
Assisted Teleoperation
for Scalable Robot Data Collection

Shivin Dass∗1, Karl Pertsch∗1,
Hejia Zhang1, Youngwoon Lee1, Joseph J. Lim2, Stefanos Nikolaidis1

1University of Southern California, 2KAIST

Abstract: Large-scale robotic datasets are essential for effective robot pre-training.
However, collecting large-scale robotic data is expensive and slow as each operator
can control only a single robot at a time. To make this costly data collection process
efficient and scalable, we propose a novel assisted teleoperation system, which
automates part of the demonstration collection process using a learned assistive
policy. The assistive policy autonomously executes repetitive behaviors in data
collection and asks for human input only when it is uncertain about which subtask
or behavior to execute. We conduct teleoperation user studies both with a real robot
and a simulated robot fleet and demonstrate that our assisted teleoperation system
reduces human operators’ mental load while improving data collection efficiency.
Further, it enables a single operator to control multiple robots in parallel, which is
a first step towards scalable robotic data collection.2.
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1 Introduction

Recently, many works have shown impressive robot learning results from diverse, human-collected
demonstration datasets [1, 2, 3, 4]. They underline the importance of scalable robot data collection
for robot pre-training. Yet, the current standard approach for demonstration collection, human
teleoperation, is tedious and costly: tasks need to be demonstrated repeatedly and each operator can
control only a single robot at a time. Research in teleoperation has focused on exploring different
interfaces, such as VR controllers [5] and smart phones [1], but does not address the aforementioned
bottlenecks to scaling data collection. Thus, current teleoperation systems are badly equipped to
deliver the scalability required by modern robot learning pipelines.

Our goal is to improve the scalability of robotic data collection by providing assistance to the human
operator during teleoperation. We take inspiration from other fields of machine learning, such
as semantic segmentation, where costly labeling processes have been substantially accelerated by
providing human annotators with learned assistance systems, e.g., in the form of rough segmentation
estimates, that drastically reduce the labeling burden [6, 7]. Similarly, we propose to train assistive
policies, that can automate control of repeatedly demonstrated behaviors and ask for user input only
when facing a novel situation or when unsure which behavior to execute. Thereby, we aim to reduce
the mental load of the human operator and enable scalable teleoperation by allowing a single operator
to perform data collection with multiple robots in parallel.

In order to build an assistive system for robotic data collection, we need to solve two key challenges:
(1) we need to learn assistive policies from diverse human-collected data, which is known to be chal-
lenging [8], and (2) we need to learn when to ask for operator input while keeping such interventions
at a minimum. To address these challenges, we propose to use a hierarchical stochastic policy that
can learn effectively from diverse human data. Further, we use the policy’s stochastic predictions to
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estimate its uncertainty about how to act in the current scene and which task to pursue. Then, we use
this estimate to elicit operator input only if the assistive policy is uncertain about how to proceed.

Fig 1. Teaser
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Figure 1: Policy-assisted teleoperation enables
large-scale data collection by minimizing human
operator inputs and mental efforts with an assistive
policy, which autonomously performs repetitive
subtasks. This allows a human operator to simulta-
neously manage multiple robots.

The main contribution of this paper is a novel as-
sisted teleoperation system, which enables scal-
able robotic data collection using a hierarchical
assistive policy. We evaluate the effectiveness of
our approach in a user study in which operators
collect datasets of diverse kitchen-inspired ma-
nipulation tasks with a real robot. We find that
our proposed assisted teleoperation approach re-
duces operators’ mental load and improves their
demonstration throughput. We further demon-
strate that our approach allows a single operator
to control data collection with multiple robots
simultaneously in a simulated manipulation en-
vironment – a first step towards more scalable
robotic data collection.

