
Under review as a conference paper at ICLR 2023

FACTOR LEARNING PORTFOLIO OPTIMIZATION
INFORMED BY CONTINUOUS-TIME FINANCE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study financial portfolio optimization in the presence of unknown and un-
controlled system variables referred to as stochastic factors. Existing work falls
into two distinct categories: (i) reinforcement learning employs end-to-end policy
learning with flexible factor representation, but does not precisely model the dy-
namics of asset prices or factors; (ii) continuous-time finance methods, in contrast,
take advantage of explicitly modeled dynamics but pre-specify, rather than learn,
factor representation. We propose FaLPO (factor learning portfolio optimization),
a framework that interpolates between these two approaches. Specifically, FaLPO
hinges on deep policy gradient to learn a performant investment policy that takes
advantage of flexible representation for stochastic factors. Meanwhile, FaLPO
also incorporates continuous-time finance models when modeling the dynamics. It
uses the optimal policy functional form derived from such models and optimizes
an objective that combines policy learning and model calibration. We prove the
convergence of FaLPO and provide performance guarantees via a finite-sample
bound. On both synthetic and real-world portfolio optimization tasks, we observe
that FaLPO outperforms five leading methods. Finally, we show that FaLPO can
be extended to other decision-making problems with stochastic factors.

1 INTRODUCTION

Portfolio optimization studies how to allocate investments across multiple risky financial assets
such as stocks and safe assets such as US government bonds. The investment target is often
formulated as maximizing the expected utility of the investment portfolio’s value at a fixed time
horizon, which conceptually maximizes profit while constraining risk (von Neumann & Morgenstern,
1947). With continuous-time stochastic models of stock prices, great advances in the expected
utility maximization framework were made in Merton (1969) using stochastic optimal control
(dynamic programming) methods. More realistic models incorporate factors like economic indices
and proprietary trading signals (Merton et al., 1973; Fama & French, 2015; 1992), which (i) affect
the dynamics of stock prices; (ii) stochastically evolve over time; (iii) are not affected by individual
investment decisions. With greater data availability, it is natural to design and apply data-driven
machine learning methods (Bengio, 1997; Dixon et al., 2020; De Prado, 2018) to handle factors for
portfolio optimization. This work proposes a novel method—Factor Learning Portfolio Optimization
(FaLPO)—which combines tools from both machine learning and continuous-time finance.

Portfolio optimization with stochastic factors is challenging for three reasons. First, financial data is
notoriously noisy and idiosyncratic (Goyal & Santa-Clara, 2003), causing complex purely data-driven
methods to be unstable and prone to overfitting. Second, the relationship between the factors and
their impact on stock prices can be extremely complicated and difficult to model ex ante. Third,
many successful finance models are in continuous time and require interacting with the environment
infinitely frequently. As a result, such models cannot be easily combined with machine learning
methods, many of which are in discrete time.

Current approaches to portfolio optimization broadly fall into two categories: reinforcement learning
(RL) and continuous-time finance methods. Many RL solutions to portfolio optimization are built on
deep deterministic policy gradient (Silver et al. 2014; Hambly et al. 2021, Section 4.3). Such methods
parameterize the policy function as a neural network with strong representation power and learn the
neural network by optimizing the corresponding portfolio performance. However, these approaches

1

Under review as a conference paper at ICLR 2023

(as well as other model-free methods like Haarnoja et al. 2018) have high sample complexity and tend
to overfit due to the high noise in the data. Other RL methods explicitly learn representation (Watter
et al., 2015; Lee et al., 2020; Laskin et al., 2021) and leverage discrete-time models (Deisenroth &
Rasmussen, 2011; Gu et al., 2016; Mhammedi et al., 2020; Janner et al., 2019; Nagabandi et al.,
2018). Nonetheless, these methods are not informed by continuous-time finance models and, as our
experiments suggest in Section 5, cannot benefit from structures inherent in the financial market.

Stochastic factor models can be used to mathematically derive optimal (or approximately optimal)
investment policies (Kim & Omberg, 1996; Chacko & Viceira, 2005; Fouque et al., 2017; Avanesyan,
2021). To this end, one needs domain knowledge to pick and model the factors. Then, model
calibration (a.k.a. model fitting, parameter estimation) is conducted by maximizing a calibration
objective. With the calibrated model, the optimal investment policy can be derived analytically or
numerically (Merton, 1992; Fleming & Soner, 2006). This procedure of calibration and optimization
effectively constrains the ‘learning’ in the optimization step, and thus helps reduce overfitting to
noisy data. However, this approach cannot capture the complicated factor effects in the data, because
the factors may be complex and unlikely to be identified manually. Therefore, these methods may
end up with oversimplified models and suffer from model bias with suboptimal performance.

