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Abstract
Bayesian Persuasion is proposed as a tool for so-
cial media platforms to combat the spread of mis-
information. Since platforms can use machine
learning to predict the popularity and misinfor-
mation features of to-be-shared posts, and users
are largely motivated to share popular content,
platforms can strategically signal this informa-
tional advantage to change user beliefs and per-
suade them not to share misinformation. We char-
acterize the optimal signaling scheme with im-
perfect predictions as a linear program and give
sufficient and necessary conditions on the clas-
sifier to ensure optimal platform utility is non-
decreasing and continuous. Next, this interac-
tion is considered under a performative model,
wherein platform intervention affects the user’s
future behaviour. The convergence and stabil-
ity of optimal signaling under this performative
process are fully characterized. Lastly, we experi-
mentally validate that our approach significantly
reduces misinformation in both the single round
and performative setting.

1. Introduction
Spreading misinformation has been one of the major cri-
tiques of social media platforms. The structure of these
platforms rewards users for sharing content to gain popu-
larity (e.g. number of likes and future re-shares), often irre-
spective of its veracity. This has prompted debates on how
platforms should police their content. The most common
approach is using fact-checking to tag and censor untruth-
ful content. However, such approaches can hardly keep up
with the speed and scale of today’s content generation and
the validity of content may not be a binary true or false.
Censorship moreover leads to thorny debates around the
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platform regulating freedom of speech. While most Amer-
icans support taking steps to restrict misinformation, half
of Americans in 2021 agreed that “freedom of information
should be prioritized over ... restricting false information
online” (Amy & Walker, 2021).

We present information design as a viable approach, either
as an alternative or complement, for addressing misinforma-
tion on platforms. Our approach leverages the information
asymmetry between a platform and its users. The plat-
form strategically reveals some information that users care
about, who act in self-interest given the information. When
properly designed, this strategic revelation can lead to harm-
ful/poor content being shared less frequently. This approach
acknowledges the different incentive structures for the user
and platform and does not require the platform to police
already shared posts; instead, the platform disincentivizes
the sharing of misinformed content by the user.

Specifically, we model the platform-user interaction under
the Bayesian Persuasion (BP) framework (Kamenica &
Gentzkow, 2011). A post has a two-dimensional hidden
state: its popularity if shared and its degree of misinforma-
tion. While a user has some prior belief over these states,
she naturally does not know the true popularity of her to-be-
shared content. She may also be unaware of her post’s level
of misinformation as it is often introduced unintentionally
and driven by social-psychological factors such as a sense
of belonging (Wardle, 2020), confirmation bias (Ecker et al.,
2022), and habitual sharing (Ceylan et al., 2023). Moreover,
the user may also be indifferent to the misinformation state
and care only about the popularity their post achieves if
shared. While the user may be indifferent or unaware of
misinformation, the platform’s utility for user action (shar-
ing or not sharing) depends on the true realization of both
states — the post’s popularity and degree of misinforma-
tion. This misalignment of the user’s and the platform’s
utility poses a challenge for the platform: the platform does
not want the user to share misinformed posts, but the user
derives high utility by sharing popular content, which may
not be truthful. The platform, however, possesses an in-
formational advantage due to its vast troves of historical
user and content data. So while the platform, like the user,
does not know with certainty the true state of the post, it
can leverage this to build classification models to predict
(with certain error rates) the post’s popularity and degree
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of misinformation. Based on the predictions, the platform
can strategically reveal some stochastic information about
the post’s state, hoping to alter the user’s belief about the
post. The user, updating their belief based on the revealed
information, can decide to share or not share the post to max-
imize her expected utility. The interaction of the platform
and the user forms a Bayesian Stackelberg game, with the
platform (leader) choosing an information revelation (sig-
naling) scheme first, with the user (follower) deciding on an
optimal action for herself based on the received information.
The goal of the platform is to choose a signaling scheme to
optimize the platform’s expected utility at equilibrium and,
by doing so, reduce misinformed content on the platform
while maintaining engagement. The platform must be cog-
nizant of the long-term dynamic of such interventions and
its implicit effect on user behaviour over time.

Our contributions: We propose an information design
approach for social media platforms to address the spread
of misinformed content. Platforms predict the properties
of a user’s to-be-shared post and strategically reveal this to
users to improve the quality of shared content. This noisy
persuasion setting is formally defined in section 3. The
lack of perfect information leads to an effective reduction
of signaling power. Section 4 discusses this alongside other
preliminaries that generalize known results for the standard
BP setting. The exact effect of the platform’s classification
accuracy on its optimal signaling scheme and the resulting
utility is then discussed in section 5. Specifically, we for-
mulate this as a linear program and provide sufficient and
necessary conditions on the classifier to ensure the optimal
platform utility is monotone and continuous. In section 6,
the platform-user interaction is viewed through a perfor-
mative lens, wherein signaling affects the user’s sharing
behaviour and correspondingly, their future beliefs about
their content. We give a complete characterization, proving
the stability and convergence of this performative process.
Our findings are experimentally validated in section 7, with
technical and conceptual extensions for tackling misinfor-
mation using information design discussed in section 8.

2. Related Works
This work proposes a soft approach, not involving censor-
ship or tagging, for combating online misinformation, an
approach advocated in the literature (Howe et al., 2023;
Jackson et al., 2022; Pennycook & Rand, 2022). Howe et al.
(2023) proposed to cap the depth (how many times messages
can be relayed) or width (how many people a message can be
shared with) of a social network to improve information fi-
delity. Jackson et al. (2022) observed that allowing people to
only share posts that they have indicated are true, what they
termed self-censoring, reduces the spread of misinformation.
Pennycook & Rand (2022) experimentally concluded that

interventions that shifted users’ attention toward the concept
of accuracy could help reduce online misinformation shar-
ing. These works, together with ours, all focus on reducing
the sharing of misinformation. Yang et al. (2023) and Can-
dogan & Drakopoulos (2020) respectively studied reducing
the creation and the consumption of inaccurate information
through signaling. Instead of considering an intervention,
Acemoglu et al. (2021) modeled the propagation of misin-
formation as a game and analyzed its equilibrium, whereas
Candogan & Drakopoulos (2020) focuses on optimization
with respect to externality effects. While spiritually similar,
both assume platforms have perfect knowledge and do not
consider performative effects.

The seminal work on Bayesian persuasion (Kamenica &
Gentzkow, 2011) has led to many follow-up studies: the
computational complexity of the sender’s optimization prob-
lem (Dughmi & Xu, 2016), the impact of restricting signal-
ing schemes and exogenous information distortions on the
informativeness and welfare of equilibrium Kosenko (2021);
Tsakas & Tsakas (2021), and robust equilibrium concepts
when sender has ambiguity over external information that
receiver may have (Dworczak & Pavan, 2022). Information
design has also been used for studying price discrimination
(Bergemann et al., 2015), multiplayer games (Zhou et al.,
2022), and revenue management (Drakopoulos et al., 2021).
Bergemann & Morris (2019), Kamenica (2019) and Can-
dogan (2020) offer comprehensive reviews on work in this
area. Our work proposes information design as a tool for
addressing misinformation on social media under a learned
observation model. The insights within this model can also
be considered spiritually similar to works on information
ordering in economics literature (Bergin, 2005, Chapter 12).

Our dynamic setting in section 6 is inspired by the literature
on performative prediction (Perdomo et al., 2020; Mendler-
Dünner et al., 2020; Mofakhami et al., 2023). This models
the phenomenon that when decision-making is influenced
by predictions, the decision will affect future predictions.
In our setting, it is not the predictions but rather the signal-
ing process that leads to this dynamic. Our performative
model here parallels the stateful one proposed by Brown
et al. (2022) and naturally captures the notion that both the
past distribution and the user’s present sharing decisions
(influenced by signaling) will affect content distribution
on the platform. The platform should be cognizant of such
long-term distribution changes when trying to influence user
decisions. From a technical perspective, our results here are
novel and not captured by existing results in the literature.

3. Model
Consider the interaction between a social media platform,
and a user. Without any platform intervention, the user lacks
additional information when they draft posts for submission;
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thus, they take their default action to share. Our model
considers a platform predicting features of this draft and
committing to revealing or signaling this information to the
user according to a randomized scheme. Signaling affects
user’s belief about their post’s content, and thus their action
to share or not. We now precisely define this, observing that
this single-user model is without loss of generality since the
platform could interact in such a way with multiple users.

States and Predictions: Let M = {1, . . . ,mmax} and
V = {1, . . . , vmax} denote the possible misinformation and
validation/popularity states respectively. A post drafted by
a user has some true joint feature state θ = (m, v) drawn
from a prior distribution µ ∼ ∆|Θ|, where Θ = M × V
and ∆k denotes the k simplex. The prior encapsulates the
distribution of user’s shared posts. Both platform and users
know this distribution since it is simply composed of past
statistics of this user’s content. However, the user does not
observe the true state θ for their drafted content - i.e., they do
not know the true popularity/misinformation of any drafted
post a priori. The platform, however, can leverage their data
and scale to predict these states of the draft content, with
predictions denoted by θ̂ = (m̂, v̂). Unlike the canonical BP
settings, we do not assume these predictions to be perfect.
We capture the inaccuracy of the prediction models used in
our noisy persuasion problem as follows:

Definition 1. The platform’s validation and misinformation
classifier uncertainty is captured by the multi-class confu-
sion matrices QV ∈ [0, 1]|V|×|V| and QM ∈ [0, 1]|M|×|M|.
Let QΘ = QM⊗QV denote the combined confusion matrix,
with ⊗ representing the Kronecker product. An element at
index (θ̂, θ) of QΘ, denoted by QΘ

θ̂,θ
, records P (θ̂|θ).

