

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 MIXING MECHANISMS: HOW LANGUAGE MODELS RETRIEVE BOUND ENTITIES IN-CONTEXT

Anonymous authors

Paper under double-blind review

ABSTRACT

A key component of in-context reasoning is the ability of language models (LMs) to bind entities for later retrieval. For example, an LM might represent *Ann loves pie* by binding *Ann* to *pie*, allowing it to later retrieve *Ann* when asked *Who loves pie?* Prior research on short lists of bound entities found strong evidence that LMs implement such retrieval via a **positional mechanism**, where *Ann* is retrieved based on its position in context. In this work, we find that this mechanism generalizes poorly to more complex settings; as the number of bound entities in context increases, the positional mechanism becomes noisy and unreliable in middle positions. To compensate for this, we find that LMs supplement the positional mechanism with a **lexical mechanism** (retrieving *Ann* using its bound counterpart *pie*) and a **reflexive mechanism** (retrieving *Ann* through a direct pointer). Through extensive experiments on nine models and ten binding tasks, we uncover a consistent pattern in how LMs mix these mechanisms to drive model behavior. We leverage these insights to develop a causal model combining all three mechanisms that estimates next token distributions with 95% agreement. Finally, we show that our model generalizes to substantially longer inputs of open-ended text interleaved with entity groups, further demonstrating the robustness of our findings in more natural settings. Overall, our study establishes a more complete picture of how LMs bind and retrieve entities in-context.

1 INTRODUCTION

Language models (LMs) are known for their ability to perform in-context reasoning (Brown et al., 2020), and fundamental to this capability is the task of connecting related entities in a text—known as *binding*—to construct a representation of context that can be queried for next token prediction. However, LMs are also known for struggling in reasoning tasks over long contexts (Liu et al., 2024; Levy et al., 2024). In this work, we conduct a mechanistic investigation into the internals of LMs to better understand how they bind entities in increasingly complex settings.

Neural networks’ ability to bind arbitrary entities was a central issue in connectionist models of cognition (Touretzky & Minton, 1985; Fodor & Pylyshyn, 1988; Smolensky, 1990) and has reemerged in the era of LMs as a target phenomenon for mechanistic interpretability research (Davies et al., 2023; Prakash et al., 2024; 2025; Feng & Steinhardt, 2024; Feng et al., 2024; Wu et al., 2025). For example, to represent the text *Pete loves jam and Ann loves pie*, an LM will bind *Pete* to *jam* and *Ann* to *pie*. This enables the LM to answer questions like *Who loves pie?* by querying the bound entities to retrieve the answer (*Ann*). The prevailing view is that LMs retrieve bound entities using a **positional mechanism** (Dai et al., 2024; Prakash et al., 2024; 2025), where the query entity (*pie*) is used to determine the in-context position of *Ann loves pie*—in this case, the second clause after *Pete loves jam*—which is dereferenced to retrieve the answer *Ann*.

In this work, we show that position-based retrieval holds only for simple settings. This mechanism is unreliable for the middle positions in long lists of entity groups—a pattern that echoes the “lost-in-the-middle” effect (Liu et al., 2024) in LMs as well as primacy and recency biases in both humans (Ebbinghaus, 1913; Miller & Campbell, 1959) and LMs (Janik, 2024). To compensate for this noise, LMs supplement the positional mechanism with a **lexical mechanism**, where the query entity (*pie*) is used to retrieve its bound counterpart (*Ann*), and a **reflexive mechanism**, where the queried entity (*Ann*) is retrieved with a direct pointer that was previously retrieved via the query entity (*pie*).

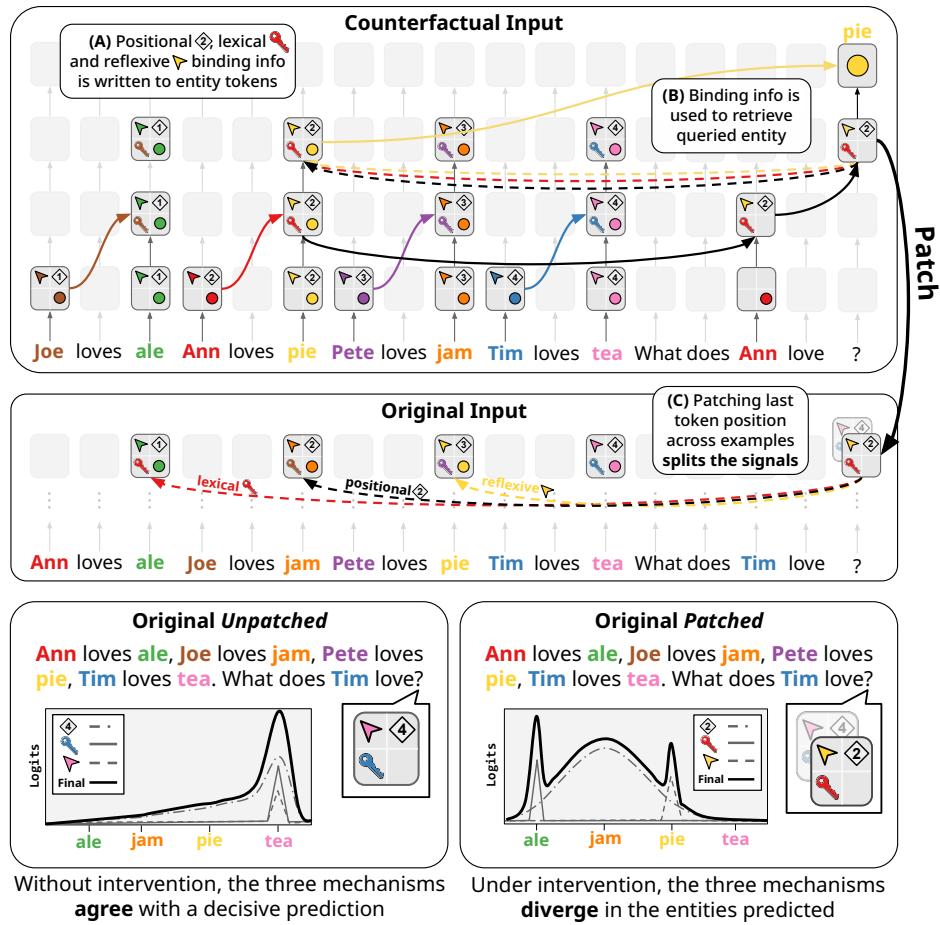


Figure 1: An illustration of the three mechanisms for retrieving bound entities in-context. We find that as models process inputs with groups of entities: (A) binding information of three types—positional, lexical, reflexive—is encoded in the entity tokens of each group, (B) this binding information is jointly used to retrieve entities in-context, and (C) it is possible to separate the three binding signals with counterfactual patching. The counterfactual input is designed such that patching activations to the LM run on the original input results in the positional, lexical, and reflexive mechanisms predicting different entities (See §3.2). The lexical signal from the counterfactual picks out *ale* in the original, because the question in the counterfactual was about *Ann*. The positional signal from the counterfactual picks out *jam*, because the question in the counterfactual was about the second character. The reflexive signal picks out *pie*, because *pie* was the counterfactual answer.

In a series of ablation experiments, we show that all three mechanisms are necessary to develop an accurate causal model of the next token distribution (Pislari et al., 2025), and that their interplay depends on the positions the query entity (*pie*) and the retrieved entity (*Ann*). This mixture of mechanisms is robustly present across (1) the Llama, Gemma, and Qwen model families, (2) model sizes within those families ranging from 2 to 72 billion parameters, and (3) ten variable binding tasks. By better understanding this mechanism, we take a step toward explaining both the strengths and the persistent fragilities of LLMs in long-context settings, as well as the fundamental mechanisms that support in-context reasoning. We release our code and data at github.com/anonymized.

2 PROBLEM SETUP AND PRIOR WORK

Entity Binding Tasks In our experiments, we design a number of templatic in-context reasoning tasks with a similar structure to the example from the introduction, i.e., *Pete loves jam, Ann loves pie. Who loves pie?* Formally, a task consists of:

108 1. **Entity Roles:** Disjoint sets of entities $\mathcal{E}_1, \dots, \mathcal{E}_m$ that will fill particular roles in a templatic
 109 text. For example, the set \mathcal{E}_1 might be names of people $\{Ann, Pete, Tim, \dots\}$, and the set
 110 \mathcal{E}_2 might be foods and drinks $\{ale, jam, pie, \dots\}$.

111 2. **Entity Groups:** An entity group is a tuple $G \in \mathcal{E}_1 \times \dots \times \mathcal{E}_m$ containing entities that will be
 112 placed within the same clause in a template. For example, we could set $G_1 = (Pete, jam)$
 113 and $G_2 = (Ann, pie)$. For convenience, we define \mathbf{G} as a binding matrix wherein \mathbf{G}_i^j
 114 denotes the j -th entity in the i -th entity group.

115 3. A **template** (\mathcal{T}): A function that takes as input a binding matrix \mathbf{G} , the *query entity* $q =$
 116 $\mathbf{G}_{q_{\text{entity}}}^{q_{\text{group}}}$, and the target entity $t = \mathbf{G}_{t_{\text{entity}}}^{q_{\text{group}}}$. Here q_{group} is a positional index of the entity group
 117 containing the target and query, and $t_{\text{entity}} \neq q_{\text{entity}}$ index the positions of the target and
 118 query entities within that group, respectively. See §A.1 for more details and examples.

119

120 Continuing our example, define

121

$$\mathcal{T}(\mathbf{G}, q, t) = G_1^1 \text{ loves } G_1^2, G_2^1 \text{ loves } G_2^2. \begin{cases} \text{Who loves } q? & t_{\text{entity}} == 1 \\ \text{What does } q \text{ love?} & t_{\text{entity}} == 2 \end{cases}$$

122 and observe that

123

$$\mathcal{T}\left(\begin{bmatrix} Pete & jam \\ Ann & pie \end{bmatrix}, pie, Ann\right) = \text{Pete loves jam, Ann loves pie. Who loves pie?}$$

124

125 For our experiments, the binding matrix \mathbf{G} will consist of distinct entities.

126

127 **Interchange Interventions** To probe the mechanisms an LM uses to bind and retrieve entities,
 128 we employ interchange interventions (Vig et al., 2020; Geiger et al., 2020; Finlayson et al., 2021;
 129 Geiger et al., 2021), the standard tool for prior work on binding and retrieval (Davies et al., 2023;
 130 Feng & Steinhardt, 2024; Prakash et al., 2024; 2025; Wu et al., 2025). These interventions allow us
 131 to identify which hidden states are causally relevant for the model in entity binding, by running the
 132 LM on paired examples — an *original input* and a *counterfactual input* — and replacing selected
 133 components, e.g., residual stream vectors, in the original run with those from the counterfactual.

134

135 **Causal Abstraction** We develop a causal model of LM internals (Geiger et al., 2021; 2025b;a)
 136 that predicts the LM next token distribution using a mixture of three mechanisms (See §4). To test
 137 our hypotheses, we construct a dataset of paired originals and counterfactuals such that an inter-
 138 change intervention on the causal model results in the positional, lexical and reflexive mechanisms
 139 increasing the probability of distinct tokens. To evaluate our proposed causal model and various
 140 ablations, we perform interchange interventions on the causal model and the LM, measuring the
 141 similarity between the next token distribution of the two models, and average across a dataset.

142

143 **Prior Studies of Entity Binding in LMs** Previous work paints a picture of how entity binding and
 144 retrieval is performed by LMs. First, LMs bind together a group of entities by aggregating informa-
 145 tion about all entities in the entity token at the last position in the group. By co-locating information
 146 about entities in the residual stream of a single token, the LM can later on use attention to retrieve
 147 information about one bound entity conditional on a second bound entity (Feng & Steinhardt, 2024;
 148 Feng et al., 2024; Dai et al., 2024; Prakash et al., 2024; Wu et al., 2025), an algorithmic motif that
 149 Prakash et al. (2025) dub a “lookback” mechanism. We study the “pointers” used in the lookback
 150 mechanism that bring the next token prediction into the residual stream of the final token. We in-
 151 clude experiments on the “addresses” contained in the residual streams of the bound entity tokens,
 152 as well as the query token, in §C.

153

154 Prior works identify a positional mechanism that is utilized in entity binding (described in detail
 155 in §3.1), but either evaluate it only in narrow settings (Prakash et al., 2025) or achieve low causal
 156 faithfulness in predicting model behavior solely using this mechanism (Prakash et al., 2024; Dai
 157 et al., 2024). Feng & Steinhardt (2024); Prakash et al. (2025) restrict their analysis to queries of the
 158 final token in a group ($t_{\text{entity}} = m$) and to very small contexts ($n \in 2, 3$). Prakash et al. (2024) and
 159 Dai et al. (2024) find a positional mechanism in longer contexts ($n = 7$), but with low faithfulness.

160

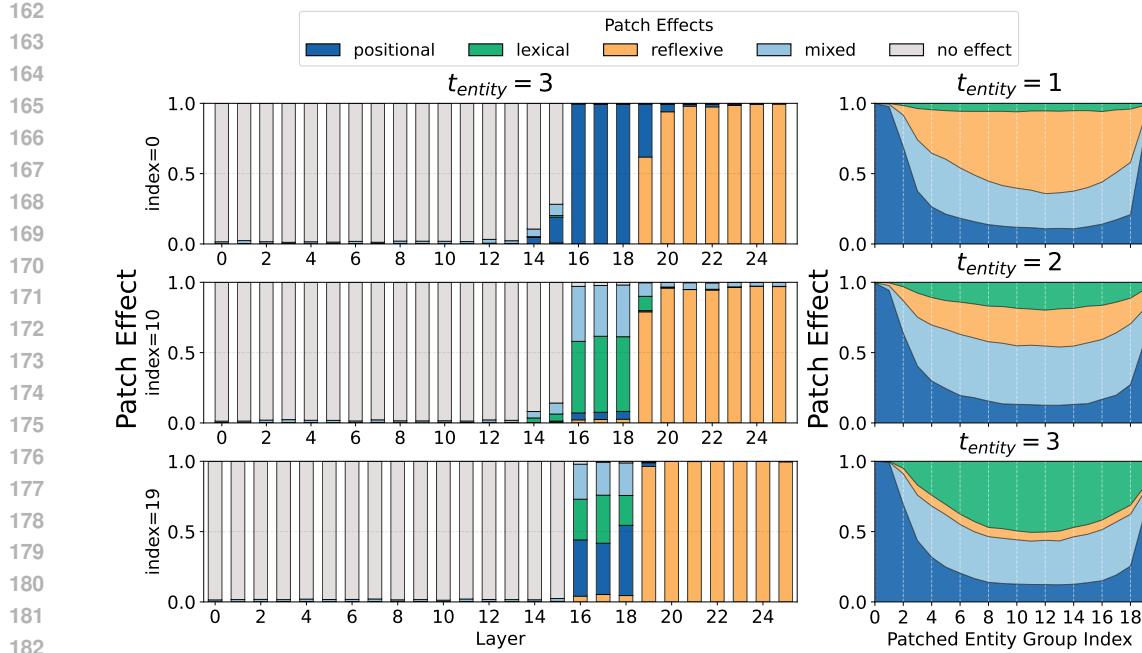


Figure 2: Results from interchange interventions on gemma-2-2b-it over a counterfactual dataset with three entities per group ($m = 3$) (See Figure 1 and §3.2). Outputs predicted by the positional, lexical and reflexive mechanisms are shown in dark blue, green and orange. In light blue, we show the cases not predicted by any of the mechanisms, dubbed *mixed*. These cases are further analyzed in §3.3. **Left:** Distribution of effects (y-axis for three representative entity group indices (first, middle, and last) with $t_{entity} = 3$ for all layers (x-axis). At layers 16–18, the last token position carries binding information used for retrieval. **Right:** Distribution of effects (y-axis) for all entity indices (x-axis) at layer 18 for $t_{entity} \in \{1, 2, 3\}$, i.e., the question can be about any of the three entities in each clause. A U-shaped curve emerges: first and last indices rely more on the positional mechanism, while middle indices rely more on the lexical and reflexive mechanisms. See §A.2 for replication across models and tasks, and Figure 20 for plots using the original prompt as the x-axis.