FaLPO

Discrete Time

v.s.

Continuous Time

Complicated
Factor Effects

Huge Noise

Challenges

Model-Regularized
Policy Learning

Reinforcement

Learning

Existing WorksOur Solution

Neural Stochastic
Factor Models

Continuous-Time

Finance

Figure 1: Demonstration of FaLPO

To tackle these limitations, we propose factor learn-
ing portfolio optimization (FaLPO), a new method
that interpolates between the two aforementioned
solutions (Figure 1). FaLPO includes (i) a neural
stochastic factor model to handle huge noise and com-
plicated factor effects and (ii) a model-regularized
policy learning method to combine continuous-time
models with discrete-time policy learning methods.
First, to reduce the sample complexity and avoid over-
fitting, FaLPO assumes factors and asset prices follow
a parametric continuous-time finance model. To cap-
ture the complicated factor effects, FaLPO models
the factors by a representation function ϕ parameterized by a neural network with minimal paramet-
ric constraints. Second, for policy learning, FaLPO incorporates two regularizations derived from
continuous-time stochastic factor models: a policy functional form and model calibration. Specif-
ically, we derive policy functional forms from the neural stochastic factor model using stochastic
optimal control tools, and apply it to parameterize the candidate policy in FaLPO. The use of this
form in the learning algorithm effectively acts as a regularizer. Then, model calibration and policy
learning are conducted jointly, such that the learned policy is informed by continuous-time models.

Theoretically, we prove that the added continuous-time regularization leads to the optimal portfolio
performance as the trading frequency increases. Empirically, we demonstrate the improved perfor-
mance of the proposed method by both synthetic and real-world experiments. We review the related
literature in Appendix A. We also discuss how FaLPO is extendable beyond portfolio optimization,
and can be applied to other decision-making problems with stochastic factors in Appendix H.

2 BACKGROUND

In this section, we first formulate the portfolio optimization problem. We then review two major
solutions to this problem: deep deterministic policy gradient in reinforcement learning (RL) and
stochastic factor models in continuous-time finance.

2.1 PORTFOLIO OPTIMIZATION

Problem Formulation Portfolio optimization seeks to derive a policy of asset allocation that yields
high return while maintaining low risk for the investment. Formally, consider dS risky assets with
prices St := [S1

t , S
2
t , · · ·S

dS
t]⊤ and a risk-free money market account with, for simplicity, zero

interest rate of return (like cash). We observe dY features (e.g. economic indices, market benchmarks)
denoted as Yt. From Yt, we can derive dX factors denoted as Xt which (i) affect the dynamics of
asset prices; (ii) evolve over time stochastically; (iii) are not affected by investment decisions. Given
an initial investment capital (or wealth) z0 and the initial values for Yt and St as y0 and s0, we use a

2

Under review as a conference paper at ICLR 2023

dS × 1 vector πt to denote the fractions of wealth invested in the dS assets at time point t. Note that
negative values are allowed in πt indicating short positions. At the terminal time T > 0, the target is
to maximize the expectation of a given utility function E[U(Zπ

T)], where U : Z → R with Z ⊆ R is
the utility function and Zπ

T denotes the terminal wealth under π.

−20

−10

0

10

0.0 2.5 5.0 7.5 10.0
Wealth

P
ow

er
 U

ti
li

ty

γ's
0.2
0.4
0.6
0.8
1.2
1.4
1.6
1.8

−2.0

−1.5

−1.0

−0.5

0.0

0.0 2.5 5.0 7.5 10.0
Wealth

E
x
p

on
en

ti
al

 U
ti

li
ty γ's

0.5
1
1.5
2
2.5
3
3.5
4
4.5
5

Figure 2: Power & exponential utilities.

