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ABSTRACT

Large Language Models (LLM) are typically trained on vast amounts of data
from various sources. Even when designed modularly (e.g., Mixture-of-Experts),
LLMs can leak privacy on their sources. Conversely, training such models in iso-
lation arguably prohibits generalization. To this end, we propose a framework,
NOESIS, which builds upon the desired properties of modularity, privacy, and
knowledge transfer. NOESIS integrates differential privacy with a hybrid two-
staged parameter-efficient fine-tuning that combines domain-specific low-rank
adapters, acting as experts, with common prompt tokens, acting as a knowledge-
sharing backbone. Results from our evaluation on CODEXGLUE showcase that
NOESIS can achieve provable privacy guarantees with tangible knowledge trans-
fer across domains, and empirically show protection against Membership Infer-
ence Attacks. Finally, on code completion tasks, NOESIS bridges at least 77% of
the accuracy gap between the non-shared and the non-private baseline.

1 INTRODUCTION

Large Language Models have brought much disruption in the field of Artificial Intelligence and
have transformed various use-cases, from intelligent assistants (Dong et al., 2023) and code co-
pilots (Chen et al., 2021) to agentic web browsing (Zheng et al., 2024) and enhanced tutoring (Ko-
talwar et al., 2024). They have shown great scaling potential, devouring terabytes of raw textual or
multi-modal data (Kaplan et al., 2020) without their performance plateauing. As this trend contin-
ues, all public resources will eventually be consumed. Therefore, tapping into private data silos will
become the next significant source of information (Shumailov et al., 2024; Iacob et al., 2024).

However, copyright (Xu et al., 2024) and privacy laws (EU-regulation, 2024; Bukaty, 2019) may
prevent models from being trained and served as-is, uniformly across the globe. This introduces
the need to orchestrate model training that is somehow separated per region or source. Maintaining
separate models, though, quickly becomes intractable and burdensome. Private organizations can
own data they want to use for their custom LLM but not expose it publicly Carlini et al. (2021);
OpenAI (2023). For instance, client institutions may wish to train domain-specific Copilots (GitHub,
2024) without leaking proprietary information (Niu et al., 2023) to the public domain.

To approach this problem, we draw from Modular Learning (Pfeiffer et al., 2023) for routing
knowledge across parts of a neural network and adaptively serve to different domains. While
off-the-shelf Mixture-of-Experts (MoE) models (Cai et al., 2024) adopt an architecture where
different domains can share common parameters – thus enabling knowledge transfer. However, they
can introduce privacy risks (Carlini et al., 2019) exactly because of this sharing. In addition, training
an entire MoE model under Differential Privacy (DP) significantly reduces its utility as training a
large shared backbone network over multiple domains requires adding large amounts of DP noise.
Therefore, there is an inherent tension between modularity, privacy and knowledge sharing.

We propose a privacy-friendly architecture for differentially private modular learning, Nexus-of-
Experts (NoE). This inherits a domain-routed mixture of low-rank adapters model (Mix-LoRA),
applied on the fully connected layer of each transformer block, further enhanced by shared tokens
obtained through a DP training algorithm so that it can be activated across domains (Fig. 1). This
architecture allows for a modular architecture and tunably shares knowledge between domains

∗Work done while interning at Brave Research.
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Table 1: Learning approaches and deployment characteristics of each solution. NOESIS is the only
method that is modular, private and can benefit from knowledge transfer among domains.

Modular Private Transfer Approach Remarks

✗ ✗ ✓ Monolithic model (Wang et al., 2023) Leaking privacy in model parameters
✗ ✓ ✓ Private learning ((Wang et al., 2023)+(Abadi et al., 2016)) Low performance
✓ ✓ ✗ MoE (share-nothing) (Zhou et al., 2024) No benefit from knowledge transfer
✓ ✗ ✓ MoE (shared-expert) (Gong et al., 2022) Privacy leakage in shared expert

✓ ✓ ✓ NOESIS (ours) Addresses all three problems

privately. Compared to conventional MoE methods, we enable efficient document-private learning.
Compared to adaptive parameter-efficient fine-tuning (PEFT) alternatives, we facilitate knowledge
transfer between domains while providing modularity at deployment time.

In summary, our contributions are the following:

• We expose privacy leakage on existing routing-based models, showcasing the need for
privacy-preserving training in these models.

• We propose NOESIS, a domain-routed, hybrid PEFT solution that adopts a shared DP-trained
set of prompt tokens that act as a knowledge-sharing backbone and enable knowledge transfer
between domains, and a Mix-LoRA that act as private domain experts.

• We analyze the balance between privacy and model expressiveness by tuning the number of
trainable parameters and the noise needed to ensure privacy. Indicatively, our hybrid method
performs up to 1.4% accuracy points better than the non-hybrid, LoRA-only variant.

• We apply our technique to the problem of code generation, adopting different programming
languages as our domains and ensuring privacy at a document level. Our results showcase
that NOESIS can achieve from 1.4 to 4.9% points better downstream accuracy, averaged
across domains, while protecting our model against privacy leakage.

2 DESIDERATA

We study the problem of fine-tuning an LLM for various private domains. This section explains
three properties of the problem and shows how NOESIS uniquely satisfies all of them (Table 1).

Knowledge Transfer. When training on multiple data sources, knowledge transfer is the improve-
ment in results when learning a joint model from all sources, instead of learning a separate model
per source (Ruder et al., 2019). In our multi-domain setting, we desire more accurate predictions in
each domain while maintaining privacy regarding potential adversaries from other domains.

Modular Learning. Modular learning refers to models whose execution subgraphs can be special-
ized in terms of function (Pfeiffer et al., 2023; Cai et al., 2024; Fedus et al., 2022). The benefits of
modularity for our problem are two-fold. Computationally, modularity allows us to train once and
serve model components everywhere without maintaining multiple copies or replicating knowledge.
Privacy-related, separating domain-specific and shared parameters allows for a clear separation of
concerns in terms of domains. This can be important for serving under different jurisdictions and
providing formal guarantees about the flow of information.

Preserving privacy. Machine learning models can inadvertently leak sensitive training data (Carlini
et al., 2021), which raises privacy concerns when private information is involved. We aim to improve
model accuracy by training on multiple private data sets from different domains without impacting
their privacy. Therefore, we formalize a threat model when training a model on private datasets
from multiple domains, where an adversary in one domain should not be able to discern information
about training data in another domain.

