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Abstract
Modern language models are evaluated on large
benchmarks, which are difficult to make sense of,
especially for model selection. Looking at the raw
evaluation numbers themselves using a model-
centric lens, we propose SimBA, a three phase
framework to Simplify Benchmark Analysis. The
three phases of SimBA are: stalk, where we
conduct dataset & model comparisons, prowl,
where we discover a representative subset, and
pounce, where we use the representative sub-
set to predict performance on a held-out set of
models. Applying SimBA to three popular LM
benchmarks: HELM, MMLU, and BigBench-
Lite reveals that across all three benchmarks,
datasets and models relate strongly to one another
(stalk). We develop an representative set dis-
covery algorithm which covers a benchmark using
raw evaluation scores alone. Using our algorithm,
we find that with 6.25% (1/16), 1.7% (1/58), and
28.4% (21/74) of the datasets for HELM, MMLU,
and BigBenchLite respectively, we achieve cov-
erage levels of at least 95% (prowl). Addition-
ally, using just these representative subsets, we
can both preserve model ranks and predict perfor-
mance on a held-out set of models with near zero
mean-squared error (pounce). Taken together,
SimBA can help model developers improve effi-
ciency during model training and dataset creators
validate whether their newly created dataset dif-
fers from existing datasets in a benchmark.

1. Introduction
The rapid expansion of language model (LM) benchmarks
has resulted in an overabundance of evaluation datasets.
However, the relationships among these datasets remain
poorly understood. Current evaluation methods primarily
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focus on overall model win rates or simple aggregate mea-
sures, which fail to provide fine-grained insights into dataset
characteristics and model performance trends (Liang et al.,
2023b). One approach that the community has taken to miti-
gate this problem is to look at instance-level predictions and
construct coresets, where each individual dataset in a bench-
mark is subsampled using various heuristics (Rodriguez
et al., 2021; Perlitz et al., 2024; Zouhar et al., 2025). This
resulting subset is used as a proxy for the entire bench-
mark. Instance-level sampling has many drawbacks: in-
tegration into an already existing evaluation framework is
hard, weak statistical signal hinders generalization, and col-
lecting instance-level predictions across many models may
be computationally infeasible.

Our work looks to uncover a more structured and simplified
understanding of benchmarks through an analysis of the
datasets and models directly from the performance matrix
without collecting any instance-level predictions. Our frame-
work to Simplify Benchmark Analysis is called SimBA and
has three phases:

1. Stalk: Analyzing relationships between datasets and
measure how models relate to one another across a
benchmark.

2. Prowl: Discovering a representative subset of
datasets from a benchmark that maintains model order.

3. Pounce: Predicting model performances using the
representative set based on performance patterns.

Using our three phase approach (Figure 1), we analyze
HELM (Liang et al., 2023b), MMLU (Hendrycks et al.,
2020), and BigBenchLite (Srivastava et al., 2022) and find
that both datasets and models correlate well with one another
(§2). Motivated by this, we find that:

1. We can identify representative subsets SHELM ,
SMMLU , and SBBL with just 6.25% (1/16), 1.7%
(1/58), and 28.4% (21/74) of datasets respectively that
achieve over 95% coverage (§3).

2. Our representative subsets preserve model ranks and
can predict performance on a held-out set of models
with near zero error (§4).

Taken together, our three phase analysis can be used directly
by LM practitioners and dataset developers alike to improve
efficiency and efficacy.
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Figure 1: An overview of SimBA, our three phase analysis framework. Its three phases are: stalk: dataset & model
comparison, prowl: representative dataset discovery, and pounce: performance prediction.

2. Stalk: Dataset & Model Comparison
A benchmark is represented as a matrix B ∈ Rm×d, where
m is the number of models and d is the number of datasets.
B can have missing values. Different datasets evaluate
different metrics, which often are scaled differently (e.g.
classification vs. generation), so we normalize B. For every
dataset Di with random chance performance xrandom, we
modify every observation x1, . . . , xm to be:

xj = max(0,
xj − xrandom

1− xrandom
) (1)

Note these new xj values correspond to percent above ran-
dom chance. We use this normalization for all analysis. 1

Moreover, all values are further normalized to be within the
interval [0, 1].

2.1. Dataset Comparison

Datasets are the essence of a benchmark and the first step
in our recipe is to compare datasets. For every pair of
datasets Di and Dj , we compare their performance numbers
to identify how they relate to each other using one of four
relationships: LINEAR, EXPONENTIAL, POWER-LAW, or

1Srivastava et al. (2022) use the same normalization for Big-
Bench for some of their analyses.