2 Related Work

Teleoperation is the most popular approach for collecting robot demonstrations [5, 1, 9, 4, 10]. Yet,
none of these works explores active assistance of the human operator during teleoperation. The
idea of sharing efforts between humans and robots when solving tasks has a rich history in the
human-robot-interaction (HRI) community [11, 12, 13, 14, 15, 16, 17, 18], but approaches often
require a pre-defined set of goals to infer the operator’s intent. In contrast, more recent approaches
explore joint human-robot data collection without such pre-defined goals [19, 20, 21, 22, 23, 24], but
they only focus on the single-task case. We instead propose an approach for scalable collection of
diverse, multi-task datasets. For a more detailed overview of related works, see Section A.

3 Approach

An assistive policy π(a|s) produces actions a, e.g., robot end-effector displacements, given states s,
e.g., raw RGB images. To enable scalable data collection of a dataset D, the policy should control
the robot and minimize required human inputs, which allows the human operator to divert attention
away from the robot over contiguous intervals, e.g., to attend to other robotic agents collecting data
in parallel. To train the assistive policy π we assume access to a pre-collected dataset Dpre of diverse
agent experience, e.g., from scripted policies, previously collected data on different tasks or human
play [25]. Crucially, we explicitly require our approach to handle scenarios in which the newly
collected dataset D contains behaviors that are not present in Dpre. Thus, it is not possible to fully
automate data collection given the pre-training dataset. Instead, the system needs to request human
input for unseen behaviors while providing assistance for known behaviors.

Learning Assistive Policies from Multi-Modal Data. We build on prior work in imitation of long-
horizon, multi-task human data [26]. We propose to use a hierarchical policy with a subgoal predictor
p(sg|s, z) and a low-level subgoal reaching policy πLL(at|st, sg) (see Figure 5). We condition the
subgoal predictor on a stochastic latent variable z to allow prediction of the full distribution of
possible subgoals. We train the policy with behavior cloning, for details see appendix, Section B.

Deciding When to Request User Input. Intuitively, the policy should request help when it is
uncertain about what action to take next. This can occur in two scenarios: (1) the policy faces a
situation that is not present in the training data, so it does not know which action to take, or (2) the
policy faces a seen situation, but the training trajectories contain multiple possible continuations and
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Figure 2: Visualization of our assistive teleoperation policy on a task from the real-robot user study.
The policy autonomously executes familiar behaviors, but asks for user input in frames (2) and (4)
when the task uncertainty surpasses the threshold ω to determine where to place bowl and green
block (white vs. yellow arrow). Further, the policy asks for user input in frame (3) when the policy
uncertainty estimate surpasses its threshold γ for the unseen transition between placing the bowl and
picking up the green block. For qualitative video results, see https://youtu.be/TRW6yrG8k-A.

the policy is not sure which one to pick. The latter scenario commonly occurs during the collection
of diverse datasets, since trajectories for different tasks often intersect.

Our hierarchical model allows us to separately estimate both classes of uncertainty. To estimate
whether a given state is unseen, we train an ensemble of K low-level reaching policies: unseen states
will have high disagreement D(a(1), . . . , a(K)) between the actions predicted by these ensemble
policies. To estimate the policy’s certainty about the task we sample from the distribution of subgoals
produced by the subgoal predictor and compute the inter-subgoal variance V ar(s

(1)
g , . . . , s

(N)
g ).

We leverage both uncertainty estimates to decide on whether the assistive policy should continue
controlling the robot or whether it should stop and ask for human input. We found a simple
thresholding scheme sufficient, with threshold parameters γ, ω for the ensemble disagreement and
subgoal variance, respectively (see Figure 7).

4 Experiments

Fig 4. Real robot setup
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Figure 3: User study setup. (left) A Kinova Jaco arm, front-
view and in-hand cameras, and objects for kitchen-inspired
tasks are placed on the workspace. (right) A human operator
can watch a monitor, which shows either the camera inputs
or a side task. The operator uses a gamepad to control the
robot, and uses a keyboard to solve the side task.