Intuitively, a utility function reflects the risk preference of
an investor. It is an increasing function of wealth that is
also concave: it changes significantly when the wealth is
low but less so when the wealth is high (Figure 2). This
work focuses on the power utility U(z; γ) := 1

1−γ z
1−γ

with Z = R+, γ > 0, and γ ̸= 1; and the exponential
utility U(z; γ) := − exp(−γz)

γ with Z = R and γ > 0.
Here, γ is the investor’s risk aversion coefficient and is
hand-picked (instead of tuned) by the user. A larger γ
corresponds to more risk aversion, while a smaller γ cor-
responds to more risk tolerance. Beyond these two utilities, our method is also applicable to other
utility functions and other objective functions for portfolio optimization (see Appendix B).

Discrete- and Continuous-Time Policies Discrete- and continuous-time policies are two major
types of investment policies, differing on how frequently the portfolio is rebalanced. A discrete-time
policy rebalances the portfolio fintely frequently, leading to a discrete-time dynamics for the wealth.
Such policies are often considered in RL methods (Section 2.2). Continuous-time policies rebalance
the investment infinitely frequently, leading to a continuous-time dynamics for the wealth. These
policies are often found explicitly in continuous-time finance models (Section 2.3) 1.

2.2 DEEP DETERMINISTIC POLICY GRADIENT

We review deep deterministic policy gradient (DDPG, Silver et al. 2014)—a quintessential example
of RL methods. DDPG does not explicitly model the dynamics, but instead directly learns a discrete-
time policy for portfolio optimization. DDPG parameterizes the policy function as a deep neural
network and conducts gradient-based policy learning. Denote by π(t, St, Zt, Yt; θD) the deep policy
function with parameter θD. Without explicitly modeling the dynamics of St or Xt, DDPG directly
maximizes the following performance objective to learn a policy:

max
θD

V (θD) with V (θD) := E[U(Z
π(·;θD)
T)], (1)

where the expectation is over the terminal wealth Z
π(·;θD)
T following the policy π(·; θD). A key step

of DDPG is to compute the gradient of V (θD) to update θD. Following the procedure in Appendix C,
this can be achieved by sampling the trajectories of St and Yt to approximate the expectation and
thus the gradient of V (θD).

Typically, DDPG learns a discrete-time policy that rebalances the portfolio finitely frequently. To
see how the policy rebalances the portfolio, we study its corresponding wealth process Z

π(·;θD)
t

that characterizes the changes in wealth over time. Let ∆t > 0 be the time interval (e.g. daily,
weekly) to rebalance the portfolio and, for integer M > 0, let T := M∆t be the fixed in-
vestment horizon (e.g. one or two months). At time m∆t with m ∈ {0, 1, 2, · · · ,M − 1},
define πi

m∆t := πi(m∆t, Sm∆t, Zm∆t, Ym∆t; θD) as the fraction of current wealth invested
in the ith risky asset. Then, the wealth change at time m∆t is: Z

π(·;θD)
(m+1)∆t − Z

π(·;θD)
m∆t =

Z
π(·;θD)
m∆t

[∑dS

i=1 π
i
m∆t

Si
(m+1)∆t−Si

m∆t

Si
m∆t

]
, where Z

π(·;θD)
m∆t πi

m∆t

Si
(m+1)∆t−Si

m∆t

Si
m∆t

is the wealth change

due to the investment in the ith risky asset. Note that the number of shares invested in an asset
(Zπ(·;θD)

m∆t
πi
m∆t

Si
m∆t

) does not change during (m∆t, (m+ 1)∆t): the portfolio rebalances every ∆t time.

RL methods like DDPG provide flexible representation for factors: the hidden layers of the neural
network are considered as the representation learned for Yt, providing strong representation power.

1Note that it is impossible to rebalance a portfolio infinitely frequently in practice. Thus, continuous-time
policies are more useful as analytical tools.

3

Under review as a conference paper at ICLR 2023

Nonetheless, there is not an explicit parametric model for the learned representation and asset prices.
Consequently, such methods require lots of data and tend to overfit (Aboussalah, 2020).

2.3 STOCHASTIC FACTOR MODELS

We review stochastic factor models in continuous-time finance. These models can explicitly formulate
the dynamics and can also be used to mathematically derive the functional form of the optimal
continuous-time investment policy. Stochastic factor models are described by stochastic differential
equations (SDEs) (see Oksendal 2013 and Appendix D) to formulate the dynamics of asset prices
St. Specifically, with a dX × 1 factor variable Xt, let Wt := [W 1

t ,W
2
t , · · ·W

dW
t]⊤ be a dW × 1

Brownian motion that characterizes random fluctuations. Then, St and Xt are assumed to follow

dSi
t

Si
t

= f i
S(Xt; θ

∗
S)dt+

dW∑
j=1

gijS (Xt; θ
∗
S)dW

j
t , i ∈ {1, 2, · · · , dS} ,

dXt = fX(Xt; θ
∗
S)dt+ gX(Xt; θ

∗
S)

⊤dWt.