3 THREE MECHANISMS FOR RETRIEVING BOUND ENTITIES

In this section, we define the positional mechanism and propose two alternative mechanisms (§3.1), all three of which make distinct claims about the causal structure of the LM. Then, we design a dataset with pairs of original and counterfactual inputs, such that each of the three mechanisms makes distinct predictions under an interchange intervention with the pair (§3.2). Last, we perform interchange interventions on the full last-token residual stream vector at different layers of the LM and visualize the results so we can observe the interplay between the three mechanisms in the counterfactual behavior of the LM (§3.3). We detail in §3.3 and §D.2 how we localize the layers for conducting the interventions. In our experiments, we evaluate nine models—gemma-2-{2b/9b/27b}-it, qwen2.5-{3b/7b/32b/72b}-it, and llama-3.1-{8b/70b}-it—on two binding tasks, *boxes* and *music* (see Appendix Table 1). For gemma-2b-it and qwen2.5-7b-it, we evaluate on all ten binding tasks.

3.1 THE POSITIONAL MECHANISM AND TWO ALTERNATIVES

The prevailing view is that bound entities are retrieved with a positional mechanism, but we propose two alternatives: lexical and reflexive mechanisms. The positional, lexical, and reflexive mechanisms are represented as causal models \mathcal{P} , \mathcal{L} , and \mathcal{R} that each have single intermediate variables P , L , and R , respectively, used to retrieve an entity from context as the output.

The Positional Mechanism Prior work provides evidence that a positional mechanism is used to retrieve an entity from a group via the group’s positional index (Dai et al., 2024; Prakash et al.,

216 2024; 2025). The model \mathcal{P} indexes the group containing the query entity ($P := q_{\text{group}}$), and its
 217 output mechanism retrieves the target entity from the group at index q_{group} . In Figure 1, we have
 218 $P = 4$ when no intervention is performed on the LM and the target entity *tea* is retrieved from
 219 position 4, but after the intervention $P \leftarrow 2$ the entity *jam* at the second position is retrieved.
 220

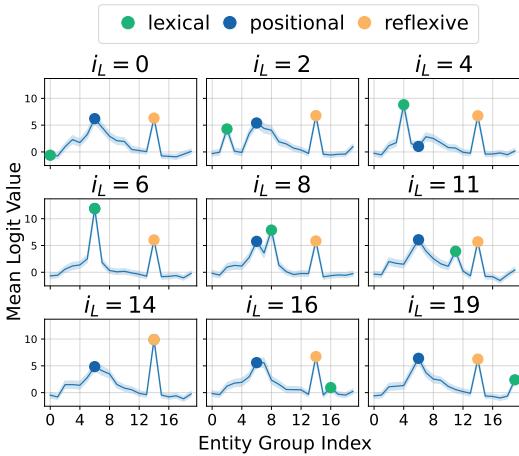
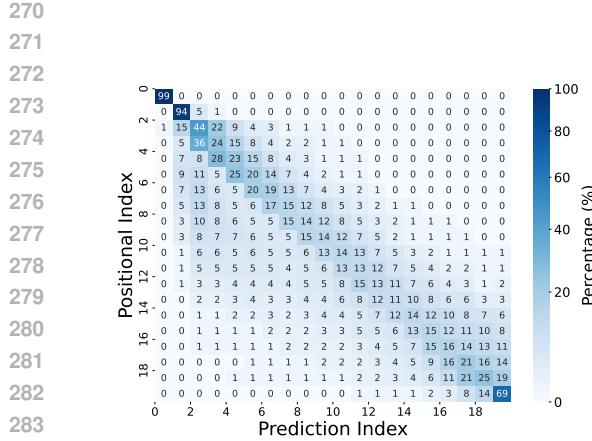
221 Although existing evidence shows that the positional mechanism explains LM behavior in settings
 222 with two or three entity groups (Prakash et al., 2025), it does not generalize. When more groups are
 223 introduced, the evidence is weaker (Prakash et al., 2024; Dai et al., 2024). Our goal is to investigate
 224 the failure modes of the positional mechanism as more entity groups are introduced, and to that end
 225 we propose two alternative hypotheses for how LMs implement binding.
 226

227 **The Lexical Mechanism** The *lexical* mechanism is perhaps the most intuitive solution: output
 228 the bound entity from the group containing the queried entity. The causal model \mathcal{L} stores the query
 229 entity ($L := q$) and the output mechanism retrieves the target entity from the group containing q . In
 230 Figure 1, we have $L = \text{Tim}$ when no intervention is performed on the LM and the output mechanism
 231 retrieves the entity *tea* from the group with *Tim*. However, after the intervention $L \leftarrow \text{Ann}$, the entity
 232 *ale* is retrieved from the group with *Ann*.
 233

234 **The Reflexive Mechanism** The reflexive mechanism retrieves an entity with a direct, self-
 235 referential pointer—originating from that entity and pointing back to it (illustrated in Appendix
 236 Figure 7). However, if this signal is patched into a context where the token is not present, the mech-
 237 anism fails. The model \mathcal{R} stores the target entity ($R := t$) and the output mechanism retrieves the
 238 entity t if it appears in context. In Figure 1, we have $R = \text{tea}$ when no intervention is performed
 239 and the entity *tea* is retrieved, but after the intervention $R \leftarrow \text{pie}$, the entity *pie* is retrieved because
 240 it appears in the original input.
 241

242 The reflexive mechanism is an unintuitive solution, until one considers that the architecture of an
 243 autoregressive LM allows attention to only look from right to left. When the query occurs after
 244 a target in an entity group, i.e., $t_{\text{entity}} < q_{\text{entity}}$, the lexical mechanism is not possible. In the text
 245 *Tim loves tea*, the entity *tea* cannot be copied backwards to the residual stream of *Tim* so that the
 246 lexical mechanism can answer *Who loves tea?* Therefore, an earlier mechanism in the LM must first
 247 retrieve an absolute pointer that is in turn used to retrieve the bound entity token.
 248

249 3.2 DESIGNING COUNTERFACTUAL INPUTS TO DISTINGUISH THE THREE MECHANISMS



250 We designed a dataset of paired original and counterfactual inputs such that the positional, lexical,
 251 and reflexive mechanisms will each make distinct predictions when an interchange intervention is
 252 performed on their respective intermediate variables, P , L , and R .
 253

254 **Counterfactual Design** Figure 1 displays a pair of original and counterfactual inputs that dis-
 255 tinguish our three mechanisms (further detailed in Appendix Table 1). We illustrate this with the
 256 following example. Define the original and counterfactual binding matrices \mathbf{G} and \mathbf{G}' respectively:
 257

$$258 \mathbf{G} = \begin{bmatrix} \text{Ann} & \text{ale} \\ \text{Joe} & \text{jam} \\ \text{Pete} & \text{pie} \\ \text{Tim} & \text{tea} \end{bmatrix} \quad \mathbf{G}' = \begin{bmatrix} \text{Joe} & \text{ale} \\ \text{Ann} & \text{pie} \\ \text{Pete} & \text{jam} \\ \text{Tim} & \text{tea} \end{bmatrix} \quad (1)$$

259 We can then use the template \mathcal{T} from §2 such that for these binding matrices, $\mathcal{T}(\mathbf{G}, \text{Tim}, \text{tea})$ yields
 260 the original input in Figure 1 and $\mathcal{T}(\mathbf{G}', \text{Ann}, \text{pie})$ yields the counterfactual input. Each of the three
 261 mechanisms produces a different output after an interchange intervention on this pair of inputs:
 262

- 263 1. An interchange intervention on P in \mathcal{P} would output the entity at the counterfactual query’s
 264 position. Since $q'_{\text{group}} = 2$ for *Ann* in \mathbf{G}' , this sets $P \leftarrow 2$, and the output becomes *jam*.
 265 2. An interchange intervention on L in \mathcal{L} would output the entity in the original input bound
 266 to the query entity in the counterfactual input. Since the query entity is now *Ann*, the
 267 mechanism queries the group containing *Ann* in \mathbf{G}' and outputs the bound entity *ale*.
 268 3. An interchange intervention on R in \mathcal{R} would follow the direct pointer established in the
 269 counterfactual input. In this case, the pointer is to the token *pie*, which exists in the original
 270 input, and so the mechanism outputs *pie*.
 271

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Figure 3: The positional mechanism is diffuse for middle entity groups. **Left:** Confusion matrix (%) of the patched positional index (y-axis) vs. gemma-2-2b-it’s prediction (x-axis) after an interchange intervention (as in Figure 1). Counterfactual predictions cluster near the position promoted by the positional mechanism, decaying with distance. Only the *mixed* and positional patch effects from Figure 2 are shown; see Figure 31 for other models and tasks. **Right:** Mean logit distributions with $i_P = 6$, $i_R = 14$, and i_L varied, illustrating additive and suppressive interaction between the three mechanisms. The lexical and reflexive signals form one-hot peaks, while the positional is broader and more diffuse. See Figures 24, 25, and 26 for more distributions.

Each of these three outputs is distinct from the actual output *tea* for the original input, which means the dataset also distinguishes the three mechanisms from no intervention being performed. Let i_P , i_L , and i_R be indices of the entity groups queried by the positional, lexical, and reflexive mechanisms, e.g., $i_P = 2$, $i_L = 1$, and $i_R = 3$ in Figure 1 after patching. In our counterfactual datasets, each of the three mechanisms can predict any position in the list of entity groups from the original input, i.e., i_P , i_L , and i_R vary freely from 1 to n . For details and task templates, see §A.1. A relevant remaining confounder is that the reflexive mechanism predicts the output that is the target entity in the counterfactual input, meaning this dataset cannot distinguish the pointer used by reflexive mechanism from the actual next token prediction. We resolve this issue, validating the existence of a reflexive mechanism, in §3.4.

3.3 INTERVENTION EXPERIMENTS

We find experimentally that information used to retrieve a bound entity is accumulated in the last token residual stream across a subset of layers. In Figure 2, we show the results of interchange interventions on gemma-2-2b-it across the layers of the last token residual stream. We see that in layers 16–18 the model accumulates binding information in the last token position. Therefore, unless stated otherwise, we conduct all of our interchange interventions by patching the last token residual stream vector on the last layer before retrieval starts, denoted as ℓ , which is different for each of the nine models we test, but consistent across tasks for a given model (see §D.2 for more details). We measure the next token distribution produced by the model under intervention and compare it against the possible outputs for the three mechanisms. We aggregate and visualize the results of these intervention experiments in Figures 2 and 3.

The positional mechanism weakens for middle positions. We can see plainly in Figure 2 that the positional mechanism controls behavior solely when the positional index is at the beginning or end of the sequence of $n = 20$ entity groups. In middle entity groups, however, its effect becomes minimal, accounting only for 20% of the model’s behavior. Further analysis of the cases not explained by any of the mechanisms—dubbed *mixed* in the plot—reveals that these predictions are distributed near the positional index (Figure 3). Additionally, when collecting the mean logit distributions across many samples and fixing the positional index, we see that in the first and last positional indices it induces a strong and concentrated distribution around that index. However, in middle

324 indices we see this distribution become wide and diffuse (Appendix Figure 13). Thus, the positional
 325 mechanism becomes unreliable in middle indices and cannot be used as the sole mechanism for
 326 retrieval. We show in §A.3 how this effect emerges as n , i.e., the total number of entity groups in
 327 context, increases, and in §G we disambiguate the effect of increasing n from that of increasing
 328 sequence length.

329
 330 **The lexical and reflexive mechanisms are modulated based on target entity position.** Observe
 331 in Figure 2 that when the positional mechanism is unreliable for middle positions, the lexical and
 332 reflexive mechanisms come into play. However, which of these two alternate mechanisms contribute
 333 more depends on the location of the target entity within the entity group, denoted as t_{entity} . When
 334 the target is at the beginning of the group ($t_{\text{entity}} = 1$), the reflexive mechanism is used (as discussed
 335 in §3.1). When the target is at the end ($t_{\text{entity}} = 3$), the lexical mechanism is primarily used. Finally,
 336 when the target is in the middle ($t_{\text{entity}} = 2$), both mechanisms are used to differing extents.

337
 338 **The three mechanisms have complex interplay.** We can see in Figure 3 the interplay between
 339 the three mechanism when the positional and reflexive indices are fixed to $i_P = 6$ and $i_R = 14$
 340 while the lexical index i_L is iterated over a range of values. First, the logit distributions clearly
 341 reveal the contributions of each mechanism, with a distinct spike appearing at each index. These
 342 spikes, however, behave differently. In line with Figure 3, the positional index produces a wide,
 343 diffuse distribution, whereas the lexical and reflexive indices produce sharp, one-hot peaks. Next,
 344 we observe that the mechanisms interact through a pattern of *competitive synergy*, meaning that
 345 they both boost and suppress one another. When the lexical index is close to the positional index,
 346 the lexical contribution is amplified while the positional contribution is weakened; when they are
 347 farther apart, neither affects the other. In contrast, when the lexical index is close to the reflexive
 348 index, the lexical contribution is suppressed by the reflexive one.

349
 350 **Interventions on bound entity tokens provide similar results.** To understand the residual stream
 351 of the bound entity tokens themselves, we design more datasets of original-counterfactual pairs and
 352 analyze intervention results in §C. We show that binding information exists and is used in the entity
 353 token residual streams between layers 12 and 19 for the positional and lexical mechanisms, and 6-12
 354 for the reflexive mechanism. We additionally analyze in §C how this binding information propagates
 355 across token positions.

356
 357 **Takeaways** These results clarify how LMs bind and retrieve entities in context. They simultaneously
 358 employ three mechanisms: positional, lexical, and reflexive. In the first and last entity groups,
 359 LMs can rely almost exclusively on the positional mechanism, where it is strongest and most con-
 360 centrated. In middle groups, however, the positional signal becomes diffuse and often links entities
 361 to nearby groups. In these cases, the lexical and reflexive mechanisms provide sharper signals which
 362 refine the positional mechanism, enabling the LM to retrieve the correct entity.

363 3.4 VALIDATING THE EXISTENCE OF THE REFLEXIVE MECHANISM

364 In our counterfactual design (§3.2), we constructed the counterfactuals such that each hypothesized
 365 mechanism makes a different prediction about the outcome of intervention experiments. However,
 366 we also noted that these counterfactuals fail to distinguish the pointer used in the reflexive mech-
 367 anism from the answer itself. In this section, we address this by designing a new counterfactual
 368 dataset specific to distinguishing between the two. In §F we also conduct an attention knockout
 369 experiment to further strengthen our findings.

370
 371 **New Counterfactual Design** We modify the existing dataset such that the counterfactual answer
 372 entity doesn't appear in the original input. For example, for the input pair from Figure 1, we would
 373 keep the original input *Ann loves ale, Joe loves jam, Pete loves pie, and Tim loves tea. What does*
 374 *Ann love?*, but alter the counterfactual to *Joe loves ale, Ann loves cod, Pete loves jam, and Tim loves*
 375 *tea. What does Ann love?* so the new counterfactual answer *cod* appears nowhere in the original.

376 Such examples differentiate between the pointer R in the reflexive mechanism \mathcal{R} and the output of
 377 the mechanism itself. An interchange intervention on the output of the mechanism would simply
 378 replace the answer entity *ale* with the answer entity *cod*. However, an interchange intervention on
 379 the pointer R would patch in a pointer to the token *cod* that the mechanism \mathcal{R} would attempt to

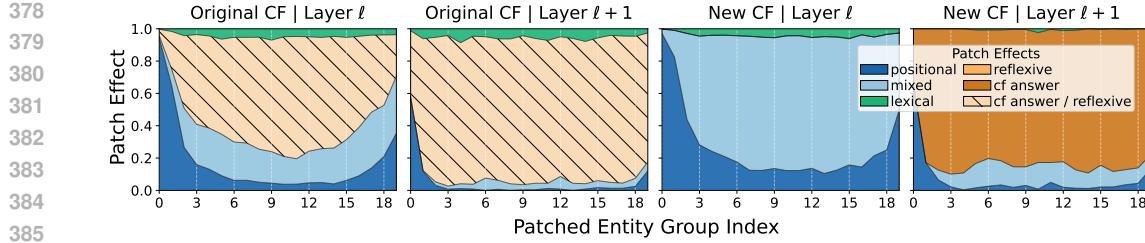


Figure 4: We distinguish the pointer in the reflexive mechanism from the answer entity with interchange interventions (gemma-2-2b-it, $t_{\text{entity}} = 1$, layers $\ell, \ell + 1$). **Left:** interventions on the original counterfactual dataset show that we can't distinguish between patching the pointer or the answer entity itself. **Right:** interventions on the modified counterfactuals (§3.4). At layer ℓ the model does not respond with the counterfactual answer entity which does not appear in the original context, indicating that the patched signal is a reflexive pointer that cannot be dereferenced. At layer $\ell + 1$, once the model has already retrieved the answer entity (§D.2), the patched signal becomes the answer entity itself. This shows that no confounding suppressive mechanism exists to prevent the model from answering with an entity not in its context.

dereference. However, *cod* does not appear in the original input, and thus the pointer cannot be resolved and no output is predicted by this mechanism.