NONE. To measure this, we learn a multi-variate linear
regressor f with parameters Wreg ∈ Rm×1 and b ∈ R to
optimize the objective:

B[:, j] = WT
reg ·B[:, i] + b (2)

Here, M [:, i] and M [:, j] are the performance numbers
across all models for datasets Di and Dj . We then obtain the
R2 value to quantify the amount of variation explained by
the regressor. This naturally works to establish the strength
of a linear relationship. To measure an EXPONENTIAL or
POWER-LAW relationship, we apply a transformation to the
measurements of one dataset before learning the linear re-
gressor. 2 Since we are predicting one dataset from another,
we learn a total of 6 regressors: two per type, one were Dj

is predicted from Di and vice-versa. We choose the one
with the largest R2 value. If that R2 < 0.5 between two
datasets, we classify its relationship as NONE. 3

2This step resembles applying a nonlinear kernel (e.g., radial-
basis function kernel) to an SVM to learn a nonlinear relationship.

3R2 = 0.5 indicates that only 50% of the variation is explained
by the regressor, which we deem is too low to confidently claim a
specific relationship. This threshold is a tunable hyperparameter.
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2.2. Model Comparison

We compare models across a benchmark in the same way
as datasets: for every pair of models M1, M2, we follow
the procedure in §2.1 to classify whether the relationship is
one of four types: LINEAR, EXPONENTIAL, POWER-LAW,
or NONE. Crucially, we only use performance numbers
across the benchmark to make this classification. 4 Identical
to dataset comparison, we learn 6 regressors and choose
the relationship with the largest R2 value. We classify the
relationship between two models to be NONE if the best
regressor results in an R2 < 0.5, just as in §2.1.

3. Prowl: Representative Dataset Discovery
Equipped with an understanding of a benchmark, our next
step is to identify a target. More specifically, we want to
discover a representative subset of a benchmark S from
the performance matrix B ∈ Rm×d alone, where m is the
number of models and d is the total number of datasets.

3.1. Dataset Similarity

To discover a representative subset, we need a method to
determine whether a dataset is redundant. 5 We compare
datasets based on model performance patterns alone us-
ing 9 similarity measures: three correlations (PEARSON,
SPEARMAN, KENDALL-TAU) and six similarities (COSINE,
MANHATTAN, EUCLIDEAN, MINKOWSKI (P=3), WASSER-
STEIN, and JENSEN-SHANNON). 6 We compute similar-
ities between all pairs of datasets, resulting in a matrix
CSIM ∈ Rd×d, where each entry is a similarity score based
on a similarity measure SIM.

3.2. Discovering a Representative Subset

First, we define a proxy metric for the coverage of a candi-
date representative set S. The PROXY COVERAGE (δ) of S
under a similarity measure SIM is computed as:

δ(S, SIM) =

∑
i∈D λi

|D|
(3)

where λi is defined as:

λi =

{
1, if i ∈ S

maxj∈S CSIM[i, j], otherwise
(4)

4We explicitly do not use any information about the model
architecture, size, or family.

5If there exists a set of datasets {D1, . . . , Dk} that are redun-
dant, we need to keep only one in our representative set.

6All similarities are computed as: SIM = 1 - DISTANCE or SIM
= expDISTANCE based on whether DISTANCE is bounded. See Ap-
pendix A for more details.

Additionally, we need to define the COVERAGE GAIN (Ψ)
of a set S when a dataset Di is added under a similarity
measure SIM. This is used as a heuristic to measure how
much PROXY COVERAGE (δ) is gained when adding a new
dataset Di to S:

Ψ(S,Di) = δ({S,Di}, SIM)− δ(S, SIM) (5)

Equipped with these measures, we propose Alg. 1 to dis-
cover representative subset. While our implementation sup-
ports beam search for representative dataset discovery, em-
pirical evaluation showed that larger beam widths (5, 10,
20) provided no meaningful improvement over the greedy
approach across HELM, MMLU, and BigBenchLite. 7

Algorithm 1 Representative Dataset Discovery

input CSIM ∈ Rd×d, γ, D = {D1, . . . , Dd}
output S

1: S ← ∅
2: while δ(S) < γ ∧ |S| ≤ d do
3: D∗ ← argmaxDi∈D\S Ψ(S,Di)
4: S ← S ∪ {D∗}
5: end while
6: return S

Baselines: We also evaluate the following baselines as
random and simple baselines in dataset selection have been
shown to be strong (Diddee & Ippolito, 2025). RANDOM
is a baseline where S is populated with a random dataset
iteratively without replacement. We average across 1000
random runs in our experiments. GREEDY MINIMUM is
a baseline where S is populated with the dataset with the
lowest average performance across all models. GREEDY
MAXIMUM is a baseline where S is populated with the
dataset with the highest average performance across all
models. For both greedy baselines, S is also populated
iteratively.

