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ABSTRACT

A key component of in-context reasoning is the ability of language models (LMs)
to bind entities for later retrieval. For example, an LM might represent Ann loves
pie by binding Ann to pie, allowing it to later retrieve Ann when asked Who loves
pie? Prior research on short lists of bound entities found strong evidence that LMs
implement such retrieval via a positional mechanism, where Ann is retrieved
based on its position in context. In this work, we find that this mechanism gener-
alizes poorly to more complex settings; as the number of bound entities in context
increases, the positional mechanism becomes noisy and unreliable in middle posi-
tions. To compensate for this, we find that LMs supplement the positional mech-
anism with a lexical mechanism (retrieving Ann using its bound counterpart pie)
and a reflexive mechanism (retrieving Ann through a direct pointer). Through
extensive experiments on nine models and ten binding tasks, we uncover a con-
sistent pattern in how LMs mix these mechanisms to drive model behavior. We
leverage these insights to develop a causal model combining all three mechanisms
that estimates next token distributions with 95% agreement. Finally, we show that
our model generalizes to substantially longer inputs of open-ended text interleaved
with entity groups, further demonstrating the robustness of our findings in more
natural settings. Overall, our study establishes a more complete picture of how
LMs bind and retrieve entities in-context.

1 INTRODUCTION

Language models (LMs) are known for their ability to perform in-context reasoning (Brown et al.,
2020), and fundamental to this capability is the task of connecting related entities in a text—known
as binding—to construct a representation of context that can be queried for next token prediction.
However, LMs are also known for struggling in reasoning tasks over long contexts (Liu et al., 2024;
Levy et al., [2024])). In this work, we conduct a mechanistic investigation into the internals of LMs to
better understand how they bind entities in increasingly complex settings.

Neural networks’ ability to bind arbitrary entities was a central issue in connectionist models of cog-
nition (Touretzky & Minton, [1985; Fodor & Pylyshyn,|1988; |Smolensky, |1990) and has reemerged
in the era of LMs as a target phenomenon for mechanistic interpretability research (Davies et al.,
2023} [Prakash et al.| 2024} [2025]; [Feng & Steinhardt] 2024} |[Feng et al.| 2024} [Wu et al.| 2025). For
example, to represent the text Pete loves jam and Ann loves pie, an LM will bind Pete to jam and
Ann to pie. This enables the LM to answer questions like Who loves pie? by querying the bound
entities to retrieve the answer (Ann). The prevailing view is that LMs retrieve bound entities using a
positional mechanism (Dai et al.| [2024; Prakash et al., [2024; 2025)), where the query entity (pie) is
used to determine the in-context position of Ann loves pie—in this case, the second clause after Pete
loves jam—which is dereferenced to retrieve the answer Ann.

In this work, we show that position-based retrieval holds only for simple settings. This mechanism
is unreliable for the middle positions in long lists of entity groups—a pattern that echoes the “lost-
in-the-middle” effect (Liu et al.,|2024) in LMs as well as primacy and recency biases in both humans
(Ebbinghaus, [1913; Miller & Campbell, 1959) and LMs (Janik} 2024). To compensate for this noise,
LMs supplement the positional mechanism with a lexical mechanism, where the query entity (pie)
is used to retrieve its bound counterpart (Ann), and a reflexive mechanism, where the queried entity
(Ann) is retrieved with a direct pointer that was previously retrieved via the query entity (pie).
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Figure 1: An illustration of the three mechanisms for retrieving bound entities in-context. We find
that as models process inputs with groups of entities: (A) binding information of three types—
positional, lexical, reflexive—is encoded in the entity tokens of each group, (B) this binding in-
formation is jointly used to retrieve entities in-context, and (C) it is possible to separate the three
binding signals with counterfactual patching. The counterfactual input is designed such that patch-
ing activations to the LM run on the original input results in the positional, lexical, and reflexive
mechanisms predicting different entities (See §3.2). The lexical signal from the counterfactual picks
out ale in the original, because the question in the counterfactual was about Ann. The positional
signal from the counterfactual picks out jam, because the question in the counterfactual was about
the second character. The reflexive signal picks out pie, because pie was the counterfactual answer.

In a series of ablation experiments, we show that all three mechanisms are necessary to develop
an accurate causal model of the next token distribution (Pislar et al.l [2025)), and that their interplay
depends on the positions the query entity (pie) and the retrieved entity (Ann). This mixture of
mechanisms is robustly present across (1) the Llama, Gemma, and Qwen model families, (2) model
sizes within those families ranging from 2 to 72 billion parameters, and (3) ten variable binding tasks.
By better understanding this mechanism, we take a step toward explaining both the strengths and
the persistent fragilities of LLMs in long-context settings, as well as the fundamental mechanisms
that support in-context reasoning. We release our code and data at/github.com/anonymized,

2 PROBLEM SETUP AND PRIOR WORK

Entity Binding Tasks In our experiments, we design a number of templatic in-context reasoning
tasks with a similar structure to the example from the introduction, i.e., Pete loves jam, Ann loves
pie. Who loves pie? Formally, a task consists of:
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1. Entity Roles: Disjoint sets of entities &1, . . ., £, that will fill particular roles in a templatic
text. For example, the set £&; might be names of people {Ann, Pete, Tim, . .. }, and the set
&> might be foods and drinks {ale, jam, pie, ... }.

2. Entity Groups: An entity group is a tuple G € & x - - - X &, containing entities that will be
placed within the same clause in a template. For example, we could set G; = (Pete, jam)

and G5 = (Ann,pie). For convenience, we define G as a binding matrix wherein G
denotes the j-th entity in the ¢-th entity group.

3. A template (7): A function that takes as input a binding matrix G, the query entity ¢ =
Ggi‘;”tf,, and the target entity ¢t = Ggf:fy" Here ggroup 18 a positional index of the entity group

containing the target and query, and teniy 7 Genity index the positions of the target and
query entities within that group, respectively. See §A.T|for more details and examples.

Continuing our example, define

Who loves q? tentity == 1
G,q,t) = G loves G3, G5 loves G5. y
TG q%) Lioves &, &2 Ve B2\ Whar does qlove?  tenity == 2

and observe that

Pete  jam . _ . . 9
'T( {Ann pie} ,pze,Ann) = Pete loves jam, Ann loves pie. Who loves pie:

For our experiments, the binding matrix G will consist of distinct entities.

Interchange Interventions To probe the mechanisms an LM uses to bind and retrieve entities,
we employ interchange interventions (Vig et al. 2020} |Geiger et al.| |2020; [Finlayson et al., 2021}
Geiger et al., [2021)), the standard tool for prior work on binding and retrieval (Davies et al., 2023
Feng & Steinhardt, [2024; [Prakash et al.| [2024; 2025} [Wu et al., [2025). These interventions allow us
to identify which hidden states are causally relevant for the model in entity binding, by running the
LM on paired examples — an original input and a counterfactual input — and replacing selected
components, e.g., residual stream vectors, in the original run with those from the counterfactual.

Causal Abstraction We develop a causal model of LM internals (Geiger et al.l 20215 2025b;a)
that predicts the LM next token distribution using a mixture of three mechanisms (See §4). To test
our hypotheses, we construct a dataset of paired originals and counterfactuals such that an inter-
change intervention on the causal model results in the positional, lexical and reflexive mechanisms
increasing the probability of distinct tokens. To evaluate our proposed causal model and various
ablations, we perform interchange interventions on the causal model and the LM, measuring the
similarity between the next token distribution of the two models, and average across a dataset.