Results We show the results for layer ℓ , for the original counterfactual setup, as well as for the new one, in Figure 4. We see that while in the original counterfactual setup, the model answered with the entity pointed to by the reflexive mechanism, under the new counterfactual setup it did not. This indicates that what was copied is a reflexive pointer that cannot be dereferenced, as opposed to the answer entity itself. One alternative explanation is that the model might contain a mechanism that suppresses outputs corresponding to entities absent from the context. To exclude this possibility, we repeat the evaluations at layer $\ell + 1$, a point at which the model has already retrieved the correct answer. Here, patching leads the model to output the counterfactual answer entity in both counterfactual setups, showing that no such suppressive mechanism is present. We can therefore conclude that the model indeed relies on a reflexive mechanism, distinct from the positional and lexical ones, where a direct pointer to the answer entity is used to retrieve it.

4 A SIMPLE MODEL FOR SIMULATING ENTITY RETRIEVAL IN-CONTEXT

To formalize our observations about the dynamics between the three mechanisms and the position of the target entity, we seek to develop a model that approximates LM logits for next token prediction, as a position-weighted mixture of terms for the positional, lexical, and reflexive mechanisms.

Mixing mechanisms in a causal model We follow Pisljar et al. (2025) in combining together multiple causal models $(\mathcal{P}, \mathcal{L}, \mathcal{R})$ into a single causal model \mathcal{M} that modulates between the mechanisms conditional on the input. In our combined causal model, the lexical and reflexive terms have separate learned weights conditioned on their respective index, i.e., i_L or i_R . In accordance with the results shown in Figure 3, we model the lexical and reflexive mechanisms as one-hot distributions that up-weight only the target entity in groups i_L and i_R , respectively. The positional term is modeled as a Gaussian distribution scaled by a single weight w_{pos} centered at the index i_P with a standard deviation that is a quadratic function of i_P . We define a new causal model \mathcal{M} that uses all three variables P , L , and R simultaneously to compute a logit value Y_i for each entity $\mathbf{G}_{t_{\text{entity}}}^i$:

$$Y_i := \underbrace{w_{\text{pos}} \cdot \mathcal{N}(i | i_P, \sigma(i_P)^2)}_{\text{positional mechanism}} + \underbrace{w_{\text{lex}}[i_L] \cdot \mathbf{1}\{i = i_L\}}_{\text{lexical mechanism}} + \underbrace{w_{\text{ref}}[i_R] \cdot \mathbf{1}\{i = i_R\}}_{\text{reflexive mechanism}} \quad (2)$$

Where $\sigma(i_P) = \alpha(\frac{i_P}{n})^2 + \beta \frac{i_P}{n} + \gamma$. We learn $w_{\text{pos}}, w_{\text{lex}}, w_{\text{ref}}, \alpha, \beta, \gamma$ from data.

Learning how the mechanisms are mixed To generate data for training our causal model we performed 150 interchange interventions per combination of $1 \leq i_P, i_L, i_R \leq n$ using the original and

Model	JSS \uparrow		
	$t_e = 1$	$t_e = 2$	$t_e = 3$
<i>Comparing against the prevailing view</i>			
\mathcal{M} ($L_{\text{one-hot}}$; $R_{\text{one-hot}}$; P_{Gauss})	0.95	0.96	0.94
$\mathcal{P}_{\text{one-hot}}$ (prevailing view)	0.42	0.46	0.45
<i>Modifying the positional mechanism</i>			
\mathcal{M} w/ P_{oracle}	0.96	0.98	0.96
\mathcal{M} w/ $P_{\text{one-hot}}$	0.86	0.85	0.85
<i>Ablating the three mechanisms</i>			
$\mathcal{M} \setminus \{P_{\text{Gauss}}\}$	0.67	0.68	0.67
$\mathcal{M} \setminus \{L_{\text{one-hot}}\}$	0.94	0.91	0.75
$\mathcal{M} \setminus \{R_{\text{one-hot}}\}$	0.69	0.87	0.92
$\mathcal{M} \setminus \{R_{\text{one-hot}}, L_{\text{one-hot}}\}$	0.69	0.84	0.74
$\mathcal{M} \setminus \{P_{\text{Gauss}}, R_{\text{one-hot}}\}$	0.12	0.27	0.48
$\mathcal{M} \setminus \{P_{\text{Gauss}}, L_{\text{one-hot}}\}$	0.55	0.41	0.20
Uniform	0.44	0.57	0.49

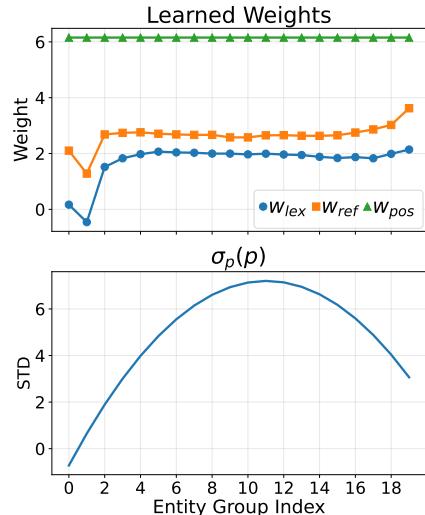


Figure 5: Results for training our full model \mathcal{M} ($L_{\text{one-hot}}$, $R_{\text{one-hot}}$, P_{Gauss}), in addition to variants, baselines and ablations. **Left:** JSS scores for modeling the LM next token distribution over i_P, i_L, i_R . Evaluated on gemma-2-2b-it for the *music* binding task, with $t_e = t_{\text{entity}}$. Our model attains near-perfect JSS, slightly below the oracle. KL values (Table 3) show the same trend. All CIs are < 0.02 ; for \mathcal{M} and \mathcal{M} w/ oracle they are < 0.002 . **Right:** Learned weights $w_{\text{lex}}, w_{\text{ref}}, w_{\text{pos}}$ and σ curve, for $t_{\text{entity}} = 2$. Observe σ widens for middle indices and narrows toward the end.

counterfactual inputs designed to distinguish the three mechanisms (see Figure 1 and Section 3.2). We collected the logit distributions per index combination, and averaged them into mean probability distributions by first applying a softmax over the entity group indices and then taking the mean. This yields $n^3 = 8,000$ probability distributions, which serve as our data for training and evaluation. We used 70% of the data for learning the causal model parameters and split the remainder evenly between validation and test sets. The loss used is the Jensen–Shannon divergence (JSD) between our model’s predicted probability distribution and the target, chosen for its symmetry.

We evaluate \mathcal{M} alongside a range of baselines, variants, and ablations to characterize our model’s performance and understand the contribution of the different mechanisms. Experiments are run with gemma-2-2b-it on the *music* task ($n = 20, t_{\text{entity}} \in [3]$). In §E we report the same setup for this model as well as qwen2.5-7b-it on additional tasks, with similar trends. We measure similarity between the predicted and target distributions using Jensen–Shannon similarity (JSS), defined as $1 - \text{JSD}$, calculated with \log_2 to yield values in $[0, 1]$. See Appendix Table 3 for KL divergences.

We compare our model with: (1) The prevailing view – a one-hot distribution at the positional index, (2) a variant of \mathcal{M} which uses a one-hot distribution at i_P instead of a gaussian, (3) ablations of \mathcal{M} that use only a subset of the mechanisms (e.g., $\mathcal{M} \setminus \{L_{\text{one-hot}}\}$ is \mathcal{M} without the lexical mechanism, i.e., omitting the middle term completely from Equation 2)), and (4) a uniform distribution. Finally, as an upper bound, we evaluate an oracle variant, where the lexical and reflexive components are learned as usual, but the positional component is swapped with the actual logit distributions of the model, as a function of i_P (see Figure 13).

Results In Figure 5 we show the results. We can see that our model achieves near perfect performance, only slightly below the oracle, at an average JSS of 0.95. In contrast, the model representing the prevailing view of how entity binding works achieves an average JSS of 0.44, well below even the uniform distribution baseline with 0.5. Next, we see that modeling the positional mechanism as a one-hot as opposed to a gaussian significantly hurts performance, dropping to 0.85 JSS. The ablations further reveal how mechanisms are employed: for instance, when $t_{\text{entity}} = 1$, ablating the lexical mechanism has nearly no effect, while for $t_{\text{entity}} = 3$ this is true for the reflexive mechanism. This is in keeping with previous results, showing that the lexical and reflexive mechanisms are used

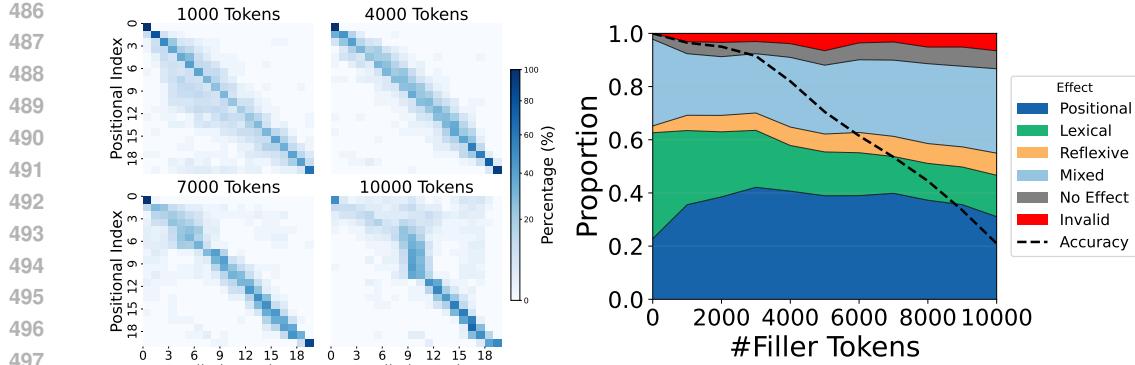


Figure 6: Padding results for gemma-2-2b-it on the *boxes* task. **Left:** Confusion matrix between the model’s predicted index and the positional index patched in from the counterfactual. This gets increasingly fuzzy for early tokens as padding is increased. **Right:** Distribution of effects as padding is increased, showing the positional mechanism strengthens at the expense of the lexical mechanism.

differently depending on the value of t_{entity} . Figure 5 shows the learned parameters of the model for $t_{\text{entity}} = 2$. We see that in this setting, the lexical and reflexive mechanisms behave similarly, being weaker in the beginning, flat in the middle, and with an uptick at the end. The reflexive mechanism is slightly more dominant here, in keeping with the table results for $t_{\text{entity}} = 2$. For the positional mechanism we can see that it starts off very concentrated, becoming wider in middle indices, and finally becoming more narrow towards the end, mirroring previous results.

5 INTRODUCING FREE FORM TEXT INTO THE TASK

To test our model’s generalization to more realistic inputs, we modify our prompt templates \mathcal{T} such that they include filler sentences between each entity group. To this end, we create 1,000 filler sentences that are “entity-less”, meaning they do not contain sequences that signal the need to track or bind entities, e.g. “Ann loves ale, *this is a known fact*, Joe loves jam, *this logic is easy to follow...*”. This enables us to evaluate entity binding in a more naturalistic setting, containing much more noise and longer sequences. We evaluate different levels of padding by interleaving the entity groups with an increasing number of filler sentences, for a maximum of 500 tokens between each entity group.

The results, shown in Figure 6 for gemma-2-2b-it on the *boxes* task, show that our model at first remains remarkably consistent in more naturalistic settings, across even a ten-fold increase in the number of tokens. However, as the amount of filler tokens increases, we see that the magnitude of the mechanisms’ effects changes. The lexical mechanism declines in its effect, while the positional and mixed effects slightly increase. We can also see that the mixed effect remains distributed around the positional index, but that it slowly becomes more diffuse. Thus, when padding with 10,000 tokens, we get that other than the first entity group, the positional information becomes nearly non-existent for the first half of entity tokens, while remaining stronger in the latter half. This suggests that a weakening lexical mechanism relative to an increasingly noisy positional mechanism might be a mechanistic explanation of the “lost-in-the-middle” effect (Liu et al., 2024). In §D.4 we show that our model generalizes to inputs with more linguistic variability as well.

6 CONCLUSION

In this paper, we challenge the prevailing view that LMs retrieve bound entities purely with a positional mechanism. We find that while the positional mechanism is effective for entities introduced at the beginning or end of context, it becomes diffuse and unreliable in the middle. We show that in practice, LMs rely on a mixture of three mechanisms: positional, lexical, and reflexive. The lexical and reflexive mechanisms provide sharper signals that enable the model to correctly bind and retrieve entities throughout. We validate our findings across 9 models ranging from 2-72B, and 10 binding tasks, establishing a general account of how LMs retrieve bound entities.

540 7 REPRODUCIBILITY STATEMENT
541542 We take multiple steps in this work to ensure the reproducibility of our findings. In §A.1 we detail
543 all binding tasks used in our evaluations, and in §3.2 and Table 2 we describe how to construct
544 datasets of paired original and counterfactual examples. §E specifies the hyperparameters used for
545 training our causal models. The code for dataset generation and causal model training is included in
546 the supplemental materials.
547548 REFERENCES
549

550 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
551 wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
552 wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
553 Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz
554 Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
555 Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In
556 H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neu-
557 ral Information Processing Systems*, volume 33, pp. 1877–1901. Curran Associates, Inc.,
558 2020. URL [https://proceedings.neurips.cc/paper_files/paper/2020/
559 file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf](https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf).

560 Qin Dai, Benjamin Heinzerling, and Kentaro Inui. Representational analysis of binding in lan-
561 guage models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Proceed-
562 ings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pp.
563 17468–17493, Miami, Florida, USA, November 2024. Association for Computational Linguis-
564 tics. doi: 10.18653/v1/2024.emnlp-main.967. URL [https://aclanthology.org/2024.
566 emnlp-main.967/](https://aclanthology.org/2024.
565 emnlp-main.967/).

566 Xander Davies, Max Nadeau, Nikhil Prakash, Tamar Rott Shaham, and David Bau. Discovering
567 variable binding circuitry with desiderata, 2023. URL [https://arxiv.org/abs/2307.
569 03637](https://arxiv.org/abs/2307.
568 03637).

570 Hermann Ebbinghaus. *Memory: A Contribution to Experimental Psychology*. Teachers College,
571 Columbia University, New York, NY, US, 1913.

572 Jiahai Feng and Jacob Steinhardt. How do language models bind entities in context? In *The Twelfth
573 International Conference on Learning Representations*, 2024. URL [https://openreview.
575 net/forum?id=zb3b6oKO77](https://openreview.
574 net/forum?id=zb3b6oKO77).

576 Jiahai Feng, Stuart Russell, and Jacob Steinhardt. Monitoring Latent World States in Language
577 Models with Propositional Probes, June 2024.

578 Matthew Finlayson, Aaron Mueller, Sebastian Gehrmann, Stuart Shieber, Tal Linzen, and Yonatan
579 Belinkov. Causal analysis of syntactic agreement mechanisms in neural language models. In
580 Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th An-
581 nual Meeting of the Association for Computational Linguistics and the 11th International Joint
582 Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 1828–1843, Online,
583 August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.144.
584 URL <https://aclanthology.org/2021.acl-long.144/>.
585

586 Jerry A. Fodor and Zenon W. Pylyshyn. Connectionism and cognitive architecture: A critical anal-
587 ysis. *Cognition*, 28(1-2):3–71, 1988. doi: 10.1016/0010-0277(88)90031-5.
588

589 Atticus Geiger, Kyle Richardson, and Christopher Potts. Neural natural language inference models
590 partially embed theories of lexical entailment and negation. In Afra Alishahi, Yonatan Belinkov,
591 Grzegorz Chrupała, Dieuwke Hupkes, Yuval Pinter, and Hassan Sajjad (eds.), *Proceedings of the
592 Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP*, pp. 163–
593 173, Online, November 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
blackboxnlp-1.16. URL <https://aclanthology.org/2020.blackboxnlp-1.16/>.