To evaluate the effectiveness of our
assisted teleoperation, we conduct a
user study (N = 16) in which users
teleoperate a Kinova Jaco 2 robot arm
to collect diverse robot manipulation
demonstrations for kitchen-inspired
long-horizon tasks, e.g., “place in-
gredients in bowl” and “place bowl
in oven” (see Figure 3). Users tele-
operate the robot’s end-effector via
joystick and buttons on a standard
gamepad controller. The users are also
asked to solve simple side tasks dur-
ing teleoperation to measure their ability to divert attention and conduct other tasks. To train our
assistive policy, we collect a pre-training dataset of 120 demonstrations. Crucially, during the user
study the operators need to collect unseen long-horizon tasks. We compare our approach to (1) teleop-
eration without assistance, the current standard approach to collection robot demonstration data and
(2) ThriftyDAgger [23], the closest prior work to ours for interactive human-robot data collection.
ThriftyDAgger is designed to minimize human inputs during single-task demonstration collection by
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requesting human input only in critical states where a learned value function estimates low probability
for reaching the goal.

Table 1: Average number of completed side tasks and teleop-
eration time per demonstration during the real-robot teleop-
eration user study.

Approach Avg. Num. of completed side tasks Avg. teleop time (seconds)

Unassisted 0.25 (±0.66) 109.5 (±31.4)
ThriftyDAgger 13.06 (±9.63) 105.9 (± 29.5)

Ours 15.88 (±7.11) 85.0 (±18.2)

We compare the teleoperation speed
and number of completed side tasks
in Table 1. Only the approaches with
assistance allow the operator to divert
their attention towards solving side
tasks. Additionally, we find that our
method enables the most effective tele-
operation, since it requests user inputs at appropriate points in time (see Figure 2. We also measure
users perceived mental load via the NASA TLX survey [27, 28] and their perception of the robot’s
intelligence, their satisfaction and trust in the system via a custom survey [16], which we administer
after every teleoperation session. Study participants perceived the robot with our approach to be
significantly more intelligent and trustworthy than with the comparison approaches, they were more
satisfied with their collaboration and showed lower mental workload (for a detailed statistical analysis
of the survey results, see Section C).

7. Multi-robot setup
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Figure 4: Setup for our multi-robot tele-
operation study in simulation.

A key factor in the subjective differences between the two
approaches is their ability to elicit user feedback at appro-
priate times: when the robot is at a decision point between
two possible task continuations (see Figure 2, frames (2)
and (4)). ThriftyDAgger’s risk-based objective is not sen-
sitive to such decision points and thus it rarely asks for
user feedback. It instead executes one of the possible sub-
tasks at random. In our study we found that this lead to
erroneous skill executions in 48 % of cases. Such errors
require tedious correction by the user, deteriorating their
trust in the system and their teleoperation efficiency. In
contrast, our approach leverages its estimate of task un-
certainty (see Figure 2) to correctly elicit user feedback in
82 % of cases, leading to higher perceived levels of trust
and reduced mental load.

Scaling Data Collection to Multiple Robots. An important application of our approach is multi-
robot teleoperation, in which a single operator performs data collection with multiple robots in
parallel and periodically attends to different robots. To test this, we conduct a teleoperation study (N
= 10) with multiple simulated robots in the realistic physics simulator [10] (see Figure 4). A human
user is asked to collect demonstrations for a block stacking task with multiple robots in parallel
via the same gamepad interface used in the real robot study. The user can switch control between
different robots with a button press. We measure the total number of collected demonstrations across
the robot fleet in a fixed time frame of T = 4 minutes.