Prior Studies of Entity Binding in LMs Previous work paints a picture of how entity binding and
retrieval is performed by LMs. First, LMs bind together a group of entities by aggregating informa-
tion about all entities in the entity token at the last position in the group. By co-locating information
about entities in the residual stream of a single token, the LM can later on use attention to retrieve
information about one bound entity conditional on a second bound entity (Feng & Steinhardt, 2024;
Feng et al.| 2024} Dai et al., [2024; |Prakash et al., 20245 [Wu et al., 2025)), an algorithmic motif that
Prakash et al.| (2025) dub a “lookback” mechanism. We study the “pointers” used in the lookback
mechanism that bring the next token prediction into the residual stream of the final token. We in-
clude experiments on the “addresses” contained in the residual streams of the bound entity tokens,
as well as the query token, in

Prior works identify a positional mechanism that is utilized in entity binding (described in detail
in §[3EI), but either evaluate it only in narrow settings (Prakash et al., [2025)) or achieve low causal
faithfulness in predicting model behavior solely using this mechanism (Prakash et al.| [2024; Dai
et al.| 2024)). Feng & Steinhardt| (2024); [Prakash et al.|(2025)) restrict their analysis to queries of the
final token in a group (fenity = m) and to very small contexts (n € 2, 3). Prakash et al.|(2024) and
Dai et al.|(2024) find a positional mechanism in longer contexts (n = 7), but with low faithfulness.
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Figure 2: Results from interchange interventions on gemma-2-2b-it over a counterfactual dataset
with three entities per group (m = 3) (See Figure[I|and §3.2). Outputs predicted by the positional,
lexical and reflexive mechanisms are shown in dark blue, green and orange. In light blue, we show
the cases not predicted by any of the mechanisms, dubbed mixed. These cases are further analyzed
in §3.3] Left: Distribution of effects (y-axis for three representative entity group indices (first,
middle, and last) with teiy = 3 for all layers (x-axis). At layers 1618, the last token position
carries binding information used for retrieval. Right: Distribution of effects (y-axis) for all entity
indices (x-axis) at layer 18 for feniy € {1,2,3}, i.e., the question can be about any of the three
entities in each clause. A U-shaped curve emerges: first and last indices rely more on the positional
mechanism, while middle indices rely more on the lexical and reflexive mechanisms. See §A.2]for
replication across models and tasks, and Figure@for plots using the original prompt as the x-axis.

3 THREE MECHANISMS FOR RETRIEVING BOUND ENTITIES

In this section, we define the positional mechanism and propose two alternative mechanisms (§3.1)),
all three of which make distinct claims about the causal structure of the LM. Then, we design a
dataset with pairs of original and counterfactual inputs, such that each of the three mechanisms
makes distinct predictions under an interchange intervention with the pair (§3.2). Last, we perform
interchange interventions on the full last-token residual stream vector at different layers of the LM
and visualize the results so we can observe the interplay between the three mechanisms in the coun-
terfactual behavior of the LM (§3.3). We detail in §3.3and §D.2lhow we localize the layers for con-
ducting the interventions. In our experiments, we evaluate nine models—gemma-2-{2b/9b/27b}-it,
qwen2.5-{3b/7b/32b/72b}-it, and 1lama-3.1-{8b/70b}-it—on two binding tasks, boxes and music
(see Appendix Table[I). For gemma-2-2b-it and qwen2.5-7b-it, we evaluate on all ten binding tasks.

3.1 THE POSITIONAL MECHANISM AND TWO ALTERNATIVES

The prevailing view is that bound entities are retrieved with a positional mechanism, but we propose
two alternatives: lexical and reflexive mechanisms. The positional, lexical, and reflexive mecha-
nisms are represented as causal models P, £, and R that each have single intermediate variables P,
L, and R, respectively, used to retrieve an entity from context as the output.

The Positional Mechanism Prior work provides evidence that a positional mechanism is used to
retrieve an entity from a group via the group’s positional index (Dai et all, 2024} [Prakash et all}
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2024; 2025). The model P indexes the group containing the query entity (P := ggroup), and its
output mechanism retrieves the target entity from the group at index ggroup. In Figure [I, we have
P = 4 when no intervention is performed on the LM and the target entity fea is retrieved from
position 4, but after the intervention P <— 2 the entity jam at the second position is retrieved.

Although existing evidence shows that the positional mechanism explains LM behavior in settings
with two or three entity groups (Prakash et al.,|2025)), it does not generalize. When more groups are
introduced, the evidence is weaker (Prakash et al.,|2024; |Dai et al.,|2024). Our goal is to investigate
the failure modes of the positional mechanism as more entity groups are introduced, and to that end
we propose two alternative hypotheses for how LMs implement binding.

The Lexical Mechanism The lexical mechanism is perhaps the most intuitive solution: output
the bound entity from the group containing the queried entity. The causal model £ stores the query
entity (L := ¢) and the output mechanism retrieves the target entity from the group containing q. In
Figure[l] we have L = Tim when no intervention is performed on the LM and the output mechanism
retrieves the entity fea from the group with 7im. However, after the intervention L < Ann, the entity
ale is retrieved from the group with Ann.

The Reflexive Mechanism The reflexive mechanism retrieves an entity with a direct, self-
referential pointer—originating from that entity and pointing back to it (illustrated in Appendix
Figure[7). However, if this signal is patched into a context where the token is not present, the mech-
anism fails. The model R stores the target entity (R := t) and the output mechanism retrieves the
entity ¢ if it appears in context. In Figure [T} we have R = trea when no intervention is performed
and the entity tea is retrieved, but after the intervention R < pie, the entity pie is retrieved because
it appears in the original input.

The reflexive mechanism is an unintuitive solution, until one considers that the architecture of an
autoregressive LM allows attention to only look from right to left. When the query occurs after
a target in an entity group, i.€., fenity < Gentity> the lexical mechanism is not possible. In the text
Tim loves tea, the entity tea cannot be copied backwards to the residual stream of 7im so that the
lexical mechanism can answer Who loves tea? Therefore, an earlier mechanism in the LM must first
retrieve an absolute pointer that is in turn used to retrieve the bound entity token.

3.2 DESIGNING COUNTERFACTUAL INPUTS TO DISTINGUISH THE THREE MECHANISMS

We designed a dataset of paired original and counterfactual inputs such that the positional, lexical,
and reflexive mechanisms will each make distinct predictions when an interchange intervention is
performed on their respective intermediate variables, P, L, and R.

Counterfactual Design Figure [T] displays a pair of original and counterfactual inputs that dis-
tinguish our three mechanisms (further detailed in Appendix Table [I). We illustrate this with the
following example. Define the original and counterfactual binding matrices G and G’ respectively:

Ann ale Joe ale

| Joe jam , _ |Ann pie
G= Pete pie G = Pete jam M

Tim tea Tim tea

We can then use the template 7 from §2|such that for these binding matrices, 7 (G, Tim, tea) yields
the original input in Figure([T]and 7 (G’, Ann, pie) yields the counterfactual input. Each of the three
mechanisms produces a different output after an interchange intervention on this pair of inputs:

1. Aninterchange intervention on P in P would output the entity at the counterfactual query’s
position. Since gy, = 2 for Ann in G', this sets P < 2, and the output becomes jam.

2. An interchange intervention on L in £ would output the entity in the original input bound
to the query entity in the counterfactual input. Since the query entity is now Ann, the
mechanism queries the group containing Ann in G’ and outputs the bound entity ale.

3. An interchange intervention on R in R would follow the direct pointer established in the
counterfactual input. In this case, the pointer is to the token pie, which exists in the original
input, and so the mechanism outputs pie.



Under review as a conference paper at ICLR 2026

1512 11 10 8

18 16 14 12 10
=
S

CRrRrRERENAMUO OGO
«

CRRENNNWSASOG
ocRrNNWASGLO
LN W R oS

hwas oo

)

® lexical @ positional reflexive
ii=0 ip=2 ii=4
ST o 0000 00000000000000 100 104 ] ]
o5 1 0000000000000O0O00O
115229 431 110000000000 80 5 1 \ 1
0 5 24158 4 2 2 1 1.0 0 0 0 0 0 O0O0O \\/ L
Y0 782823158 4 311100000000 o 0" ! ! ! " " ! ! ! ! " ! ! ! I
09115252014 7 4 2 1 1 00000000 . . .
éw'o71365201913743210000000 60’3 % IL=6 IL=8 IL=11
gwususs 171512 8 5 3 2 1 1 0 0 0 0 0 S >
- 03108 6 5151412 8 5 3 2 1 1 1 0 0 0 () 4+ 107 1 1
To 03 7w 5 5151412 7 5 2 1 1 1 1 0 0 '40%‘ '5\57 | |
c 0 1 6 5 5 61314137 5 3 2 1 1 1 1 € S J\M/
S, 01 55 5 5 6131312 7 5 4 2 2 1 1 o o4 ] \\/
-“a’ 01 3 4 4 5 8151311 7 6 4 3 1 2 7205 % -+ -+ -+
00 2 3 3 4 6 8121110 8 6 6 3 3 a 9] A A A
g 00 12 3 3 4457121412108 7 6 = ,L_14 ,L_16 IL—19
[ 11 2 2 35 13
0o 11 1 2 2 3 7
[ 00 1 1 2 2 5
0o 01 1 1 12 4
00 00 0 0 01 1