594 Atticus Geiger, Hanson Lu, Thomas F Icard, and Christopher Potts. Causal abstractions of neural
 595 networks. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), *Advances in
 596 Neural Information Processing Systems*, 2021. URL [https://openreview.net/forum?
 597 id=RmuXDtjDhG](https://openreview.net/forum?id=RmuXDtjDhG).

598 Atticus Geiger, Jacqueline Harding, and Thomas Icard. How causal abstraction underpins computa-
 599 tional explanation, 2025a. URL <https://arxiv.org/abs/2508.11214>.

601 Atticus Geiger, Duligur Ibeling, Amir Zur, Maheep Chaudhary, Sonakshi Chauhan, Jing Huang,
 602 Aryaman Arora, Zhengxuan Wu, Noah Goodman, Christopher Potts, and Thomas Icard. Causal
 603 abstraction: A theoretical foundation for mechanistic interpretability. *Journal of Machine Learn-
 604 ing Research*, 26(83):1–64, 2025b. URL [http://jmlr.org/papers/v26/23-0058.
 605 html](http://jmlr.org/papers/v26/23-0058.html).

606 Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir Globerson. Dissecting recall of factual
 607 associations in auto-regressive language models. In Houda Bouamor, Juan Pino, and Kalika Bali
 608 (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Pro-
 609 cessing*, pp. 12216–12235, Singapore, December 2023. Association for Computational Linguis-
 610 tics. doi: 10.18653/v1/2023.emnlp-main.751. URL [https://aclanthology.org/2023.
 611 emnlp-main.751/](https://aclanthology.org/2023.emnlp-main.751).

612 Romuald A. Janik. Aspects of human memory and large language models, 2024. URL <https://arxiv.org/abs/2311.03839>.

613 Mosh Levy, Alon Jacoby, and Yoav Goldberg. Same task, more tokens: the impact of input length
 614 on the reasoning performance of large language models. In Lun-Wei Ku, Andre Martins, and
 615 Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Com-
 616 putational Linguistics (Volume 1: Long Papers)*, pp. 15339–15353, Bangkok, Thailand, August
 617 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.818. URL
 618 <https://aclanthology.org/2024.acl-long.818/>.

619 Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
 620 Percy Liang. Lost in the middle: How language models use long contexts. *Transactions of the
 621 Association for Computational Linguistics*, 12:157–173, 2024. doi: 10.1162/tacl_a_00638. URL
 622 <https://aclanthology.org/2024.tacl-1.9/>.

623 Norman Miller and Donald Campbell. Recency and primacy in persuasion as a function of timing
 624 of speeches and measurement. *Journal of abnormal psychology*, 59:1–9, 07 1959. doi: 10.1037/
 625 h0049330.

626 Theodora-Mara Pîslar, Sara Magliacane, and Atticus Geiger. Combining causal models for more ac-
 627 curate abstractions of neural networks. In *Fourth Conference on Causal Learning and Reasoning*,
 628 2025. URL <https://openreview.net/forum?id=mVft1Ei1CD>.

629 Nikhil Prakash, Tamar Rott Shaham, Tal Haklay, Yonatan Belinkov, and David Bau. Fine-tuning
 630 enhances existing mechanisms: A case study on entity tracking. In *The Twelfth International
 631 Conference on Learning Representations*, 2024. URL [https://openreview.net/forum?id=8sKcAWOf2D](https://openreview.net/forum?

 632 id=8sKcAWOf2D).

633 Nikhil Prakash, Natalie Shapira, Arnab Sen Sharma, Christoph Riedl, Yonatan Belinkov, Tamar Rott
 634 Shaham, David Bau, and Atticus Geiger. Language models use lookbacks to track beliefs, 2025.
 635 URL <https://arxiv.org/abs/2505.14685>.

636 Paul Smolensky. Tensor product variable binding and the representation of symbolic struc-
 637 tures in connectionist systems. *Artificial Intelligence*, 46(1-2):159–216, 1990. doi: 10.1016/
 638 0004-3702(90)90007-M.

639 David S. Touretzky and Geoffrey E. Minton. Symbols among the neurons: details of a connectionist
 640 inference architecture. In *Proceedings of the 9th International Joint Conference on Artificial In-
 641 telligence - Volume 1*, IJCAI’85, pp. 238–243, San Francisco, CA, USA, 1985. Morgan Kaufmann
 642 Publishers Inc. ISBN 0934613028.

648 Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Yaron Singer, and
 649 Stuart Shieber. Investigating gender bias in language models using causal mediation analysis.
 650 *Advances in neural information processing systems*, 33:12388–12401, 2020.

651
 652 Yiwei Wu, Atticus Geiger, and Raphaël Millière. How do transformers learn variable binding in
 653 symbolic programs? In *Forty-second International Conference on Machine Learning*, 2025.
 654 URL <https://openreview.net/forum?id=kVtqv7bpnw>.

655 A EVALUATING GENERALIZATION

656 In this section, we seek to validate that our findings generalize to different values of n , as well as
 657 across models and binding tasks.

658 A.1 BINDING TASKS

659 In this subsection, we detail the different binding tasks we evaluate, and show that our findings
 660 generalize across all of them. We define ten different binding tasks spanning domains, syntaxes, and
 661 subjects: one with $m = 2$ and nine with $m = 3$. The sizes of the entity sets range from 23 to 80.
 662 Table 1 lists the entity sets for each task, along with an example instantiation for $n = 2$ and different
 663 values of q_{entity} . Note that when $m = 3$, we use two query entities: $\mathbf{G}_{q_{\text{entity}}^1}^{q_{\text{group}}}$ and $\mathbf{G}_{q_{\text{entity}}^2}^{q_{\text{group}}}$. These are
 664 the two entities in the entity group which aren't the target entity. For example, when $t_{\text{entity}} = 2$ we
 665 set $q_{\text{entity}}^1 = 1$ and $q_{\text{entity}}^2 = 3$.

666 Figures 8 and 9 show the results of the `TargetRebind` interchange intervention on gemma-2-
 667 2b-it and qwen2.5-7b-it across all tasks and all values of t_{entity} . Our findings are consistent: the
 668 positional mechanism dominates for early and late entity groups, while the lexical and reflexive
 669 mechanisms take over in the middle. We also replicate the effect in Figure 2 and Figure 5: reflexive
 670 is more present when $t_{\text{entity}} = 1$ (first), lexical when $t_{\text{entity}} = 3$ (last), and both are balanced when
 671 $t_{\text{entity}} = 2$ (middle).

672 A.2 REPLICATING RESULTS ACROSS MODELS

673 To validate robustness, we evaluated 9 models across 3 families, spanning 2–72B parameters. As
 674 shown in Figures 10 and 11 for the *boxes* and *music* tasks with $t_{\text{entity}} \in [3]$, our findings transfer
 675 consistently across models. The positional mechanism dominates for the first and last entity groups,
 676 while in middle positions lexical and reflexive take over, with a mixed effect distributed around
 677 the positional index. In the Qwen family, we also observe that positional efficacy strengthens with
 678 model size. Overall, these results point to a universal strategy used by LMs to solve entity binding
 679 tasks.

680 A.3 EFFECT OF n

681 Previous work has described model behavior faithfully using only the positional mechanism (Feng
 682 & Steinhardt, 2024; Prakash et al., 2025), but these analyses were limited to small contexts ($n \in$
 683 $\{2, 3\}$). In this work, we show extensively that this finding doesn't hold for larger values of n .
 684 To evaluate exactly the relationship between the efficacy of the positional mechanism and n , we
 685 conduct the `TargetRebind` interchange intervention on gemma-2-2b-it and qwen2.5-7b-it for
 686 all $n \in [3, 20]$. We see in Figures 14, 15, 16, 17 that the trend seen in all experiments holds across
 687 values of n : the positional mechanism is effective in the first and last entity groups, but not in middle
 688 ones. Its efficacy for middle entity groups declines as n increases. This trend is consistent with the
 689 separability analysis in Figure 22, which shows that hidden states from middle entity groups become
 690 increasingly difficult to classify by position as n grows.

691 B ENCODING OF POSITIONAL INFORMATION

692 Throughout our experiments (notably Figures 2, 5, 10 and 8), we show that the model does not rely
 693 solely on the positional mechanism. One possible explanation is that, as illustrated in Figure 3, the

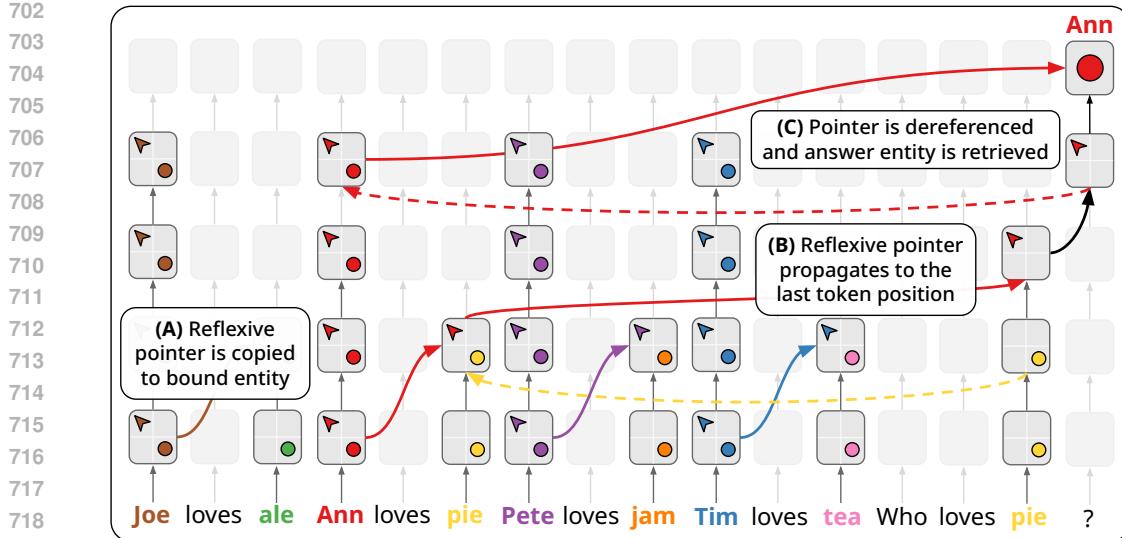


Figure 7: An illustration of the reflexive mechanism for retrieving entities for $t_{entity} = 1$. We omit the positional and lexical mechanisms for clarity. Under this mechanism: (A) a reflexive pointer to an entity originating from it is copied to its bound counterpart, (B) that reflexive pointer propagates to the last token position through the query entity, and (C) that pointer is dereferenced, thus retrieving the answer entity.

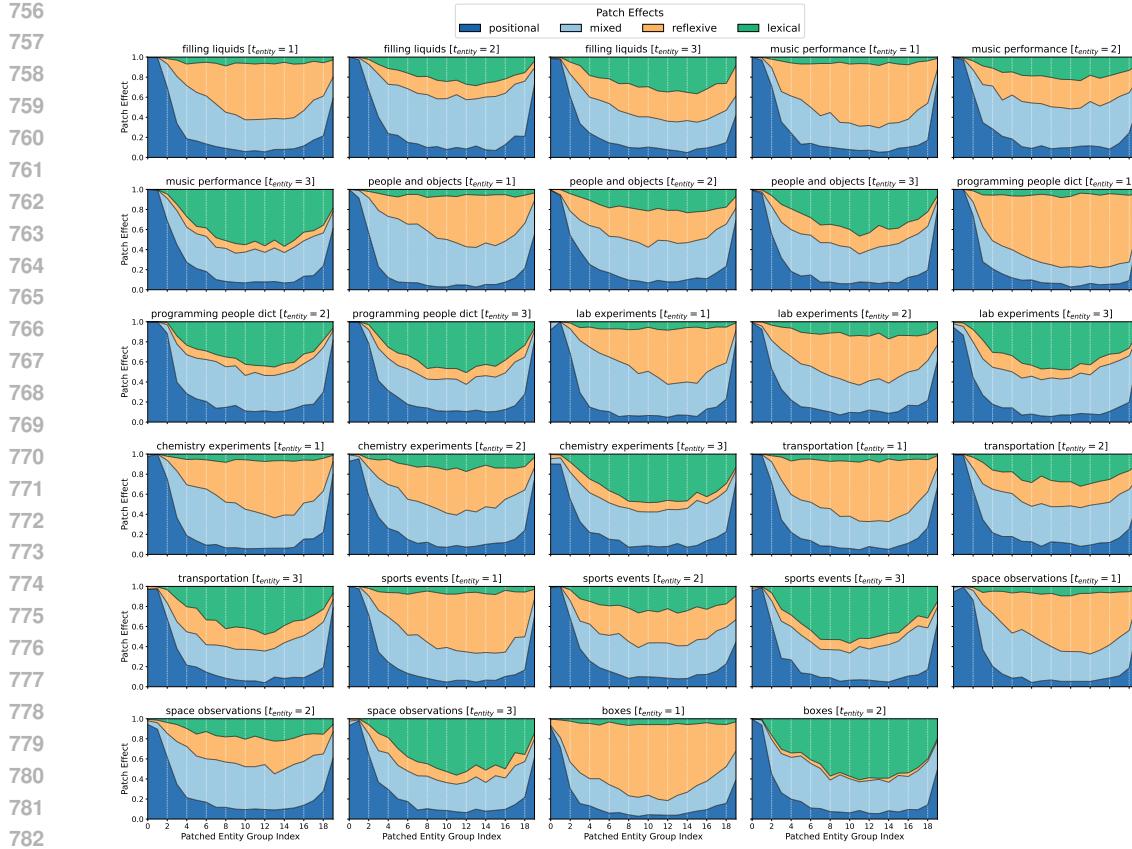
positional signal becomes diffuse and weak for middle entity groups. This may reflect the model’s limited ability to encode entity group positions in a linearly separable manner. To test this hypothesis, we collected hidden state activations at entity token positions as well as at final token positions at every layer, and assessed their separability using PCA and a multinomial logistic regression probe. Figure 22 shows the results: PCA projections for entity token positions with $n = 20$, and linear probe accuracies for both entity and final positions across $n \in \{5, 10, 15, 20\}$. Consistent with our broader findings, the first and last entity groups are readily separable, while middle groups exhibit substantial overlap. We also observe a clear dependence on n : smaller contexts yield better separation, whereas larger contexts make positions increasingly indistinguishable.

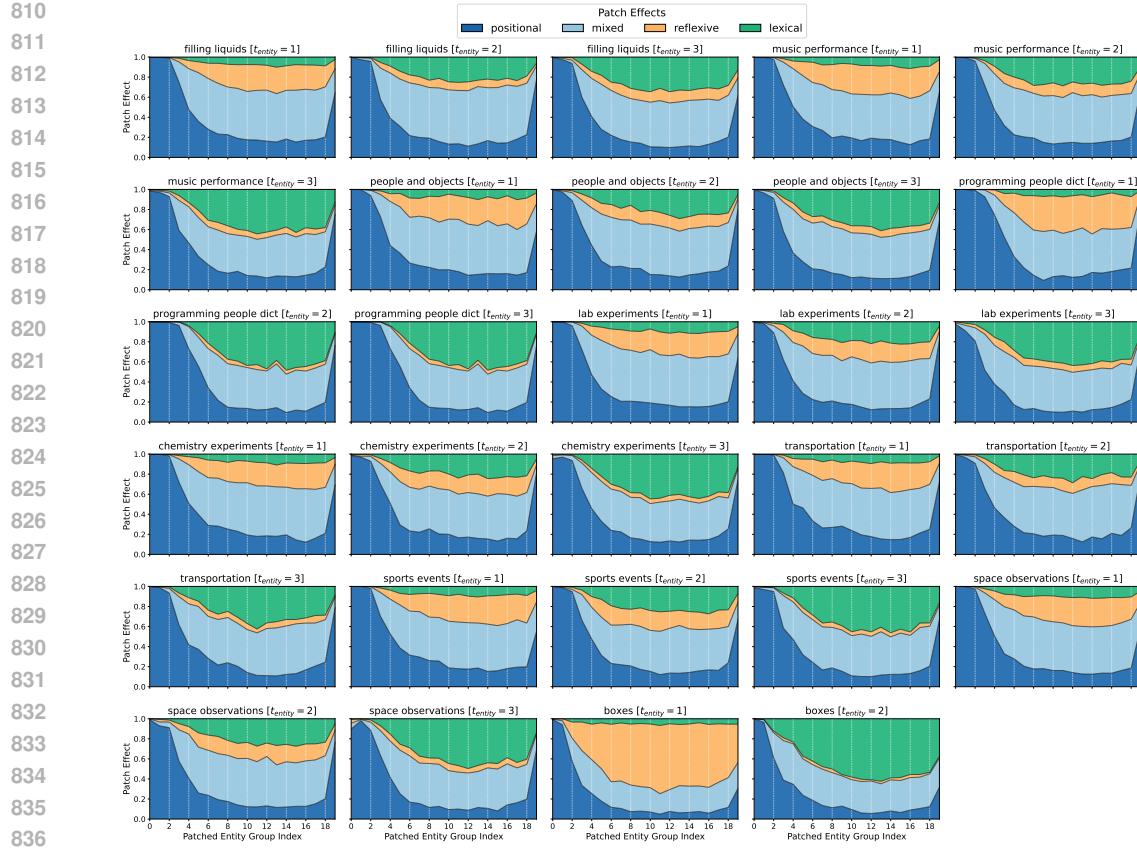
C BINDING SIGNALS IN ENTITY TOKENS

In our main experiments, we focus on interchange interventions for the last token position, showing that it encodes positional, lexical and reflexive signals. In this section, we conduct experiments to verify the existence of these signals in the entity token positions themselves, as well as identify the movement of these signals across token positions.