These requirements are essential in various real-world scenarios. An example is a globally operating
organization that wants to train a single model but serve modularly across different regions and
ensure that the model does not leak information between regions due to various copyright or privacy
laws (Foo Yun Chee, 2024; Stefano Fratta, 2024). Finally, the modular aspect can be helpful
in scenarios where an organization wants to train a model on multiple domains, such as legal,
instructional, and administrative documents (Salesforce, 2024), but wants to ensure that the model
does not leak information between domains.
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Figure 1: The training and the deployment process of NOESIS. The training process consists of
two stages: Stage 1: The training of private prompt token parameters across domains; Stage 2: The
training of expert Mix-LoRA per domain. The deployment involves merging the LoRA parameters
with the backbone and sharing the privately trained prompt tokens with each downstream client.

3 NOESIS

Aiming for the properties of modularity, knowledge transfer, and privacy, we introduce NOESIS,
a hybrid, DP-trained, domain-routed Nexus-of-Experts (NoE) solution that adopts a shared set of
trainable tokens and Mix-LoRA experts and enables knowledge transfer between domains.

Domain-routed models. NOESIS is fundamentally a modular architecture that enables the special-
ization of network components to different domains. Given dataset D(k)

i from domain k, where
k ∈ [1,K], we route the data from each domain to the respective expert. Instead of operating di-
rectly on the backbone model parameters, we use a Mix-LoRA (Hu et al., 2021; Li et al., 2024)
architecture that keeps the backbone network frozen and only tunes the adapters per domain. The
adapters are applied on top of feed-forward network (FFN) layers of the transformer blocks to en-
able the “logic” of the network to be tuned per domain Li et al. (2024). Mix-LoRA has been shown
to be effective in routing-based neural networks (Li et al., 2024; Feng et al., 2024; Wu et al., 2024;
Shen et al., 2024). Formally, let W ∈ Rp×q be the weight matrix of a linear layer in the model with
parameters θ. We decompose

W = W + α

K∑
k=1

B(k)A(k), (1)

where A(k) ∈ Rr×q and B(k) ∈ Rp×r are the trainable (signified by the underline) low-rank matri-
ces for the k-th domain-specific adapter, out of K domains. The experimental section refers to the
rank r as the adapter rank. α ∈ R is a scalar constant to reduce the variance impact of the adapter.

Enabling Knowledge Transfer. We adopt a differentially private prompt-tuning mechanism to fa-
cilitate knowledge transfer between domains while keeping the number of shared trainable parame-
ters minimal. Prompt tuning has emerged as a promising method for efficiently fine-tuning LLMs by
introducing differentiable prompts, which are real-valued tokens that can be learned through back-
propagation (Li & Liang, 2021; Lester et al., 2021). Prior work demonstrates that DP prompt-tuning
can achieve substantial predictive accuracy even with stringent privacy budgets, such as ε < 1 (Duan
et al., 2023). By training only the differentiable prompts, we reduce the number of trainable param-
eters, thereby minimizing the required noise for DP.

Specifically, given input X = {x(k)
1 , x

(k)
2 , . . . , x

(k)
L } of L tokens, from domain k ∈ K, a com-

mon set of trainable prompt embeddings P ∈ Rnpt×dvocab is prepended to the input sequence,
X ′ = [P ;X]. npt is the number of prompt tokens and dvocab the output dimensionality of the
vocabulary. Differentially Private Stochastic Gradient Descent (DP-SGD) (Duan et al., 2023) tunes
prompts under the framework of DP by clipping the per-sample gradient to a fixed norm and adding
calibrated Gaussian noise to these clipped gradients before applying to update prompts. Concretely,
this means P (t+1) ← P (t) − ηg̃

(t)
P , where g̃

(t)
P is the noisy clipped gradient with respect to the

prompt tokens at step t and η is the step size.

The training Process of NOESIS is illustrated in Figure 1 (left) and outlined in Algorithm 1 in the
Appendix. It follows a two-stage procedure of private learning for the shared parameters (Step 1 )
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Table 2: The main experimental comparison on modularity, privacy, and knowledge transfer. NOE-
SIS uniquely addresses all three aspects, achieving high accuracy while obtaining DP at ε = 1.0
and enabling knowledge transfer across domains. (Knowledge transfer is defined as the increase in
accuracy compared to “Share Nothing,” which does not have shared parameters between domains.)

Model ε Modular Private Transfer PEFT Python Java Go
(i) Share Nothing 0.0 ✓ ✓ ✗ ✓ 68.31 60.19 64.17
(ii) Solo (separate models) 1.0 ✗ ✓ ✗ ✗ 30.19 14.84 4.84
(iii) Monolithic Fine-tuning (Abadi et al., 2016) 1.0 ✗ ✓ ✓ ✗ 36.05 23.54 18.34
(iv) Common LoRA Adapter (rc=512)∗ (Yu et al., 2021b) 1.0 ✗ ✓ ✓ ✓ 48.21 36.16 27.24
(v) Prompt-Tuning Only (pt32)† (Duan et al., 2023) 1.0 ✗ ✓ ✓ ✓ 35.03 24.29 9.67
(vi) NOESIS (pt32)† 1.0 ✓ ✓ ✓ ✓ 69.14 61.18 66.53
∗rc, rank r of the common LoRA; †pt: number of trainable prompt tokens

and non-private learning for the domain-specific adapters (Step 2 ). In each iteration of the first
stage, a batch of documents is sampled, and the gradients are computed for the domain-specific and
shared parameters. The gradients are clipped and noised according to DP-SGD (Abadi et al., 2016).
In the second stage, SGD refers to Stochastic Gradient Descent. During deployment (Step 3 ), the
LoRA parameters are sent to each respective domain and merged with the backbone.

For document-level DP, we use the definition from Dwork & Roth (2014). A randomized algorithm
f(·) is (ε, δ)-differentially private if the following holds for any two adjacent data sets D, D′, and
for any subset S of outputs: Pr[f(D) ∈ S] ≤ eε Pr[f(D′) ∈ S]+δ. Here, D = {di}Ni=1 is a dataset
of N documents. Each di is a string of tokens of arbitrary length. In the multi-domain setting, a
dataset comprises all documents in all domains. Two datasets D and D′ are adjacent when they
are identical except for one document in any domain being removed. For this privacy protection,
we can calculate the noise multiplier as a function of total dataset size N and batch size Nb in
Algorithm 1. In keeping with prior work, we run all privacy-focused experiments with ε = 1.0 and
δ = 10−6, which is smaller than the rule-of-thumb of one divided by dataset size (Hsu et al., 2014).

