prescribe a learning schedule that provides371

a balanced and holistic view of different orders of temporal dynamics inherent to videos. Details372

about how we design the groups of models in table 6 are summarized below:373

• Base: The direct extension of VICReg.374

• +Random 1st: Add 1st order derivatives as random augmentation.375

• +Random 1st & 2nd: Add 1st and 2nd order derivatives as random augmentation.376

• Reverse ViDiDi-VIC: Reverse the order of pair alternation by epoch in ViDiDi, i.e., line377

1-9 in alg. 1.378

• +Schedule 1st: Alternate pairs across epochs in the order (∂V∂t ,
∂V ′

∂t ) → (V ,V ′) →379

(∂V∂t ,
∂V ′

∂t )→ . . . .380

• +Schedule 1st & Mix: switch pairs by epoch in the order (∂V∂t ,
∂V ′

∂t ) → (∂V∂t ,V
′) →381

(V ,V ′)→ (∂V∂t ,
∂V ′

∂t )→ . . . .382

• +Schedule 1st & 2nd and +Schedule 1st & 2nd & Mix: Build upon +Schedule 1st and383

+Schedule 1st & Mix accordingly with random differentiation at each batch to utilize 2nd384

order derivatives.385

Table 6: Ablation Study. Video retrieval performance on UCF101 with different design choices.

Method UCF101

1 5 10

Base (VICReg) 31.1 43.6 50.9

+Random 1st 35.2 47.7 56.1
+Random 1st & 2nd 36.2 48.6 55.8
Reverse ViDiDi-VIC 39.1 54.7 62.9

+Schedule 1st 37.1 50.3 58.2
+Schedule 1st & Mix 39.3 53.2 60.9

+Schedule 1st & 2nd 40.7 56.5 64.0
+Schedule 1st & 2nd & Mix 43.0 59.2 66.6

ViDiDi-VIC 47.6 60.9 68.6
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D Details of SimCLR, BYOL and VICReg386

In this section, we provide more details on how we plug ViDiDi into different instance discrimination387

frameworks: SimCLR [10], BYOL [11], VICReg [13].388
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Figure 5: The SimCLR, BYOL, VICReg details.

D.1 Notation389

The summary of the SimCLR, BYOL, and VICReg are shown in fig. 5. We begin by introducing the390

notations. (X,X ′) represents two batches of input to the discrimination framework, both in the shape391

RB×C×T×h×w, containing B clips (or derivatives) of length T , and size h×w. (Z,Z ′) denotes two392

batches of latents encoded from (X,X ′), in the shape of RB×D, containing latents of dimension D393

for B clips. Z = [z1, . . . , zB ]
T and Z ′ = [z′1, . . . , z

′
B ]

T , expressed as collects of column vectors. f394

represents the encoder, which is a 3D convolutional neural network in our experiments. h serves as395

the projector, either shrinking or expanding output dimensionality. g denotes the predictor. h and396

g are both realized as multi-layer perceptrons (MLPs). We also introduce the similarity function:397

si,j = z⊤
i z′

j/
(
∥zi∥

∥∥z′
j

∥∥).398

D.2 SimCLR399

SimCLR [10] is a contrastive learning framework, whose key idea is to contrast dissimilar instances400

in the latent space. As shown in fig. 5, SimCLR uses a shared encoder f to process (X,X ′), and then401

project the output with an MLP projection head h into (Z,Z ′). Z = h(f(X)), Z ′ = h(f(X ′)). The402

InfoNCE loss is defined as:403

LNCE =
1

2B

B∑
i=1

log
exp(si,i/α)∑B
j=1 exp(si,j/α)

+
1

2B

B∑
i=1

log
exp(si,i/α)∑B
j=1 exp(sj,i/α)

(1)

D.3 BYOL404

BYOL [11] is a teacher-student approach. It has an online encoder fθ, an online projector hθ, and a405

predictor gθ, learned via gradient descent. BYOL uses stop gradient for a target encoder fξ and a406

target projector hξ, which are updated only by exponential moving average of the online ones ξ ←407