3.3. Representative Subset Evaluation

Using Algorithm 1, we discover a representative subset S
that has n datasets. To measure how well S covers the origi-
nal benchmark B, we first find the mean win rate (MWR) of
each model as compared to the other models based entirely
on S:

MWR(B′) =

∑
µ≤m,d≤n I[B′[µ, d] > B′[µ′, d]]

m− 1
(6)

Remember that B′ ∈ Rm×n, where m is the number of
models and n is the number of datasets in S. B′ is matrix
formed by collecting all performance numbers for all mod-
els for the datasets in S, so MWR(B′) ∈ Rm. We then

7γ is a PROXY COVERAGE threshold set by the user.
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compute the PEARSON-CORRELATION between MWR(B′)
and the mean-win-rate obtained on the full benchmark,
MWR(B) ∈ Rm, to obtain coverage η:

η(B′) = PEARSON(MWR(B), MWR(B′)) (7)

Identifying S is a greedy process involving a similarity
function SIM. Since S iteratively increases from having
one to two to many datasets, we require an algorithm to
identify how good a similarity function SIM is in discover-
ing a strong representative subset at every size. Addition-
ally, we also require a way to compare two similarity func-
tions SIM1 and SIM2. Taking inspiration from the receiver-
operating characteristic curve and taking the area under it
(AUC-ROC) (Marcum, 1960), we develop our own signed
AUC measure called subset coverage AUC (SCAUC). 8 To
compute SCAUC, we iteratively build S one dataset at a
time until we get to the full benchmark (S = B). Starting
with the first dataset chosen (|S| = 1), we compute η(S)
using equation 7. 9 We then construct a curve using the d
coverage values (η) and compute the signed area under that
curve. 10 To compare two similarity functions, we measure
their SCAUC values and choose the one with a higher value.

4. Pounce: Performance Prediction
Equipped with the results of the first two phases of our
analysis pipeline, we predict the performances directly using
a representative subset. Since the representative subset S is
just a subset of the full benchmark B, we evaluate whether
different regression based approaches can predict D\S (i.e.,
the subset of D that is not in S) from S alone.

One general approach for matrix prediction is Singular
Value Decomposition (SVD) (Candes & Recht, 2009). How-
ever, SVD works only on a partially observed matrix, where
rows (models) and columns (datasets) have at least one ob-
servation. In a realistic setting, we want to use our subset S
to predict the other dataset performances D \ S on entirely
new models, so SVD would not be immediately applica-
ble. As a result, we focus on three regressor types: RIDGE
REGRESSION, KNN REGRESSION, and MLP REGRESSION.

Regularized Linear Regression RIDGE REGRESSION
uses a linear function with L2 regularization penalty be-
tween a model’s performance scores on S and its perfor-
mance on D \ S. This regularization helps prevent overfit-
ting when training on small representative subsets (Hastie
et al., 2009; Hoerl & Kennard, 1970).

8Subramani et al. (2025) also develop a signed AUC measure
to measure the tool-calling utility of LLMs.

9Note: η(∅) is undefined and η(B) = 1.
10This is signed area because correlations can be negative.

KNN Regression KNN REGRESSION estimates the perfor-
mance score y for a dataset by averaging the performance
scores of its k nearest neighbors in feature space,

y =
1

k

∑
i∈Nk(X)

yi (8)

where Nk(X) denotes the set of the k closest datasets to X
using a chosen distance metric (e.g., EUCLIDEAN) (Altman,
1992). We use k=5 neighbors, or the size of the training set
if smaller than 5. KNN does not impose a functional form,
allowing it to capture non-linear relationships.

MLP Regression A Multi-Layer Perceptron (MLP) is
a feedforward neural network that models non-linear rela-
tionships using multiple layers (Rosenblatt, 1958; Ye et al.,
2023). We experiment with two MLP architectures a single
hidden layer with 12 neurons and a two-layer architecture
with 12 neurons in each hidden layer. We include MLP
REGRESSION because it can capture complex non-linear
relationships between dataset features and model perfor-
mance.