4 EVALUATION

Our evaluation adopts the task of code completion among different programming languages, which
we consider private domains. First, we evaluate the knowledge transfer between domains. Second,
we perform a sensitivity analysis for the number of trainable parameters. Finally, we run a privacy
attack to investigate privacy leakage empirically.

Model. We use a decoder-only model architecture for our experiments (Radford, 2018) – specif-
ically, the pre-trained CodeT5+ (220M) model. Given the previous tokens as input, the model is
trained to autoregressively predict the next token in a sequence by using the softmax as likelihood
and cross-entropy as the loss function. This setup is particularly suitable for programming language
tasks, where the goal is to generate code one token at a time (Gong et al., 2022).

Datasets. We use the Python, Java, and Go programming languages for our multi-domain training
because the pre-trained model was trained on data specifically deduplicated for datasets in these
languages (Wang et al., 2023). The deduplication is necessary to simulate private domains for
fine-tuning. The dataset for Python is the PY150 dataset (Raychev et al., 2016) and for Java the
JavaCorpus (Allamanis & Sutton, 2013), which follows a similar setting as Gong et al. (2022).
The Go data comes from the CodeSearchNet dataset (Husain et al., 2019). More details about the
datasets can be found in Appendix C.1.

Training Setup & Hyperparameters. We train our models on 4×4090 GPUs, using a learning
rate of 10−3. We use the privacy-accountant of the Opacus library to calculate the noise-multiplier
constant (Yousefpour et al., 2021). An epoch is defined as sampling one 512-token block for each
document in the dataset. This ensures optimal use of compute resources and maintains the privacy
guarantee as each epoch uses a document exactly once. Details about our hyperparameter values can
be found in Appendix C.3. The code to run the experiments corresponding to Table 2 can be found
at the anonymized GitHub: www.anonymous.4open.science/r/noesis-48E5.

We compare NOESIS against various trainable baselines, namely: i) Share Nothing: a modular
model without shared parameters, which is to simulate the effect of not having knowledge transfer;
ii) Solo: a separate model fine-tuned separately for each domain; iii) Monolithic Fine-tuning: DP
fine-tuning the whole model without any routable components (Abadi et al., 2016), which is to
compare with Solo and confirm the effect of knowledge transfer in monolithic models (Hokamp
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Table 3: Prompt-tuning achieves the best trade-off between
the number of shared parameters and accuracy, across do-
mains. All results obtained under the privacy guarantee.

Model # Shared Params. Python Java Go
rc64 7680× 768 = 5.9M 68.73 60.32 65.32
rc4 480× 768 = 369k 68.77 60.45 65.39
rc1 120× 768 = 92k 68.74 60.43 65.26

pt120 120× 768 = 92k 69.13 61.09 66.49
pt32 32× 768 = 25k 69.14 61.18 66.53
pt8 8× 768 = 6k 69.13 61.16 66.49
rc, rank r of the common LoRA; pt, number of prompt tokens

60 65 70

Go

Java

Python

64.17
66.58

67.06

60.19
61.19
61.28

68.31
69.14
69.39

ShareNothing
NoEsis
Non-private

Figure 2: Between the results of a non-
shared model, which is the baseline,
and a non-private model, which obtains
the highest accuracy, NOESIS bridges
the accuracy gap by more than 77%.

et al., 2019); iv) Single Common Adapter: A common LoRA trained with DP across domains (Yu
et al., 2021b), which is to compare the influence of using PEFT instead of monolithic fine-tuning;
v) Prompt-Tuning Only: tuning only the prompts under the DP guarantee, which is to investigate
the impact of knowledge transfer without any modularity in the form of Mix-LoRA (Duan et al.,
2023). Details about the baselines can be found in Appendix C.2.

Experimental Results. The results of comparing NOESIS against baselines are shown in Table 2.
Compared to Share Nothing, we see that NOESIS achieves an improvement of 0.83% points on
Python, 1.0% points on Java, and 2.41% points on Go. This indicates that knowledge transfer is
beneficial for next token prediction, especially in the case of a scarce domain, such as Go, which
has 50× less data than Python. Appendix D.4 shows qualitative examples of this comparison. To
aid interpretation of numerical results, Appendix Figure 7 shows the results of NOESIS run on five
different random seeds, making clear that generally the standard deviation is around 0.02% point.

Comparing NOESIS to Prompt-Tuning Only, we observe an improvement of more than 30% points
across the three domains. This shows the benefit of using modularity as a privacy-friendly archi-
tecture. In general, the modular models achieve higher accuracy than the non-modular models,
indicating the importance of modularity in multi-domain training. Comparing the experiments of
Solo and Monolithic, we observe the effect of positive knowledge transfer in the non-modular set-
ting, as the latter model achieves higher accuracy than each of the solo models. Finally, using a
Common LoRA Adapter achieves about nine accuracy points improvement compared to monolithic
fine-tuning, which corroborates earlier studies on PEFT and DP (Yu et al., 2021a;b).

Investigating the effect of knowledge transfer, we ask “how many shared parameters are optimal
for knowledge transfer?” This is contended by three directions: having too many parameters is
vulnerable to overfitting; having too few can lead to underfitting; finally, more shared parameters
require more noise in algorithm that satisfy DP (Abadi et al., 2016), which negatively influences
learning. To investigate this contention, we train with 4×more and 4× less trainable prompt tokens.
We also evaluate a variant with a LoRA as the trainable parameters for knowledge-sharing (explained
in Appendix C.2.1). From Table 3, the model with 32 shared prompt tokens (pt32) achieves the
highest accuracy across all domains. This indicates that a moderate number of shared parameters
appears optimal for knowledge transfer. Using a LoRA as a common parameter generally has lower
accuracy than any prompt-tuning method. This indicates that prompt-tuning is a parameter-efficient
option for providing knowledge transfer under differential privacy.

Finally, we quantify the “cost of privacy” by comparing NOESIS with the same setup without the
DP guarantee. As shown in Fig. 2, between the Share Nothing baseline (non-shared) and the non-
private variant, NOESIS is able to achieve 84% of the way on average. This indicates that NOESIS
effectively achieves knowledge transfer and high accuracy while guaranteeing privacy.