We assume the predictors m̂ and v̂ to be conditionally in-
dependent given m, v and at least as good as chance - i.e.
P (m̂ = x|m = x) ≥ 1

mmax
and same for QV .

Actions and Utilities: Upon drafting content, the user can
choose between one of two actions: A = {0, 1}. The action
0 corresponds to the user not sharing the content, and 1
corresponds to them sharing. Both platform and user utility
depend on this action and the underlying state of the content.
We formally define them below:

Definition 2. We denote the user utility function as w :
A × M × V → R and the platform utility function as
u : A×M×V → R. We assume both utilities are bounded.

Similar to the standard persuasion settings, we assume the
platform to know the user’s utility. This allows them to
anticipate the user’s best action and design a scheme accord-
ingly. For users, a special utility structure is when they care
only about the validation their posts receive and may be in-
different to or disagree with the platform’s characterization
of misinformation. Lastly, note that minimal restrictions are
placed on platform utility and thus they are free to choose

this to balance revenue/engagement and veracity as desired.

Signaling Scheme: The platform maintains a set of signals
S and reveals a signaling scheme before the user drafts any
content. This is simply a set of conditional distributions,
denoted by π(s|m̂, v̂), which specifies the probability of
sending signal s when the platform predicts the draft con-
tent to have state θ̂ = (m̂, v̂). Since scheme π must be
committed to a priori, the platform goal is to design π to
maximize their expected ex-ante utility, formally defined as:

Definition 3. The platform’s ex-ante utility for a signaling
scheme π(s|θ̂) is

∑
s P (s)Eρs [u(a∗, θ)], where ρs(θ) =

P (θ|s) is the posterior distribution induced by signal s and
scheme π, and a∗ = argmaxa Eρs [w(θ, a)] is the optimal
receiver action for that posterior belief.

We now summarize the platform-user interaction for an
instance I = (u,w, µ) as follows:

• Platform reveals a signaling scheme π(s|θ̂)
• User drafts content with unknown state θ = (m, v) ∼ µ

• Platform uses learning models with joint confusion ma-
trix QΘ to obtain prediction θ̂ = (m̂, v̂) for this post,
and then samples signal s ∼ π(s|θ̂).

• User observes the signal, computes their posterior belief,
and takes their optimal action a∗.

• User attains utility w(a∗, θ) and platform attains utility
u(a∗, θ).

Game theoretically, this interaction outlines a Stakelberg
game with the platform and user taking on the leader and fol-
lower roles respectively. The signaling scheme maximizing
the platform’s ex-ante utility given the user best-responds
(definition 3) is the Stakelberg equilibrium strategy. A key
thrust of our work is understanding how properties of the
prediction accuracy (i.e. confusion matrix QΘ) affect this
optimal signaling scheme and the resulting platform utility.

Performative Model: Without persuasion, the user takes
their utility maximizing action based on their prior: a∗ =
argmaxa Eµ0

w(a, θ), which we naturally assume to be
“share”. As such, the distribution of content shared over
time matches the original prior. Applying persuasion affects
this, however, and the user’s decision to share now depends
on the signaling scheme; thus, the distribution of a user’s
shared posts changes over time due to this intervention. We
model this through a performative angle. At round t, µt

represents the distribution of the user’s currently published
content. The platform deploys a signaling scheme πt(s|θ̂),
and the user observes recommendations from this whenever
she drafts content. Note that draft posts that were persuaded
to not be shared are absent from the platform, and older
content loses relevance. As such, we model the content
distribution for round t+ 1 as a convex combination of the
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present prior µt and the content that was shared this round,
Pt(θ|a∗ = 1). This is formally presented in Section 6.

4. Preliminaries
We begin by observing that the noisy setting restricts the
platform’s signaling power compared to the standard set-
ting. We then establish two characterizations, one on the
signal space at optimal signaling and the other on optimal
sender utility, which parallel the characterizations in stan-
dard Bayesian persuasion. We then give a didactic example
that synthesizes these observations and shows that persua-
sion improves platform utility and reduces misinformation.

4.1. Noisy Persuasion is Less Powerful

Compared with standard BP where the sender observes the
realization of θ perfectly and signals based on θ, our setting
is noisy as the platform only learns and signals based on θ̂.
In this noisy setting, the set of effective signaling schemes -
i.e. equivalent signaling schemes that are based on θ - the
platform can use is a subset of those in standard noiseless
BP settings. Indeed, for a given prior µ and confusion
matrix QΘ, a noisy signaling scheme π(s|θ̂) is equivalent
to a signaling scheme π̃(s|θ) =

∑
θ̂ π(s|θ̂)Q

Θ
θ̂,θ

in standard
BP since both induce the same posterior beliefs over θ.

While any signaling scheme over noisy observations can
be transformed into one over exact observations, the con-
verse is not true. That is, there exists schemes π̃(s|θ) that
cannot be expressed in terms of π(s|θ̂). To see this intu-
itively, when the platform observes the state θ perfectly, it
can signal π̃(s = θ|θ) = 1 to fully reveal the state to the
user. However, if the platform itself does not observe θ
perfectly, it can never induce such a certain belief in the
user. In other words, noisy persuasion (when QΘ ̸= I,
since I corresponds to perfect predictions/standard BP) has
a smaller set of effective signaling schemes at its disposal.
While the comparison to standard persuasion is intuitive, a
more prescient question is how does the signaling space and
crucially the platform’s optimal expected utility change be-
tween two arbitrary confusion matrices QΘ

1 and QΘ
2 ? This

is a more involved question which we answer in Theorem 1
by giving a strict ordering for confusion matrices.

4.2. Simplifying the Signaling Scheme

The platform in general can use any set of signals. However,
we next show in Proposition 1 that only |A| signals are
needed to attain its best possible ex-ante expected utility in
noisy persuasion (hereinafter referred to as optimal platform
utility), just as in standard BP with perfect observations
(Kamenica & Gentzkow, 2011; Dughmi & Xu, 2016). Since
|S| = |A| suffices, signals can, without loss of generality,

be interpreted as recommending a specific action, providing
significant operational simplicity (proofs of this section are
in Appendix A).
Proposition 1. For instance I = (u,w, µ) and joint confu-
sion matrix QΘ, let u∗

I(Q
Θ) represent the optimal platform

utility achievable with an arbitrary number of signals. Then
it is also possible for the platform to achieve u∗

I(Q
Θ) utility

using exactly |A| signals (i.e. |S| = |A|).

4.3. Geometry of Noisy Persuasion

For any scheme, the posterior distributions induced by the
signal realization s, denoted by ρs, must always satisfy∑

s P (s)ρs = µ, a condition termed Bayes Plausibility. Ka-
menica & Gentzkow (2011) show that optimal signaling can
be interpreted as inducing a platform-advantageous set of
Bayes plausible beliefs. Formally, they construct a mapping
from belief to expected sender utility and show that the op-
timal sender utility is equivalent to evaluating the concave
closure of this function at the prior. We now show that this
observation can be generalized to our setting with predicted
states, a valuable insight for forthcoming results.
Definition 4. Let ρ̂ denote a belief over predicted states
θ̂, and ρ a belief over true states θ. Then for instance I,
define u(ρ̂) : ∆|Θ| → R as mapping from ρ̂ to the platform
expected utility (w.r.t. to the corresponding true belief ρ)
for the optimal user action at that belief: Eρ[u(a

∗(ρ), θ)].
Let co(ρ̂) denote the convex hull of the graph of u(ρ̂), and
cl(ρ̂) = sup{u(ρ̂)|(ρ̂, z) ∈ co(ρ̂)} its concave closure.

To interpret this, for a belief over predicted states ρ̂, the cor-
responding belief over true states ρ can be computed through
a linear map V Θ (see Lemma 2). Then a∗(ρ̂) denotes the
optimal user action for the corresponding true belief ρ. With
a∗(ρ̂), one can compute the platform’s expected utility u(ρ̂)
over the corresponding ρ(θ). co(ρ̂) denotes the convex hull
of all such (ρ̂, u(ρ̂)) points, with the concave closure cl(ρ̂)
representing the boundary of this convex hull. Lastly, Bayes
Plausibility can be re-stated as

∑
s P (s)ρ̂(s) = µ̂0, where

µ̂ is the corresponding belief over predicted states for prior
µ. Proposition 2 now relates the optimal platform utility to
the concave closure, generalizing the result of Kamenica &
Gentzkow (2011) to the noisy setting.
Proposition 2. The platform utility achieved by optimal
signaling on instance I is equal to cl(µ̂), where µ̂ =∑

θ µ(θ)Q
Θ
θ̂,θ

and µ(θ) is the prior.

Corollary 1. The expected user utility can never decrease
due to any signaling scheme.