15 16 14 13 11 1 1
9 16 21 16 14 ] ] ]
2 3 8 1ufg 1 1 1

4 6 & 10 12 14 16 18
Prediction Index

o-
N

0 4 81216 0 4 8 1216 0 4 8 12 16
Entity Group Index

Figure 3: The positional mechanism is diffuse for middle entity groups. Left: Confusion matrix (%)
of the patched positional index (y-axis) vs. gemma-2-2b-it’s prediction (x-axis) after an interchange
intervention (as in Figure [I). Counterfactual predictions cluster near the position promoted by the
positional mechanism, decaying with distance. Only the mixed and positional patch effects from
Figure 2] are shown; see Figure [31]for other models and tasks. Right: Mean logit distributions with
ip = 6,1p = 14, and ¢, varied, illustrating additive and suppressive interaction between the three

mechanisms. The lexical and reflexive signals form one-hot peaks, while the positional is broader
and more diffuse. See Figures[24} [25] and 26] for more distributions.

Each of these three outputs is distinct from the actual output fea for the original input, which means
the dataset also distinguishes the three mechanisms from no intervention being performed. Let ¢ p,
i1, and i be indices of the entity groups queried by the positional, lexical, and reflexive mecha-
nisms, e.g., ip = 2,4 = 1, and ip = 3 in FigureE] after patching. In our counterfactual datasets,
each of the three mechanisms can predict any position in the list of entity groups from the original
input, i.e., ¢p, i1, and ir vary freely from 1 to n. For details and task templates, see A
relevant remaining confounder is that the reflexive mechanism predicts the output that is the target
entity in the counterfactual input, meaning this dataset cannot distinguish the pointer used by reflex-
ive mechanism from the actual next token prediction. We resolve this issue, validating the existence
of a reflexive mechanism, in §3.4

3.3 INTERVENTION EXPERIMENTS

We find experimentally that information used to retrieve a bound entity is accumulated in the last
token residual stream across a subset of layers. In Figure [2] we show the results of interchange
interventions on gemma-2-2b-it across the layers of the last token residual stream. We see that in
layers 16—18 the model accumulates binding information in the last token position. Therefore, unless
stated otherwise, we conduct all of our interchange interventions by patching the last token residual
stream vector on the last layer before retrieval starts, denoted as ¢, which is different for each of
the nine models we test, but consistent across tasks for a given model (see §D.2]for more details).
We measure the next token distribution produced by the model under intervention and compare it
against the possible outputs for the three mechanisms. We aggregate and visualize the results of
these intervention experiments in Figures[2]and 3]

The positional mechanism weakens for middle positions. We can see plainly in Figure[2|that the
positional mechanism controls behavior solely when the positional index is at the beginning or end of
the sequence of n = 20 entity groups. In middle entity groups, however, its effect becomes minimal,
accounting only for 20% of the model’s behavior. Further analysis of the cases not explained by
any of the mechanisms—dubbed mixed in the plot—reveals that these predictions are distributed
near the positional index (Figure [3). Additionally, when collecting the mean logit distributions
across many samples and fixing the positional index, we see that in the first and last positional
indices it induces a strong and concentrated distribution around that index. However, in middle
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indices we see this distribution become wide and diffuse (Appendix Figure[[3)). Thus, the positional
mechanism becomes unreliable in middle indices and cannot be used as the sole mechanism for
retrieval. We show in how this effect emerges as n, i.e., the total number of entity groups in
context, increases, and in §G| we disambiguate the effect of increasing n from that of increasing
sequence length.

The lexical and reflexive mechanisms are modulated based on target entity position. Observe
in Figure [2] that when the positional mechanism is unreliable for middle positions, the lexical and
reflexive mechanisms come into play. However, which of these two alternate mechanisms contribute
more depends on the location of the target entity within the entity group, denoted as teniy. When
the target is at the beginning of the group (fenity = 1), the reflexive mechanism is used (as discussed
in . When the target is at the end (feniy = 3), the lexical mechanism is primarily used. Finally,
when the target is in the middle (feniyy = 2), both mechanisms are used to differing extents.

The three mechanisms have complex interplay. We can see in Figure 3| the interplay between
the three mechanism when the positional and reflexive indices are fixed to tp = 6 and igp = 14
while the lexical index iy, is iterated over a range of values. First, the logit distributions clearly
reveal the contributions of each mechanism, with a distinct spike appearing at each index. These
spikes, however, behave differently. In line with Figure [3] the positional index produces a wide,
diffuse distribution, whereas the lexical and reflexive indices produce sharp, one-hot peaks. Next,
we observe that the mechanisms interact through a pattern of competitive synergy, meaning that
they both boost and suppress one another. When the lexical index is close to the positional index,
the lexical contribution is amplified while the positional contribution is weakened; when they are
farther apart, neither affects the other. In contrast, when the lexical index is close to the reflexive
index, the lexical contribution is suppressed by the reflexive one.

Interventions on bound entity tokens provide similar results. To understand the residual stream
of the bound entity tokens themselves, we design more datasets of original-counterfactual pairs and
analyze intervention results in §C| We show that binding information exists and is used in the entity
token residual streams between layers 12 and 19 for the positional and lexical mechanisms, and 6-12
for the reflexive mechanism. We additionally analyze in §C|how this binding information propagates
across token positions.

Takeaways These results clarify how LMs bind and retrieve entities in context. They simultane-
ously employ three mechanisms: positional, lexical, and reflexive. In the first and last entity groups,
LMs can rely almost exclusively on the positional mechanism, where it is strongest and most con-
centrated. In middle groups, however, the positional signal becomes diffuse and often links entities
to nearby groups. In these cases, the lexical and reflexive mechanisms provide sharper signals which
refine the positional mechanism, enabling the LM to retrieve the correct entity.

3.4 VALIDATING THE EXISTENCE OF THE REFLEXIVE MECHANISM

In our counterfactual design (§3.2)), we constructed the counterfactuals such that each hypothesized
mechanism makes a different prediction about the outcome of intervention experiments. However,
we also noted that these counterfactuals fail to distinguish the pointer used in the reflexive mech-
anism from the answer itself. In this section, we address this by designing a new counterfactual
dataset specific to distinguishing between the two. In §F we also conduct an attention knockout
experiment to further strengthen our findings.

New Counterfactual Design We modify the existing dataset such that the counterfactual answer
entity doesn’t appear in the original input. For example, for the input pair from Figure [T} we would
keep the original input Ann loves ale, Joe loves jam, Pete loves pie, and Tim loves tea. What does
Ann love?, but alter the counterfactual to Joe loves ale, Ann loves cod, Pete loves jam, and Tim loves
tea. What does Ann love? so the new counterfactual answer cod appears nowhere in the original.

Such examples differentiate between the pointer R in the reflexive mechanism R and the output of
the mechanism itself. An interchange intervention on the output of the mechanism would simply
replace the answer entity ale with the answer entity cod. However, an interchange intervention on
the pointer R would patch in a pointer to the token cod that the mechanism R would attempt to
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original counterfactual dataset show that we can’t distinguish between patching the pointer or the
answer entity itself. Right: interventions on the modified counterfactuals (§3.4). At layer ¢ the
model does not respond with the counterfactual answer entity which does not appear in the original
context, indicating that the patched signal is a reflexive pointer that cannot be dereferenced. At layer
¢+ 1, once the model has already retrieved the answer entity (§D.2), the patched signal becomes the
answer entity itself. This shows that no confounding suppressive mechanism exists to prevent the
model from answering with an entity not in its context.
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dereference. However, cod does not appear in the original input, and thus the pointer cannot be
resolved and no output is predicted by this mechanism.