Empirical Assessment of Privacy. Complementing the analytical privacy guarantees, we measure
empirical privacy based on a Membership Inference Attack (MIA) (Shokri et al., 2017). The attack
aims to determine whether an input sequence, s, is a member of the model’s training data. Several
MIAs on LLMs have been proposed (Chang et al., 2024; Carlini et al., 2021), and we leverage an
MIA based on the predictive log-likelihood scores and extend the attack to a multi-domain setting,
named cross-domain MIA. The attack is particularly relevant for modular models (Lepikhin et al.,
2020; Gong et al., 2022; Gururangan et al., 2022; Zhou et al., 2024; Komatsuzaki et al., 2022; Wu
et al., 2024), where shared parameters can leak information between domains.
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Table 4: Mix-LoRA models have a privacy
vulnerability in parameters that are shared be-
tween domains. NOESIS reduces this vulner-
ability while maintaining good predictive accu-
racy (Figure 2). The results are formatted as
‘non-private result’→ ‘private result’.

Attack AUC (%) TPR@1 (%)

Python (via Java) 51.9→ 50.6 1.1→ 1.0
Python (via Go) 51.7→ 50.7 1.2→ 1.1

Java (via Go) 65.4→ 55.7 2.6→ 1.4
Java (via Python) 64.8→ 55.0 2.3→ 1.3

Go (via Python) 53.2→ 50.6 1.1→ 0.7
Go (via Java) 54.0→ 50.1 1.3→ 0.6

The cross-domain attack follows a threat model
where an attacker can make predictions using
the parameters in a particular domain and aims
to infer the membership of training data in an-
other domain. The scoring function S(s) =
L(s;M) is the average log-likelihood assigned
to each successive token. The attacker com-
pares this to a threshold τ to predict the mem-
bership. The attack success is measured with
Area Under the ROC Curve (AUC) and the True
Positive Rate (TPR) – defined in Appendix C.4.
The results in Table 4 demonstrate that the origi-
nal Mix-LoRA models can leak private informa-
tion. For example, attacking Java via the Go do-
main, NOESIS has less empirical privacy leak-
age, measured by AUC, from 65.4 to 55.7% for
NOESIS. Following Carlini et al. (2022), Table 4 reports the TPR at a 1% False Positive Rate (FPR),
which indicates attack success when the attacker makes only 1% false positives. Across all domains,
the attack on NOESIS has a lower (better) TPR compared to a Mix-LoRA model.

5 RELATED WORK

Routing-based models have been extensively studied to build modular language models (Cai et al.,
2024; Fedus et al., 2022). MoE architectures consist of “expert” sub-models, each specialized for
a particular domain or task, and a “router” that selects which expert to activate for a given input
sequence or token. Multiple works have combined modular models and PEFT (Ding et al., 2023; Hu
et al., 2021). Li et al. (2024) introduce Mix-LoRA for memory efficiency in language modeling; Wu
et al. (2024) introduce Mix-LoRA to study domain specialization; and Shen et al. (2024) introduce
Mix-LoRA for multi-modal instruction tuning. Most similar to ours, Feng et al. (2024) introduces
Mix-LoRA for routing on domains like finance, medicine, and coding. Other PEFT approaches
include prefix-tuning (Li & Liang, 2021) or adapter learning (Houlsby et al., 2019; He et al., 2021).
We choose a hybrid of prompt-tuning (Lester et al., 2021), which has been shown effective for
privacy-aware fine-tuning (Duan et al., 2023), and Mix-LoRA for effective domain experts.

Preserving privacy has mostly been studied with DP (Dwork & Roth, 2014). However, DP ap-
proaches have primarily focused on applying DP to all model parameters (Yu et al., 2021a; Li et al.,
2021). The benefits of leveraging public data during private fine-tuning were studied (Kerrigan et al.,
2020; Golatkar et al., 2022), showing that access to public data can improve the performance of DP-
trained models. In our case, we use public data as the pre-trained model initialization and fine-tune
with private datasets. Similar to our setting, Tholoniat et al. (2024) studies DP in an MoE setting but
focuses on learned routers and emergent expertise, whereas we aim at private learning with positive
transfer between domains. Regarding the MIA, Hu et al. (2022) explores a multi-modal attack, but
our is about the multi-domain setting with access to predictive log-likelihoods.

Knowledge Transfer in Modular Models has been studied with large-scale pre-training with vari-
ous data sources (Radford, 2018; Devlin et al., 2019; Touvron et al., 2023). The term was introduced
by Hokamp et al. (2019) and has been observed in the context of modular language models in the
MultiCoder model (Gong et al., 2022). However, that work does not consider the privacy of each
domain, nor does it study the privacy leakage in shared parameters of a neural network.

6 CONCLUSION

In this work, we have introduced a first-of-its-kind, hybrid PEFT architecture that we call Nexus-of-
Experts. Our method, NOESIS, establishes a framework for modular learning that enables knowl-
edge transfer across domains that contain private documents. We apply our technique to the problem
of multi-lingual code completion and our evaluation demonstrates that NOESIS effectively balances
privacy and utility, achieving high accuracy across domains while providing strong guarantees at
(ε = 1., δ = 10−6)-DP. NOESIS bridges the accuracy gap between non-private and non-shared
models by over 77%. At the same time, we uncover an empirical privacy leak in the baseline modu-
lar models and show how our method can defend against such attacks and protect training sources.
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Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
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A LIMITATIONS & FUTURE WORK

We have laid the foundations for a new, privacy-friendly, modular method of addressing domain pri-
vacy in LLMs. However, this is an important problem with many additional dimensions to consider.

The approach has been tested against a relatively small LLM, i.e., CodeT5+ (220M parameters) and
a single dataset (CODEXGLUE). While enough for making a case towards this new paradigm, we aim
to extend our evaluation to additional domains and tasks, such as use-cases in Natural Language.
Moreover, while largely orthogonal, we have leveraged LoRAs as our PEFT technique of choice
for domain experts. Nevertheless, there have been various alternative architectures for adaptation,
including but not limited to DoRA (Liu et al., 2024) and VeRA (Kopiczko et al., 2024). We aim
to explore such alternative forms for parameter-efficient adapters and their interplay with NoE in
future work. There is also the question of achieving modularity, privacy, and knowledge transfer
in a single-stage training method, instead of the two stages in Algorithm 1, but that must ensure
that gradients from private and locally non-private samples do not interact. Finally, we uncover
and defend against a single type of attack, namely the Membership Inference Attack. However,
there are different possible threat models and attacks (e.g., adversarial (Zou et al., 2023) and data
reconstruction (Carlini et al., 2019)). While not in the direct scope of our study, we do acknowledge
their importance in various deployment settings and future avenues of work.