Now consider a function wa(ρ̂) denoting the user’s ex-
pected utility for taking action a at belief ρ̂. This is a lin-
ear function since the mapping from ρ̂(θ̂) to ρ(θ) is linear
(Lemma 1), and expectation is linear. By analogously defin-
ing w(ρ̂) = max(w0(ρ̂), w1(ρ̂)) for the user (their expected
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utility at a belief due to optimal action), we note this is a
convex function. Due to Bayes plausibility, the expected
user utility after signaling is

∑
s P (s)w(ρ̂s), which by the

convexity of w can never be lower than the utility at the
prior (no signaling), leading to Corollary 1. It is also evi-
dent from the geometry that the platform’s utility also does
not decrease due to signaling. To illustrate this, consider
an adversarial user who wishes to actively spread misinfor-
mation, which is at odds with the platform’s goal. Since
the platform and user utility are misaligned, the optimal
signaling scheme is completely uninformative (ex: send the
share and not share signal with equal probability, irrespec-
tive of the state). Under such an uninformative/uncorrelated
scheme, the adversarial user (who knows the scheme) gains
no more information about the state than what they had in
their prior and can thus cause no additional harm. The linear
program in section 5 finds the optimal signaling scheme for
any user utility (including adversarial ones). Geometrically,
strict improvement of utility due to signaling is equivalent
to u(µ̂) < cl(µ̂). Intuitively, if the platform utility u(µ̂)
is aligned with the user along some direction in the belief
space, then it can always signal to reveal more informa-
tion along that direction and strictly improve. For any non-
adversarial user, such a direction always naturally exists
since both parties would prefer to share popular and true
posts and not share false unpopular ones. Indeed, align-
ment is even easier if the user utility is also cognizant of
misinformation, and not purely popularity-driven.

4.4. Example

Consider an instance with binary validation and misinforma-
tion states (0 is not true/not popular and 1 is false/popular),
with 1 and 0 denoting user action “share” and “not share”.
We consider a popularity-driven user who is indifferent to
misinformation, which as discussed is the harder setting.
Let the prior µ and platform and user utilities u and w be:

θ = (m, v) µ(θ) u(θ, 0) u(θ, 1) w(θ, 0) w(θ, 1)

(0, 0) 0.35 0 1 0 -1

(0, 1) 0.35 -1 2 -2 1

(1, 0) 0.15 0 -1 0 -1

(1, 1) 0.15 0 -3 -2 1

Without signaling, the optimal user action at the prior is to
share, whose outcomes are given in the first row of Table 1.
Suppose the platform has a 90% accurate classifier for both
m and v. The prior over predicted states θ̂ are presented in
Fig. 1 (first set of edges). Consider the signaling scheme
specified here, with the platform deterministically signaling
“share” or “not share” in the first three states and stochas-
tically signaling in the last state. It can be shown when
receiving either signal, the user’s optimal action coincides

with this recommendation. Further, when the user behaves
optimally under this signaling scheme, their expected util-
ity is unchanged; the platform’s expected utility, however,
and the fraction of shared content that is misinformation,
drastically improve (Table 1).

10,1

11,0

share

1,1
0.77

0.33

0.33

0.17
0.17

0,0 1

share

not 
share

0.23

̂θ = (m̂, ̂v)
Signal or 

Recommended 
Action

share

share

Figure 1. Signaling example. Edges represent probabilities.

Platform
utility

% of shared post
that is misinfo.

User
utility

Before persuasion 0.45 30 0

After persuasion 0.64 17 0

Table 1. Before and after persuasion.

5. Optimal Noisy Persuasion
While the geometric perspective gives us insight into the
properties of signaling, it does not offer a way to compute
an optimal signaling scheme. In this section, we begin by
providing a linear program (LP) that computes the optimal
signaling scheme under inaccurate predictions. We then
characterize how the resulting optimal platform utility is
affected by the confusion matrix QΘ. Specifically, we give
an ordering of matrices QΘ as it relates to effective signal-
ing space, provide necessary and sufficient conditions on
QΘ for optimal platform utility to be non-decreasing, and
show that this optimal utility is Lipschitz continuous in QΘ.
These results are not only structural but also of operational
significance since classifier accuracy is something platforms
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can modify and improve, making it important to understand
the dynamic. Proofs for this section are in Appendix B.

As shown in Section 4.2, it suffices to focus on signaling
schemes where S = A, with each signal interpreted as an
action recommendation. When the platform commits to a
signaling scheme π(s|θ̂), its effective signaling scheme is
π̃(s|θ) =

∑
θ̂ π(s|θ̂)Q

Θ
θ̂,θ

. Similar to Dughmi & Xu (2016)
who formulated an LP for optimal signaling scheme in stan-
dard BP, we formulate the following LP for solving the
optimal signaling scheme in our noisy persuasion setting:

max
∑|A|

ai

∑
θ u(ai, θ)µ(θ)π̃(s = ai|θ) (1)

s.t.
∑

θ ∆wij(θ)µ(θ)π̃(s = ai|θ) ≥ 0 ∀ai, aj (2)

π̃(s = ai|θ) =
∑

θ̂ π(s = ai|θ̂)QΘ
θ̂,θ

∀ ai, θ (3)∑
ai
π(s = ai|θ̂) = 1 ∀θ̂ (4)

π(s = ai|θ̂) ≥ 0 ∀ ai, θ̂ (5)

where ∆wij(θ) = w(ai, θ) − w(aj , θ). (2) is the incen-
tive compatibility constraint, which enforces that the rec-
ommended action has a higher expected utility under the
induced posterior than any other action, making it optimal
for the user. This phenomenon is often referred to as opti-
mal signaling is persuasive. Objective (1) then captures the
platform’s ex-ante expected utility when π̃ is the induced
effective signaling scheme. (1) and (2) is the same as the
LP for standard Bayesian persuasion. However, our LP for
noisy persuasion requires additional constraints (3), (4), (5),
which restrict π̃ to the set of effective signaling schemes
that can be induced under confusion matrix QΘ.

We now wish to understand how for a given instance I, the
quality of the platform classifier affects optimal achievable
utility, u∗

I(Q
Θ). While it is natural that a better classifier

would lead to higher utility, there is no unique notion of
“better” for a multi-class classifier. For example, entropy,
recall, and F1 score are all different notions of classifier
quality. We precisely settle this question for symmetric QΘ

in Theorem 1 (Proofs for this section are in Appendix B) by
leveraging our LP to prove that the optimal platform utility
is non-decreasing exactly with respect to the set inclusion of
the convex hull of the columns [QΘ]:1, . . . , [Q

Θ]:|Θ| of QΘ.
Importantly, our proof shows that if the columns of QΘ

1 are
contained within the convex hull of columns of QΘ

2 , any
effective signaling for QΘ

1 can also be achieved under QΘ
2 .

If this is not satisfied, then we show that an instance can
always be constructed such that the optimal signaling under
QΘ

1 corresponds to an effective signaling not possible under
QΘ

2 , and vice versa. By taking the contrapositive, it also
gives an ordering of confusion matrices as it relates to the
effective signaling space, formally presented in Corollary 2.
Theorem 1. Given two symmetric confusion matrices QΘ

1

and QΘ
2 and any instance I, the optimal sender util-

ity, u∗
I(Q

Θ
2 ) ≥ u∗

I(Q
Θ
1 ), is non-decreasing if and only

if co([QΘ
1 ]:1, . . . , [Q

Θ
1 ]:|Θ|) ⊆ co([QΘ

2 ]:1, . . . , [Q
Θ
2 ]:|Θ|),

where co([QΘ
i ]:1, . . . , [Q

Θ
i ]:|Θ|) is the convex hull of the

columns of QΘ
i .

Corollary 2. Let ΦI(Q
Θ) denote the set of all effective

signaling schemes π̃ that noisy persuasion with confusion
matrix QΘ can achieve. Then for two symmetric confusion
matrices QΘ

1 , Q
Θ
2 , we have ΦI(Q

Θ
1 ) ⊆ ΦI(Q

Θ
2 ) if and only

if co([QΘ
1 ]1:, . . . , [Q

Θ
1 ]|Θ|:) ⊆ co([QΘ

2 ]1:, . . . , [Q
Θ
2 ]|Θ|:).

Theorem 1 is also operationally insightful since the condi-
tions for optimal platform utility to monotonically increase
can be easily parsed from the QΘ matrix, noting that convex-
hull inclusion is easily verifiable. It also gives platforms a
clear metric for comparing classifier quality for the noisy
persuasion task. We next present the second key result
of this section which shows exactly where the change in
optimal utility due to confusion matrix QΘ is Lipschitz con-
tinuous. Indeed, it is operationally important for platforms
to know if and when making slight modifications to the
underlying classifier may abruptly affect the optimal persua-
sion utility and signaling scheme. The proof relies on the
geometric insights developed in section 4. To sketch, we
show that the concave closure function cl(ρ̂) is Lipschitz in
ρ̂. Next, we show that the change from QΘ

1 to QΘ
2 leads to a

bounded vertical and lateral shift in the closure function due
to this property, except possibly if this change leads to the
boundary of the effective inducible posterior to be where
the user is indifferent.

Theorem 2. For an instance I , the mapping from confusion
matrix to maximum platform utility, QΘ 7→ u∗

I(Q
Θ), is

Lipschitz continuous everywhere except possibly when there
exists an inducible distribution over predicted states, ρ̂d,
where (1) the user is indifferent between optimal actions
and (2) ρ̂d lies on the ∆|Θ| simplex boundary.