Results We show the results for layer ¢, for the original counterfactual setup, as well as for the new
one, in Figure @] We see that while in the original counterfactual setup, the model answered with
the entity pointed to by the reflexive mechanism, under the new counterfactual setup it did not. This
indicates that what was copied is a reflexive pointer that cannot be dereferenced, as opposed to the
answer entity itself. One alternative explanation is that the model might contain a mechanism that
suppresses outputs corresponding to entities absent from the context. To exclude this possibility, we
repeat the evaluations at layer £ + 1, a point at which the model has already retrieved the correct
answer. Here, patching leads the model to output the counterfactual answer entity in both counter-
factual setups, showing that no such suppressive mechanism is present. We can therefore conclude
that the model indeed relies on a reflexive mechanism, distinct from the positional and lexical ones,
where a direct pointer to the answer entity is used to retrieve it.

4 A SIMPLE MODEL FOR SIMULATING ENTITY RETRIEVAL IN-CONTEXT

To formalize our observations about the dynamics between the three mechanisms and the position of
the target entity, we seek to develop a model that approximates LM logits for next token prediction,
as a position-weighted mixture of terms for the positional, lexical, and reflexive mechanisms.

Mixing mechanisms in a causal model We follow [Pislar et al.| (2025) in combining together mul-
tiple causal models (P, £, R) into a single causal model M that modulates between the mechanisms
conditional on the input. In our combined causal model, the lexical and reflexive terms have separate
learned weights conditioned on their respective index, i.e., i1, or ¢g. In accordance with the results
shown in Figure [3] we model the lexical and reflexive mechanisms as one-hot distributions that
up-weight only the target entity in groups ¢;, and ig, respectively. The positional term is modeled
as a Gaussian distribution scaled by a single weight w5 centered at the index ip with a standard
deviation that is a quadratic function of ip. We define a new causal model M that uses all three
variables P, L, and R simultaneously to compute a logit value Y; for each entity G

temily :

Y := Wpos N(Z | 7:on'(Z-P)Q) +wlex[iL] : 1{i = iL} +wref[iR] : 1{i = iR} 2

positional mechanism lexical mechanism reflexive mechanism

Where o(ip) = a(*E)? + B2 + ~. We learn Wpos, Wiea, Wref, &, 3,7 from data.

Learning how the mechanisms are mixed To generate data for training our causal model we per-
formed 150 interchange interventions per combination of 1 < i¢p,ir,ir < n using the original and



Under review as a conference paper at ICLR 2026

Learned Weights

Model JSS ¢ 6
te =1 e=2 te=3

N

Weight

Comparing against the prevailing view

M (Lone-h0t§ Rone-hoﬁ PGauss) 0.95 0.96 0.94
Pone-not (prevailing view) 0.42 0.46 0.45 0 Wiex *Wrer AWpos

Modifying the positional mechanism

N

M W/ Pagte 096 098 096 9%(p)
M W/ Ponehot 0.86 0.85 0.85 6
Ablating the three mechanisms 4
M\ { Pouss} 067 068  0.67 =
M { Lone-hot } 094 091 0.75 2
M\ {Rone-hot } 0.69 0.87 0.92 o
M \ {Rone-hoty Lone»hot} 0.69 0.84 0.74
M \ {PGHUSS» Rone-hol} 0.12 0.27 0.48 ° 24 En?:itysGrc}Sp Ilrfdel):1 1o 18
M\ { Psauss; Lone-hot } 0.55 0.41 0.20
Uniform 0.44 0.57 0.49

Figure 5: Results for training our full model M (Lone-hots Rone-hotsFGauss)> in addition to vari-
ants, baselines and ablations. Left: JSS scores for modeling the LM next token distribution over
ip,ir,tgr. Evaluated on gemma-2-2b-it for the music binding task, with ¢, = fepiy. Our model
attains near-perfect JSS, slightly below the oracle. KL values (Table [3)) show the same trend. All
Cls are < 0.02; for M and M w/ oracle they are < 0.002. Right: Learned weights wicx, Wret, Wpos
and o curve, for teyiy = 2. Observe o widens for middle indices and narrows toward the end.

counterfactual inputs designed to distinguish the three mechanisms (see Figure [T]and Section [3.2).
We collected the logit distributions per index combination, and averaged them into mean probability
distributions by first applying a softmax over the entity group indices and then taking the mean. This
yields n3 = 8,000 probability distributions, which serve as our data for training and evaluation. We
used 70% of the data for learning the causal model parameters and split the remainder evenly be-
tween validation and test sets. The loss used is the Jensen—Shannon divergence (JSD) between our
model’s predicted probability distribution and the target, chosen for its symmetry.

We evaluate M alongside a range of baselines, variants, and ablations to characterize our model’s
performance and understand the contribution of the different mechanisms. Experiments are run
with gemma-2-2b-it on the music task (n = 20, teniry € [3]). In §E we report the same setup for
this model as well as qwen2.5-7b-it on additional tasks, with similar trends. We measure similarity
between the predicted and target distributions using Jensen—Shannon similarity (JSS), defined as
1 — JSD, calculated with log, to yield values in [0, 1]. See Appendix Tablefor KL divergences.

We compare our model with: (1) The prevailing view — a one-hot distribution at the positional index,
(2) a variant of M which uses a one-hot distribution at i p instead of a gaussian, (3) ablations of M
that use only a subset of the mechanisms (e.g., M \ { Lone-not } is M without the lexical mechanism,
i.e., omitting the middle term completely from Equation [2)), and (4) a uniform distribution. Finally,
as an upper bound, we evaluate an oracle variant, where the lexical and reflexive components are
learned as usual, but the positional component is swapped with the actual logit distributions of the
model, as a function of ¢ p (see Figure @

Results In Figure [5] we show the results. We can see that our model achieves near perfect perfor-
mance, only slightly below the oracle, at an average JSS of 0.95. In contrast, the model representing
the prevailing view of how entity binding works achieves an average JSS of 0.44, well below even
the uniform distribution baseline with 0.5. Next, we see that modeling the positional mechanism
as a one-hot as opposed to a gaussian significantly hurts performance, dropping to 0.85 JSS. The
ablations further reveal how mechanisms are employed: for instance, when teniry = 1, ablating the
lexical mechanism has nearly no effect, while for ten4y = 3 this is true for the reflexive mechanism.
This is in keeping with previous results, showing that the lexical and reflexive mechanisms are used
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Figure 6: Padding results for gemma-2-2b-it on the boxes task. Left: Confusion matrix between
the model’s predicted index and the positional index patched in from the counterfactual. This gets
increasingly fuzzy for early tokens as padding is increased. Right: Distribution of effects as padding
is increased, showing the positional mechanism strengthens at the expense of the lexical mechanism.

differently depending on the value of teny. Figure |§] shows the learned parameters of the model for
tenity = 2. We see that in this setting, the lexical and reflexive mechanisms behave similarly, being
weaker in the beginning, flat in the middle, and with an uptick at the end. The reflexive mechanism
is slightly more dominant here, in keeping with the table results for feniy = 2. For the positional
mechanism we can see that it starts off very concentrated, becoming wider in middle indices, and
finally becoming more narrow towards the end, mirroring previous results.

5 INTRODUCING FREE FORM TEXT INTO THE TASK

To test our model’s generalization to more realistic inputs, we modify our prompt templates 7 such
that they include filler sentences between each entity group. To this end, we create 1,000 filler
sentences that are “entity-less”, meaning they do not contain sequences that signal the need to track
or bind entities, e.g. “Ann loves ale, this is a known fact, Joe loves jam, this logic is easy to follow...”.
This enables us to evaluate entity binding in a more naturalistic setting, containing much more noise
and longer sequences. We evaluate different levels of padding by interleaving the entity groups with
an increasing number of filler sentences, for a maximum of 500 tokens between each entity group.

The results, shown in Figure [6] for gemma-2-2b-it on the boxes task, show that our model at first
remains remarkably consistent in more naturalistic settings, across even a ten-fold increase in the
number of tokens. However, as the amount of filler tokens increases, we see that the magnitude of
the mechanisms’ effects changes. The lexical mechanism declines in its effect, while the positional
and mixed effects slightly increase. We can also see that the mixed effect remains distributed around
the positional index, but that it slowly becomes more diffuse. Thus, when padding with 10,000
tokens, we get that other than the first entity group, the positional information becomes nearly non-
existent for the first half of entity tokens, while remaining stronger in the latter half. This suggests
that a weakening lexical mechanism relative to an increasingly noisy positional mechanism might

be a mechanistic explanation of the “lost-in-the-middle” effect (Liu et al., [2024). In §D.4] we show
that our model generalizes to inputs with more linguistic variability as well.