B ABLATION STUDY

Table 5: Ablation: Surgically removing the shared pa-
rameters, after the training has finished, leads to the most
accuracy decrease in the domain with the most data,
Python. Removing the domain experts leads to the most
accuracy decrease in the domain with the least data, Go.

Model ε Python Java Go
NOESIS (pt32) 1.0 69.14 61.19 66.58

w/out common prompts 0.0 4.65 14.31 15.42
w/out domain experts 1.0 33.91 24.30 19.13

We perform an ablation study to under-
stand the impact of each component of
NOESIS on the final performance. In
this setting, we surgically remove the
shared parameters to investigate the im-
pact on the results. The results are
shown in Table 5. First off, we ob-
serve that removing any of the compo-
nents of NOESIS is detrimental to its
downstream accuracy, with a minimum
drop of 36.89% points and an average of
50% for common prompts and 30% for
domain experts. The common prompt

seems to be more important in the downstream accuracy, but this can be an effect of our train-
ing stage ordering. However, it yields an important conclusion that LoRA experts do not learn or
“undo” the knowledge of prompt tokens, but incorporate it into their knowledge. Moreover, the
common prompts are not a nuisance and do encode important bits of information across domains.
Finally, and in line with the comparison with the Share-Nothing ((i)), it seems that the positive
transfer (whether by removal of common prompts or by fine-tuning without them) more severely af-
fects smaller datasets and especially Go with 50× fewer documents than Python. Therefore, scarce
datasets tend to benefit more from knowledge sharing.

For the analysis in Fig. 2, the results for the scarce language, Go, are particularly noteworthy. The
knowledge transfer is more than 2.4% points over the Shared Nothing setup. This highlights the
effectiveness of our approach in leveraging shared knowledge across domains to enhance token
completion tasks, especially for a lower-resource domain.

C EVALUATION SETUP DETAILS

C.1 DATASET DETAILS

This section provides additional details about the datasets we use for training, their partitioning, and
deduplication against the pre-training set of CodeSearchNet.

Python Dataset. The PY150 data set consists of 150,000 Python repositories (Raychev et al.,
2016). Each “document” is the code from a GitHub repository collected in 2016. The original pub-
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Table 6: An overview of datasets and domains used for the training and evaluation of NOESIS on
code completion tasks.

Domain Source Description Training Set Evaluation Set
Pre-training GitHub Code (CodeParrot, 2025) Upstream data 3.7 million

Python PY150 (Raychev et al., 2016) Published dataset† 100,000 50,000
Java Java GitHub Corpus (Allamanis & Sutton, 2013) Published dataset† 12,934 8,268
Go CodeSearchNet (Husain et al., 2019) Extracted from CodeSearchNet † 2,000 1,559
† Dataset explicitly deduplicated in pre-training dataset (Wang et al., 2023).

lishers of the data set did select for repositories with permissive licenses. While originally created
for code parsing, we use only the actual code tokens for next-token prediction.

Java Dataset. The JavaCorpus data set consists of 14,807 Java code repositories (Allamanis &
Sutton, 2013). Each “document” is the code from a GitHub repository collected in 2013. The
original publishers of the data set did select for repositories with permissive licences and repositories
that were forked at least once. Additionally, repositories with a “below average” reputation score on
GitHub are not considered. In 2021, the CODEXGLUE effort repeated this strategy to collect another
6,395 code repositories under the same collection policy (Lu et al., 2021).

Go dataset. For Go, we make a new train-test split from the CodeSearchNet dataset, which we know
was also deduplicated against by (Wang et al., 2023). As CodeSearchNet has data for a text-to-code
search task, we remove the search queries and concatenate all functions of a repository to obtain a
document. The data set sizes are noted in Table 6.

The data set for Go consists of 167,288 search queries originating from 3,559 repositories. We
split the data set into 2,000 repositories for training and 1,559 repositories for testing. Functions
are concatenated with interleaved linebreaks. This mimics the provisioning strategy for the PY150
and JavaCorpus datasets, where each document represents a complete code library and thus contains
multiple functions.
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Figure 3: Histograms of number of tokens per document for the three domains. The distributions
are similar in order of magnitude. The dataset sizes are different: Python has 100,000 documents
for training, Java 12,934, and Go 2,000.

Histograms: Fig. 3 shows histograms of the number of tokens per document for the training sets of
the three domains. This indicates that the described provisioning method for Go has a similar order
of magnitude of tokens per document as the Python and Java datasets. The histogram for Go is more
noisy since the dataset contains only 2,000 documents, compared to 100,000 documents for Python.
The histogram for Python shows a single peak at 81 tokens per document, which is a boilerplate
script that is repeated several times in the training set.

We use the data sets as they are tokenized by CODEXGLUE. Long tokens might be split up by the
CodeT5+ tokenizer, similar to the training algorithm of the pre-trained model (Wang et al., 2023).
Examples of tokens as blank-spaced strings are in Section D.4.

C.2 BASELINE DETAILS

In this section, we describe each baseline in greater detail and why we compare to it. Specifically:

i) Share Nothing (Fig. 4a): This setup represents the architecture where we train domain adapters
of a model without any common parameters. The backbone model remains frozen. This effectively
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represents a setup which can have no knowledge transfer between the individual domains. In other
words, there is no parameter whose gradient depends on more than one domain.
ii) Solo (Fig. 4b): Solo represents a set of models, each trained with DP-SGD individually on a
specific domain. In this case, the baseline only shares the same pre-training between the individual
models and diverges during private fine-tuning.
iii) Monolithic Fine-tuning (Fig. 4c): This setup represents the full fine-tuning of a single model
on all datasets jointly. It exemplifies the paradigm with the largest potential for positive transfer
but is also prone to overfitting as the setup has many trainable parameters.
iv) Single Common Adapter (Fig. 4d): This setup represents the LoRA variant of (iii), where
we tune a common LoRA with rank four across all domains. This baseline is to corroborate
the increase in accuracy when using PEFT in a training algorithm with DP guarantees (Yu et al.,
2021a;b).
v) Prompt-Tuning Only(Fig. 4e): This baseline represents the training of 32 common prompt
tokens across all domains only, with the rest of the backbone being frozen. It represents the most
lightweight PEFT variant here.