We show that our approach enables strong scal-
ing of data collection throughput (see right). As
expected, the scaling is not linearly proportional,
i.e., four robots do not lead to four times more
demonstrations collected. This is because simul-
taneous teleoperation of a larger fleet requires
more context switches between the robots, re-
ducing the effective teleoperation time. We also
perform two ablations of our method in the 4-robot setup: (1) ours w/o hierarchy, which trains
an ensemble of flat stochastic policies π(a|s), and (2) ours w/o uncertainty, which removes the
uncertainty-based requesting of user input. Both ablations perform worse than our approach, indicat-
ing the importance of the introduced policy architecture and user feedback request mechanism.
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Figure 5: Our assistive policy is hierarchical: a high-level subgoal predictor p(sg|s, z) and a low-level
subgoal-reaching policy πLL(a|s, sg). To decide when to follow the assistive policy, we measure
uncertainty of both high-level (subgoal predictor) and low-level (subgoal-reaching policy) decisions.
The task uncertainty is estimated using the subgoal predictor’s variance, and the policy uncertainty is
estimated as a disagreement among an ensemble of subgoal-reaching policies.

A Extended Related Work

Robot Teleoperation. Demonstrations have played a key role in robot learning for many decades [29,
30, 31], thus many approaches have been explored for collecting such demonstrations. While initially
kinesthetic teaching was common [32] in which a human operator directly moves the robot, more
recently teleoperation has become the norm [5, 1, 9, 4, 10], since separating the human operator and
the robot allows for more comfortable human control inputs and is crucial for training policies with
image-based inputs. Research into teleoperation systems has focused on exploring different interfaces
like VR headsets [5, 4], joysticks [2] and smartphones [1]. Yet, none of these works explores active
assistance of the human operator during teleoperation. Others have investigated controlling high-DoF
manipulators via low-DoF interfaces through learned embedding spaces [33, 34] to allow people with
disabilities to control robotic arms. In contrast, our approach trains assistive policies that automate
part of the teleoperation process with the goal of enabling more scalable data collection.

Shared Autonomy. The idea of sharing efforts between humans and robots when solving tasks has a
rich history in the human-robot-interaction (HRI) community [11, 12, 13, 14, 15, 16, 17, 18, 35, 36].
Approaches for such shared autonomy typically rely on a pre-defined set of goals and aim to infer the
intent of the human operator to optimally assist them. Crucially, in the context of data collection,
we cannot assume that all goals are known a priori, since a core goal of data collection is to collect
previously unseen behaviors. Thus, instead of inferring the operator’s intent over a fixed goal set, we
leverage the model’s estimate over its own uncertainty to determine when to assist and when to rely
on operator input.

Interactive Human Robot Learning. In the field of robot learning, many approaches have explored
leveraging human input in the learning loop and focused on different ways to decide when to
leverage such input. Based on the DAgger algorithm [37], works have investigated having the
human themselves decide when to intervene [19], using ensemble-based support estimates [20],
using discrepancies between model output and human inputs [21, 22] or risk estimates based on
predicted future returns [23]. Yet, all these approaches focus on training a policy for a single task,
not on collecting a diverse dataset. Thus, they are not designed to learn from multi-modal datasets
or estimate uncertainty about the desired task. We show in our user study that these are crucial for
enabling scalable robot data collection.

Assisted Robot Data Collection. Clever et al. [24] aims to assist in robot demonstration collection
via a learned policy. They visualize the projected trajectory of the assistive policy to enable the human
operator to intervene if necessary. However, they focus on collection of single-task, short-horizon
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Figure 7: Our approach asks for human inputs when the assistive policy is uncertain about which
subtask or action to take. If both the task uncertainty and policy uncertainty are lower than their
thresholds, our assistive policy can reliably perform a subtask, reducing the workload of the human
operator.

demonstrations and require the operator to constantly monitor the robot to decide when to intervene.
In contrast, our system can collect diverse, multi-task datasets and learn when to ask the user for
input, enabling more scalable data collection, e.g., with multiple robots in parallel.