(2)

In (2), fS : RdX → R
dS , fX : RdX → R

dX , gS : RdX → R
dS×dW , and gX : RdX → R

dX×dW

are parametric functions pre-specified by domain knowledge. Further, fS and fX are often referred
to as the drift, and gS and gX as the volatility of St and Xt respectively. Intuitively, SDEs formulate
the change of a variable in an infinitesimal time step as the sum of a deterministic part (dt) and a
stochastic part (dWt), and we use θ∗S to parameterize the SDE. The factor Xt appears in both the drift
and volatility of the asset prices, thus affecting the price transition. With the parametric functional
forms in (2), we can use tools in stochastic optimal control to derive the functional form of the optimal
continuous-time investment policy.

Continuous-time policies change the investment in each asset at every time point. For a continuous-
time investment policy π̃t, the dynamics of wealth Z̃ π̃

t is defined as dZ̃π̃
t

Z̃π̃
t

:=
∑dS

i=1
π̃i
tdS

i
t

Si
t

, with Z̃0 =

z0, S0 = s0 and X0 = x0. Crucially, this is different from the discrete-time wealth process Zπ
t in

Section 2.2, as the number of shares Z̃π̃
t π̃i

t

Si
t

in asset i now changes continuously over time, as opposed
to being rebalanced at finite intervals. This discrepancy creates obstacles to directly apply the results
derived from stochastic factor models to discrete-time policy learning.

Stochastic factor models can reduce sample complexity for portfolio optimization, since the assumed
functional forms in (2) significantly constrain the solution space. However, a crucial step to apply
stochastic factor models is to pick or even construct Xt from the observed Yt that perfectly follows
a pre-specified model. This step often relies on domain knowledge and thus may end up with
oversimplified models suffering from model bias and eventually leading to suboptimal performance.

3 FACTOR LEARNING PORTFOLIO OPTIMIZATION

We propose factor learning portfolio optimization (FaLPO), a new decision-making framework that
interpolates between DDPG and stochastic factor models. FaLPO has two components: (i) a neural
stochastic factor model to handle huge noise and complicated factor effects and (ii) model-regularized
policy learning to combine continuous-time models with discrete-time policy learning methods.

3.1 NEURAL STOCHASTIC FACTOR MODELS

We describe neural stochastic factor models (NSFM) and discuss their benefits. On the one hand,
a neural stochastic factor model assumes the existence of a representation function ϕ such that
the factors of the problem can be directly learned from its features: Xt = ϕ(Yt; θ

∗
ϕ). Here, ϕ is

formulated as a neural network with parameter θ∗ϕ (Figure 3). As a result, FaLPO avoids hand-picking
factors from features as is the case in stochastic factor models (Section 2.3). The neural network
representation has only a few parametric constraints and thus is able to capture complicated factor
effects in the data. Furthermore, factors Xt and asset prices St are assumed to follow a stochastic
factor model (e.g. (2) and (6)), which reduces the sample complexity and avoids overfitting.

4

Under review as a conference paper at ICLR 2023

3.2 MODEL-REGULARIZED POLICY LEARNING

Under the proposed neural stochastic factor model, we aim to learn the discrete-time optimal policy
function π∗

t and the representation function ϕ(·; θ∗ϕ). However, while the policy learning is for
discrete-time policies, our proposed model is in continuous time. To bridge this gap, we incorporate
two types of continuous-time model regularization into discrete-time policy learning: (i) the policy
functional form (3) and (ii) the model calibration objective (4).

Factor

Representation

Stochastic Factor

Models

Not Specified

Time

Figure 3: Demonstration for neural
stochastic factor models.