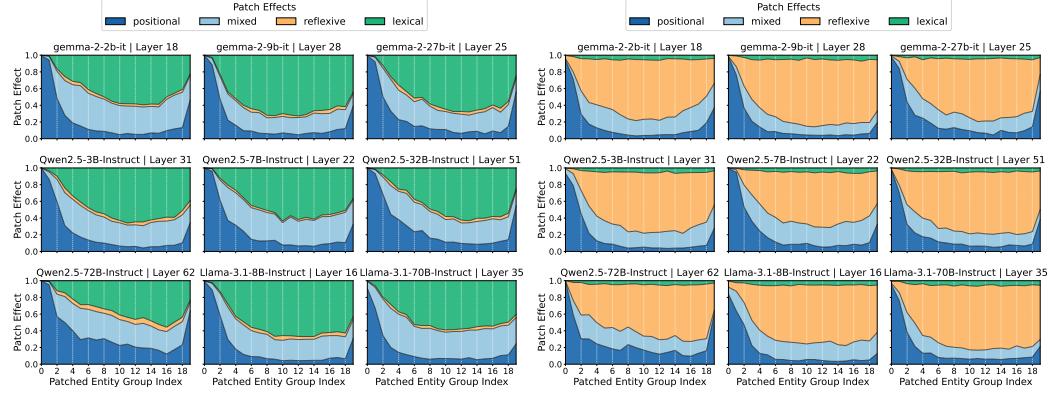
First, we conduct the `PosSwap`, `LexSwap` and `RefSwap` interchange interventions, described in Table 2, with the results shown in Figure 19. We see that they achieve nearly identical interchange intervention accuracies as when performing `TargetRebind` with the last token position. Additionally, we see that for the positional and lexical mechanisms, the crucial layers where the binding information is contained in the entity tokens and used for retrieval is layers 12-19, while for reflexive it’s 6-12.

To further trace how binding signals flow through the model, we apply attention knockout (Geva et al., 2023). We first identify a minimal set of layers where blocking attention from the last token position to the query entity token (e.g., *which box is the medicine in?*) degrades performance. Across all values of t_{entity} , this occurs in layers 11-16, dropping accuracy from 98% to 37%, aligning with the layers where binding information resides in entity tokens. Knockout becomes even more effective when applied to both the query token and the token immediately after it, reducing accuracy to 8%. This suggests that some of the query signal is copied forward. Consistent with this, blocking attention from the last token position only to the token following the query token decreases accuracy by just one point. However, when we block attention both from the last position to the query token




Figure 8: Results of the `TargetRebind` interchange intervention for gemma-2-2b-it across all tasks and possible values of t_{entity} .

and from its following token, accuracy drops to 6%, confirming that crucial binding information reaches the last position via the query token.


Finally, we test whether binding information propagates from entity tokens to the query token. The lexical mechanism may not require such propagation, since its signal can be generated directly from the query token. By contrast, the reflexive signal in the entity tokens originates from the answer token, so the query token must retrieve it in order for the signal to reach the last token position. To evaluate this, we block attention from the query token to different entity tokens. For the reflexive signal (setting $t_{entity} = 1$), we block attention to the entity token identical to the query token—where our `RefSwap` intervention localized the signal—and to the token immediately after it. This intervention is most effective in layers 8–12, reducing accuracy to 6%, and matching the layers where entity tokens use this signal (Figure 19). Blocking attention to other entity tokens in the queried entity group has no effect. In contrast, for the lexical signal (setting $t_{entity} = 2$), blocking attention from the query token to the correct answer entity token reduces accuracy only to 86%, even when applied across all layers. Moreover, blocking attention from the query token to all entity tokens at all layers still leaves accuracy at 90%. These results support our hypothesis: the lexical signal can be derived locally from the query token, while the reflexive signal must be retrieved from entity tokens. This also explains why the model appears to produce the reflexive binding signal earlier than in the lexical or positional mechanisms – it requires an additional stage of retrieval.

D ADDITIONAL EXPERIMENTS

In this section we discuss experiments that further strengthen our model of how LMs perform entity binding and retrieval, that couldn't be included in the main section. In §D.1 we expand our under-

838 Figure 9: Results of the `TargetRebind` interchange intervention for qwen2.5-7b-it across all
839 tasks and possible values of t_{entity} .

855 Figure 10: Evaluation of the `TargetRebind` interchange intervention in 9 different models
856 across 3 model families spanning 2-72B parameters, for the *boxes* binding task and $t_{entity} \in [2]$.
857 We see that the results remain remarkably consistent.

861 standing of the interaction between different mechanisms by evaluating what happens when setting
862 two mechanisms to point at the same entity. In §D.2 we detail the experiments conducted for finding
863 the target layer for our interchange interventions. Finally, in §D.3 we analyze the model’s behavior
when removing entities pointed to by the different mechanisms.

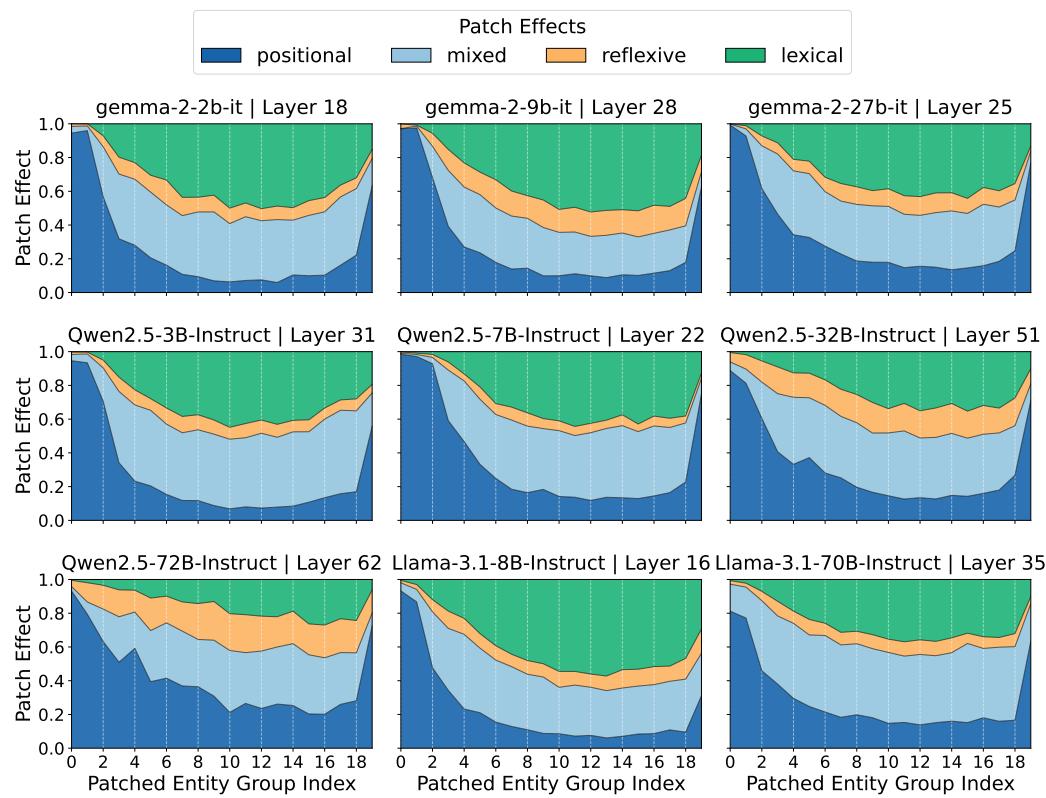


Figure 11: Evaluation of the `TargetRebind` interchange intervention in 9 different models across 3 model families spanning 2-72B parameters, for the *music* binding task and $t_{\text{entity}} = 3$.

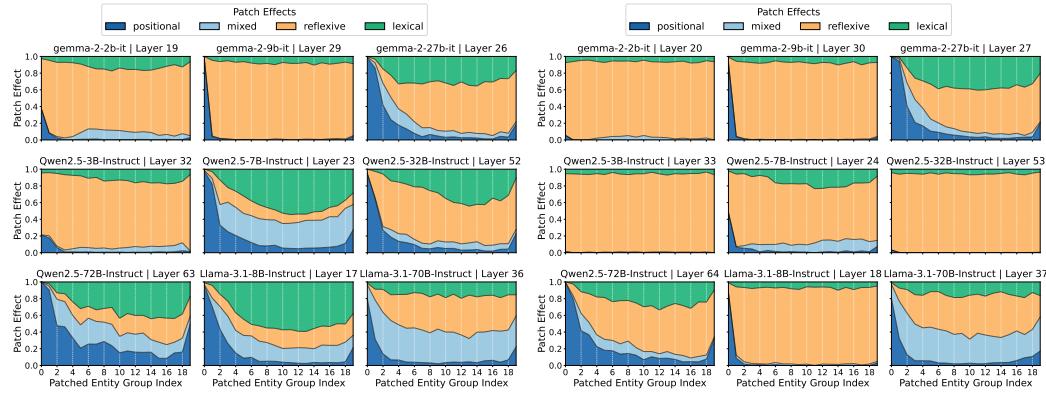


Figure 12: Evaluation of the `TargetRebind` interchange intervention at 1 and 2 layers after the evaluation in Figure 10, for $t_{\text{entity}} = 2$. We see that the model shifts from aggregating binding information to retrieving the entities.

D.1 MECHANISM AGREEMENT

In the `TargetRebind` interchange intervention used to produce the results in Figure 2 (and others throughout the paper), we explicitly make sure to have different values for the positional, lexical and reflexive indices, so that we can know which mechanism most affected the model’s output. However, as shown in Figure 3, these mechanisms behave additively, and we suspect that when they agree, they overwhelmingly drive model behavior. To evaluate this, we conduct two experiments, one for $t_{\text{entity}} = 1$ where the positional mechanism agrees with the reflexive one, and one for $t_{\text{entity}} = 3$

Name	Entity Sets Sample	Binding Example
Filling Liquids	$\mathcal{E}_1 = \{John, Mary\}$ $\mathcal{E}_2 = \{cup, glass\}$ $\mathcal{E}_3 = \{wine, beer\}$	John and Mary are working at a busy restaurant. To fulfill an order, John fills a cup with beer and Mary fills a glass with wine. Who filled a cup with beer?
People and Objects	$\mathcal{E}_1 = \{John, Mary\}$ $\mathcal{E}_2 = \{toy, medicine\}$ $\mathcal{E}_3 = \{kitchen, office\}$	John put the cup in the office and Mary put the toy in the kitchen. What did Mary put in the kitchen?
Programming Dictionary	$\mathcal{E}_1 = \{a, b\}$ $\mathcal{E}_2 = \{John, Mary\}$ $\mathcal{E}_3 = \{US, Canada\}$	The following are dictionary variables in Python: <code>a={‘name’:‘Mary’, ‘Country’:‘Canada’}, b={‘name’:‘John’, ‘Country’:‘US’}</code> . What is the country in variable <code>a</code> where <code>‘name’ == ‘John’</code> ?
Music	$\mathcal{E}_1 = \{John, Mary\}$ $\mathcal{E}_2 = \{rock, pop\}$ $\mathcal{E}_3 = \{guitar, piano\}$	At the music festival, John performed rock music on the piano, and Mary performed pop music on the guitar. What music did Mary play on the guitar?
Biology Experiment	$\mathcal{E}_1 = \{John, Mary\}$ $\mathcal{E}_2 = \{serum, enzyme\}$ $\mathcal{E}_3 = \{beaker, vial\}$	In a biology laboratory experiment, Mary placed the serum in a vial, and John placed the enzyme in a beaker. Who placed the serum in a vial?
Chemistry Experiment	$\mathcal{E}_1 = \{John, Mary\}$ $\mathcal{E}_2 = \{ethanol, acetone\}$ $\mathcal{E}_3 = \{crucible, funnel\}$	In a chemistry laboratory experiment, Mary added the acetone to a crucible, and John added the ethanol to a funnel. What did John add to a funnel?
Transportation	$\mathcal{E}_1 = \{John, Mary\}$ $\mathcal{E}_2 = \{truck, taxi\}$ $\mathcal{E}_3 = \{mall, park\}$	In a city transportation system, John, drove the truck to the mall, and Mary drove the taxi to the park. Where did Mary drive the taxi?
Sports Events	$\mathcal{E}_1 = \{John, Mary\}$ $\mathcal{E}_2 = \{hockey, cricket\}$ $\mathcal{E}_3 = \{stadium, field\}$	In a sports competition, Mary played hockey at the stadium, and John played cricket at the field. Who played hockey at the stadium?
Space Observations	$\mathcal{E}_1 = \{John, Mary\}$ $\mathcal{E}_2 = \{planet, asteroid\}$ $\mathcal{E}_3 = \{telescope, radar\}$	During an astronomy study, John observed an asteroid with a radar, and Mary observed a planet with a telescope. What did John observe with a radar?
Boxes	$\mathcal{E}_1 = \{toy, medicine\}$ $\mathcal{E}_2 = \{box A, box B\}$	The toy is in box B, and the medicine is in Box A. Which box is the medicine in?

Table 1: List of all binding tasks we evaluate in our experiments. We show entity sets composed of only two entities per set for brevity. We also only show examples for $n = 2$ but evaluate over $n \in [3, 20]$

where the positional mechanism agrees with the lexical one. The results, shown in Figure 18, show that this is indeed the case.

D.2 FINDING THE TARGET LAYER

We seek to identify for each model what the last layer before retrieval is, so that we can perform our interchange interventions on that layer. Indeed in Figure 2 we see that there are a subset of layers where the last token position contains the binding information, after which it contains the retrieved answer. Thus, for each model we identify the last layer where patching the last token position does not copy the retrieved token. The intervention on this layer ℓ is shown in Figure 10 for $t_{\text{entity}} \in [2]$, and in Figure 12 we show this same intervention for $\ell + 1$ and $\ell + 2$ with $t_{\text{entity}} = 2$. We see clearly that for ℓ , the percentage of cases where the answer post-intervention is the retrieved entity from the counterfactual example is at or below random chance. However, for $\ell + 1$ and $\ell + 2$ this effect becomes the majority, showing that the model has shifted to retrieval. We also see that this layer is consistent across tasks in Figures 10 and 11.