4.1. Performance Prediction Evaluation

To evaluate how well we can predict performance, mean
squared error (MSE) is a natural choice. For a given repre-
sentative set S, we train a regressor to predict performance
on the remaining datasets in the benchmark (D \ S). 11 We
compute the MSE of the regressor on the held-out test set
on (D \ S).

In our experiments, we build S sequentially, by greedily
adding one dataset at a time according to Algorithm 1. As
a result, we can measure MSE at each point for |S| =
1, ..., |S| = |D| − 1. 12 This traces an MSE curve. Using
a similar approach to tracing the area under the coverage
curve like in §3, we can compute the area under the MSE
curve, which we term AUC-MSE. 13 Note that high values
of AUC-MSE indicate high error because this curve is an
error curve not a performance curve like other AUC curves.

5. Experiments
Benchmarks For our analysis, we look at three bench-
marks: HELM (Liang et al., 2023a), MMLU (Hendrycks
et al., 2020), and BigBenchLite (Srivastava et al., 2022).
We look at the core scenarios of HELM (17 datasets, 29
models), MMLU (58 datasets, 79 models), and BigBench-
Lite (74 datasets, 45 models), splitting each benchmark into

11D is the set of datasets in the benchmark D = {D1, ..., Dd}.
12When |S| > |D| − 1, (|D \ S| = 0).
13AUC-MSE is not signed because the minimum error one can

get is 0.0, so every point on this curve is in the top right quadrant
of a cartesian coordinate plane (x, y > 0).
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Figure 2: Here, we measure the coverage (η) across HELM, MMLU, and BigBenchLite as our representative subset S
grows. We report performance for all three baselines and all nine similarity measures discussed in §3.

training and test sets to validate our analysis. All datasets
are included in both splits, but models are separated across
training and test sets randomly with 80% of models in train-
ing and 20% of the models in test. This means that HELM
has 23 models in train and 6 models in test, MMLU has
63 models in train and 16 in test, and BigBenchLite has 36
models in train and 9 in test. For each benchmark, we go
through the 3 analysis phases from Figure 1, discuss those
results in §6, and expand the analysis to look at robustness
in §7.

6. Results
6.1. Stalk: Dataset & Model Comparison

Dataset Comparison: We measure how datasets relate to
one another using the methodology in §2.1. Table 1 shows
that for HELM, only 5% of the pairs of datasets have a
LINEAR relationship, while 37.5% lack any relationship,
indicating minor redundancy among datasets.

For MMLU, 4.1% of dataset pairs have a LINEAR relation-
ship and only 7.7% lack a relationship, suggesting that most
datasets are predictive of one another through non-linear re-
lationships (EXPONENTIAL: 39.3%, POWER-LAW: 49.0%).
For BigBenchLite, 27.9% of dataset pairs have a LINEAR
relationship while 61.6% show no relationship at all, indicat-
ing that BigBenchLite has the most diverse and independent
datasets among the three benchmarks. Taken together, we
suspect that finding a small representative dataset would be
most difficult for BigBenchLite.

Relationships HELM MMLU BigBenchLite

LINEAR 6 67 754
EXPONENTIAL 25 649 139
POWER-LAW 44 810 143
NONE 45 127 1665

Total 120 1653 2701

Table 1: Dataset comparison results with counts between
each pair of datasets and their classifications as LINEAR, EX-
PONENTIAL, POWER-LAW, and NONE based on the highest
R2 value. See §2.1 for details.

Relationships HELM MMLU BigBenchLite

LINEAR 20 290 75
EXPONENTIAL 72 1258 41
POWER-LAW 294 1302 549
NONE 20 231 325

Total 406 3081 990

Table 2: Model comparison results with counts between
each pair of datasets and their classifications as LINEAR, EX-
PONENTIAL, POWER-LAW, and NONE based on the highest
R2 value. See §2.2 for details.
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HELM MMLU BigBenchLite
Similarity Methods SCAUC (↑) |S∗|(↓) SCAUC (↑) |S∗|(↓) SCAUC (↑) |S∗|(↓)
RANDOM (n = 1000) 0.980 2.5 0.994 2.3 0.928 25.2
GREEDY MINIMUM 0.967 4 0.980 8 0.607 51
GREEDY MAXIMUM 0.957 4 0.988 4 0.933 33

PEARSON 0.984 1 0.997 1 0.886 42
SPEARMAN 0.975 1 0.992 1 0.884 41
KENDALL-TAU 0.983 1 0.994 1 0.899 40
COSINE 0.981 3 0.992 1 0.896 48
MANHATTAN 0.985 3 0.996 1 0.945 32
EUCLIDEAN 0.984 1 0.996 1 0.943 27
MINKOWSKI (P=3) 0.983 1 0.996 1 0.950 22
WASSERSTEIN 0.983 3 0.997 1 0.943 21
JENSEN-SHANNON 0.980 3 0.991 1 0.903 36

Table 3: Performance of our three baselines and seven similarity measures on the identification of a representative subset
task for HELM, MMLU, and BigBenchLite. SCAUC is the area under the coverage curves present in Figure 2. S∗ is the
smallest subset that achieves η(S∗) = 0.95. Bold indicates the best performing system for each metric.