6 CONCLUSION

In this paper, we challenge the prevailing view that LMs retrieve bound entities purely with a posi-
tional mechanism. We find that while the positional mechanism is effective for entities introduced
at the beginning or end of context, it becomes diffuse and unreliable in the middle. We show that
in practice, LMs rely on a mixture of three mechanisms: positional, lexical, and reflexive. The lex-
ical and reflexive mechanisms provide sharper signals that enable the model to correctly bind and
retrieve entities throughout. We validate our findings across 9 models ranging from 2-72B, and 10
binding tasks, establishing a general account of how LMs retrieve bound entities.

10
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7 REPRODUCIBILITY STATEMENT

We take multiple steps in this work to ensure the reproducibility of our findings. In §A.T| we detail
all binding tasks used in our evaluations, and in and Table [2| we describe how to construct
datasets of paired original and counterfactual examples. specifies the hyperparameters used for
training our causal models. The code for dataset generation and causal model training is included in
the supplemental materials.
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A  EVALUATING GENERALIZATION

In this section, we seek to validate that our findings generalize to different values of n, as well as
across models and binding tasks.

A.1 BINDING TASKS

In this subsection, we detail the different binding tasks we evaluate, and show that our findings
generalize across all of them. We define ten different binding tasks spanning domains, syntaxes, and
subjects: one with m = 2 and nine with m = 3. The sizes of the entity sets range from 23 to 80.
Table[T]lists the entity sets for each task, along with an example instantiation for n = 2 and different
values of geniry. Note that when m = 3, we use two query entities: GZf::y"l and GZi::;)?‘ These are

the two entities in the entity group which aren’t the target entity. For example, when teqiy = 2 we
set L]entity1 = 1 and Qentity2 =3.

Figures and@] show the results of the [TargetRebind interchange intervention on gemma-2-
2b-it and gqwen2.5-7b-it across all tasks and all values of Zeniy. Our findings are consistent: the
positional mechanism dominates for early and late entity groups, while the lexical and reflexive
mechanisms take over in the middle. We also replicate the effect in Figure [2and Figure[5} reflexive
is more present when tenqy = 1 (first), lexical when tqiy = 3 (last), and both are balanced when
tentity =2 (mlddle)

A.2 REPLICATING RESULTS ACROSS MODELS

To validate robustness, we evaluated 9 models across 3 families, spanning 2—72B parameters. As
shown in Figures [10] and [11] for the boxes and music tasks with teniry € [3], our findings transfer
consistently across models. The positional mechanism dominates for the first and last entity groups,
while in middle positions lexical and reflexive take over, with a mixed effect distributed around
the positional index. In the Qwen family, we also observe that positional efficacy strengthens with
model size. Overall, these results point to a universal strategy used by LMs to solve entity binding
tasks.

A.3 EFFECT OF n

Previous work has described model behavior faithfully using only the positional mechanism (Feng
& Steinhardt, 2024; Prakash et al., 2025), but these analyses were limited to small contexts (n €
{2,3}). In this work, we show extensively that this finding doesn’t hold for larger values of n.
To evaluate exactly the relationship between the efficacy of the positional mechanism and n, we
conduct the [TargetRebind interchange intervention on gemma-2-2b-it and qwen2.5-7b-it for
all n € [3,20]. We see in Figures that the trend seen in all experiments holds across
values of n: the positional mechanism is effective in the first and last entity groups, but not in middle
ones. Its efficacy for middle entity groups declines as n increases. This trend is consistent with the
separability analysis in Figure[22] which shows that hidden states from middle entity groups become
increasingly difficult to classify by position as n grows.

B ENCODING OF POSITIONAL INFORMATION

Throughout our experiments (notably Figures [2] [5] [T0]and 8], we show that the model does not rely
solely on the positional mechanism. One possible explanation is that, as illustrated in Figure |3} the
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Figure 7: An illustration of the reflexive mechanism for retrieving entities for teniy = 1. We omit the
positional and lexical mechanisms for clarity. Under this mechanism: (A) a reflexive pointer to an
entity originating from it is copied to its bound counterpart, (B) that reflexive pointer propagates to
the last token position through the query entity, and (C) that pointer is dereferenced, thus retrieving
the answer entity.

positional signal becomes diffuse and weak for middle entity groups. This may reflect the model’s
limited ability to encode entity group positions in a linearly separable manner. To test this hypothe-
sis, we collected hidden state activations at entity token positions as well as at final token positions at
every layer, and assessed their separability using PCA and a multinomial logistic regression probe.
Figure [22] shows the results: PCA projections for entity token positions with n = 20, and linear
probe accuracies for both entity and final positions across n € {5,10,15,20}. Consistent with
our broader findings, the first and last entity groups are readily separable, while middle groups ex-
hibit substantial overlap. We also observe a clear dependence on n: smaller contexts yield better
separation, whereas larger contexts make positions increasingly indistinguishable.

C BINDING SIGNALS IN ENTITY TOKENS

In our main experiments, we focus on interchange interventions for the last token position, showing
that it encodes positional, lexical and reflexive signals. In this section, we conduct experiments to
verify the existence of these signals in the entity token positions themselves, as well as identify the
movement of these signals across token positions.

First, we conduct the PosSwap , [ LexSwap and ([RefSwap interchange interventions, described
in Table 2] with the results shown in Figure[T9] We see that they achieve nearly identical interchange
intervention accuracies as when performing [ TargetRebind with the last token position. Addi-
tionally, wee see that for the positional and lexical mechanisms, the crucial layers where the binding
information is contained in the entity tokens and used for retrieval is layers 12-19, while for reflexive
it’s 6-12.

To further trace how binding signals flow through the model, we apply attention knockout (Geva
et al.| [2023). We first identify a minimal set of layers where blocking attention from the last token
position to the query entity token (e.g., which box is the medicine in?) degrades performance.
Across all values of Zepty, this occurs in layers 11-16, dropping accuracy from 98% to 37%, aligning
with the layers where binding information resides in entity tokens. Knockout becomes even more
effective when applied to both the query token and the token immediately after it, reducing accuracy
to 8%. This suggests that some of the query signal is copied forward. Consistent with this, blocking
attention from the last token position only to the token following the query token decreases accuracy
by just one point. However, when we block attention both from the last position to the query token
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Figure 8: Results of the [ TargetRebind interchange intervention for gemma-2-2b-it across all
tasks and possible values of Zepgity-

and from its following token, accuracy drops to 6%, confirming that crucial binding information
reaches the last position via the query token.

Finally, we test whether binding information propagates from entity tokens to the query token. The
lexical mechanism may not require such propagation, since its signal can be generated directly from
the query token. By contrast, the reflexive signal in the entity tokens originates from the answer
token, so the query token must retrieve it in order for the signal to reach the last token position. To
evaluate this, we block attention from the query token to different entity tokens. For the reflexive
signal (setting tenity = 1), we block attention to the entity token identical to the query token—
where our [RefSwap | intervention localized the signal—and to the token immediately after it. This
intervention is most effective in layers 8—12, reducing accuracy to 6%, and matching the layers
where entity tokens use this signal (Figure [I9). Blocking attention to other entity tokens in the
queried entity group has no effect. In contrast, for the lexical signal (setting tenity = 2), blocking
attention from the query token to the correct answer entity token reduces accuracy only to 86%,
even when applied across all layers. Moreover, blocking attention from the query token to all entity
tokens at all layers still leaves accuracy at 90%. These results support our hypothesis: the lexical
signal can be derived locally from the query token, while the reflexive signal must be retrieved from
entity tokens. This also explains why the model appears to produce the reflexive binding signal
earlier than in the lexical or positional mechanisms — it requires an additional stage of retrieval.

D ADDITIONAL EXPERIMENTS

In this section we discuss experiments that further strengthen our model of how LMs perform entity
binding and retrieval, that couldn’t be included in the main section. In §D.T| we expand our under-
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Figure 9: Results of the [TargetRebind interchange intervention for qwen2.5-7b-it across all
tasks and possible values of Zepgity-
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Figure 10: Evaluation of the (TargetRebind) interchange intervention in 9 different models
across 3 model families spanning 2-72B parameters, for the boxes binding task and teniy € [2].
We see that the results remain remarkably consistent.

standing of the interaction between different mechanisms by evaluating what happens when setting
two mechanisms to point at the same entity. In §D.2|we detail the experiments conducted for finding
the target layer for our interchange interventions. Finally, in §D.3| we analyze the model’s behavior
when removing entities pointed to by the different mechanisms.
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Figure 11: Evaluation of the (TargetRebind) interchange intervention in 9 different models
across 3 model families spanning 2-72B parameters, for the music binding task and Zepiy = 3.
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Figure 12: Evaluation of the [TargetRebind interchange intervention at 1 and 2 layers after
the evaluation in Figure for tenity = 2. We see that the model shifts from aggregating binding
information to retrieving the entities.