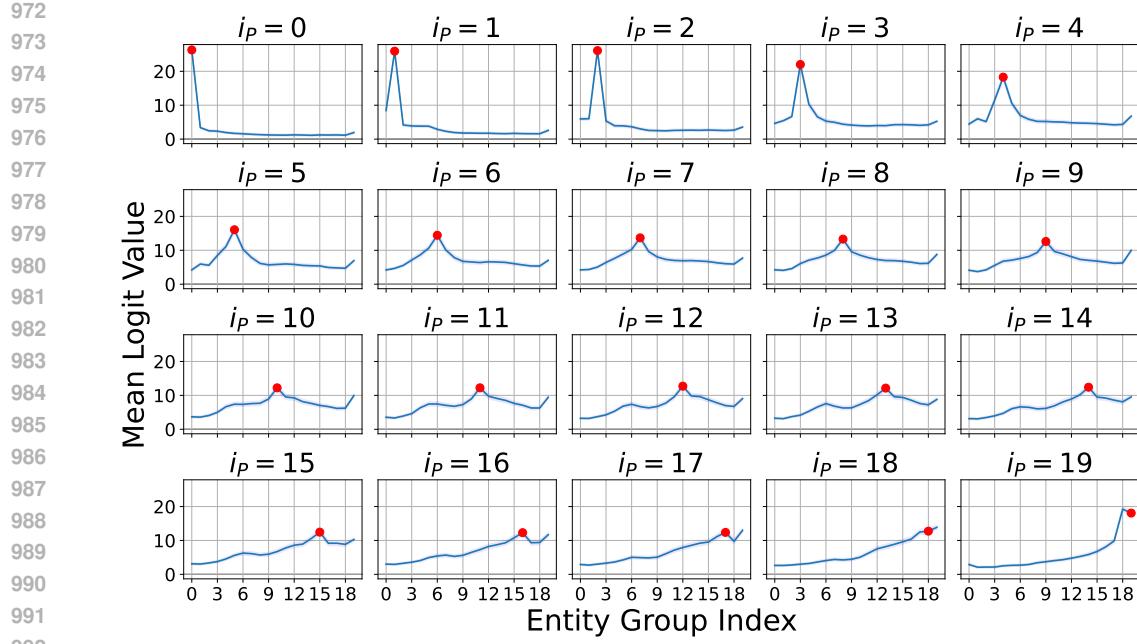


Figure 13: The mean logit distribution as a function of the positional index (i_p), for qwen2.5-7b-it on the *boxes* task with $t_{\text{entity}} = 2$. We can see the the positional binding signal induces a strong and concentrated signal for entity groups in the beginning and the end, while inducing a weak and diffuse one for middle groups.

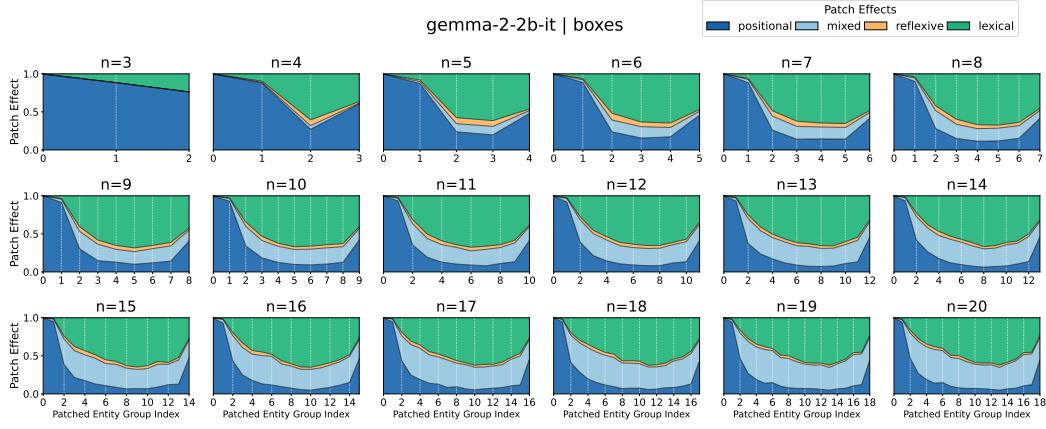


Figure 14: Results for the `TargetRebind` interchange intervention on gemma-2-2b-it for $n \in [3, 20]$ and $t_{\text{entity}} = 3$ on the *boxes* task. We see a trend where, the more entity groups need to be bound in context, the worse the positional mechanism is at binding those in the middle.

D.3 REMOVING TARGETED ENTITY TOKENS

In §3.1 we detail how the lexical and reflexive mechanisms are pointers that get dereferenced to the queried entity. To strengthen these claims, in this section, we evaluate what happens when we modify the `TargetRebind` interchange intervention, such that the entities targeted by those mechanisms do not exist in the original prompt. Thus, for the example in Figure 1, to test the lexical mechanism we'd change the counterfactual such that *Ann* is replaced with a different new name *Max*, and for the reflexive we'd change *pie* to *cod* (separately). We see in Figure 28 that this leads the model to rely solely on the positional mechanism, since the others have pointers that cannot be

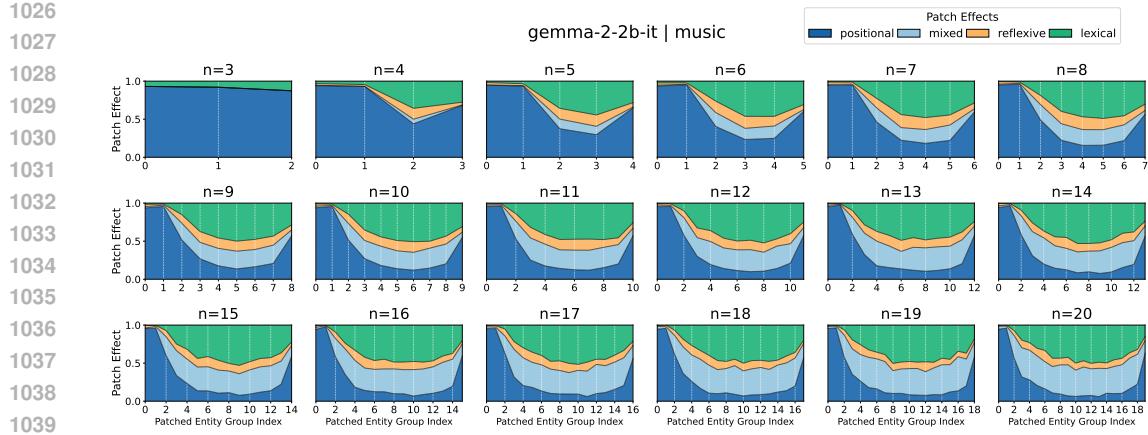


Figure 15: Results for the `TargetRebind` interchange intervention on `gemma-2-2b-it` for $n \in [3, 20]$ and $t_{\text{entity}} = 3$ on the *music* task. We see a trend where, the more entity groups need to be bound in context, the worse the positional mechanism is at binding those in the middle.

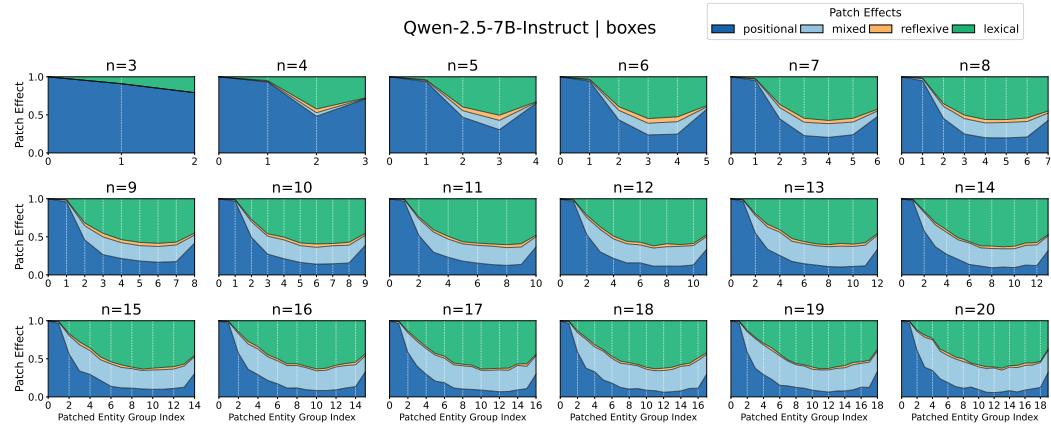


Figure 16: Results for the `TargetRebind` interchange intervention on `qwen2.5-7b-it` for $n \in [3, 20]$ and $t_{\text{entity}} = 3$ on the *boxes* task. We see a trend where, the more entity groups need to be bound in context, the worse the positional mechanism is at binding those in the middle.

dereferenced. In Figure 29 we see that in this case, relying on the positional mechanism yields a noisy distribution around the positional index.

A possible alternative explanation for why the model isn't retrieving the entity pointed to by these two mechanisms, is that there might be some other mechanism that prevents the model from answering with entities that do not exist in the context. To evaluate this, we conduct the same exact interventions, but for layer $\ell + 1$, where the retrieval is already taking place (see §D.2). Thus, if such a mechanism exists, we'd expect to see the same results, where the model relies solely on the positional mechanism. Otherwise, we'd expect the model to respond with the retrieved answer from the counterfactual. We can see in Figure 30 that the model indeed responds with the retrieved answer from the counterfactual, falsifying this alternative explanation. Thus, we conclude that the model indeed relies on the lexical and reflexive mechanisms as pointers for dereferencing.

D.4 LINGUISTIC VARIABILITY

To assess our findings' generalization beyond the template datasets defined in Table 1, we incorporate linguistic variations in the phrasings of each entity group. We define 12 such variations for the *boxes* and *music* tasks respectively, such that when creating a prompt from a binding matrix \mathbf{G} , we choose a random variation per entity group. For example, in the *boxes* task, we have variations

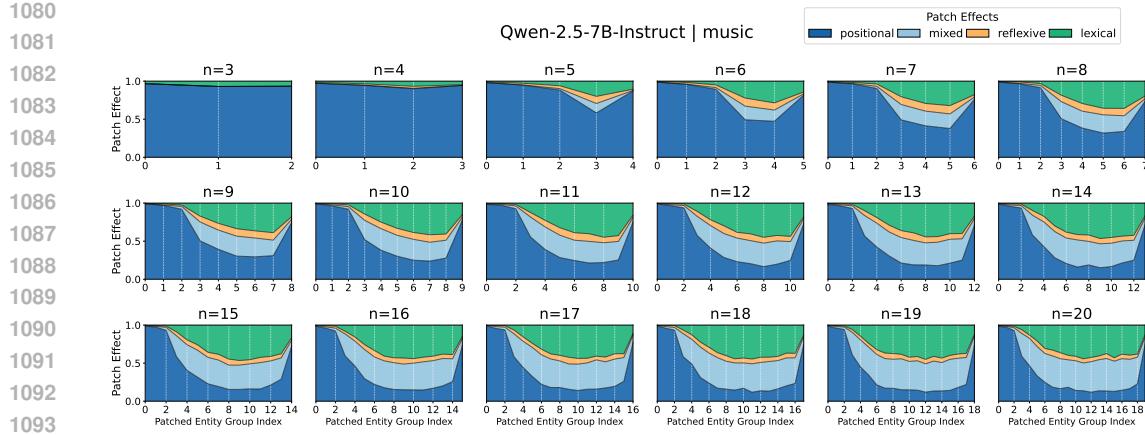


Figure 17: Results for the `TargetRebind` and $t_{\text{entity}} = 3$ interchange intervention on qwen2.5-7b-it for $n \in [3, 20]$ on the *music* task. We see a trend where, the more entity groups need to be bound in context, the worse the positional mechanism is at binding those in the middle.

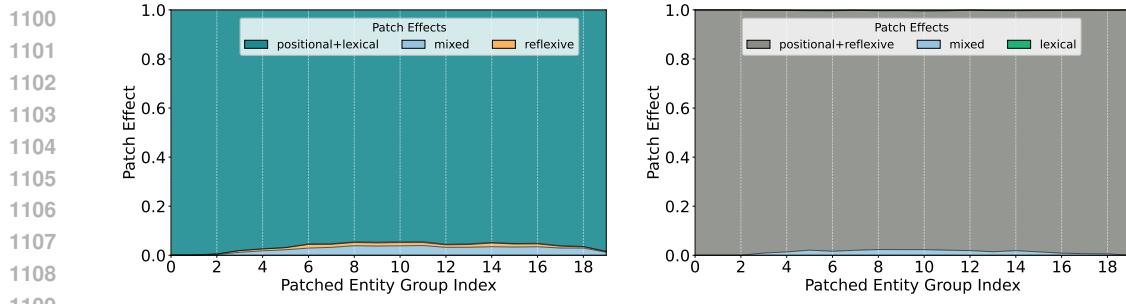


Figure 18: We evaluate gemma-2-2b-it’s behavior when aligning the mechanisms for the *music* task. We align the positional and reflexive mechanisms for $t_{\text{entity}} = 1$, and the positional and lexical mechanisms for $t_{\text{entity}} = 3$. We see that when the mechanisms point at the same entity for retrieval, the model consistently responds with the correct entity.

like “the Object is stored in box Box”, “the Object was left in box Box” and “the Object ended up in box Box”. We can see in the results, shown in Figure 21, that our findings remain identical in this setting. As in previous results, the model relies on the three mechanisms, mediated by the entity group index as well as t_{entity} .

E ADDITIONAL CAUSAL MODELS

We report the the KL divergence scores for gemma-2-2b-it on the *music* task in Table 3. We additionally report all metrics for gemma-2-2b-it on the *sports* task in Table 4, and qwen2.5-7b-it on both tasks in Tables 5 and 6. For training, we use Adam ($\beta_1 = 0.9$, $\beta_2 = 0.999$) with learning rate 0.05, run for up to 2,000 epochs with a batch size of 512 and early stopping after 200 epochs.

F FURTHER VALIDATION OF THE REFLEXIVE MECHANISM

In §3.1, we describe the reflexive binding mechanism, where a direct pointer originating from an entity token is used to point back at itself. In this section we provide further evidence for the existence of this mechanism as described.

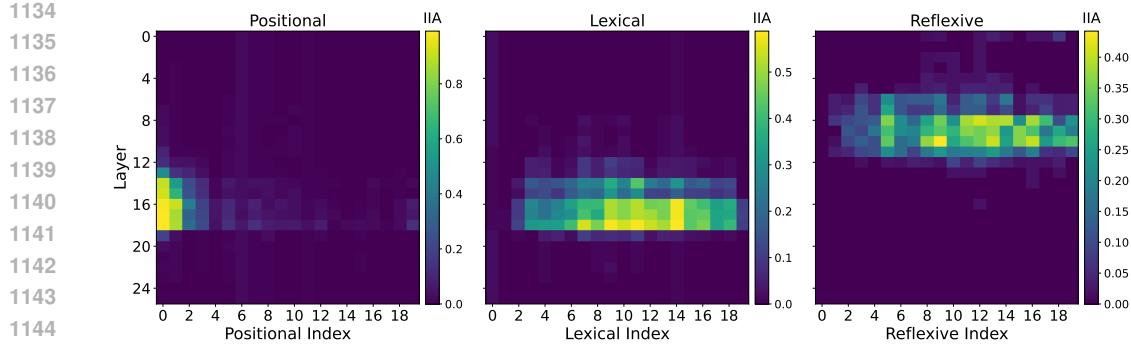


Figure 19: Results for the `PosSwap` (left), `LexSwap` (middle) and `RefSwap` (right) interchange interventions on gemma-2-2b-it for the *boxes* task. Each square shows the interchange intervention accuracy (IIA) for a given layer and positional, lexical or reflexive index. We see that positional and lexical binding information exists in entity tokens in layers 12-19, while reflexive binding information does in layers 6-12.

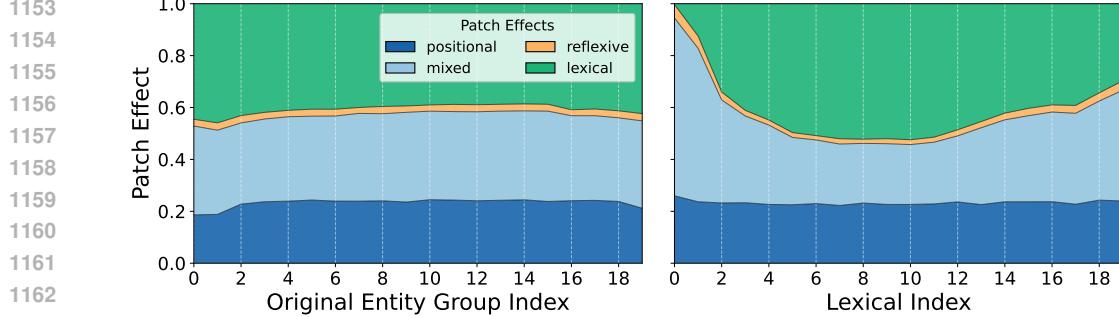
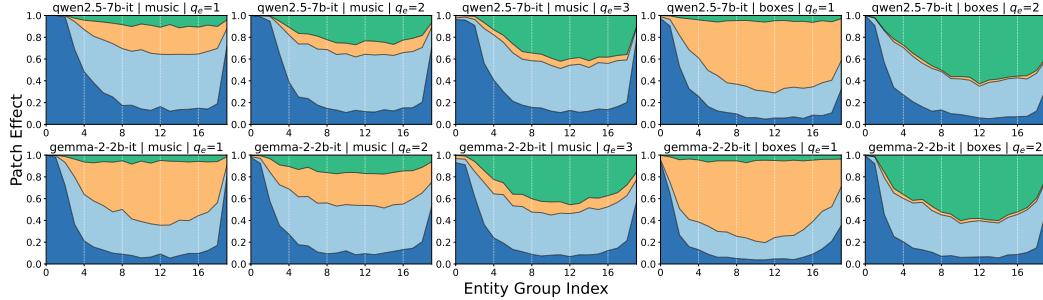


Figure 20: We show results of the `TargetRebind` interchange intervention on gemma-2-2b-it for the *boxes* task with different indices on the x-axis. **Left:** using the index of the queried entity group. This has little effect overall, except for dips at the first and last indices in the positional effect. Under `TargetRebind`, the positions of queried entity groups cannot coincide between the counterfactual and original prompts. Thus, when the original query targets the first or last groups—where positional information is strongest—these groups are never patched, slightly weakening results on average. **Right:** using the lexical index. Here the pattern mirrors Figure 3, with weaker effects at the edges and stronger ones in the middle.