B Policy Training Objective

Fig 7. Detailed model training figure
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Figure 6: Our hierarchical assistive policy is
trained using a pre-collected dataset Dpre. From
a sampled trajectory (s1, a1, . . . , aH−1, sH) of
length H , a subgoal predictor p(sg|s1, z) is trained
as a conditional VAE to cover a multi-modal sub-
goal distribution, where sg = sH . Then, an ensem-
ble of subgoal-reaching policies π(k)

LL(at|st, sg) are
trained to predict the ground truth actions.

We train the subgoal predictor as a conditional
variational auto-encoder over subgoals [38]:
given a randomly sampled starting state st from
the pre-training dataset and a subgoal state
st+H = sg H steps later in the trajectory, we
use a learned inference network q(z|st, sg) to
encode st and sg into a latent variable z. We
then use the subgoal predictor p(sg|st, z) to de-
code back to the original subgoal state. During
training we apply a subgoal reconstruction loss,
as well as a regularization loss on the latent vari-
able z. Finally, the subgoal reaching policy is
trained via simple behavioral cloning. We sum-
marize the components of our training model in
Figure 6. Our final training objective is:

max
θ,ϕ,µ

E(s,a,sg)∼Dpre
z∼q(·|s,sg)

pθ(sg|s, z)︸ ︷︷ ︸
subgoal reconstruction

+πLL,ϕ(a|s, sg)︸ ︷︷ ︸
behavioral cloning

−βDKL
(
q(z|s, sg), p(z)

)︸ ︷︷ ︸
latent regularization

(1)

We use θ, ϕ, µ to denote the parameters of the subgoal predictor, goal reaching policy, and inference
network, respectively. β is a regularization weighting factor, DKL denotes the Kullback-Leibler
divergence, and we use a unit Gaussian prior p(z) over the latent variable.

To execute our assistive policy π(a|s), we first sample a latent variable z from the unit Gaussian
prior, then pass z and s through the subgoal predictor p(sg|s, z) to generate a subgoal and then use
the goal-reaching policy to predict executable actions πLL(a|s, sg).

B.1 Implementation Details

For real robot experiments, we use both front-view and in-hand camera images of size 244× 244× 3
as an observation. But, instead of using raw images, we use a 2048-dimensional pre-trained visual
representation from R3M [39]. In addition, we include the end-effector pose and gripper state of
the robot in the observation space. The action space consists of a 3D translational action and 1D
discrete gripper action. The conditional-VAE for the subgoal predictor consists of encoder and



decoder with 5-layer MLP with 128 hidden units, and ReLU activation. We use an ensemble of
K = 5 LSTM subgoal-reaching policies with 128 hidden units and the Adam optimizer [40]. We use
the same models for simulated experiments but the observation space consists of robot joint positions,
velocities, and object poses.

C User Study: Statistical Analysis

Table 2: Post-execution survey (Likert scales with 7-option
response format)

Trust:
Q1. I trusted the robot to do the right thing at the right time.

Robot intelligence (α = 0.95):
Q2. The robot was intelligent.
Q3. The robot perceived accurately what my goals are.
Q4. The robot and I worked towards mutually agreed upon goals.
Q5. The robot’s actions were reasonable.
Q6. The robot did the right thing at the right time.

Human satisfaction (α = 0.91):
Q7. I was satisfied with the robot and my performance.
Q8. The robot and I collaborated well together.
Q9. The robot was responsive to me.

During the study, participants agreed
more strongly that they trusted the
robot to perform the correct ac-
tion at the correct time for the pro-
posed approach (Wilcoxon signed-
rank test, p = 0.001). Further, they
found the robot to be significantly
more intelligent with the proposed
method (repeated-measures ANOVA,
F (1, 15) = 5.14, p = 0.039, Cron-
bach’s α = 0.95) and were signifi-
cantly more satisfied with their col-
laboration with the robot (F (1, 15) =
5.05, p = 0.040, α = 0.91). Finally, during the NASA TLX survey, participants showed a lower men-
tal workload using the proposed approach compared to the baseline (F (1, 15) = 5.52, p = 0.033).
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