Model Comparison: We measure how models relate to
one another via the method in §2.2. Table 2 shows that for
HELM, only 4.9% of model pairs have LINEAR relation-
ships, with the majority showing POWER-LAW relationships
(72.4%). MMLU demonstrates more complex model rela-
tionships with 9.4% LINEAR, 40.8% EXPONENTIAL, and
42.3% POWER-LAW relationships. BigBenchLite shows
7.6% LINEAR relationships and 55.5% POWER-LAW rela-
tionships. Notably, all three benchmarks have relatively few
model pairs with no discernible relationship (HELM: 4.9%,
MMLU: 7.5%, BigBenchLite: 32.8%)

6.2. Prowl: Coverage Analysis

Our goal is to determine the minimum number of datasets
needed to achieve a specific coverage level η on a specific
benchmark. Since we experiment with nine similarity func-
tions, we want to identify the best similarity measure for this
task. To do this, we first compare every pair of datasets Di,
Dj using each of the similarity functions defined in §3. This
results in a similarity matrix CSIM ∈ Rd×d for each similar-
ity function. 14 On each similarity matrix CSIM, we apply our
coverage algorithm using its respective similarity function
and construct S. We measure coverage(η) using equation 7
at each phase of S until S = D. This traces a coverage
curve and we measure the area under this coverage curve
and report the SCAUC value in Table 3. We also report the
size of the smallest representative subset S∗ that achieves a
coverage η ≥ 0.95.

We find that we can achieve coverage levels of at least 95%

14CSIM could be an upper (or lower) triangular matrix because
our similarity functions are symmetric.

with just 6.25% (1/16), 1.7% (1/58), and 28.4% (21/74)
of the datasets for HELM, MMLU, and BigBenchLite re-
spectively. This represents a substantial efficiency gain:
particularly for MMLU and HELM, where a single well-
chosen dataset can effectively represent nearly the entire
benchmark for model ranking purposes. Additionally, Ta-
ble 3 shows that the choice of similarity measure has varying
effects across benchmarks. For HELM and MMLU, most
similarity measures perform similarly well, with several
achieving the optimal single-dataset representative subset.
However, for BigBenchLite, there is more variation in per-
formance, with WASSERSTEIN achieving the best results
(|S∗| = 21) and several measures like PEARSON and SPEAR-
MAN requiring substantially more datasets (|S∗| = 42 and
41 respectively). Finally, using Algorithm 1 with most simi-
larity measures outperforms all baselines on average across
all three benchmarks, though the improvement is less pro-
nounced for BigBenchLite due to its more diverse dataset
composition. See Table 6 for details on the proportion of
times a system outperforms the random baseline across the
1000 random runs.

6.3. Pounce: Performance Prediction

Our goal in this phase is to validate that representative
datasets enable accurate performance prediction. Hav-
ing identified efficient representative subsets in phase II
(prowl), we now assess whether performance on these sub-
sets can predict performance on the remaining datasets. We
first split our models into training (80%) and test (20%) sets.
Using only the training models, we identify representative
dataset sets at 80% coverage and train four performance pre-
dictors: RIDGE REGRESSION, KNN REGRESSION, and MLP
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AUC-MSE (↓)
Regressor HELM MMLU BigBenchLite

RIDGE 0.005 0.002 0.002
KNN 0.004 0.002 0.002
MLP (1 layer) 0.081 0.110 0.006
MLP (2 layer) 0.031 0.081 0.006

Table 4: Performance as measured by AUC-MSE across
HELM, MMLU, and BigBenchLite. We use MINKOWSKI
(P=3) as the similarity measure SIM to identify representa-
tive subsets S for our four regressors: RIDGE, KNN, MLP (1
layer), and MLP (2 layer). AUC-MSE is the area under the
curves in the top row of Figure 3. Bold indicates the best
performing method for each benchmark.