6. Performative Perspectives
We now consider the dynamics of noisy persuasion over
time. Recall that without persuasion, users simply take the
best action for their prior, which we naturally assume to
be ”share”. As such, the user’s content distribution on the
platform is unchanged from the initial prior. With persuasive
signaling, we now stochastically induce different beliefs in
the user, and their decision to share is affected accordingly.
Over time, the content distribution this user forms their
belief upon will skew toward the type of content they shared.
Formally, the prior distribution between two-time steps, µt

and µt+1, is affected by the signaling employed by the
platform.1 Correspondingly, the platform’s signaling at t+1
may change from that at time t. We study the effect of
this phenomenon in this section; to focus our analysis, we

1The actual time between t and t + 1 is unimportant for our
technical analysis and we leave it for practitioners at deployment.
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consider the utility function and predictions models fixed
and look to model the interaction between signaling and the
subsequent prior belief it gives rise to.

The nascent literature around performative prediction cap-
tures a similar tension in the classification setting (Perdomo
et al., 2020; Mendler-Dünner et al., 2020; Mofakhami et al.,
2023). Therein, an optimal classifier is deployed for a given
distribution, which is in turn affected by the chosen classi-
fier. While sharing several parallels, these works generally
require the underlying optimization problem to be uncon-
strained and strongly convex, which while reasonable for
classification, do not hold for our optimal signaling linear
program. Further, they model the distribution update to de-
pend solely on the optimization variable, where the past has
no effect. Transition in our social media setting is not nec-
essarily stateless since older posts still exist on the platform,
albeit with diminished relevance. Inspired by Brown et al.
(2022), we consider a stateful performative model where
we interpolate between the earlier prior and the new distri-
bution affected by signaling. This dynamic is also known
in the literature as “geometrically decaying environments”
(Ray et al., 2022), and models the environment (including
strategic data sources within it) as having a memory shaped
by previous interactions with the influence of past events
diminishing over time at a geometric rate2. We precisely
describe this interaction for our setting below:

Definition 5. The performative persuasion process for an
instance I = (u,w, µ0) with joint confusion matrix QΘ is
defined as follows:

• At each round t, with prior µt(θ), the platform chooses
a signaling scheme πt(s|θ̂), s ∈ {0, 1}.

• Users take their optimal action (share or not share) for
each realized signal.

• The next round’s prior distribution is given by: µt+1 =
λµt + (1 − λ)ρt(θ|a = 1), where ρt(θ|a = 1) is the
distribution of content that was shared this round, and
λ ∈ [0, 1] is a hyper-parameter.

While the standard performative analysis restricts itself to
studying myopic/greedy agents, i.e. the platform selects
the optimal signaling scheme for each round’s prior µt,
we study the process above in more generality and answer
several questions that arise naturally. What is the effect of
being myopic or far-sighted and how does this relate to the
signaling scheme chosen at each round? Will this process
converge and how should we qualify this convergent point?
What are the stable points of this process, an important

2This is also justified by empirical observation in behavioral
economics: people tend to measure their choices against a refer-
ence distribution, which can change over time to reflect a cumu-
lative effect of past utilities. [Kahneman et al, 2013, Nar, et al.
2017]

notion in performative literature that broadly corresponds
to a fixed point of the process under myopic actions, and
can they be reached from any initial prior? We begin by
precisely defining these notions within our setting.

Definition 6. The performative process converges to dis-
tribution µ∗ under a sequence of signaling schemes {πt}
if for any ε > 0, there exists a Tc such that for t > Tc,
µt − µ∗ < ε, where distribution µt arises from using sig-
naling scheme πt−1.

Definition 7. Let π∗
t denote the optimal signaling scheme

for the prior distribution at round t, with µ∗
t+1 denoting the

resulting next round prior according to the performative
update. A distribution µs is denoted stable if µt = µs

implies µ∗
t+1 = µs.

Stable points need not be unique, and our first result gives a
sufficient and necessary characterization of all stable points
in our persuasion process using the geometric insights of
optimal signaling.

Proposition 3. A prior belief µt at time t is stable if
and only if w1(Q

Θµt) ≥ w0(Q
Θµt) and cl(QΘµt) =

u(QΘµt).

Since the above implies that the platform utility cannot
increase through signaling at a stable point, there is a natural
preference order for stable points. For two stable points µ1

st

and µ2
st, the platform prefers µ1

st ≻p µ2
st if and only if

u(µ1
st) > u(µ2

st). We next formalize this optimal stable
point and give the exact conditions wherein converging to
this optimal stable point through signaling is possible from
an initial prior.

Proposition 4. The optimal stable point distribution is given
by

ρmax = argmax
ρ|w1(QΘρ)≥w0(QΘρ)∧cl(QΘρ)=u(QΘρ)

u(QΘρ) (6)

For an initial prior µ0, there exists a sequence of signal-
ing schemes such that the performative persuasion process
converges to this optimal achievable stable point if there
exists a distribution ρ′ wherein the optimal user action is
to not share such that µ0 lies in the line segment defined by
(ρ′, ρmax).

The result above indicates that if platforms were to take
a long-term view and deploy possibly non-optimal single-
round signaling, then convergence to the optimal distribu-
tion may be possible. Nonetheless in many scenarios, taking
such a long-term view may not be feasible for platforms.
Modeling long-term performative effects is noisy, and impre-
cise modeling or unexpected behavioral changes may lead
to a divergent outcome, with evidence of such phenomena
known in the recommendation systems literature (Tennen-
holtz & Kurland, 2019). To that end, it becomes prescient to
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Figure 2. Avg % decrease in misinformation shared due to
single application of noisy persuasion.
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Figure 3. Avg % increase in platform utility between the prior
and the myopic stable point.

also consider a more conservative platform that myopically
chooses the optimal signaling scheme for each round’s prior.
Leveraging the suite of results about optimal signaling in
noisy persuasion instances, we show that such myopic be-
haviour will always converge to the optimal posterior belief
induced by the share signal (referred to as the share poste-
rior) at the initial round 0. We also show this convergent
point to be stable. This proof relies on the geometric insight
developed in section 4.3; crucially, we leverage the fact that
the performative process does not affect the concave closure
function, and show that Bayes plausibility implies µt always
lies between the first two optimal posteriors induced at the
first round.

Theorem 3. The performative process always converges to
the best optimal posterior induced by the share signal in the
first round: ρ10(θ) =

∑
θ̂ ρ̂

1
0V

Θ
θ,θ̂

3. Further, this convergent
point is always stable.

The convergence of this process has some nice properties.
First, given an instance I , and the respective classifier accu-
racies, a myopic platform can easily determine the utility at
convergence (and thus the benefit of long-term persuasion)
since it is simply the utility of the share posterior induced
by optimal signaling in the first round. The fact that this
convergent distribution is stable is additionally beneficial
since it signifies that even in the stateless case (λ = 0),
the process will terminate at the ρ10 belief. We lastly ask
whether this myopic stable point is more beneficial than the
starting prior for the platform. To that end, we provide the
following sufficient condition, which also implies myopic
signaling leads to monotonically increasing utility for the

3ρ̂10 is the posterior induced by signal 1 (share) at round 0.
which has utility u(ρ̂10)

platform. We experimentally observe the stable point to be
meaningfully beneficial for the platform in practice (Fig. 3).

Proposition 5. For cn = maxθ u(0, θ), define a normalized
platform utility u′(a, θ) = u(a, θ) − cn.4 Then a myopic
signaling will converge to a stable point strictly better than
the prior in a monotonic fashion if the sender’s normalized
utility at µ0 is positive.

7. Experiments
We now experimentally validate our approach: specifically,
while we provide detailed theoretical results on the platform
utility under optimal signaling, it is instructive to see how
this translates into reducing misinformation sharing. Due to
a lack of public data, we create a synthetic dataset for the
three components of a noisy persuasion instance: the prior
distribution, platform utility, and user utility. Three possi-
ble states are considered for validation and misinformation
respectively, with 0 representing unpopular/true, 2 repre-
senting popular/false, and 1 representing a middle ground.
We sample utilities uniformly under the following natural
constraints: the platform has 0 utility for the “not share”
action, a positive utility that is increasing in v for m = 0,
a negative utility that is decreasing in v for m = 2, and
∀v , u(a = 1,m = 0, v) > u(a = 1,m = 1, v) > u(a =
1,m = 2, v). Note that for m = 1, the platform utility
could either increase or decrease with v, mirroring the pos-
sible trade-offs platforms could make between revenue and
content quality when uncertain. The user is assumed to be
purely popularity-driven with 0 utility for not sharing and
increasing utility in v (from negative for v = 0 to positive
for v = 2) for sharing; as discussed in section 4.3, this is

4Recall the 0 action is to not share
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usually the harder setting for persuasion. For each instance,
we vary the classification error between 0 to 0.4 (the error is
equally divided amongst all the incorrect classes) and plot
in Fig. 2 the decrease in the percentage of shared posts that
are misinformation (m = 2) before and after persuasion.

Even when both classifiers perform poorly, a 10% misin-
formation reduction is achieved, increasing to around 20%
when the classifier errors are below 0.15. We also note that
the results are more sensitive to the accuracy of the misinfor-
mation classifier than the validation one. This is expected
since the platform utility ordering essentially flips based on
the m state, making it crucial for platforms to capture the
true misinformation level more accurately.

Regarding the performative dynamic, note that Theorem 3
implies that myopic signaling leads the process to converge
to the optimal induced posterior corresponding to the user
sharing (a = 1) at round t = 0. Thus, the misinformation
shared at the myopically performative convergent belief is
also captured by Fig. 2. In Fig. 3, we plot the average in-
crease in platform utility between the starting prior, and this
myopically achieved stable distribution. We note a substan-
tial increase in platform utility, which can essentially be
seen as a proxy for platform health/revenue. Further aug-
menting the result of proposition 5, this also suggests that
for real-world instances, the myopic stable point is largely
beneficial for the platform and that repeated application of
persuasion has a long-term positive impact. Lastly, both
plots have a 90% confidence interval of less than 4%.