Norm

Multi-Head
Attention (MHA)

FFN

Domain Router

Mix-LoRA
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Block

(a) Share Nothing

Norm
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(f) NOESIS with Common LoRA

Figure 4: Illustration of different baselines. Grey represents frozen, while blue, green, and red
represent the domains with which we train that specific component. Purple represents trainable
prompts.

C.2.1 NOESIS WITH LORA AS KNOWLEDGE SHARING BACKBONE

Table 3 compares NOESIS against a variant with the “shared parameters” in the form of another
LoRA (Feng et al., 2024). We visually present this method in Fig. 4f.
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Concretely, this corresponds to a modification of Equation 1:

W = W + α

(
B(c)A(c) +

K∑
k=1

B(k)A(k)

)
. (2)

Here, A(k) and B(k) are the trainable parameters as explained before. A(c) ∈ Rrc×q and
B(c) ∈ Rp×rc constitute the LoRA decomposition, with rc corresponding to the rank of the com-
mon adapter, which is mentioned in the first column of Table 3. All results in this table are obtained
under (ε = 1.0, δ = 10−6)-DP.

For the domain-specific parameters, in CodeT5+ , there is a bottleneck structure in W of W dmodel×dff
i

and W dff×dmodel
o , where dmodel is the model hidden size (dmodel = 768, dff = 2048 for CodeT5+ ) and

we have one LoRA for each matrix.

C.3 NOESIS HYPERPARAMETER DETAILS

Batch Size. Keeping the ratio of compute to memory optimal, we run all experiments with batch
size Nb = 64 on nodes with 4× 24gb-RAM GPUs. The first stage of Algorithm 1 is trained with
batch size 96, as more memory is available when the domain experts are not yet used. One notable
exception is the pt120 experiment in Table 3, which has only batch size 64 due to the large memory
requirements of (gradients and activations for) the prompt tokens.

Table 7: Hyperparameter overview of the learn-
ing rate used in the second stage of Algorithm 1.

Learning Rate Python Java Go

10−4 67.65 61.02 64.90
10−3 69.14 61.19 66.58

5 · 10−3 51.17 46.34 28.96

Optimizer & Learning Rates. For all train-
ing algorithms, we use the AdamW opti-
mizer (Loshchilov & Hutter, 2019) with a learn-
ing rate 10−3, similar to prior work (Wang et al.,
2023). A small sweep of learning rates in Table 7
shows that either a smaller or larger learning rate
results in lower accuracy. For scheduling, we use
a linear step scheduler with 500 steps of warmup.

Rank Size and # Trainable Tokens. When per-
forming parameter-efficient fine-tuning with LoRA, the rank we select depends on whether the re-
spective component is trained with DP or not. For the domain adapters, we use domain experts of
r = 512, whereas for the case of common LoRA, we use r = 4 (as shown also in Tab. 3). We select
rank 4 of the common adapter using Table 3, and in earlier research phases we used a finer sweep.
For selecting the rank 512 for the domain adapters, we find that a higher rank generally has better
results, however, beyond rank 512, the model would take up too much GPU memory.

DP Epsilon and Gradient Clipping Norm. Throughout our experiments in the evaluation,
we report results for ϵ = 1.0. However, we have experimented with epsilon values of
{0.01, 0.1, 1.0, 8.0, 16.0}. We report the best results that guarantees privacy without significant
utility tradeoff (i.e., more than one percentage point of accuracy degradation).

For gradient clipping, we have experimented with values in the range of [0.01, 10] in exponential
steps and have used 1.0 as the value of choice. Using a value of 0.1, for example, yields a slightly
worse performance of 69.13, 61.16, 66.48 on Python, Java, and Go, respectively, for a NOESIS pt32
model. Similarly, the rc4 model in Table 3 would decrease in accuracy to 68.75, 60.32, 65.32.

Training settings. Our method is built with PyTorch (v2.4.1) and HuggingFace transformers
(v4.45.0), with the functionality for DP handled by Opacus (v1.5.2). We train our models on 4×4090
GPUs. During training, we use a context length of 512 tokens and a learning rate of 10−3. For
training under the DP guarantee, we apply gradient clipping with a norm of 1.0 and add Gaussian
noise with a standard deviation, which is scaled according to the targeted privacy budget. We use
the privacy-accountant of the Opacus library to calculate the noise-multiplier constant (Yousefpour
et al., 2021). A private document within the dataset can be of any length. Therefore, an epoch is
defined as sampling one 512-token block for each document in the dataset. This ensures optimal use
of compute resources and maintains the privacy guarantee as each epoch uses a document exactly
once.
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C.4 DETAILS ON THE MEMBERSHIP INFERENCE ATTACK

In this section, we provide additional details on the implementation and results of the Membership
Inference Attack. The attack and privacy protection goes with the following use case: K institutions
hold data for their own domain. For example, one institution holds Python data, another holds Java
data, and a third holds Go data. A trusted server receives all the data to train with cross-domain
insights, e.g., knowledge transfer. The trusted server returns to each institution the domain-specific
model parts and the shared parameters, which are then used for inference. The privacy of each
domain is maintained, and the model can simultaneously benefit from the shared knowledge. The
process is illustrated in Fig. 1 (right).

For the results, the definition of TPR and FPR are particularly relevant:

• TPR is the proportion of members of the training set that are identified as members, i.e.,
for which S(s) > τ .

• FPR is the proportion of non-members that are incorrectly identified as members, i.e., for
which S(s) > τ .

From these rates, we report two aggregate metrics, both of which are common in the literature (Car-
lini et al., 2022):

• The AUC is a measure of the trade-off between TPR and FPR. A value of 1.0 indicates
the worst possible empirical privacy protection, while 0.5 indicates good empirical pri-
vacy protection. Fig. 5 shows the ROC curve for the cross-domain MIA per domain. The
AUC is calculated by plotting the TPR against the FPR for all possible threshold settings
and measuring the area under this curve. This corresponds to the METRICS.AUC method
in Pedregosa et al. (2011).