D.1 MECHANISM AGREEMENT

Inthe TargetRebind interchange intervention used to produce the results in Figure@ (and others
throughout the paper), we explicitly make sure to have different values for the positional, lexical and
reflexive indices, so that we can know which mechanism most affected the model’s output. However,
as shown in Figure [3] these mechanisms behave additively, and we suspect that when they agree,
they overwhelmingly drive model behavior. To evaluate this, we conduct two experiments, one for
tenity = 1 where the positional mechanism agrees with the reflexive one, and one for fey;y = 3
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Name Entity Sets Sample Binding Example
Filling Liquids &1 = {John, Mary} John and Mary are working at a busy restaurant.
&y = {cup, glass} To fulfill an order, John fills a cup with beer and
Es = {wine, beer} Mary fills a glass with wine. Who filled a cup with
beer?
People and Objects &1 = {John, Mary} John put the cup in the office and Mary put the toy
&y = {toy, medicine} in the kitchen. What did Mary put in the kitchen?
Es = {kitchen, office}
Programming Dictionary &1 = {a, b} The following are dictionary variables in
&y = {John, Mary} Python: a={‘name’: ‘Mary’, ‘Country’:‘Canada’ },
Es = {US, Canada} b={‘name’:‘John’, ‘Country’:‘US’}. What is the
country in variable a where ‘name’ == ‘John’?
Music &1 = {John,Mary} At the music festival, John performed rock music
&y = {rock,pop} on the piano, and Mary performed pop music on
Es = {guitar, piano} the guitar. What music did Mary play on the gui-
tar?
Biology Experiment &1 = {John, Mary} In a biology laboratory experiment, Mary placed
&y = {serum, enzyme} the serum in a vial, and John placed the enzyme in
Es = {beaker, vial} a beaker. Who placed the serum in a vial?
Chemistry Experiment &1 = {John,Mary} In a chemistry laboratory experiment, Mary added

&y = {ethanol,acetone}  the acetone to a crucible, and John added the
Es = {crucible, funnel}  ethanol to a funnel. What did John add to a fun-

nel?

Transportation &1 = {John,Mary} In a city transportation system, John, drove the
Ey = {truck, taxi} truck to the mall, and Mary drove the taxi to the
Es = {mall, park} park. Where did Mary drive the taxi?

Sports Events &1 = {John, Mary} In a sports competition, Mary played hockey at the
&> = {hockey, cricket} stadium, and John played cricket at the field. Who
Es = {stadium, field} played hockey at the stadium?

Space Observations &1 = {John,Mary} During an astronomy study, John observed an as-

&> = {planet, asteroid} teroid with a radar, and Mary observed a planet
Es = {telescope, radar}  with a telescope. What did John observe with a

radar?
Boxes &1 = {toy, medicine} The toy is in box B, and the medicine is in Box A.
&z = {box A, box B} Which box is the medicine in?

Table 1: List of all binding tasks we evaluate in our experiments. We show entity sets composed
of only two entities per set for brevity. We also only show examples for n = 2 but evaluate over
n € [3,20]

where the positional mechanism agrees with the lexical one. The results, shown in Figure[I8] show
that this is indeed the case.

D.2 FINDING THE TARGET LAYER

We seek to identify for each model what the last layer before retrieval is, so that we can perform our
interchange interventions on that layer. Indeed in Figure [2] we see that there are a subset of layers
where the last token position contains the binding information, after which it contains the retrieved
answer. Thus, for each model we identify the last layer where patching the last token position does
not copy the retrieved token. The intervention on this layer ¢ is shown in Figure 10| for teniey € [2],
and in Figure@we show this same intervention for £ + 1 and £ + 2 with ¢4y = 2. We see clearly
that for ¢, the percentage of cases where the answer post-intervention is the retrieved entity from
the counterfactual example is at or below random chance. However, for £ 4+ 1 and ¢ + 2 this effect
becomes the majority, showing that the model has shifted to retrieval. We also see that this layer is
consistent across tasks in Figures[T0]and[T1]
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Figure 13: The mean logit distribution as a function of the positional index (¢p), for qwen2.5-7b-it
on the boxes task with teyiy = 2. We can see the the positional binding signal induces a strong
and concentrated signal for entity groups in the beginning and the end, while inducing a weak and
diffuse one for middle groups.
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Figure 14: Results for the [TargetRebind interchange intervention on gemma-2-2b-it for n €
[3,20] and teniity = 3 on the boxes task. We see a trend where, the more entity groups need to be
bound in context, the worse the positional mechanism is at binding those in the middle.

D.3 REMOVING TARGETED ENTITY TOKENS

In §3.1) we detail how the lexical and reflexive mechanisms are pointers that get dereferenced to
the queried entity. To strengthen these claims, in this section, we evaluate what happens when
we modify the TargetRebind interchange intervention, such that the entities targeted by those
mechanisms do not exist in the original prompt. Thus, for the example in Figure[T] to test the lexical
mechanism we’d change the counterfactual such that Ann is replaced with a different new name
Max, and for the reflexive we’d change pie to cod (separately). We see in Figure [28]that this leads
the model to rely solely on the positional mechanism, since the others have pointers that cannot be

19



Under review as a conference paper at ICLR 2026

) X Patch Effects
gemma-2-2b-it | music B positional =0 mixed E1 reflexive B lexical

n=7

Rt
]
£
&
Zo.
£
&

g
)

o
o

Patch Effect

0.0

012 3 456 78 0123456789

n=16

n=15

Iy
o

o
o

Patch Effect

o
o

6 8 10 12 14 0 2 4 6 8 10 12 14

2 4 0
Patched Entity Group Index Patched Entity Group Index

2 4 6 810121416 0 2 4 6 8 10121416
Patched Entity Group Index Patched Entity Group Index

0246 81012141618 0 2 4 6 8 1012141618
Patched Entity Group Index Patched Entity Group Index

Figure 15: Results for the ([TargetRebind interchange intervention on gemma-2-2b-it for n €
[3,20] and teniity = 3 on the music task. We see a trend where, the more entity groups need to be
bound in context, the worse the positional mechanism is at binding those in the middle.
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Figure 16: Results for the TargetRebind) interchange intervention on qwen2.5-7b-it for n €
[3,20] and teniy = 3 on the boxes task. We see a trend where, the more entity groups need to be
bound in context, the worse the positional mechanism is at binding those in the middle.

dereferenced. In Figure [29| we see that in this case, relying on the positional mechanism yields a
noisy distribution around the positional index.

A possible alternative explanation for why the model isn’t retrieving the entity pointed to by these
two mechanisms, is that there might be some other mechanism that prevents the model from an-
swering with entities that do not exist in the context. To evaluate this, we conduct the same exact
interventions, but for layer £ + 1, where the retrieval is already taking place (see @) Thus, if
such a mechanisms exists, we’d expect to see the same results, where the model relies solely on
the positional mechanism. Otherwise, we’d expect the model to respond with the retrieved answer
from the counterfactual. We can see in Figure [30]that the model indeed responds with the retrieved
answer from the counterfactual, falsifying this alternative explanation. Thus, we conclude that the
model indeed relies on the lexical and reflexive mechanisms as pointers for dereferencing.