8. Discussion
This work takes a softer approach toward addressing mis-
information on social media platforms by leveraging an
information design framework based on Bayesian persua-
sion. Our setting, wherein underlying states are not perfectly
observed but predicted, generalizes this classical framework
to a noisy and realistic setting. We rigorously characterize
how the prediction accuracy affects optimal signaling and
platform utility, providing operationally useful results to
platforms while noting that user utility can never decrease
due to this. Further, the techniques used provide significant
insights on noisy persuasion from a geometric and optimiza-
tion perspective which may be of broader interest. We also
consider the long-term implications of such an intervention
and model the platform-user interactions from a performa-
tive angle. We rigorously characterize the convergence and
stability properties of this process; these results illustrate
that persuasion can have a long-term positive impact on
content quality and veracity on social media platforms.

Our work leaves open a number of technical and conceptual
questions. Providing necessary conditions that ensure in-
creased platform utility at a stable point would complement

Theorem 5 and be an insightful result. As would augment-
ing our experiments with real user data and interactions to
evaluate the real-world effectiveness of such an approach.
Along a similar line, our model assumes a perfectly rational
user with the sender not having any exogenous restrictions;
generalizing this to consider a bounded rationality model
(Jones, 1999; de Clippel & Zhang, 2022) or designing robust
signaling under exogenous restrictions (Dworczak & Pavan,
2022; Kosenko, 2021) would be an intriguing research di-
rection. The robust persuasion model of Dworczak & Pavan
(2022) may be especially relevant for the misinformation
setting since it considers an exogenous third party also in-
fluencing the user and proposes optimal signaling for the
worst case. Another interesting direction is how persuasion
impacts influence propagation and network effects within
platform (Barbieri et al., 2013; Arieli et al., 2022). Lastly,
developing broader socio-technical guidelines around in-
formation design for online interactions is a prescient and
necessary direction which we leave for future work.
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Impact Statement
Misinformation on social media widely is considered one of
the most pressing issues in contemporary society, affecting a
wide-range of issues from democratic governance to public
health (Persily & Tucker, 2020; Suarez-Lledo & Alvarez-
Galvez, 2021). As a socio-technical issue, it is imperative
that we as computer scientist look to mitigate this important
problem.

While there is no debate about the negative outcomes asso-
ciated with misinformation, exactly classifying misinforma-
tion is more challenging, especially at scale. This renders
typical content moderation and censoring approaches diffi-
cult. Further, it raises concerns about social media platforms
abusing their power to regulate discourse, often leading to
the creation of echo chambers. As we presented in our
work, public opinion is also wary of such approaches (Amy
& Walker, 2021). Correspondingly, our work proposes a
constructive information design approach that does not re-
quire platforms policing content - rather, it attempts to use
information revelation to persuade rational users away from
sharing misinformation. We make no unrealistic assump-
tions about the setting, and strongly believe this can be a
useful first step toward tackling this issue. That said, there
are several considerations to be aware of:

• The persuasion approach relies on user being, at worst,
indifferent to misinformation in their content. As such, it
will not be as successful in dealing with malicious actor
who consciously and willingly spread misinformation.
Standard approaches like identifying and banning such
actors are still needed.

• In persuasion, the platform commits to a signaling
scheme prior to observations, and honours that scheme
upon observation. It requires the platform/sender to not
lie. This assumption is considered largely innocuous
in economics literature as platforms risk severe reputa-
tional damage. In practice however, we believe strong
regulatory guidelines also need to be established to fur-
ther discourage such behaviour.
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A. Appendix A

Lemma 1. For a signaling scheme π(s|θ̂), the probability of observing a signal s given true realization θ is given by
P (s|θ) =

∑
θ̂ π(s|θ̂)Q

Θ
θ̂,θ

. Further, P (s|m, v) =
∑

m̂,v̂ π(s|m̂, v̂)QM
m̂,mQV

v̂,v

Proof. The following is due to total probability law: P (s|θ) =
∑

θ̂ P (s|θ, θ̂)P (θ̂|θ). Note that given θ̂, signal s is
conditionally independent of θ since signaling is directly specified by the former. We also note that the classification
predictors m̂, v̂ are assumed to be conditionally independent given m, v, with QΘ being a Kronecker product. Thus,
P (s|m, v) =

∑
m̂,v̂ π(s|m̂, v̂)P (m̂|m)P (v̂|v).

Lemma 2. Given belief over true states ρ(θ), the corresponding belief over predicted states is ρ̂(θ̂) =
∑

θ ρ(θ)Q
Θ
θ̂,θ

.

Similarly, for belief ρ̂(θ̂), the corresponding belief over true states is: ρ(θ) =
∑

θ̂ ρ̂(θ̂)V
Θ
θ,θ̂

, where the V Θ
θ,θ̂

=
QΘ

θ̂,θ
µ(θ)∑

θ′ Q
Θ

θ̂,θ′
µ(θ′)

.

Proof. First, it is easy to see that ρ̂(θ̂) =
∑

θ P (θ̂|θ)ρ(θ) =
∑

θ ρ(θ)Q
Θ
θ̂,θ

. For the other direction, note that ρ(θ) =∑
θ̂ ρ̂(θ̂)P (θ|θ̂). Next, by Bayes rule, it is evident that P (θ|θ̂) =

QΘ

θ̂,θ
µ(θ)∑

θ′ Q
Θ

θ̂,θ′
µ(θ′)

≜ V Θ
θ,θ̂

.

Proof of Proposition 1

Proof. Let π∗ denote the optimal unrestricted signaling scheme with a total of ℓ signals. We can state the posterior over
true states θ = (m, v) for signal realization s as: P (θ|s) = 1

P (s)µ(θ)
∑

θ̂ π
∗(s|θ̂)QΘ

θ̂,θ
. For each a, let Sa denote the set

of signals whose induced posterior under π∗ leads to optimal action a. Next, consider a signaling scheme that directly
recommends an action, satisfying |S| = |A|. Define this as follows: π′(a|θ̂) =

∑
s∈Sa

π∗(s|θ̂). Next, observe that utility at
this optimal scheme, denoted by u∗

I(Q
Θ) =

∑
a

∑
s∈Sa

P (s)
∑

θ u(a, θ)P (θ|s) =
∑

a,θ

∑
s∈Sa

u(a, θ)µ(θ)P (s|θ). We
next use lemma 1 and write this as equal to:∑

a,θ,θ̂

µ(θ)u(a, θ)QΘ
θ̂,θ

∑
s∈Sa

π∗(s|θ̂) =
∑
a,θ

µ(θ)u(a, θ)
∑
θ̂

QΘ
θ̂,θ

π′(a|θ̂)

We note that the inner summand (over θ̂) is equivalent to P (s = a|θ) under the new action-recommending signaling
scheme. Thus we can write the expected utility under the new signaling is:

∑
a P (s = a)

∑
θ u(a,m, v)P (θ|a) = u∗

I(Q
Θ)

completing the proof.

Proof of Proposition 2

Proof. Given a prior µ(θ) over true states θ, µ̂, which we call the noisy prior, can be interpreted as the corresponding
belief over predicted states. The Bayes plausibility condition, which immediately follows from Bayes rule, implies that for
any signaling scheme π, µ̂(θ̂) =

∑
s P (s)ρ̂(θ̂|s), where ρ̂(θ̂|s) (also denoted by ρ̂s) is the induced belief over predicted

states upon receiving signal s. Thus, the expected utility of any signaling scheme must be in the set {u(µ̂)|(µ̂, u(µ̂)) ∈
co(P̂ )}, since this includes all convex combinations of induced beliefs that equal the noisy prior, and their corresponding
expected platform utility (which is simply the same convex combination of expected utilities at those beliefs). Thus
z∗ = sup{u(µ̂)|(µ̂, u(µ̂)) ∈ co(P̂ )} = cl(µ̂) is the maximum utility achievable by any signaling scheme with an arbitrary
number of signals. By proposition 1 we know there exists a signaling scheme with |S| = |A| that can also achieve this
utility.

Using the notation from section 4, recall wa(ρ̂) denotes the user’s expected utility for taking action a at belief ρ̂. Then for
a belief ρ̂, if w0(ρ̂) = w1(ρ̂), then ρ̂ represents the threshold where the receiver’s optimal action changes. This threshold
is a hyperplane since it is the intersection of two hyperplanes, and we call this the indifference plane D, since the user is
indifferent to both actions at this point. 5. Since the u(ρ̂) function is based on the optimal user action at belief ρ̂, u(ρ̂) is
possibly discontinuous over this indifference plane since this is where the optimal action for the user changes. We now show

5As standard in persuasion literature, we assume when the user is tied, it is broken in favour of the platform
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in Lemma 3 that posteriors induced by a strictly optimal signaling scheme (strictly improves upon the platform utility at the
prior belief) are inextricably linked to the indifference plane.

Lemma 3. The concave closure cl(ρ̂) is continuous, piecewise linear, and possibly non-differentiable over the indifference
plane. Further, the posteriors ρ̂s induced by strictly optimal signaling is either on the simplex boundary or the indifference
plane, and cl(ρ̂s) = u(ρ̂s).