We do this by knocking out attention from the last token position to the target entity (Geva et al., 2023), shown in Figure 23. Again we see that the model does not respond with the counterfactual target entity unless it can find it in context, which we prevent by blocking attention to it. Conversely, blocking attention at a layer when the model has already retrieved the answer, while patching at that layer, does not prevent the model from answering with the answer entity from the counterfactual. Thus, we can conclude that the model indeed relies on a reflexive mechanism for binding and retrieving entities in context.

G CONTEXT LENGTH ABLATION STUDY

In our evaluations, we show the effect of the number of entities that need to be bound in-context on LMs' use of the positional, lexical and reflexive mechanisms. However, a confounding factor is that as the number of entities increases, so does the length of the sequence itself. To disentangle these effects, we pad contexts with $n \in [3, 19]$ so that all sequences match the length of those with

1188	Name	Original	Counterfactual	Patch Positions	Patch Effects
1189	<code>TargetRebind</code>	The bottle is in box <i>C</i> , the <i>pen</i> is in box <i>A</i> , the <i>ball</i> is in box <i>Q</i> , and the <i>rock</i> is in box <i>N</i> . Which box is the <i>rock</i> in?	The bottle is in box <i>Q</i> , the <i>ball</i> is in box <i>A</i> , the <i>pen</i> is in box <i>C</i> , and the rock is in box <i>N</i> . Which box is the <i>pen</i> in?	Last token position	Q: Positional A: Lexical C: Reflexive N: No effect
1190	<code>PossSwap</code>	The <i>pen</i> is in box <i>A</i> and the <i>ball</i> is in box <i>Q</i> . Which box is the <i>ball</i> in?	The <i>ball</i> is in box <i>Q</i> and the <i>pen</i> is in box <i>A</i> . Which box is the <i>ball</i> in?	A→A Q→Q	A: Patched tokens encode positional binding used by the model Q: Patched tokens do not encode positional binding used by the model
1191	<code>LexSwap</code>	The <i>pen</i> is in box <i>A</i> and the <i>ball</i> is in box <i>Q</i> . Which box is the <i>ball</i> in?	The <i>ball</i> is in box <i>A</i> and the <i>pen</i> is in box <i>Q</i> . Which box is the <i>ball</i> in?	A→A Q→Q	A: Patched tokens encode lexical binding used by the model Q: Patched tokens do not encode lexical binding used by the model
1192	<code>RefSwap</code>	The <i>pen</i> is in box <i>A</i> and the <i>ball</i> is in box <i>Q</i> . What is in Box Q ?	The <i>ball</i> is in box <i>A</i> and the <i>pen</i> is in box <i>Q</i> . What is in Box Q ?	A→A Q→Q	A: Patched tokens encode reflexive binding used by the model Q: Patched tokens do not encode reflexive binding used by the model
1193					
1194					
1195					
1196					
1197					
1198					
1199					
1200					
1201					
1202					
1203					
1204					
1205					
1206					
1207					
1208					
1209					
1210					
1211					
1212					
1213					
1214					
1215					
1216					
1217					
1218					
1219					
1220					
1221					
1222					
1223					
1224					
1225					
1226					
1227					
1228					
1229					
1230					
1231					
1232					
1233					
1234					
1235					
1236					
1237					
1238					
1239					
1240					
1241					

Table 2: Original/counterfactual pair examples for interchange interventions.

Figure 21: Results for the `TargetRebind` interchange intervention on qwen2.5-7b-it and gemma-2-2b-it for all values of q_e on the *boxes* and *music* binding tasks, while using random linguistic variations for the phrasings of each entity group. We find that our findings remain consistent in this setting as well.

$n = 20$. Padding is done using “entity-less” sentences, as described in §5. The results are shown in Figure 27. If the effects of increasing n were due to increasing sequence length, we’d expect all results to be identical to when setting $n = 20$, and to each other. However, we see that, while the distribution of patch effects is slightly affected by padding, the results and trends align closely with our results without padding. This indicates that model behavior is governed primarily by the number of entities that must be bound, rather than by sequence length.

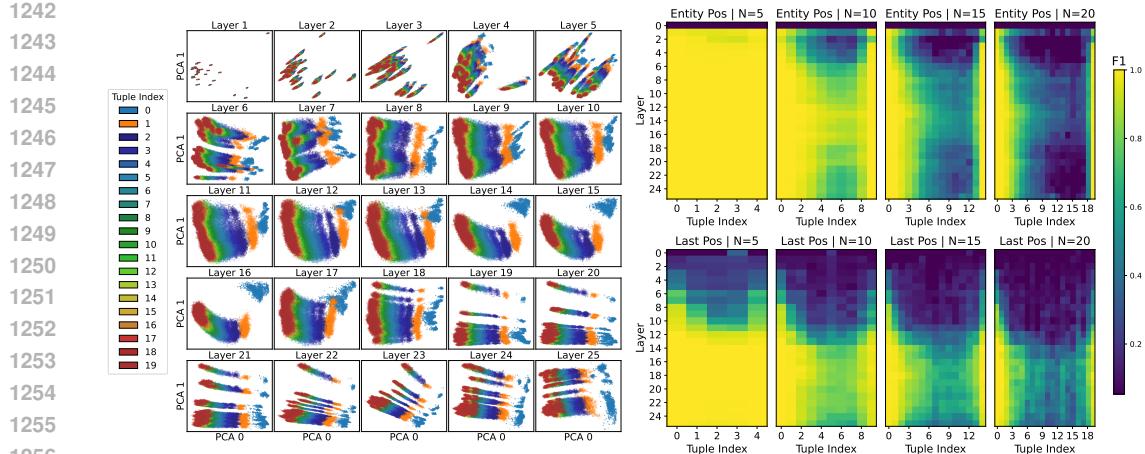


Figure 22: Separability of hidden states for entity token positions and the last token position, across layers and values of n . PCA projections (left) and multinomial logistic regression probes (right) show that first and last entity groups are linearly separable, while middle groups overlap substantially. Separability decreases as the number of entities n increases.

Model	KL $_{t p} \downarrow$			KL $_{p t} \downarrow$		
	$t_{\text{entity}} = 1$	$t_{\text{entity}} = 2$	$t_{\text{entity}} = 3$	$t_{\text{entity}} = 1$	$t_{\text{entity}} = 2$	$t_{\text{entity}} = 3$
\mathcal{M}	0.22	0.17	0.26	0.31	0.21	0.41
\mathcal{M} w/ Oracle Pos	0.14	0.08	0.14	0.32	0.11	0.24
\mathcal{M} w/ One-Hot Pos	0.71	0.67	0.71	1.00	0.88	0.88
Only One-Hot At Pos	6.41	5.61	5.95	3.41	2.39	2.78
$\mathcal{M} \setminus \{P\}$	1.75	1.52	1.71	4.51	2.37	3.17
$\mathcal{M} \setminus \{L\}$	0.39	0.73	1.76	0.3	0.37	1.42
$\mathcal{M} \setminus \{R\}$	2.14	1.08	0.61	2.10	0.54	0.44
$\mathcal{M} \setminus \{L, R\}$	2.10	1.22	1.82	2.13	0.73	1.50
$\mathcal{M} \setminus \{P, R\}$	9.19	7.35	5.32	10.7	5.55	4.34
$\mathcal{M} \setminus \{P, L\}$	4.66	6.18	8.45	4.28	2.92	5.40
Uniform	2.71	1.96	2.44	7.57	3.49	4.84

Table 3: KL divergence results for modeling an LM’s behavior contingent on the positional, lexical and reflexive indices. Evaluated on gemma-2-2b-it for the *music* binding task. Our full model achieves the best performance, only slightly below the oracle.

H LLM USAGE

In this work, the authors relied on LLMs solely to assist with implementing specific helper functions.

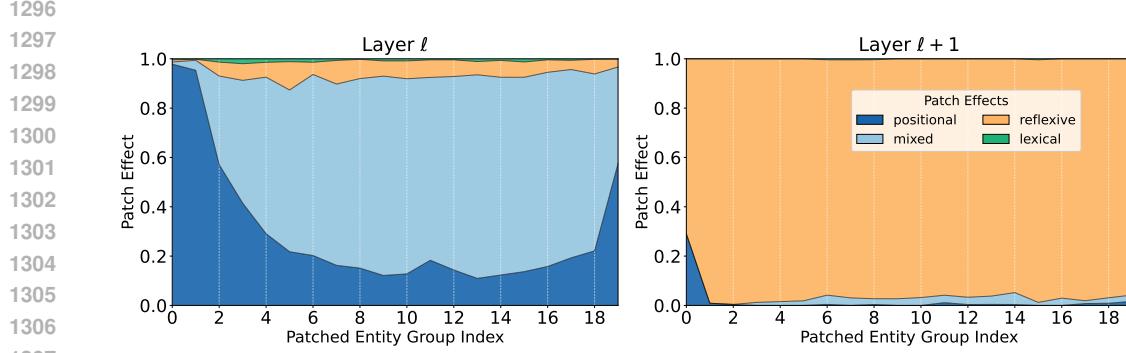


Figure 23: Patch effects under `TargetRebind` for gemma-2-2b-it while blocking attention to the target entity. Left: blocking attention when the model is accumulating binding information in the last token position leads to it not being able to dereference the reflexive pointer. Had the patch contained the retrieved answer, this plot would be fully orange. Right: patching at the following layer and blocking attention to the target entity. Here the plot is fully orange since the entity has already been retrieved.

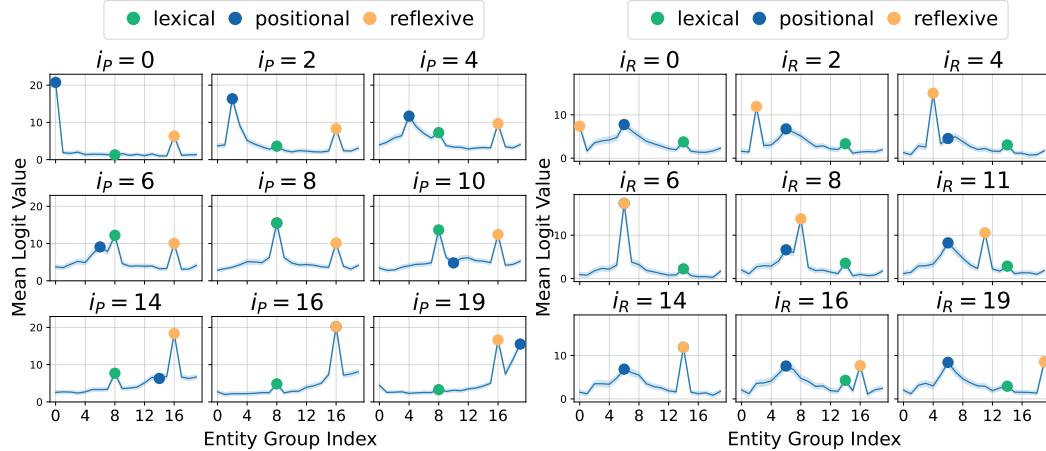


Figure 24: Mean logit distributions under `TargetRebind` for gemma-2-2b-it on the *music* task. Left: fixing $i_L = 8, i_R = 16$ and varying i_P . Right: fixing $i_P = 6, i_L = 14$ and varying i_R .

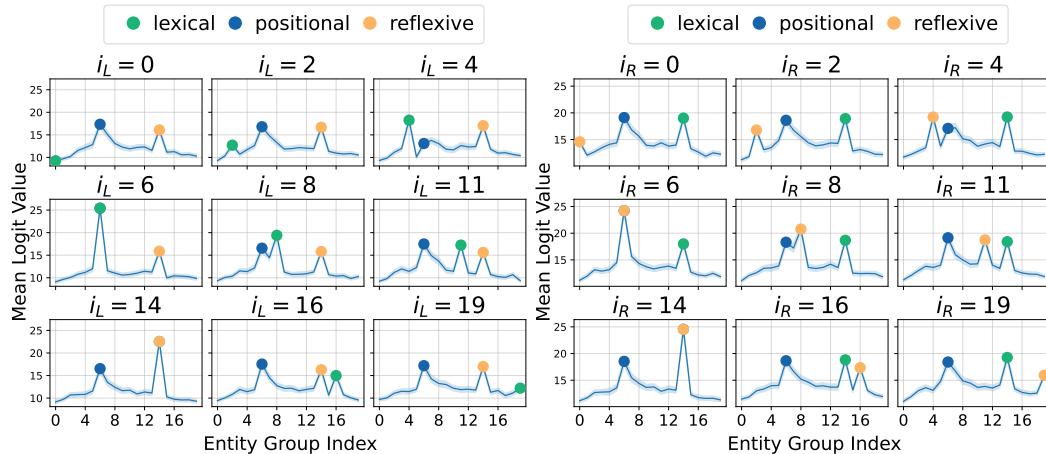


Figure 25: Mean logit distributions under `TargetRebind` for qwen2.5-7b-it on the *music* task. Left: fixing $i_P = 6, i_R = 14$ and varying i_L . Right: fixing $i_P = 6, i_L = 14$ and varying i_R .

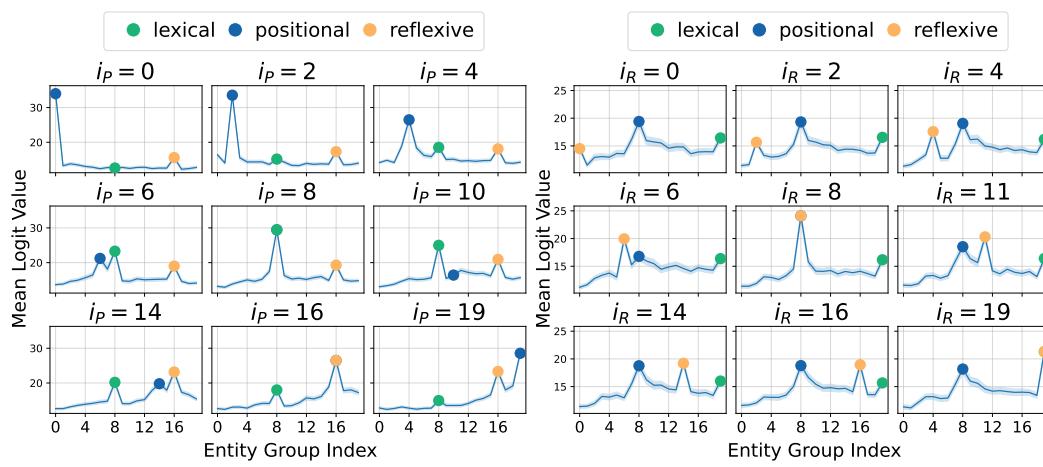


Figure 26: Mean logit distributions under `TargetRebind` for qwen2.5-7b-it on the *sports* task. Left: fixing $i_L = 8, i_R = 16$ and varying i_P . Right: fixing $i_P = 8, i_L = 19$ and varying i_R .