τξ + (1− τ)θ after each training step, where τ ∈ [0, 1] is the target decay rate. Z = gθ(hθ(fθ(X))),408

Z ′ = sg(hξ(fξ(X
′))), here sg means stop gradient. The loss is defined as:409

LBY OL =
1

2B

B∑
i=1

(2− 2si,j) (2)
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D.4 VICReg410

VICReg [13] learns to discriminate different instances using direct variance, invariance, and co-411

variance regularization in the latent space. It also has a shared encoder f and a shared projector h.412

Z = h(f(X)), Z ′ = h(f(X ′)). The invariance term is defined as:413

s (Z,Z ′) =
1

B

B∑
i=1

∥zi − z′i∥
2
2 (3)

The variance term constraints variance along each dimension to be at least γ, γ is a constant:414

v(Z) =
1

D

D∑
j=1

max
(
0, γ − S

(
zj , ϵ

))
(4)

where S is the regularized standard deviation S(x, ϵ) =
√
Var(x) + ϵ, ϵ is a small constant, zj is the415

jth row vector of ZT , containing the value at jth dimension for all latents in Z.416

The covariance term constraints covariance of different dimensions to be 0:417

c(Z) =
1

D

∑
i ̸=j

[C(Z)]2i,j (5)

C(Z) = 1
B−1

∑B
i=1 (zi − z̄) (zi − z̄)

T , z̄ = 1
B

∑B
i=1 zi.418

The total loss is a weighted sum of invariance, variance, and covariance terms:419

LV IC =λs (Z,Z ′) + µ [v(Z) + v (Z ′)]

+ ν [c(Z) + c (Z ′)]
(6)

E Implementation Details420

E.1 Augmentation Details421

We apply clipwise spatial augmentations as introduced in [8]. All the augmentations are applied422

before differentiation. For example, for a clip sampled from one video, we do a random crop on423

the first frame and crop all the other frames in the clip to the same area as the first frame. If a424

second clip is sampled, we do random crop on its first frame and crop the other frames to the same425

area. The original frames are extracted and resized to have a shorter edge of 150 pixels. The list of426

augmentations is as follows:427

• Random Horizontal Flip, with probability 0.5;428

• Random Sized Crop, with area scale uniformly sampled in the range (0.08, 1), aspect ratio429

in ( 34 ,
4
3 ), BILINEAR Interpolation, and output size 112× 112;430

• Gaussian Blur, with probability 0.5, kernal size (3, 3), sigma range (0.1, 2.0);431

• Color Jitter, with probability 0.8, brightness 0.2, contrast 0.2, saturation 0.2, hue 0.05;432

• Random Gray, with probability 0.5;433

• Normalize, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225].434

E.2 Network Architecture435

The output feature dimension for R3D-18, R(2+1)D-18, and MC3-18 is 512, while 1024 for S3D. In436

terms of the projector architecture, we use a 2-layer MLP in BYOL, and a 3-layer MLP in SimCLR437

and VICReg, as proposed by [10, 11, 13]. The output dimension of the projector is dBY OL =438

256, dSimCLR = 128, dV ICReg = 2048, and the hidden dimension is dBY OL = 4096, dSimCLR =439

2048, dV ICReg = 2048. The predictor for BYOL is a 2-layer MLP, with output dimension d = 256,440

and hidden dimension d = 4096. Batch normalization [70] and Rectified Linear Unit (ReLU) are441

applied for all hidden layers of projectors and predictors.442
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E.3 Pretraining443

UCF101, K400, or K200-40k is used as the pertaining dataset. We train the model for 400 epochs on444

UCF101 or K200-40k, and K400. We set T = 8, and select 1 frame every 3 frames. The learning445

rate follows a cosine decay schedule [71] for all frameworks. The learning rate at kth iteration is446

η · 0.5
[
cos

(
k
Kπ

)
+ 1

]
, where K is the maximum number of iterations and η is the base learning rate.447