REGRESSION with one and two layers. We then evaluate
these predictors on the test set of models, measuring their
ability to predict scores (MSE) for the remaining datasets
based solely on performance patterns observed in the repre-
sentative subset.

As shown in Table 4, both RIDGE REGRESSION and KNN
REGRESSION perform exceptionally well across all three
benchmarks, achieving near zero AUC-MSE values. RIDGE
REGRESSION achieves (0.005, 0.002, 0.002) and KNN
REGRESSION achieves (0.004, 0.002, 0.002) for HELM,
MMLU, and BigBenchLite respectively. Meanwhile, Fig-
ure 3 shows that prediction error generally decreases as the
representative subset size increases, but with diminishing
returns. The MLP models consistently underperform, with
the single-layer MLP showing particularly poor results on
HELM and MMLU. Additionally, in Figure 3, we find that
KNN REGRESSION achieves negligible error with just one
dataset on both HELM and MMLU.

For MMLU, all four regressors maintain consistently low
error rates across different subset sizes, with RIDGE and
KNN maintaining the lowest error rates throughout. This
complements the analysis presented in §2.1, where MMLU
showed the highest proportion of inter-dataset relationships,
making it the most predictable benchmark.

7. Analysis
7.1. Robustness Analysis

Our evaluation framework relies on point estimates of the
performances of models on individual datasets. As such,
robustness to noise is a critical consideration when evalu-
ating different approaches of performance prediction. We
evaluate the robustness of performance prediction by per-
turbing the training set of the benchmark matrix Btrain as
B′

train = Btrain +N (µ, σ2) where µ is mean and σ is the
noise level parameter. For all noise perturbations we use

AUC-MSE (↓)
Regressor HELM MMLU BigBenchLite

σ
=

0.
0
5 RIDGE 0.010 0.004 0.004

KNN 0.017 0.012 0.013
MLP (1 layer) 0.081 0.079 0.007
MLP (2 layer) 0.031 0.068 0.007

σ
=

0.
1 RIDGE 0.013 0.007 0.006

KNN 0.027 0.021 0.013
MLP (1 layer) 0.087 0.078 0.009
MLP (2 layer) 0.033 0.067 0.008

Table 5: Performance as measured by AUC-MSE across
HELM, MMLU, and BigBenchLite when adding noise. We
use MINKOWSKI (P=3) as the similarity measure SIM to
identify representative subsets S for our four regressors:
RIDGE, KNN, MLP (1 layer), and MLP (2 layer). AUC-MSE
is the area under the curves in Figure 3. Bold indicates the
best performing method for each benchmark.

µ = 0 and σ2 = 0.05 or σ2 = 0.1. This evaluation frame-
work enables us to quantify the stability of our methods
under varying noise conditions.

As shown in Figure 3, generally, error rates for all meth-
ods increase with greater noise. However, we observe
that both RIDGE and KNN REGRESSION achieve low error
rates under both noise conditions, across all three bench-
marks (AUC-MSE < 0.03). RIDGE consistently maintains
AUC-MSE values of 0.013 for all benchmarks and noise
conditions. Predictably, the MLP systems are the least
robust, but maintain similar error rates to the no noise ver-
sion. In other words, the MLP systems just are not great at
performance prediction.

8. Related Work
The NLP community increasingly evaluates on large

benchmarks (Srivastava et al., 2022; Li et al., 2023; Liang
et al., 2023b). Some approaches attempt to make evalua-
tion more efficient by doing instance-level reduction (Perlitz
et al., 2023; Vivek et al., 2023; Polo et al., 2024). We dif-
fer in that we focus on aggregate metrics and do not need
access to any instance-level information for efficiency and
performance prediction. Ye et al. (2023) also perform per-
formance prediction using simple regressors on BigBench.
However, they require features of the model and datasets for
accurate prediction, unlike us.

From the field of psychometrics and measurement theory,
there exists the idea of convergent and divergent valid-
ity (Campbell & Fiske, 1959). Convergent validity suggests
that metrics measuring similar underlying constructs should
correlate highly with each other. Conversely, discriminant
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Figure 3: We measure the mean squared error (MSE) on a held-out test set of models of regressors trained on a representative
subset S using MINKOWSKI (P=3) as SIM. This is measured for HELM, MMLU, and BigBenchLite for the three regressors
we experiment with in §4. Additionally, we repeat this experiment after add two magnitudes of noise according to §7.1
(σ = 0.05 and σ = 0.1) to the training set of B. Lower scores are better.

validity indicates that metrics capturing fundamentally dif-
ferent aspects should show minimal correlation. Xiao et al.
(2023) propose MetricEval, a framework motivated by mea-
surement theory to conceptualize and evaluate the reliable
and valid of natural language generation metrics.