• The TPR @1 reflects the attack accuracy rate when making a minimal number of false
positives, i.e., 1% FPR. For this evaluation, we find the threshold τ where the FPR is 1%
and report the TPR. If such a threshold does not exist, we take a weighted average of the
TPR at the nearest two τ with lower and higher FPR.

The score function S(s) is defined as the average log-likelihood assigned to each successive token
of the input text by the model. This is also named teacher forcing in the literature. In practice, this
is implemented in a sequence of 512 tokens, like the training setting:

S(s) = L(s;M) =
1

L− 1

L∑
l=2

log
(
M(sl|s1:l−1;D)

)
(3)

where L is the sequence length, 512, M is the autoregressive model assigning log-likelihood for
token sl, conditioned on tokens up to l − 1, s1:l−1 and having been trained on dataset D. The
threshold τ is varied across all possible scores when evaluating the ROC curve. The input tokens
s1:l−1 are from the training and test set as indicated in Table 6. The studied Mix-LoRA model is
trained with SGD, like the non-private result in Fig. 2.

Extending the results of Fig. 5, we provide the ROC-AUC curves for all the combinations of Python,
Java, and Go source and target languages in Fig. 5 below. We witness that for NOESIS, the TPR is
closer to the random chance line, which is when the TPR equals the the FPR.
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Figure 5: Visualization of results in Table 5 with all combinations of source and target domains.

D NOESIS OPERATIONAL DETAILS

D.1 ALGORITHM

Algorithm 1 Stepwise Training of NOESIS

Input: Pre-trained model θ0, training sets
{Dk}Kk=1 for K domains, collectively named D
with N documents, batch size Nb, learning rate η,
number of iterations T1, T2, privacy budget ε, δ,
gradient clipping bound C
Output: Modular LLM with privacy guarantees

Stage 0: Compute noise multiplier
σ ← PRIVACCOUNTING(ε, δ, B,N, T1)
Stage 1: DP training of shared parameters
P0 ← Randomly initialize prompt tokens
for t = 1 to T1 do

Randomly draw batch Bt of size Nb from D
Pt ← Pt−1 − DP-SGD(θ0, Pt−1,Bt, σ, C)

end for
Stage 2: Training of domain-specific parame-
ters
E0 ← Randomly initialize expert adapters
for t = 1 to T2 do

Randomly draw batch Bt of size Nb from D
Et ← Et−1 − SGD(θ0, PT , Et−1,Bt)

end for

The algorithm for training NOESIS is out-
lined in Algorithm 1. It follows a two-stage
procedure of private learning for the shared
parameters (Step 1 ) and then non-private
learning for the domain-specific adapters
(Step 2 ). The parameters for the expert
LoRA are collectively referred to as E and
comprise all B and A matrices in Equation 1:
E = {A(k), B(k)}Kk=1. The private param-
eters are referred to as P , defined in Sec-
tion 3. The algorithm starts by computing the
noise multiplier σ using the privacy account-
ing mechanism (Yousefpour et al., 2021).
The dataset is augmented with domain labels,
which are used for deterministic routing. In
each iteration, a batch of documents is ran-
domly drawn from all domains, and the gra-
dients are computed for the domain-specific
and shared parameters. In the case of private
learning, the gradients are clipped and noised
according to DP-SGD (Abadi et al., 2016).
In the second stage, SGD refers to Stochas-
tic Gradient Descent.

D.2 LEARNING CURVES

To assess the convergence of our training runs, Fig. 6 displays the training loss and gradient norm
during the training of the models. As expected, both the loss and gradient norm decrease during
the twelve training epochs. During the first stage, shown in the top row, the empirical gradient
norm before clipping takes values around 1, which also happens to be our clipping norm. We have
experimented with a lower clipping norm but found that this would result in lower accuracy. While
the training losses for the second stage, bottom row, seem similar, training 32 prompt tokens achieves
the highest accuracy on the test set, see Table 3. The gradient norms are calculated for the shared
parameters Pt (Algorithm 1) in the top row and for expert parameters Et in the bottom row. The
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training loss is the cross-entropy log-likelihood averaged along the sequence and averaged among
all three domains.

D.3 RANDOMNESS IN DP TRAINING

To explore the stochasticity introduced by training with a differentially private algorithm, we retrain
NOESIS using five different random seeds. By running multiple training sessions with other seeds
for the additive noise, we can better understand the range of possible outcomes. The results of these
experiments are summarized by the boxplots in Figure 7. The box edges indicate the lower and
upper quartile and the whiskers correspond to the minimum and maximum values among the five
random seeds.
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Figure 6: The loss and gradient norm during training for the abla-
tion experiment in Table 5. The bottom row illustrates the second
training stage. While the training losses appear similar, training
with 32 prompt tokens achieves the highest test accuracy.
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Python

61.17 61.18 61.19 61.20

Java

66.52 66.54 66.56 66.58 66.60

Go

Figure 7: Illustrating the
stochasticity due to training
NOESIS with DP-SGD. Python,
having the most data, shows
the least variability, while Go,
as the scarce domain, exhibits
greater variability in accuracy.

D.4 QUALITATIVE EXAMPLES OF MISPREDICTIONS

In this analysis section, we provide qualitative examples of mispredictions made by the model.
These examples indicate the differences in performance between the ShareNothing model and NOE-
SIS and highlight the benefit of knowledge transfer. We use color coding to demonstrate the correct-
ness of the predictions: red indicates that both models predict the token incorrectly, blue indicates
that ShareNothing is correct but NOESIS is not, and green indicates that ShareNothing is incorrect
but NOESIS gives the correct prediction. The datasets in CODEXGLUE are provided stripped and
tokenized, so syntax highlighting and indentation are not available.
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Example from Python:

from future import unicode l iterals , division , absolute import
import time
import logging
from collections import deque
try :
from User Dict import Dict Mixin
except ImportError :
from collections import Mapping as Dict Mixin
import six
from six import iteritems
from six . moves import c Pick le
class Base Counter ( object ) :
def init ( self ) :
raise NotImplementedError
def event ( self , value = 1 ) :
raise NotImplementedError
def value ( self , value ) :
raise NotImplementedError
@ property
def avg ( self ) :
raise NotImplementedError
@ property
def sum ( self ) :
raise NotImplementedError
def empty ( self ) :
raise NotImplementedError
class Total Counter ( Base Counter ) :
def init ( self ) :
self . cnt = 0
def event ( self , value = 1 ) :
self . cnt += value
def value ( self , value ) :
self . cnt = value
@ property
def avg ( self ) :
return self . cnt
@ property
def sum ( self ) :
return self . cnt
def empty ( self ) :
return self . cnt == 0
class Average Window Counter ( Base Counter ) :
def init ( self , window size = 300 ) :
self . window size = window size
self . values = deque ( maxlen = window size )
def event ( self , value = 1 ) :
self . values . append ( value )
value = event
@ property
def avg ( self ) :
return self . sum / len ( self . values )
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Example from Java:

package org . odd job . values ; import java . util . LinkedHashMap
; import java . util . Map ; import org . apache . commons . bean
utils . expression . Default Resolver ; import org . apache . commons
. bean utils . expression . Resolver ; import org . odd job . a ro oa
. A ro oa Exception ; import org . odd job . a ro oa . A ro oa Value ;
import org . odd job . a ro oa . reflect . A ro oa Property Exception
; import org . odd job . a ro oa . reflect . PropertyAccessor ; import
org . odd job . framework . Simple Job ; public class Set Job extends
Simple Job { private final Map < String , A ro oa Value > values = new
LinkedHashMap < String , A ro oa Value > ( ) ; public void setValues (
String name , A ro oa Value value ) { values . put ( name , value ) ; }
protected int execute ( ) throws Exception { for ( Map . Entry < String
, A ro oa Value > entry : values . entrySet ( ) ) { String name = entry
. getKey ( ) ; A ro oa Value value = entry . getValue ( ) ; logger ( ) .
info ( " Setting [" + name + "] = [" + value + "]" ) ; setProperty ( name
, value ) ; } return 0 ; } private void setProperty ( String property , A
ro oa Value value ) throws A ro oa Property Exception { Resolver resolver =
new Default Resolver ( ) ; String comp Name = resolver . next ( property
) ; String property Expression = resolver . remove ( property ) ; if (
property Expression == null ) { throw new A ro oa Exception ( "" ) ; }
Object component = getA ro oa Session ( ) . getBean Registry ( ) . lookup
( comp Name ) ; if ( component == null ) { throw new A ro oa Exception (
"" + comp Name + "]" ) ; } PropertyAccessor property Accessor = getA ro
oa Session ( ) . get Tools ( ) . getProperty Accessor ( ) ; property
Accessor = property Accessor . accessor With Conversions ( getA ro oa
Session ( ) . get Tools ( ) . getA ro oa Converter ( ) ) ; property
Accessor . setProperty ( component , property Expression , value ) ; }
}

package org . rub ype ople . r dt . internal . ui . util ; import
java . util . Comparator ; import java . util . HashSet ; import java
. util . Set ; import java . util . Vector ; import org . ec lipse
. j face . util . Assert ; import org . ec lipse . j face . view ers
. I Label Provider ; import org . ec lipse . sw t . S WT ; import org
. ec lipse . sw t . events . Dis pose Event ; import org . ec lipse
. sw t . events . Dis pose Listener ; import org . ec lipse . sw t .
events . Selection Listener ; import org . ec lipse . sw t . graphics
. Image ; import org . ec lipse . sw t . layout . Grid Data ; import
org . ec lipse . sw t . layout . Grid Layout ; import org . ec lipse .
sw t . widgets . Composite ; import org . ec lipse . sw t . widgets
. Event ; import org . ec lipse . sw t . widgets . Table ; import
org . ec lipse . sw t . widgets . Table Item ; public class Filter
edList extends Composite { public interface Filter Matcher { void setFilter
( String pattern , boolean ignoreCase , boolean ignore W ild Cards ) ;
boolean match ( Object element ) ; } private class Default Filter Matcher
implements Filter Matcher { private String Matcher f Matcher ; public void
setFilter ( String pattern , boolean ignoreCase , boolean ignore W ild
Cards ) { f Matcher = new String Matcher ( pattern + ’*’ , ignoreCase ,
ignore W ild Cards ) ; } public boolean match ( Object element ) { return f
Matcher . match ( f Renderer . getText ( element ) ) ; } }
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Example from Go:

func Average Color ( colors ... Color ) ( color Color ) { var ( x , y
float 64
hue , sat , b ri , kel int
)

// Sum s ind / cos d for h ues for , c := range colors { // Convert hue
to degrees h := float 64 ( c . H ue ) / float 64 ( math . Max Uint 16 ) *
360 . 0

x += math . C os ( h / 180 . 0 * math . Pi )
y += math . S in ( h / 180 . 0 * math . Pi )
sat += int ( c . Sat uration )
b ri += int ( c . B right ness )
kel += int ( c . K el vin )
}

// Average s ind / cos d x /= float 64 ( len ( colors ) )
y /= float 64 ( len ( colors ) )

// Take atan 2 of aver aged hue and convert to uint 16 scale hue = int (
( math . At an 2 ( y , x ) * 180 . 0 / math . Pi ) / 360 . 0 * float 64
( math . Max Uint 16 ) )
sat /= len ( colors )
b ri /= len ( colors )
kel /= len ( colors )

color . H ue = uint 16 ( hue )
color . Sat uration = uint 16 ( sat )
color . B right ness = uint 16 ( b ri )
color . K el vin = uint 16 ( kel )

return color
}
func Color Equal ( a , b Color ) bool { return a . H ue == b . H ue &&
a . Sat uration == b . Sat uration && a . B right ness == b . B right
ness && a . K el vin == b . K el vin
}
func ( s * Subscription ) notify ( event interface { } ) error { timeout :=
time . After ( Default Timeout )
select { case <- s . quit Chan : Log . Debugf ( " " , s . id )
return Err Closed
case s . events <- event : return nil
case <- timeout : Log . Debugf ( " " , s . id )
return Err Timeout
}
}

21


	Introduction
	Desiderata
	NoEsis
	Evaluation
	Related Work
	Conclusion
	Limitations & Future Work
	Ablation Study
	Evaluation Setup Details
	Dataset Details
	Baseline Details
	NoEsis with LoRA as Knowledge Sharing Backbone

	NoEsis Hyperparameter Details
	Details on the Membership Inference Attack

	NoEsis Operational Details
	Algorithm
	Learning Curves
	Randomness in DP training
	Qualitative Examples of Mispredictions