D.4 LINGUISTIC VARIABILITY

To assess our findings’ generalization beyond the templatic datasets defined in Table [T} we incor-
porate linguistic variations in the phrasings of each entity group. We define 12 such variations for
the boxes and music tasks respectively, such that when creating a prompt from a binding matrix G,
we choose a random variation per entity group. For example, in the boxes task, we have variations
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Figure 17: Results for the  TargetRebind and feyiry = 3 interchange intervention on qwen2.5-
7b-it for n € [3,20] on the music task. We see a trend where, the more entity groups need to be
bound in context, the worse the positional mechanism is at binding those in the middle.
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Figure 18: We evaluate gemma-2-2b-it’s behavior when aligning the mechanisms for the music
task. We align the positional and reflexive mechanisms for feniy = 1, and the positional and lexical
mechanisms for ey = 3. We see that when the mechanisms point at the same entity for retrieval,
the model consistently responds with the correct entity.

like “the Object is stored in box Box”, “the Object was left in box Box” and “the Object ended up
in box Box”. We can see in the results, shown in Figure 21] that our findings remain identical in
this setting. As in previous results, the model relies on the three mechanisms, mediated by the entity
group index as well as tengiry-

E ADDITIONAL CAUSAL MODELS

We report the the KL divergence scores for gemma-2-2b-it on the music task in Table 5] We ad-
ditionally report all metrics for gemma-2-2b-it on the sports task in Table ff] and qwen2.5-7b-it on
both tasks in Tables|§|and|§l For training, we use Adam (8; = 0.9, S = 0.999) with learning rate
0.05, run for up to 2,000 epochs with a batch size of 512 and early stopping after 200 epochs.

F FURTHER VALIDATION OF THE REFLEXIVE MECHANISM

In §3.0] we describe the reflexive binding mechanism, where a direct pointer originating from an
entity token is used to point back at itself. In this section we provide further evidence for the
existence of this mechanism as described.
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Figure 19: Results for the (PosSwap  (left), (LexSwap) (middle) and [RefSwap | (right) inter-
change interventions on gemma-2-2b-it for the boxes task. Each square shows the interchange in-
tervention accuracy (ITA) for a given layer and positional, lexical or reflexive index. We see that
positional and lexical binding information exists in entity tokens in layers 12-19, while reflexive
binding information does in layers 6-12.
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Figure 20: We show results of the [ TargetRebind interchange intervention on gemma-2-2b-it
for the boxes task with different indices on the x-axis. Left: using the index of the queried entity
group. This has little effect overall, except for dips at the first and last indices in the positional effect.
Under [ TargetRebind , the positions of queried entity groups cannot coincide between the coun-
terfactual and original prompts. Thus, when the original query targets the first or last groups—where
positional information is strongest—these groups are never patched, slightly weakening results on
average. Right: using the lexical index. Here the pattern mirrors Figure 3] with weaker effects at
the edges and stronger ones in the middle.

We do this by knocking out attention from the last token position to the target entity
2023), shown in Figure 23] Again we see that the model does not respond with the counterfactual
target entity unless it can find it in context, which we prevent by blocking attention to it. Conversely,
blocking attention at a layer when the model has already retrieved the answer, while patching at
that layer, does not prevent the model from answering with the answer entity from the counterfac-
tual. Thus, we can conclude that the model indeed relies on a reflexive mechanism for binding and
retrieving entities in context.

G CONTEXT LENGTH ABLATION STUDY

In our evaluations, we show the effect of the number of entities that need to be bound in-context
on LMs’ use of the positional, lexical and reflexive mechanisms. However, a confounding factor is
that as the number of entities increases, so does the length of the sequence itself. To disentangle
these effects, we pad contexts with n € [3, 19] so that all sequences match the length of those with
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Name Original Counterfactual Patch Positions Patch Effects

TargetRebind  The bottle is in The bottle is in  Last token position  Q: Positional
box C, the pen is box Q, the ball is A: Lexical
in box A, the ball in box A, the pen C: Reflexive
is in box @, and is in box C, and N: No effect
the rock is in box the rock is in box
N. Which box is N. Which box is
the rock in? the pen in?

PosSwap The pen is in box  The ball is in box A—A Q—Q A: Patched tokens
Aandthe ballisin  Q and the pen is in encode positional
box Q. Which box  box A. Which box binding used by
is the ball in? is the ball in? the model

Q: Patched tokens
do not encode
positional binding
used by the model

LexSwap The pen is in box  The ball is in box A—A Q—Q A: Patched tokens
A andtheballisin A and the pen is in encode lexical
box Q. Which box  box Q. Which box binding used by
is the ball in? is the ball in? the model

Q: Patched tokens
do not encode
lexical ~ binding
used by the model

RefSwap The pen is in box  The ball is in box A—A Q—Q A: Patched tokens
A andtheballisin A and the pen isin encode reflexive
box Q. What is in  box Q. What is in binding used by
Box Q? Box Q? the model

Q: Patched tokens
do not encode
reflexive binding
used by the model

1.0

o

10 gema»2»2-|t | mslc | e=1 10

Table 2: Original/counterfactual pair examples for interchange interventions.

qwen2.5-7b-it | music | ge=1

4 8 12 16

qgwen2.5-7b-it | music | ge=2

o 4 8 12 16

_gemma-2-2b-it | music | ge=2 o

Entity Group Index

qgwen2.5-7b-it | boxes | ge=1

12 16

10 gema-Z-Z-lt | bxes | E=1 N

12 16
gemma-2-2b-it | boxes | ge=2

Figure 21: Results for the [TargetRebind interchange intervention on qwen2.5-7b-it and
gemma-2-2b-it for all values of genity On the boxes and music binding tasks, while using random
linguistic variations for the phrasings of each entity group. We find that our findings remain consis-
tent in this setting as well.

n = 20. Padding is done using “entity-less” sentences, as described in §5] The results are shown
in Figure 27} If the effects of increasing n were due to increasing sequence length, we’d expect all
results to be identical to when setting n = 20, and to each other. However, we see that, while the
distribution of patch effects is slightly affected by padding, the results and trends align closely with
our results without padding. This indicates that model behavior is governed primarily by the number
of entities that must be bound, rather than by sequence length.
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Figure 22: Separability of hidden states for entity token positions and the last token position, across
layers and values of n. PCA projections (left) and multinomial logistic regression probes (right)
show that first and last entity groups are linearly separable, while middle groups overlap substan-
tially. Separability decreases as the number of entities n increases.

Model KLy, | KL, ; |
tentity =1 tentity =2 tentity =3 temily =1 tenlity =2 tentity =3

M 0.22 0.17 0.26 0.31 0.21 0.41
M w/ Oracle Pos 0.14 0.08 0.14 0.32 0.11 0.24
M w/ One-Hot Pos 0.71 0.67 0.71 1.00 0.88 0.88
Only One-Hot At 6.41 5.61 5.95 341 2.39 2.78
Pos

M\ {P} 1.75 1.52 1.71 4.51 2.37 3.17
M\ A{L} 0.39 0.73 1.76 0.3 0.37 1.42
M\ {R} 2.14 1.08 0.61 2.10 0.54 0.44
M\ {L, R} 2.10 1.22 1.82 2.13 0.73 1.50
M\ {P, R} 9.19 7.35 5.32 10.7 5.55 434
MN\A{P L} 4.66 6.18 8.45 4.28 2.92 5.40
Uniform 2.71 1.96 244 7.57 3.49 4.84

Table 3: KL divergence results for modeling an LM’s behavior contingent on the positional, lexical
and reflexive indices. Evaluated on gemma-2-2b-it for the music binding task. Our full model
achieves the best performance, only slightly below the oracle.