9. Conclusion
We propose a three phase approach to Simplify Benchmark
Analysis called SimBA: stalk (dataset & model compar-
ison), prowl (representative set discovery), and pounce
(performance prediction). Using our approach, we ana-
lyze the HELM, MMLU, and BigBenchLite benchmarks.
Our analysis shows that models and datasets alike correlate
well with one another (stalk). Additionally, using Algo-
rithm 1, we can identify representative subsets with 1, 1,
and 21 datasets respectively that achieve a greater than 95%
coverage (prowl). These representative sets preserve the
original model ranks on the benchmark and can be used
to predict performance on held-out models with negligi-

ble error (pounce). Furthermore, SimBA can be used by
LM practitioners and dataset developers directly to reduce
evaluation costs and validate dataset uniqueness.

10. Limitations
Dataset & Model Comparison Our analysis assumes
that the relationships between datasets are sufficiently sta-
ble over time. As models continue to improve and scale,
the nature of these relationships may evolve, potentially
requiring periodic reassessment of representative subsets.
The approach provides a snapshot analysis based on current
model performance matrices, but doesn’t account for how
these relationships might change with fundamentally new
architectures or training paradigms.

Moreover, the presented analyses requires having a suffi-
cient number of models evaluated on the benchmarks. If
the available model lack in diversity in underlying architec-
tures, training data or training methodologies, the identified
relationships may not generalize to future models.

8
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Identifying the Representative Dataset Our method is a
greedy approach that iteratively chooses datasets such that
PROXY COVERAGE increases. A different, albeit more ex-
pensive, approach could exhaustively identify the best com-
bination of datasets using a better search algorithm. We ex-
perimented with adapting to beam search, but found no sig-
nificant improvement, perhaps because PROXY COVERAGE
is correlated, but can be slightly disconnected with COVER-
AGE depending on the similarity function used.

Performance Prediction Although KNN performs reason-
ably well, its AUC-MSE values are consistently 2-3 times
higher than RIDGE, while the MLP models perform the worst
with AUC-MSE values 5-10 times higher than RIDGE, possi-
bly due to overfitting on the limited training data. Models
trained with better regularization on more data would have
greater stability and be less prone to overfitting.

Overall Risks Our evaluation framework offers a three
stage approach to better understand a benchmark. Although
representative sets get high coverage, there could be cases
when the representative set gets high coverage by chance.
In this case, it would be risky to make major decisions that
affect users based on a small sample of data.

11. Ethical Considerations
Since SimBA does not involve training generative models,
the primary ethical concerns center on potential misuse of
our framework’s insights and the risk of overconfidence in
representative subset evaluations.

Our finding that small representative subsets can achieve
high coverage creates opportunities for manipulation.
Model developers could strategically evaluate only on
datasets where their models perform well, then use SimBA
to claim coverage over the entire benchmark without ac-
tually testing on challenging datasets. This could mislead
the research community and downstream users about true
model capabilities. Similarly, the choice of similarity mea-
sure presents another avenue for selective reporting, as our
analysis shows that different similarity functions (PEARSON,
MINKOWSKI (P=3), WASSERSTEIN, etc.) can yield different
representative subsets and coverage results.

To aid in mitigating these concerns, we recommend transpar-
ent reporting of representative set selection methodologies,
evaluation across multiple correlation methods, and valida-
tion on diverse datasets. SimBA does not aim to replace
comprehensive evaluation, especially for high-stakes de-
ployments. Rather, it serves as a supplementary tool for
understanding benchmark structure and improving evalua-
tion efficiency in appropriate contexts.
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A. Dataset Similarity Metrics
Here are more details about the dataset similarity metrics used in our analysis. Consider a pair of datasets (Di, Dj); we use
seven similarity measures SIM.

PEARSON CORRELATION: Measures linear relationships between dataset performance vectors but is sensitive to outliers
and assumes linearity. We compute the PEARSON CORRELATION:

ρDi,Dj =

∑
(Rm,Di

− R̄Di
)(Rm,Dj

− R̄Dj
)√∑

(Rm,Di
− R̄Di

)2
∑

(Rm,Dj
− R̄Dj

)2
(9)

where Rm,Di
is the performance of model m on dataset Di and R̄Di

is the average performance across all models for
dataset Di,

SPEARMAN CORRELATION: A ranked correlation that handles non-linear monotonic relationships but is sensitive to
small perturbations that flip ranks.