Proof. We observe that u(ρ̂) is piece-wise linear due to the mapping from ρ̂(θ̂) to ρ(θ) being linear and expectation being a
linear operator, with possible discontinuities at beliefs wherein the receiver is indifferent. Since co(ρ̂) is the convex hull
of this piecewise linear function defined for all ρ̂, and cl(µ̂) corresponds to the boundary of this convex hull, this must be
continuous, piecewise linear and possibly non-differentiable over the indifference planes.

Next, invoking lemma 4 in Kamenica & Gentzkow (2011) implies that at any induced posterior ρ̂s for an optimal scheme,
either (1) the belief is on the boundary, (2) the receiver must be indifferent to multiple actions at this belief, or (3) for
any other belief wherein the receiver optimal action is not a∗(ρ̂s), it is strictly better for the platform that a∗(ρ̂s) is taken.
Consider the posterior induced by signal 1, ρ̂1, and suppose the user optimal action is a. Condition (3) implies that for all
beliefs wherein the optimal receiver action is not share, the platform would strictly prefer the share action. However, recall
that in section 3, we assumed that for each action a, there is a state (and thus a corresponding belief) where the user and
platform both prefer this action. Thus, only the first two can hold.

Lastly, to show cl(ρ̂s) = u(ρ̂s), consider the line segment ℓ1 connecting the induced posteriors of the optimal signaling
scheme: (ρ̂0, u(ρ̂0)) and (ρ̂1, u(ρ̂1)). Observe that the optimal sender utility is obtained by evaluating this line segment at
the noisy prior µ̂. If the line connecting these two points (including the end-points) is part of cl(ρ̂), then our claim holds. If
not, then this line must be in the interior of the convex hull since cl(ρ̂) represents the boundary of this convex hull. Then,
there exist points (ρ̂′0, u(ρ̂

′
0)) and (ρ̂′1, u(ρ̂

′
1)) such that the line between these two is strictly above ℓ1. Evaluating this line

segment at the prior µ̂ (and thus satisfying Bayes plausibility) yields a strictly higher value than at ℓ1, contradicting our
original claim that we start with an optimal signaling scheme.

As discussed in section 4, the harder scenario is when the user is purely popularity-driven and indifferent to misinformation
since there is less alignment with the platform. Such users may indeed not even agree with the platform’s characterization of
misinformation. In these cases, we show below that while the platform can still signal conditioned on both θ̂ = (m̂, v̂), it
suffices to reveal the signaling over v̂ to the user without loss of generality. This allows a nice operational simplicity.

Proposition 6. For a user whose utility only depends on the validation state, it suffices for the platform to reveal
their marginal signaling scheme π(s|v̂) and QV to the user, for them to compute their true posterior P (v|s) =

1
P (s)µ(v)

∑
v̂ π(s|v̂)QV

v̂,v .

Proof. Consider the platform revealing the marginal scheme π(s|v̂) =
∑

m̂ π(s|m̂, v̂). Since the signal only depends on v̂,
users can compute P (s|v) =

∑
v̂ P (s|v, v̂)QV

v̂,v =
∑

v̂ π(s|v̂)QV
v̂,v, and then compute the desired posterior over v using

the prior as follows: P (v|s) = 1
P (s)P (s|v)µ(v).

13
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B. Appendix B
Proof of Theorem 1

Proof. We first note that in our setting with binary actions, this optimal persuasion LP can be tersely expressed as follows,
with c and B only depending on I (and not on QΘ), and π and π̃ denoting row vectors capturing the probability of sending
signal 1 conditioned on noisy and true observations.

maximize:⟨c, π̃⟩
subject to: π̃B ≥ 0 and πQΘ = π̃ and 0 ≤ π ≤ 1

The set {πQΘ | 0 ≤ π ≤ 1} can be interpreted geometrically. This set corresponds to the parallelepiped induced by the
rows of QΘ. In other words, for a set of vectors {v1, . . . ,vk}, we define paral(v1, . . . ,vk) as the set of vectors that can be
expressed as: β1v1 + · · ·+ βkvk, with βi ∈ [0, 1]. One interpretation of this reformulated LP is that Bayesian persuasion
with noisy observations can be seen as standard Bayesian persuasion with an additional constraint that the signaling scheme
over the true observations (also referred to as effective signaling) π̃ has to belong to the parallelepiped of the rows of the
confusion matrix QΘ. We now prove the stated theorem:
⇒ We start by considering the sufficient condition for the optimal platform utility to increase wherein the columns of QΘ

1

can be written as a convex combination of the columns of QΘ
2 . Notice since both QΘ

1 and QΘ
2 this condition is equivalent

to the rows of QΘ
1 can be written as a convex combination of the rows of QΘ

2 . Now, denote the convex weights by row

vectors λ1, . . . ,λ|Θ|. Then the following holds: LQΘ
2 = QΘ

1 , where L is defined as L =

 λ1

...
λ|Θ|

. Notice that L is a

doubly-stochastic matrix. Specifically, observe that 1LQΘ
2 = 1QΘ

1 = 1, which implies 1L = 1(QΘ
2
−1

) = 1. Let (π̃1,π1)
denote any feasible solution for LP(QΘ

1 ). Specifically, π̃1 is a row vector whose coordinates are π(1|θ) and π1 is a row
vector whose coordinates are π̃(1|θ̂). We will show that (π̃2,π2) = (π̃1,π1L) is a feasible solution for LP(QΘ

2 ). Notice
that all constraints and objective of LP(QΘ

2 ) depend only on π̃, except following constraints: π̃2 = π2Q
Θ
2 and 0 ≤ π2 ≤ 1.

Note the first constraint is satisfied by π2Q
Θ
2 = π1LQ

Θ
2 = π1Q

Θ
1 = π̃1 = π̃2, while second constraint is

π2 = π1L =

 ⟨π1, [L]1:⟩
...

⟨π1, [L]|Θ|:⟩

 (7)

satisfied by the fact that L is double stochastic matrix. Now, we can conclude that for optimal solution (π̃1
∗
,π∗

1) for
LP(QΘ

1 ), we have that solution (π̃2
∗
,π∗

2) = (π̃1
∗
,π∗

1L) is feasible solution for LP(QΘ
2 ) and that optimal platform utility

for LP(QΘ
1 ) is always achievable when solving LP(QΘ

2 ).

⇐ We now show the stated condition is necessary. Again, we note that the condition wherein the columns of
QΘ

1 can be written as convex combination of columns of QΘ
2 , is equivalent to condition wherein the rows of QΘ

1 can be
written as convex combination of rows of QΘ

2 . Now we show that if the condition is not satisfied, there always exist instances
wherein the utility is not monotone. For symmetric confusion matrices, we first show that the rows of [QΘ

1 ]i: belong to

paral([QΘ
2 ]1:, . . . , [Q

Θ
2 ]|Θ|:) := {β1[Q

Θ
2 ]1: + · · ·+ β|Θ|[Q

Θ
2 ]|Θ|: : βk ∈ [0, 1]} (8)

also belong to [QΘ
1 ]i: ∈ co([QΘ

2 ]1:), . . . , [Q
Θ
2 ]|Θ|:). Observe that

∑
j [Q

Θ
1 ]i:j = 1 and further,

∑
j

∑
ℓ βℓ[Q

Θ
2 ]ℓ:j =∑

ℓ βℓ

∑
j [Q

Θ
2 ]ℓ:j =

∑
ℓ βℓ = 1, which is exactly the convex hull condition. Thus, the convex hull structure is equivalent

to the parallelepiped structure when QΘ
1 and QΘ

2 are symmetric stochastic matrices. Now, assume there exists a column of
matrix QΘ

1 , such that [QΘ
1 ]i: /∈ paral([QΘ

2 ]1:, . . . , [Q
Θ
2 ]|Θ|:) then we aim to show that there exists an instance I = (u,w, µ)

such that u∗
I(Q

Θ
1 ) > u∗

I(Q
Θ
2 ), violating the monotone condition. Consider an instance wherein the receiver is indifferent

to both actions at all states. Thus, the first two constraints of LP(QΘ) are always satisfied. Then for QΘ
1 , let ϕ1 denote

the set of any π̃ such that πQΘ
1 = π̃, with 0 < π < 1, define ϕ2 similarly for QΘ

2 . Since there exists a column of matrix
QΘ

1 , such that [QΘ
1 ]i: /∈ paral([QΘ

2 ]1:, . . . , [Q
Θ
2 ]|Θ|:) we know that there exists a point, denoted by ˜̃π1 which belongs to

paral([QΘ
1 ]1:, . . . , [Q

Θ
1 ]|Θ|:), but not paral([QΘ

2 ]1:, . . . , [Q
Θ
2 ]|Θ|:). Since ˜̃π1 ∈ paral([QΘ

1 ]1:, . . . , [Q
Θ
1 ]|Θ|:) we know that

∃π1 whose values are between 0 and 1 such that π1Q
Θ
1 = ˜̃π1. On contrary, since ˜̃π1 /∈ paral([QΘ

2 ]1:, . . . , [Q
Θ
2 ]|Θ|:) we
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know that ∄π2 whose values are between 0 and 1 such that π2Q
Θ
2 = ˜̃π1. Therefore, we know that ∃˜̃π1 such that ˜̃π1 ∈ ϕ1

and ˜̃π1 /∈ ϕ2. Now, by Hyperplane Separation Theorem (Boyd & Vandenberghe, 2004, Exercise 2.22), we know that ∃b
such that ⟨b, ˜̃π1⟩ > c1 and ⟨b, π̃2⟩ < c2, ∀π̃2 ∈ Φ2 such that c1 > c2. Now notice that we can simply achieve our objective
expression by (u(a1, θ)− u(a2, θ))µ(θ) = bθ where θ = 1 . . . |Θ|, and bθ is the θ-th coordinate of vector b. Notice that in
the edge case, where µ(θ) = 0 for some θ values the initial LP problem reduces to the same LP structure with a smaller
dimension, and the proof is exactly the same. Therefore, we see that we can find examples where u∗

I(Q
Θ
1 ) > u∗

I(Q
Θ
2 ).