H LLM USAGE

In this work, the authors relied on LLMs solely to assist with implementing specific helper functions.
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Figure 23: Patch effects under [TargetRebind for gemma-2-2b-it while blocking attention to
the target entity. Left: blocking attention when the model is accumulating binding information in
the last token position leads to it not being able to dereference the reflexive pointer. Had the patch
contained the retrieved answer, this plot would be fully orange. Right: patching at the following
layer and blocking attention to the target entity. Here the plot is fully orange since the entity has
already been retrieved.
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Figure 24: Mean logit distributions under TargetRebind for gemma-2-2b-it on the music task.
Left: fixing i1, = 8,%r = 16 and varying i p. Right: fixing ¢p = 6,¢;, = 14 and varying ip.
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Figure 25: Mean logit distributions under [ TargetRebind for qwen2.5-7b-it on the music task.
Left: fixing ip = 6,7z = 14 and varying ¢;,. Right: fixing ¢p = 6,77, = 14 and varying ip.
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Figure 26: Mean logit distributions under [ TargetRebind for qwen2.5-7b-it on the sports task.
Left: fixing 77, = 8,7r = 16 and varying 7p. Right: fixing ip = 8,77, = 19 and varying iy.
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Figure 27: Mean patch effects per number of entities in context (n). For each n, we report the
standard mean patch effects (right) alongside results from padded sequences (left), where sequence
length is fixed to match n = 20. While padding slightly shifts the distribution of patch effects, the
overall patterns remain consistent: model behavior is primarily controlled by the number of entities
in context, rather than sequence length.
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Figure 28: Left: results for TargetRebind) interchange intervention on gemma-2-2b-it with
tenity = 1, where the query entity in the counterfactual does not exist in the original. Right: results
for [ TargetRebind interchange intervention on gemma-2-2b-it with Zeniy = 2, where the target
entity in the counterfactual does not exist in the original. We can see in both plots that when the
model can’t use the lexical and reflexive mechanisms since the entities they point to don’t exist, the
model falls back to solely using the positional mechanism (distribution showed in Figure @

tentity =1 tent/'ty =2
100
° 2 000000000O0O0O0O0O0OGO0TO0O offffo o 0o 0o 000000OOOOO0O0O0O0O0
--3 102 1000 00O0O0O0O0O0O0GOGOTOO ~-0off4 100 0000000000000 O0
~—112E10411000000000000 ~-124Ff01811 5 3 1 1 1 1 00 0 0 0 0 0 0 0 8o
m-1 621EN2011 6 3 1 1 0 00000 00 00 m-0 8EM2312 9 4 3 2 2 2 111100000
-1 610225118 7 4 3 2 2 1.0 00000 00 -1 7 171611 7 4 4 2 2 1. 0 1 0 0 1 0 0 O 60
n-1 6 12 9 22146 3 2 1 1 1 0000000 n-0 821141511 7 6 5 3 4 1 1 1.0 0 0 0 0 0
©-1 4127 9231811 4 4 3 1 1 1 1 0 0 0 0 O ©-1 615161312 9 8 5 6 4 2 1. 0 0 1 0 1 0 0
$~-0 38 9 8 621311 6 4 3 2 1 1 1 0 0 0 0 ZF~-0 313121214118 6 55 4 2 1 1 1 1 0 1 1 40 -
=
Bo-1146 7 7 82013107 4 4 2 1 1 0 0 0 0 2e-0 3 9 9111311 7 7 6 6 5 3 3 3 1 1 1 1 1 <
= —= [}
-0 13466 4 72314127 53 12 1000 wo-018 91110107 96 6552121211 =
§9-002 24665 7413107 5 3 2 1 101 5§3-00 3 5 810118 9 89 7 7 3332211 %
%,’:}—002223244613107543211%:—002479781097875343222 20%
£N4-01 11222354 6FJ14107 4 4212 £8-002 33677 8909887544324 o
M-111011214455F11107 7522 Mm-00 12456 787109676565 44
§-001 101111334 713127 55 3 $-0 0102 43566799629 77765
w1 0100011122 43 6E#72129 65 m-0 01 1213 447 689 97 91086 6
©-00000000O0O0T1T12436 15 13 10 8 9000111133456 7 7 9 810121111
-0 0000O0O0O0GOOGO O O0T12 3 6 2317 11 N-0 0001112 24446 7 7 9 9141314
®%-00000O00O0O0O0GO0OO0O0112 9 15 ©®-0 0000112 23 3 46 5 7109 141517
©-00000000O00O0GO0GO0O0GO0GO0T1T129 2—00000000011122467911H
L T L T S T O S S [ T S L T S S S —0
0123 456 7 8 9 10111213 14 15 16 17 18 19 0123 456 7 8 9 10111213 14 15 16 17 18 19
Prediction Index Prediction Index

Figure 29: Left: confusion matrix for non-lexical and reflexive patch effects under the
TargetRebind interchange intervention on gemma-2-2b-it with teq5y = 1, where the query
entity in the counterfactual does not exist in the original. Right: results for non-lexical and re-
flexive patch effects under the ' TargetRebind interchange intervention on gemma-2-2b-it with
tenity = 2, where the queried entity in the counterfactual does not exist in the original. We can
see that when the model can’t use the lexical and reflexive mechanisms, it falls back on the noisy
positional mechanism.
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Figure 30: Results for  TargetRebind  interchange interventions on gemma-2-2b-it with Zepiy €
[2], where the query entity (left) or queried entity (right) in the counterfactual do not exist in the
original, patching at layer £ 4+ 1. We see that the model copies the retrieved answer from the coun-
terfactual, showing that no mechanism exists to suppresses answering with entities that do not exist
in the original prompt.
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Figure 31: Confusion matrix for non-lexical and reflexive patch effects under the TargetRebind
interchange intervention for all models, showing the diffuse distribution around the positional index.
Left: temity == 1 nght tem]‘ty = 2
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Model JSS 1 KLy, | KL, |
t=1 t=2 t=3 t=1 t=2 t=3 t=1 t=2 t—=3

M (Lo 094 095 093 03 021 031 035 028 039

Rone-hot» Piauss)

M W/ Pyacle 0.96 0.97 0.96 0.13 0.11 0.13 032 0.19 0.21

M W/ Pypehot 0.85 0.87 0.87 0.77 0.59 0.62 1.2 0.81 0.73

Ponenot  (prevailing 0.4 046 043 6.5 574 603 372 254 29
view)

M\ {P} 067 069 071 175 153 149 491 304 1.88
M\ {L} 093 089 075 041 08 199 037 053 125
M\ {R} 069 084 09 183 128 1.04 252 071 047
M\ {L, R} 068 079 074 184 152 206 254 105 136
M\ {P,R} 011 031 047 925 719 532 109 611 3.6l
M\ {P, L} 055 045 023 471 595 816 464 306 449
Uniform 045 054 054 266 213 222 8 478  2.93

Table 4: Results for modeling gemma-2-2b-it’s behavior on the sports binding task, contingent on
the positional, lexical and reflexive indices. Here ¢ denotes tengity -

Model JSS ¢ KLy, | KL, |
t=1 t=2 t=3 t=1 t=2 t=3 t=1 t=2 t=3

M (Loneno, 094 092 092 027 034 037 035 048 045

Rone-not» PGauss)

M W/ Pocte 098 098 098 007 007 007 01 01 0.1

M W/ Popetot 087 089 0.88 058 047 053 109 074 0.69

Ponehot  (prevailing  0.56 055 053 466 4.65 501 1.84 1.88 2.04
view)

M\ {P} 062 066 066 1.8 168 1.73 505 329 255
MA\A{L} 093 08 078 051 114 177 033 074 1.09
M\ {R} 0.86 09 0.9 0.9 0.89 1.0 0.68 054 05

M\ {L, R} 086 084 078 092 124 179 071 083 1.11
M\ {P, R} 016 034 042 843 669 593 904 56 44

MA\A{P, L} 035 024 017 6.64 78 857 6.8 53 532
Uniform 055 058 054 211 195 221 592 409 354

Table 5: Results for modeling qwen2.5-7b-it’s behavior on the music binding task, contingent on the
positional, lexical and reflexive indices. Here ¢ denotes tepgity -

29



Under review as a conference paper at ICLR 2026

Model JSS 1 KLy, | KL, |

t=1 t=2 t=3 t=1 t=2 t=3 t=1 t=2 t=3
M (Lone-hots ~ 0.95 0.93 0.92 0.24 0.31 036 0.28 039 047
Rone-hot» PGauss)
M W/ Pyrace 0.98 0.98 0.97 0.07 0.08 0.11 0.09 0.11 0.18
MW/ Porenor 087 089 088 062 052 055 114 068 084

Ponenot (prevailing 0.57 055 051 458 472 518 1.73 1.84 221
view)

MN\A{P} 061 066 066 1.8 1.75 173 511 29 3.35
M\ A{L} 094 087 077 053 109 164 027 064 127
M\ {R} 087 089 091 08 1.05 085 057 054 048
M\ A{L, R} 087 083 077 092 133 165 06 0.82 1.29
M\ {P, R} 0.17 031 044 839 7.01 575 9.04 554 478
M\ A{P, L} 033 032 014 677 727 877 697 388 727
Uniform 054 056 053 212 206 225 601 39 4.71

Table 6: Results for modeling qwen2.5-7b-it’s behavior on the sports binding task, contingent on
the positional, lexical and reflexive indices. Here ¢ denotes tegity -
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