ρs = 1− 6
∑

d2i
n(n2 − 1)

(10)

where di is the rank difference between model performances on datasets Di and Dj ,

KENDALL-TAU CORRELATION: Another ranked correlation that measures agreement in the orderings of data but also
sensitive to small perturbations.

τ =
C −D

C +D
(11)

where C represents concordant model rankings across two datasets, and D represents discordant rankings.

COSINE SIMILARITY: Measures the cosine of the angle between performance vectors, capturing directional similarity
regardless of magnitude differences between datasets.

COSINE SIMILARITY(Di, Dj) =
B[:, i]B[:, j]

||B[:, i]||||B[:, j]||
(12)

LP NORM SIMILARITIES: We define a family of similarity measures based on Lp norms with exponential normalization:

LP SIMILARITY(Di, Dj) = exp (−||B[:, i]−B[:, j]||p) (13)

We employed various distance-based similarity measures using exponential normalization to capture different aspects of
performance similarity between datasets. We specifically use L1 (MANHATTAN), L2 (EUCLIDEAN), and L3 (MINKOWSKI)
norms. The exponential normalization ensures all similarities are bounded in (0,1], with identical performance patterns
yielding similarity 1 and increasingly dissimilar patterns approaching 0.

WASSERSTEIN SIMILARITY: Measures the minimum ”cost” of transforming one performance distribution into another,
capturing both shape and statistical differences. We also exponentially normalize this such that similarities are bounded in
(0, 1].

WASSERSTEIN SIMILARITY(Di, Dj) = exp

(
−W1(B[:, i], B[:, j])

maxk,l W1(B[:, k], B[:, l])

)
(14)

JENSEN-SHANNON SIMILARITY:

JENSEN SHANNON SIMILARITY(Di, Dj) = 1−
√

DKL(Pi||M) +DKL(Pj ||M)

2
(15)

Here M = 1
2 (Pi + Pj) and Pi, Pj are normalized distributions of B[:, i], B[:, j]. Jensen-Shannon similarity provides a

symmetric measure based on information theory that quantifies dataset distributional differences.
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SimBA: Simplifying Benchmark Analysis

B. Proportions Better than Random
To evaluate the efficacy of each of the non-random system, we measure the proportion of the 1000 random runs that each
system outperforms. We measure this across two metrics on all three benchmarks. The first metric, “AUC”, is measured by
SCAUC. The second metric, “Max2”, looks at the SCAUC up until a representative dataset S is discovered that achieves at
least 95% coverage (S∗). This is compared to the random baseline for the same number of datasets (|S∗| under a similarity
function SIM) across all 1000 runs. Note that SCAUC cannot be computed if |S∗|=1. In these cases, we consider the first two
dataset instead. These results are below in Table 6.

We find that greedy minimum and greedy maximum both underform random. On MMLU, all similarity measures outperform
random, but on HELM and BigBenchLite, only about half the systems outperform random on SCAUC on average. Our
representative dataset discovery algorithm seems to generally outperform random early on (i.e., the first few datasets) until
S∗ is discovered, with most systems outperforming random on “Max2.”

HELM MMLU BigBenchLite
Similarity Methods AUC (↑) Max2 (↑) AUC (↑) Max2 (↑) AUC (↑) Max2 (↑)
RANDOM (baseline) – – – – – –
GREEDY MINIMUM 0.095 0.095 0.000 0.000 0.000 0.000
GREEDY MAXIMUM 0.030 0.028 0.002 0.223 0.521 0.504

PEARSON 0.626 0.970 0.972 1.000 0.068 0.086
SPEARMAN 0.213 0.415 0.108 0.994 0.057 0.072
KENDALL-TAU 0.552 0.970 0.330 0.994 0.141 0.154
COSINE 0.427 0.409 0.124 0.880 0.115 0.132
MANHATTAN (L1) 0.685 0.501 0.825 0.924 0.727 0.849
EUCLIDEAN 0.595 0.944 0.931 0.868 0.692 0.832
MINKOWSKI (L3) 0.538 0.973 0.939 0.965 0.815 0.928
WASSERSTEIN 0.581 0.507 0.962 0.965 0.692 0.791
JENSEN-SHANNON 0.377 0.409 0.060 0.919 0.155 0.303

Table 6: Proportion of methods that perform better than or equal to random baseline across three evaluation metrics. Values
closer to 1.0 indicate better performance relative to random selection. Bold indicates the best performing method for each
metric within each dataset.
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