Proof of Theorem 2

Proof. We wish to show that for any instance I and any pair (QΘ
1 , Q

Θ
2 ), there exists a constant L such that: |u∗

I(Q
Θ
1 ) −

u∗
I(Q

Θ
2 )| ≤ L||QΘ

1 −QΘ
2 ||∞, where we use the ℓ∞ matrix norm. We first show that the concave closure function cl(ρ̂) is

Lipschitz in ρ̂. Next, we show that the change from QΘ
1 to QΘ

2 leads to a bounded vertical shift in the closure function due to
this Lipschitz property. Lastly, the point at which we evaluate the concave closure function to determine the optimal sender
utility also changes in a bounded manner. The combined effects are all bounded and give rise to our Lipschitz constant.

From lemma 3, we know that on either side of the plane of indifference, cl(ρ̂) is a continuous linear function. Since we have
2 actions, there is a single plane of indifference. We will aim to tightly upper bound the directional derivative for each joint
state θ̂ = (m̂, v̂) of the linear regions on either side of this indifference plane. Since the concave closure function is linear on
either side of the indifference plane, it suffices to consider the maximum value of ∆u

∆ρ̂
θ̂

from the indifference plane, where ρ̂θ̂
denotes the coordinate corresponding to θ̂. Pick an arbitrary belief ρ̂ on the indifference plane. The slope along a direction θ̂

is naturally upper bounded by umax
s −umin

s

min(ρ̂
θ̂
,1−ρ̂

θ̂
) . We now look to tighten this. Indeed, if there exists another belief ρ̂′ on the

indifference plane such that ρ̂′
θ̂

is closer to 0.5, this would imply the change in utility is larger than umax − umin, which is

not possible. To tighten this, let ρ̂min
θ̂

and ρ̂max
θ̂

denote the smallest and largest values of coordinate θ̂ for beliefs ρ̂ that lie

on the indifference plane. Then the largest value of the directional derivative of the closure function along the θ̂ direction

is given by cθ̂ = max

(
umax−umin

1−ρ̂min

θ̂

, umax−umin

ρ̂max

θ̂

)
. Thus, when belief changes from ρ̂1 to ρ̂2, the maximum change in the

concave closure function is upper-bounded by |ρ̂1 − ρ̂2|
∑

θ̂ cθ̂, with c =
∑

θ̂ cθ̂ being the Lipschitz constant.

For a belief over predicted states P (θ̂) = ρ̂, the corresponding belief over true states ρ = P (θ) changes under the different
confusion matrices. This affects the closure graph in two ways. First, it vertically shifts the underlying u function since
u(ρ̂) = Eρ(θ)[u(a

∗,m, v)]. More formally, for a given belief ρ̂ the change due to the shift from QΘ
1 to QΘ

2 is given by:
u(ρ̂;QΘ

1 )− u(ρ̂;QΘ
2 )

=
∑
θ

u(a∗, θ)
∑
θ̂

ρ̂(θ̂)(V Θ
1 (θ, θ̂)− V Θ

2 (θ̂, θ)) ≤ |Θ|umax||V Θ
1 − V Θ

2 ||

which follows due to lemma 2. Next, exploiting the relationship between matrices V Θ and QΘ as outlined in lemma 2, the
following holds for any element (θ, θ̂) of matrix V Θ:

V Θ
θ,θ̂

=
µ(θ)QΘ

θ̂,θ∑
θ′ µ(θ′)QΘ

θ̂,θ′

=⇒

∣∣∣∣∣ ∂V
Θ
θ,θ̂

∂QΘ
θ̂,θi

∣∣∣∣∣ ≤ µ(θi)µ(θ)Q
Θ
θ̂,θ(∑

θ′ µ(θ′)QΘ
θ̂,θ′

)2 ≤ |Θ|2

µ2
min

(9)

where the last inequality follows since we consider classifiers to at at least as good as chance, the diagonals of QΘ are always
at least 1

|Θ| . We also note that µmin > 0 since if any state occurs with 0 probability, we can without loss of generality,
reformulate the problem to exclude that state. With the dependence of an element of V Θ established to be Lipschitz in an
element of QΘ, it follows that ||V Θ

1 − V Θ
2 || ≤ M ||QΘ

1 −QΘ
2 || where M = |Θ|3

µ2
min

.

Second, let ρc denote a belief wherein the user has equal expected utility for both actions - in other words, the user is
indifferent. The predicted induced belief ρ̂c that corresponds to this indifferent belief may also shift due to the change
from QΘ

1 to QΘ
2 , affecting the closure. Formally, let the row vector π̃ denote a signaling scheme over true states θ (suffices

to consider only the “share” signal) that induces ρc. To satisfy the feasibility constraints (see equations 1), we need a
signaling over predicted states θ̂ such that: πi = π̃QΘ

i and πi ∈ ∆|Θ| for i ∈ {1, 2}. When this is not feasible for both, this
indifference point is not reachable by signaling and the change from QΘ

1 to QΘ
2 has no effect on the closure with respect to
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the indifference plane. When this is feasible for one but not the other, it maps exactly to the possible discontinuity mentioned
in the statement. Consequently, we consider the last case - both π1 and π2 are feasible. We have that:

ρ̂1 =
π1 ⊙ µ̂

||π̃||1
=

π̃QΘ
1
−1

Diag(QΘ
1 µ)

||π̃||1
(10)

=⇒ ||ρ̂1 − ρ̂2|| ≤
π̃

||π̃||
||QΘ

1

−1
Diag(QΘ

1 µ)−QΘ
2

−1
Diag(QΘ

2 µ)|| (11)

By adding and subtracting QΘ
1
−1

Diag(QΘ
2 µ) and using the triangle inequality, we have that:

≤ ||QΘ
1

−1
Diag(QΘ

1 µ)−QΘ
1

−1
Diag(QΘ

2 µ)||+ ||QΘ
1

−1
Diag(QΘ

2 µ)−QΘ
2

−1
Diag(QΘ

2 µ)|| (12)

Using the sub-multiplicative property of the matrix norm, the fact that ||Diag(v)|| = ||v||, and that µ belongs to the simplex,
the first term can be bounded by: ||QΘ

1
−1|| · ||QΘ

1 −QΘ
2 ||. Similarly, the second term of equation 12 can be upper bounded

by: ||QΘ
1
−1 −QΘ

2
−1|| · ||QΘ

2 ||. Therefore, we can bound the distance between the two indifference points with respect to
the predicted states by:

||ρ̂1 − ρ̂2|| ≤ ||QΘ
1

−1|| · ||QΘ
1 −QΘ

2 ||+ ||QΘ
1

−1 −QΘ
2

−1|| · ||QΘ
2 || (13)

Since we consider non-degenerate confusion matrices QΘ whose inverses satisfy ∥QΘ−1∥ ≤ L (for instance, if ∥QΘ−Id∥ ≤
r < 1, we would have L ≤ 1

1−r ) we can appeal to the sub-multiplicavity of the matrix norm and state: ||QΘ
1
−1 −QΘ

2
−1|| ≤

L2||QΘ
1 −QΘ

2 ||. Thus, we have that:

||ρ̂1 − ρ̂2|| ≤ L||QΘ
1 −QΘ

2 ||+ L2||QΘ
1 −QΘ

2 || (14)

There is thus a region of length λ||QΘ
1 −QΘ

2 || (λ surmises the constants above) where the optimal action is different under
cl(ρ̂;QΘ

1 ) and cl(ρ̂;QΘ
2 ). The largest difference between the two closure functions for a belief ρ̂ occurs in this region since

one function could be increasing and the other decreasing (for a belief outside of this region, the optimal action is the same
thus, both functions are both increasing or decreasing). However, since the closure function is lipschitz with constant c, the
maximum difference at any belief ρ̂ is given by: |cl(ρ̂;QΘ

1 )− cl(ρ̂;QΘ
2 )| ≤ cλ||QΘ

1 −QΘ
2 ||+ |Θ|Mumax||QΘ

1 −QΘ
2 ||.

Lastly, recall that by theorem 2, the optimal platform utility is equal to evaluating the closure function at the noisy prior µ̂(θ̂).
For a prior µ(θ), we have established that the predicted belief shifts at most |Θ|||QΘ

1 −QΘ
2 ||1. Since the closure function is

Lipschitz, the change in the evaluation point from µ̂(θ̂ QΘ
1 ) to µ̂(θ̂ QΘ

2 ) leads to a difference of at most c|Θ|||QΘ
1 −QΘ

2 ||1.
Combining this with the fact that the closure functions are vertically by at most (λc+Mumax)|Θ|||QΘ

1 −QΘ
2 ||1 at any belief,

implies that the total change in optimal utility due to change from QΘ
1 to QΘ

2 is at most |Θ|(2λc+Mumax)||QΘ
1 −QΘ

2 ||1.
Thus, the optimal sender utility for an instance I as a function of confusion matrix QΘ is |Θ|(2λc+Mumax)-Lipschtiz.