A 10-epoch warmup is only employed for BYOL. Weight decay is set as 1e− 6. We apply cosine-448

annealing of the momentum for BYOL as proposed in [11]: τ = 1− (1− τbase ) · (cos( k
Kπ) + 1)/2,449

and set τbase = 0.99. The temperature for SimCLR is α = 0.1, and hyper-parameters for VICReg450

are λ = 1.0, µ = 1.0, ν = 0.05. We train all models with the LARS optimizer [72] utilizing a batch451

size of 64 for UCF101 or K200-40k, batch size of 256 for K400, and a base learning rate η = 1.2.452

The pretraining can be conducted on 8 GPUs, each having at least 12 GB of memory.453

E.4 Video Retrieval454

For the pretrained model without any fine-tuning, we test its performance on video retrieval using455

nearest-neighborhood in the feature space [3, 7]. Specifically, given a video, we uniformly sample 10456

clips of length 16, apply random crop and normalization for data augmentation, encode each clip457

using the pretrained video encoder, and average the resulting representations into a single feature458

vector for encoding the given video. Through a nearest-neighborhood model that fits the training set,459

we use each video in the testing set as a query and retrieve the top-k (k = 1, 5, 10) closest videos in460

the training set. The retrieval is successful if at least one out of the k retrieved training videos is from461

the same class as the query video. We report the top-k retrieval recall on UCF101 and HMDB51. The462

retrieval can be conducted on 1 GPU, having at least 24 GB of memory.463

E.5 Action Recognition464

We also fine-tune the pretrained model to classify human actions. For this purpose, we add a linear465

classification head to the pretrained model, and fine-tune it end-to-end on UCF101 or HMDB51466

for 100 epochs (see more details in the supplementary material). At training, we sample clips of467

length 16. We use the SGD optimizer [73] with a momentum value of 0.9. The model is tuned468

for 100 epochs. The batch size is set at 128, with an initial learning rate of 0.2 which is scaled by469
1
10 at the 60th and 80th epochs. We use a weight decay of 1e − 4. Furthermore, a dropout rate of470

0.5 is applied. After fine-tuning, we sample 10 clips of length 16 from each testing video, apply471

random crop and normalization, feed the results as the input to the fine-tuned model, and average their472

resulting predictions for the final classification of the video. We report the top-1 action recognition473

accuracy on UCF101 and HMDB51. The finetuning can be conducted on 8 GPUs, each having at474

least 12 GB of memory. The testing can be conducted on 1 GPU.475

E.6 Action Detection476

We mainly follow the CVRL [8] testing pipeline, taking our pre-trained R3D-18 as the backbone and477

casting a Faster-RCNN [74] on top of it. To fit the time-sequential nature of the input, we extract478

region-of-interest (RoI) features using a 3D RoIAlign on the output from the final convolutional479

block. These features are then processed through temporal average pooling and spatial max pooling.480

The resulting feature is fed into a sigmoid-based classifier for multi-label prediction. We pretrain our481

R3D-18 with three different methods(VIC/BYOL/SimCLR) and two different inputs (with/without482

derivative). We use an AdamW[75] optimizer with a 0.01 learning rate, then shrink the learning rate483

to half after epoch 5. The dropout rate for Faster-RCNN is 0.5. We perform 20 epochs for our six484

pre-trained weights and run an evaluation after each epoch. We report the epoch with the highest485

mAP. Our clip length is eight frames with an interval of four frames. The finetuning can be conducted486

on 2 GPUs, each having at least 48 GB of memory. The testing can be conducted on 1 GPU.487

F Auxilary Results488

F.1 Silhouette Score489

Apart from visualization of clustering in the latent space, we also quantify the clustering using490

Silhouette Score as illustrated in 7.491
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Table 7: Silhouette Score for Base and ViDiDi with 3, 5, . . . , 101 classes. ViDiDi improves the
Score, showing better clustering in the latent space.