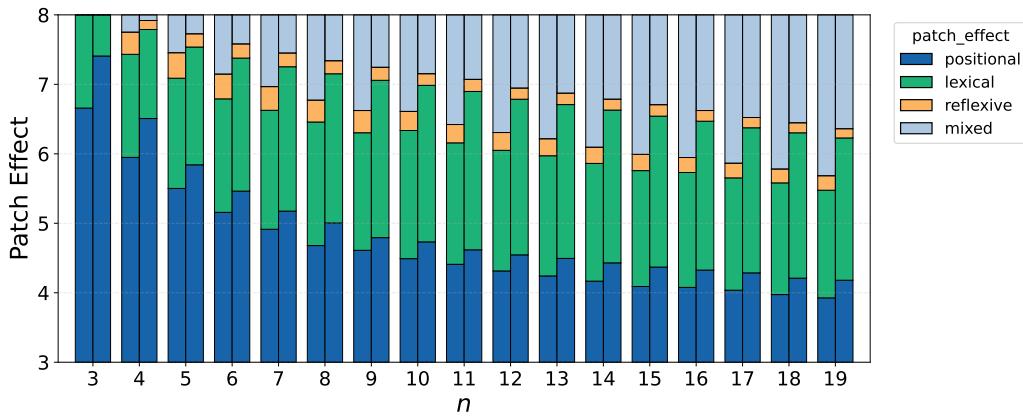


Figure 27: Mean patch effects per number of entities in context (n). For each n , we report the standard mean patch effects (right) alongside results from padded sequences (left), where sequence length is fixed to match $n = 20$. While padding slightly shifts the distribution of patch effects, the overall patterns remain consistent: model behavior is primarily controlled by the number of entities in context, rather than sequence length.

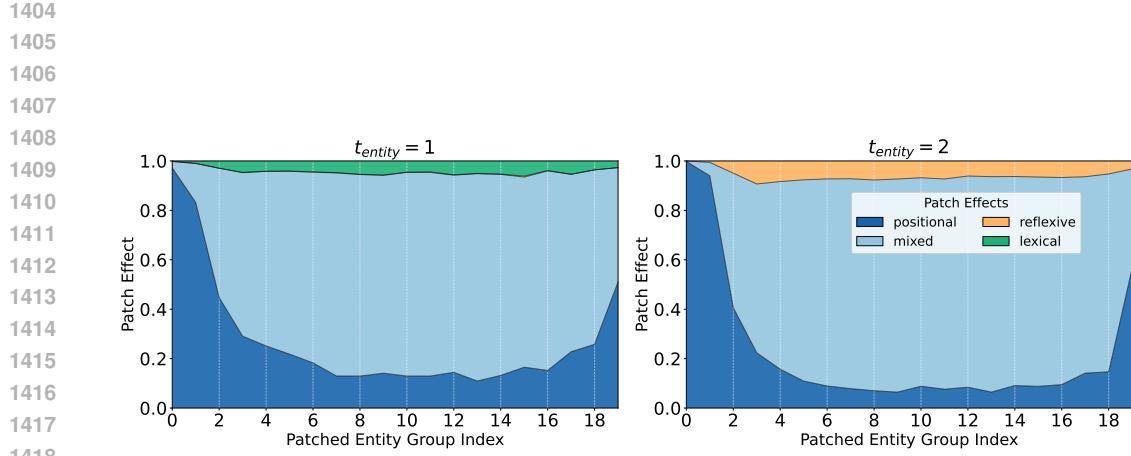


Figure 28: Left: results for `TargetRebind` interchange intervention on gemma-2-2b-it with $t_{entity} = 1$, where the query entity in the counterfactual does not exist in the original. Right: results for `TargetRebind` interchange intervention on gemma-2-2b-it with $t_{entity} = 2$, where the target entity in the counterfactual does not exist in the original. We can see in both plots that when the model can't use the lexical and reflexive mechanisms since the entities they point to don't exist, the model falls back to solely using the positional mechanism (distribution showed in Figure 29).

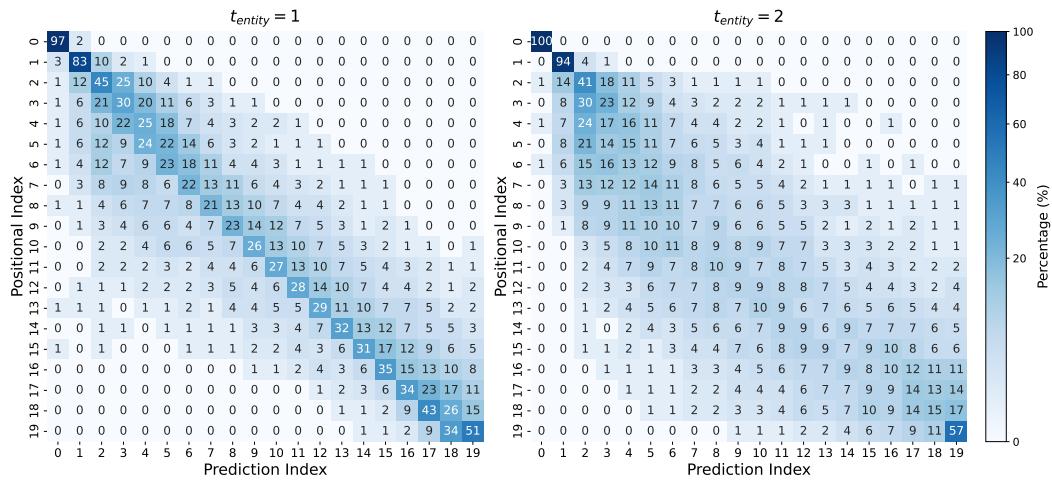


Figure 29: Left: confusion matrix for non-lexical and reflexive patch effects under the `TargetRebind` interchange intervention on gemma-2-2b-it with $t_{entity} = 1$, where the query entity in the counterfactual does not exist in the original. Right: results for non-lexical and reflexive patch effects under the `TargetRebind` interchange intervention on gemma-2-2b-it with $t_{entity} = 2$, where the queried entity in the counterfactual does not exist in the original. We can see that when the model can't use the lexical and reflexive mechanisms, it falls back on the noisy positional mechanism.

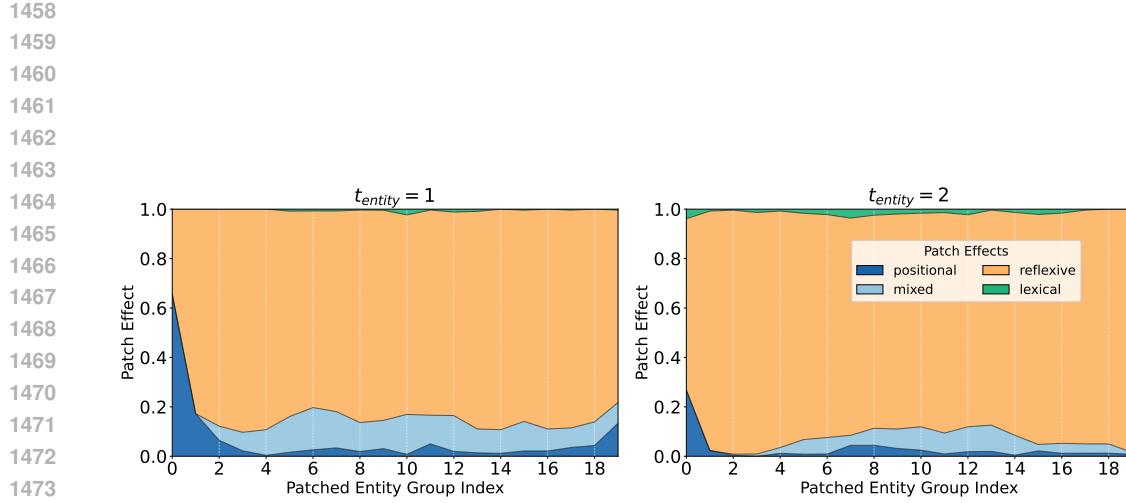


Figure 30: Results for `TargetRebind` interchange interventions on gemma-2-2b-it with $t_{\text{entity}} \in [2]$, where the query entity (left) or queried entity (right) in the counterfactual do not exist in the original, patching at layer $\ell + 1$. We see that the model copies the retrieved answer from the counterfactual, showing that no mechanism exists to suppresses answering with entities that do not exist in the original prompt.

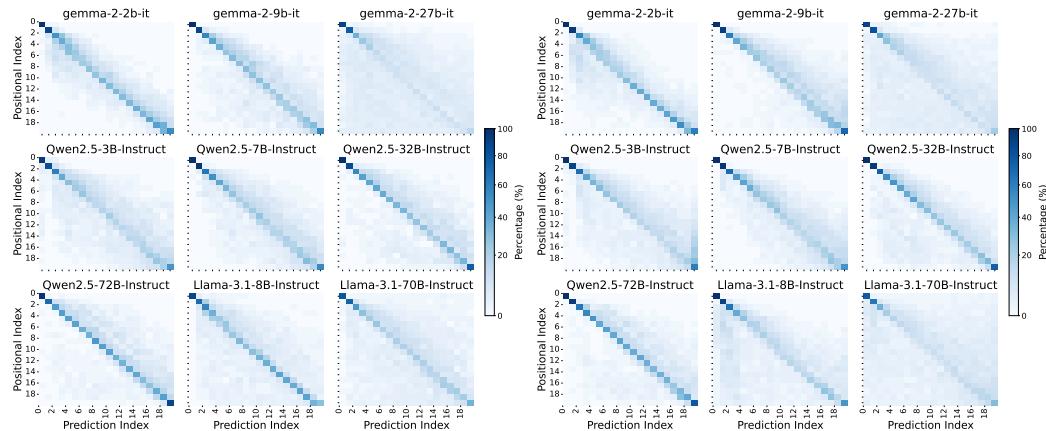


Figure 31: Confusion matrix for non-lexical and reflexive patch effects under the `TargetRebind` interchange intervention for all models, showing the diffuse distribution around the positional index. Left: $t_{\text{entity}} = 1$. Right: $t_{\text{entity}} = 2$.

1512

1513

1514

1515

Model	JSS \uparrow			KL $_{t p} \downarrow$			KL $_{p t} \downarrow$		
	$t = 1$	$t = 2$	$t = 3$	$t = 1$	$t = 2$	$t = 3$	$t = 1$	$t = 2$	$t = 3$
\mathcal{M} ($L_{\text{one-hot}}, R_{\text{one-hot}}, P_{\text{Gauss}}$)	0.94	0.95	0.93	0.3	0.21	0.31	0.35	0.28	0.39
\mathcal{M} w/ P_{oracle}	0.96	0.97	0.96	0.13	0.11	0.13	0.32	0.19	0.21
\mathcal{M} w/ $P_{\text{one-hot}}$	0.85	0.87	0.87	0.77	0.59	0.62	1.2	0.81	0.73
$\mathcal{P}_{\text{one-hot}}$ (prevailing view)	0.4	0.46	0.43	6.5	5.74	6.03	3.72	2.54	2.9
$\mathcal{M} \setminus \{P\}$	0.67	0.69	0.71	1.75	1.53	1.49	4.91	3.04	1.88
$\mathcal{M} \setminus \{L\}$	0.93	0.89	0.75	0.41	0.8	1.99	0.37	0.53	1.25
$\mathcal{M} \setminus \{R\}$	0.69	0.84	0.9	1.83	1.28	1.04	2.52	0.71	0.47
$\mathcal{M} \setminus \{L, R\}$	0.68	0.79	0.74	1.84	1.52	2.06	2.54	1.05	1.36
$\mathcal{M} \setminus \{P, R\}$	0.11	0.31	0.47	9.25	7.19	5.32	10.9	6.11	3.61
$\mathcal{M} \setminus \{P, L\}$	0.55	0.45	0.23	4.71	5.95	8.16	4.64	3.06	4.49
Uniform	0.45	0.54	0.54	2.66	2.13	2.22	8	4.78	2.93

Table 4: Results for modeling gemma-2-2b-it’s behavior on the *sports* binding task, contingent on the positional, lexical and reflexive indices. Here t denotes t_{entity} .

1537

1538

1539

1540

1541

Model	JSS \uparrow			KL $_{t p} \downarrow$			KL $_{p t} \downarrow$		
	$t = 1$	$t = 2$	$t = 3$	$t = 1$	$t = 2$	$t = 3$	$t = 1$	$t = 2$	$t = 3$
\mathcal{M} ($L_{\text{one-hot}}, R_{\text{one-hot}}, P_{\text{Gauss}}$)	0.94	0.92	0.92	0.27	0.34	0.37	0.35	0.48	0.45
\mathcal{M} w/ P_{oracle}	0.98	0.98	0.98	0.07	0.07	0.07	0.1	0.1	0.1
\mathcal{M} w/ $P_{\text{one-hot}}$	0.87	0.89	0.88	0.58	0.47	0.53	1.09	0.74	0.69
$\mathcal{P}_{\text{one-hot}}$ (prevailing view)	0.56	0.55	0.53	4.66	4.65	5.01	1.84	1.88	2.04
$\mathcal{M} \setminus \{P\}$	0.62	0.66	0.66	1.85	1.68	1.73	5.05	3.29	2.55
$\mathcal{M} \setminus \{L\}$	0.93	0.85	0.78	0.51	1.14	1.77	0.33	0.74	1.09
$\mathcal{M} \setminus \{R\}$	0.86	0.9	0.9	0.9	0.89	1.0	0.68	0.54	0.5
$\mathcal{M} \setminus \{L, R\}$	0.86	0.84	0.78	0.92	1.24	1.79	0.71	0.83	1.11
$\mathcal{M} \setminus \{P, R\}$	0.16	0.34	0.42	8.43	6.69	5.93	9.04	5.6	4.4
$\mathcal{M} \setminus \{P, L\}$	0.35	0.24	0.17	6.64	7.8	8.57	6.8	5.3	5.32
Uniform	0.55	0.58	0.54	2.11	1.95	2.21	5.92	4.09	3.54

Table 5: Results for modeling qwen2.5-7b-it’s behavior on the *music* binding task, contingent on the positional, lexical and reflexive indices. Here t denotes t_{entity} .

1564

1565

1566	1567	1568	1569	1570	1571	1572	1573	1574	1575	1576	1577	1578	1579	1580	1581	1582	Model	JSS \uparrow			KL $_{t p}$ \downarrow			KL $_{p t}$ \downarrow		
1566	1567	1568	1569	1570	1571	1572	1573	1574	1575	1576	1577	1578	1579	1580	1581	1582	Model	$t = 1$	$t = 2$	$t = 3$	$t = 1$	$t = 2$	$t = 3$	$t = 1$	$t = 2$	$t = 3$
1583	\mathcal{M} ($L_{\text{one-hot}}, R_{\text{one-hot}}, P_{\text{Gauss}}$)	0.95	0.93	0.92	0.24	0.31	0.36	0.28	0.39	0.47																
1584	\mathcal{M} w/ P_{oracle}	0.98	0.98	0.97	0.07	0.08	0.11	0.09	0.11	0.18																
1585	\mathcal{M} w/ $P_{\text{one-hot}}$	0.87	0.89	0.88	0.62	0.52	0.55	1.14	0.68	0.84																
1586	$\mathcal{P}_{\text{one-hot}}$ (prevailing view)	0.57	0.55	0.51	4.58	4.72	5.18	1.73	1.84	2.21																
1587	$\mathcal{M} \setminus \{P\}$	0.61	0.66	0.66	1.88	1.75	1.73	5.11	2.9	3.35																
1588	$\mathcal{M} \setminus \{L\}$	0.94	0.87	0.77	0.53	1.09	1.64	0.27	0.64	1.27																
1589	$\mathcal{M} \setminus \{R\}$	0.87	0.89	0.91	0.89	1.05	0.85	0.57	0.54	0.48																
1590	$\mathcal{M} \setminus \{L, R\}$	0.87	0.83	0.77	0.92	1.33	1.65	0.6	0.82	1.29																
1591	$\mathcal{M} \setminus \{P, R\}$	0.17	0.31	0.44	8.39	7.01	5.75	9.04	5.54	4.78																
1592	$\mathcal{M} \setminus \{P, L\}$	0.33	0.32	0.14	6.77	7.27	8.77	6.97	3.88	7.27																
1593	Uniform	0.54	0.56	0.53	2.12	2.06	2.25	6.01	3.9	4.71																

Table 6: Results for modeling qwen2.5-7b-it’s behavior on the *sports* binding task, contingent on the positional, lexical and reflexive indices. Here t denotes t_{entity} .

1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619