C. Appendix C
Proof of Propostion 3

Proof. We note that for any prior belief µt over true states θ, QΘµt is the corresponding noisy prior belief over predicted
states θ̂, which we notationally denote as µ̂. The first condition states that for belief µt, the optimal action for the receiver is
to share. Observe that if this is not the case then either (1) optimal signaling with induce a share posterior which cannot be
equal to µt and thus violate stability or (2) optimal signaling will only induce “not share” posteriors, in which case the user
never shares and the performative process becomes ill-defined and the user essentially detaches from the platform.

Next, from proposition 2 we know that the optimal utility from signaling is equal to cl(µ̂). If cl(µ̂t) = cl(QΘµt) =
u(QΘµt) = u(µ̂t), with the latter representing the platform utility without signaling, we confirm that signaling cannot
increase utility and µt is thus stable. For the reverse direction, it suffices to note that: cl(QΘµt) ̸= u(QΘµt) =⇒
cl(QΘµt) > u(QΘµt) (due to cl representing the concave closure of u), and there thus exist distinct posteriors inducible
through signaling such that the expected utility is equal to cl(QΘµt). Due to Bayes plausibility, these posteriors cannot be
equal to the prior; thus, the posterior corresponding to user’s sharing is distinct from the noisy prior µ̂t; correspondingly, µt

is not stable.
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C.1. Proof of Proposition 4

Proof. We consider the equivalent optimal stable distribution over predicted states as ρ̂max =
argmaxρ̂|w1(ρ̂)≥w0(ρ̂)∧cl(QΘρ)=u(QΘρ) u(ρ̂). Note that the constraints here correspond exactly to the stability con-
ditions outlined in proposition 3. Thus, it is evidently the optimal stable point of the process. Next, we note that if such a ρ′

does exist, then let ρ̂′ = QΘρ′ and there must exist parameter α such that α0ρ̂max + (1− α0)ρ̂
′ = QΘµ0 = µ̂0. In other

words, Bayes plausibility is satisfied, implying that this pair of posteriors is inducible through signaling.

The performative dynamic implies the next prior, µ̂1 is a convex combination of µ̂0 and ρ̂max. Since µ̂0 itself is a convex
combination of ρ̂max and ρ̂′, we have that:

µ̂1 = λµ̂0 + (1− λ)ρ̂max = λ [α0ρ̂max + (1− α0)ρ̂
′] + (1− λ)ρ̂max (15)

= ρ̂max[λα0 + 1− λ] + λ(1− α0)ρ̂
′ (16)

Note that inducing posteriors ρ̂max and ρ̂′ is still Bayes plausible in round 1 - albeit with different weights. As such, choose
signaling scheme π1 to induce these posteriors with the corresponding weights. We will choose signaling for all subsequent
rounds to induce these posteriors and inductively show it is possible. Observe that if at round t, there exists an αt such that:
µ̂t = αtρ̂max + (1− αt)ρ̂

′, then µ̂t+1 = ρ̂max[λαt + 1− λ] + λ(1− αt)ρ̂
′. Note that (1) µ̂t+1 is closer to ρ̂max than µ̂t

since the total weight on ρ̂′ decreases between the two rounds and (2) inducing posteriors ρ̂max and ρ̂′ is still feasible at
round t + 1 due to Bayes plausibility being satisfied. We choose πt+1 to induce this accordingly. Thus, we note that as
t → ∞, this sequence of signaling schemes will lead the process to converge to ρ̂max, the optimal stable point.

C.2. Proof of Theorem 3

Proof. We first express the performative dynamics with respect to the observed states θ̂ = (m̂, v̂). Observe the following:
λµ̂t(θ̂)+ (1−λ)ρ̂t(θ̂|s = 1) =

∑
θ Q

Θ
θ̂,θ

[λµt(θ) + (1− λ)ρt(θ|s = 1)], which follows due to lemma 2. Next, by invoking

the performative dynamics and lemma 2 again, we have that this is equivalent to
∑

θ µt+1(θ)Q
Θ
θ̂,θ

= µ̂t+1(θ̂). In other

words: µ̂t+1(θ̂) = λµ̂t(θ̂) + (1− λ)ρ̂t(θ̂|s = 1).

Next, observe that the performative process only changes the prior (and thus the optimal signaling scheme), but does not
affect the platform belief to expected utility function u(ρ̂) nor its concave closure cl(ρ̂). Both of these depend only on the
platform and user utility. Next, consider the scenario at t = 0 with noisy prior µ̂0(θ̂), whereupon the platform commits to
an optimal signaling scheme π∗

0(s|θ̂). If there are multiple optimal schemes (thus multiple optimal posteriors that can be
induced) and since this is the first round, let the platform break the tie by choosing the pair for whom the corresponding
u(ρ̂0(θ̂|s = 1)) is the largest6. Denote this pair of optimal signaling schemes by {ρ̂00, ρ̂10}. Next, for α ∈ [0, 1], consider
the line segment ℓ(α) = (1− α)z0 + αz1 which connects the points z0 = [ρ̂00, cl(ρ̂

0
0)] and z1 = [ρ̂10, cl(ρ̂

1
0)]. By lemma 3,

we know that the endpoints of this line segment, corresponding to the optimal induced posteriors, also lie on the u(ρ̂). In
other words, [ρ̂x0 , cl(ρ̂

x
0)] = [ρ̂x0 , u(ρ̂

x
0)] for x ∈ {0, 1}. By Bayes plausibility, there exists an α0 such that the first element

of ℓ(α0), denoted by ℓ(α0)0 = µ̂0. Theorem 2 further states that the expected platform utility under the optimal scheme is
given by cl(µ̂0) =

∑
x∈0,1 P0(x)u(ρ̂

x
0), where P0(x) is the probability of signal x at round 0. Observe that this point is on

the line segment ℓ – i.e. ℓ(α0) = [µ̂0, cl(µ̂0)]. Thus, we have that the line segment ℓ matches the cl(ρ̂) at both the endpoints
and one interior point. Since the cl(ρ̂) function is concave piece-wise linear continuous, it must imply cl(ρ̂) coincides with
the line segment ℓ between beliefs ρ̂00 and ρ̂10.

The performative dynamic implies the next prior, µ̂1 is a convex combination of µ̂0 and ρ̂10. Thus, there exists an α1 such
that ℓ(α1)0 = µ̂1, since the performative process moves to a point between the earlier prior and the s = 1 posterior, both
of which are on the ℓ line segment. More specifically, α1 = (1 − λ) + λα0. The value of optimal signaling at µ̂1 is
again equivalent to cl(µ̂1) by theorem 2. Since the curve ℓ(·) coincides with cl(·) between ρ̂00 and ρ̂10, and µ̂1 lies in this
region, the value of optimal signaling is equal to ℓ(α1)1 = cl(µ̂1). Thus, ρ̂00 and ρ̂10 are still optimal induced posteriors
for prior at µ̂1, and recall we break ties by choosing posteriors closest to the last round. In other words, ρ̂x1 = ρ̂x0 , with
P1(s = 0) = 1− α1 and P1(s = 1) = α1 is an optimal scheme for the platform at µ̂1. It is evident that this invariant will
be maintained throughout this process. Precisely, for each µt in this process, there exists a αt ∈ [0, 1] such that ℓ(αt)0 = µ̂t,
which implies cl(µt) = ℓ(αt)1, which implies signaling such that ρ̂xt = ρ̂x0 , and Pt(s = 0) = 1− αt and P1(s = 1) = αt

6If multiple optimal signaling schemes exist at subsequent rounds, we assume ties are broken by choosing the scheme whose posteriors
are closest to the earlier round’s posterior.
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is optimal for the platform at µt. This in turn means µt+1 can be expressed as ℓ(αt+1)0, with αt+1 = (1− λ) + λαt. Since
αt, λ ∈ [0, 1], the following always holds: αt < αt+1 < 1; thus, as t → ∞, αt → 1 and µ̂t → ρ̂10.

Lastly, we note from lemma 3 that any posterior distribution induced by an optimal signaling scheme satisfies cl(ρ̂10) = u(ρ̂10).
Proposition 3 immediately implies this convergent distribution is also stable.

C.3. Proof of Proposition 5

Proof. First, note that scaling the platform utility by an additive constant does not affect optimal signaling, and thus we can
solve the normalized instance without loss of generality. Note that in the first round, we assume the user’s optimal action to
be “share”. If the initial is not a stable point, then platform utility can always improve due to signaling. Thus:

Eµt
[u′(at, θ)] < Pt(s = 0)Eρ0

t
[u′(0, θ)] + Pt(s = 1)Eρ1

t
[u′(1, θ)]

Since platform utility for action 0 (not share) is always less than or equal to 0 for any state under the theorem conditions:
Eµt

[u′(at, θ)] < Pt(s = 1)Eρ1
t
[u′(1, θ)], which implies

1

Pt(s = 1)
Eµt [u

′(at, θ)] < Eρ1
t
[u′(1, θ)] = Eµ∞ [u′(1, θ)]

where the last term is the utility at the myopic stable point. Lastly, the proof of theorem 3 shows that the myopic process
monotonically approaches ρ01. Since the above implies cl(QΘρ01) > cl(QΘµ0) and the utility of optimal signaling always
lies on this line segment of the closure function cl, the utility is monotonically increasing over time as well.
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