Method Silhouette Score

3 5 10 15 20 101

SimCLR 0.136 0.081 0.048 0.034 0.022 -0.026
ViDiDi-SimCLR 0.210 0.132 0.096 0.078 0.058 0.003

BYOL 0.038 -0.086 -0.094 0.091 -0.080 -0.186
ViDiDi-BYOL 0.185 0.230 0.128 0.107 0.070 0.004

VICReg 0.110 0.069 0.044 0.036 0.017 -0.038
ViDiDi-VIC 0.235 0.232 0.150 0.138 0.098 0.014

(a) VIDReg (left) and ViDiDi-VIC (right).
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(b) BYOL (left) and ViDiDi-BYOL (right).
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(c) SimCLR (left) and ViDiDi-SimCLR (right).
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Figure 6: Silhouette scores and t-SNE plots of top 5 classes in UCF101 train.

F.2 Clustering of Latent Space492

We provide more visualization of the clustering phenomenon for VICReg, BYOL, and SimCLR, with493

or without the ViDiDi framework; on UCF101 train dataset or test dataset; utilizing 5 or 10 classes494

of videos. Here, for each model, we choose the top 5 or 10 classes of videos that are best retrieved495

during the video retrieval experiments. The results are shown in fig. 6, fig. 7, fig. 8, and fig. 9. ViDiDi496

provides consistently better clustering in the latent space for both train data and test data.497
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(a) VIDReg (left) and ViDiDi-VIC (right).
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(b) BYOL (left) and ViDiDi-BYOL (right).
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(c) SimCLR (left) and ViDiDi-SimCLR (right).
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Figure 7: Silhouette scores and t-SNE plots of top 10 classes in UCF101 train.

(a) VIDReg (left) and ViDiDi-VIC (right).
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(b) BYOL (left) and ViDiDi-BYOL (right).
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(c) SimCLR (left) and ViDiDi-SimCLR (right).
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Figure 8: Silhouette scores and t-SNE plots of top 5 classes in UCF101 test.
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(a) VIDReg (left) and ViDiDi-VIC (right).
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(b) BYOL (left) and ViDiDi-BYOL (right).
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(c) SimCLR (left) and ViDiDi-SimCLR (right).

-0.1 0 0.2 0.4 0.6 0.8 1
Silhouette Coefficients

Cl
us

te
r i

nd
ex

es

0
1
2
3
4
5
6
7
8
9 Silhouette Plot

1st Feature Space

2n
d 

fe
at

ur
e 

Sp
ac

e

2D Representations

-0.1 0 0.2 0.4 0.6 0.8 1
Silhouette Coefficients

Cl
us

te
r i

nd
ex

es

0
1
2
3
4
5
6
7
8
9 Silhouette Plot

1st Feature Space

2n
d 

fe
at

ur
e 

Sp
ac

e

2D Representations

Figure 9: Silhouette scores and t-SNE plots of top 10 classes in UCF101 test.
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Frames Attn of VIC Attn of ViDiDi-VIC

Figure 10: More spatiotemporal attention for VICReg and ViDiDi-VIC. Left: Original frames.
Middle: Attention from VIC. Right: Attention from ViDiDi-VIC.

F.3 Spatio-temporal Attention498

We provide more visualization of the attention for VICReg, BYOL, and SimCLR, with or without499

the ViDiDi framework; on UCF101 dataset or HMDB51 dataset. The results are presented in fig. 10,500

fig. 11, fig. 12, fig. 13, and fig. 14.501

18



Frames Attn of BYOL Attn of ViDiDi-BYOL

Figure 11: Spatiotemporal attention on UCF101. Left: Original frames. Middle: Attention from
BYOL. Right: Attention from ViDiDi-BYOL.
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Frames Attn of BYOL Attn of ViDiDi-BYOL

Figure 12: Spatiotemporal attention on HMDB51. Left: Original frames. Middle: Attention from
BYOL. Right: Attention from ViDiDi-BYOL.
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Frames Attn of SimCLR ViDiDi-SimCLR

Figure 13: Spatiotemporal attention on UCF101. Left: Original frames. Middle: Attention from
SimCLR. Right: Attention from ViDiDi-SimCLR.
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Frames Attn of SimCLR ViDiDi-SimCLR

Figure 14: Spatiotemporal attention on HMDB51. Left: Original frames. Middle: Attention from
SimCLR. Right: Attention from ViDiDi-SimCLR.
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