Algorithm 1 FaLPO

1: Input: number of iterations N .
2: Initialize θϕ and θπ .
3: for n ∈ [N] do
4: Parameterize the policy function

according to (3).
5: Estimate the policy gradient for

H in (5) (Appendix C).
6: Update θϕ, θπ , and θS .
7: end for
8: Return π(·;θϕ,θπ)

Policy Functional Form From our model, we apply the
functional form of a continuous-time optimal policy into
our discrete-time policy learning. Using tools in stochastic
optimal control, we can derive the functional form of an op-
timal continuous-time policy: π̃∗

t = Π(t, St, Zt, Xt; θ
∗
π̃),

where the functional form of Π can be obtained in
many existing stochastic factor models (Kim & Omberg,
1996; Chacko & Viceira, 2005; Avanesyan, 2021; Za-
riphopoulou, 2001; Wachter, 2002; Kraft, 2005), and θ∗π̃
is an optimal parameter for Π. FaLPO uses the functional
form of Π in policy learning and parameterize the candi-
date policy as

π(t, St, Zt, Yt; θϕ, θπ) := Π(t, St, Zt, ϕ(Yt; θϕ); θπ),
(3)

where ϕ is the representation function for the factors in
Section 3.1. As a result, Π constrains the policy space and
acts as regularization. Importantly, although Π is derived
for continuous-time policies, it can still provide guidance
for discrete-time policy learning when ∆t is small. We
rigorously prove the soundness of using (3) in Section 4.

Model Calibration FaLPO also hinges on model cali-
bration to regularize policy learning. Given the specific
functional forms in (2), FaLPO conducts model calibra-
tion to estimate the parameters of the SDE. The calibration
procedure can be summarized as maximizing a model cal-
ibration objective:

max
θS

L(θϕ, θS). (4)

In practice, with discrete data, one may use likelihood (Phillips, 1972; Beskos & Roberts, 2005) or
other likelihood-based objective functions (Bishwal, 2007; Ait-Sahalia & Kimmel, 2010) for L (see
Appendix E for concrete examples).

To harness the information provided by model calibration in policy learning, FaLPO combines the
model calibration objective L in (4) with the performance objective V in (1) and facilitates a joint
optimization over the two. Note that naively combining L(θϕ, θS) and V (θD) is not effective since
the two in general do not share common parameters: the parameter of the policy network θD has no
overlap with the SDE parameter θS or factor representation parameter θϕ. However, by constraining
the policy space to (3) in FaLPO, we can show that θϕ is also part of the policy parameterization.
Thus, V can be derived as V (θϕ, θπ) := E[U(Z

π(·;θϕ,θπ)
T)]. In other words, θϕ is shared in both V

and L, and hence FaLPO can carry out a joint optimization over the two:

max
(θϕ,θπ,θS)∈A

H(θϕ, θπ, θS), with H(θϕ, θπ, θS) := (1− λ)V (θϕ, θπ) + λL(θϕ, θS), (5)

where the candidate policy follows the functional form of the optimal continuous-time policy (3) (see
Algorithm 1), and A denotes the considered parameter set. The model calibration objective also acts
as a model regularization, where λ ∈ (0, 1) is a hyperparameter determining its effect. In practice,
we can optimize (5) by gradient-based methods, facilitating a easy and end-to-end learning procedure
(see Appendix C for gradient estimation details).

5

Under review as a conference paper at ICLR 2023

3.3 EXAMPLE OF FALPO

In portfolio optimization, one can use different types of stochastic factor models. FaLPO can be
applied to many such types (Appendix F). In this section, we use the Kim–Omberg model (Kim &
Omberg, 1996) as an example to illustrate FaLPO’s modeling and policy learning. Kim–Omberg
is a standard model for portfolio optimization with stocahstic factors, which has been extensively
studied empirically (Welch & Goyal, 2008; Muhle-Karbe et al., 2017). For modeling, FaLPO with
Kim–Omberg model formulates the dynamics of asset prices and factors as

dSi
t

Si
t

= Xi
t dt+

dW∑
j=1

σij dW j
t , dXt = µ(ω −Xt) dt+ v dWt, and Xt = ϕ(Yt; θ

∗
ϕ), (6)

where SDE parameters ω, σ, v, and µ are constant matrices or vectors.

For policy learning, we detail the policy functional form and model calibration. Under the Kim-
Omberg model, we can derive the optimal policy functional form Π in (3). Specifically, for
power utility Π(t, St, Zt, ϕ(Yt; θϕ); θπ) = k1(t; θπ)ϕ(Yt; θϕ) + k2(t; θπ), for exponential utility
Π(t, St, Zt, ϕ(Yt; θϕ); θπ) = k1(t; θπ)ϕ(Yt; θϕ)/Zt + k2(t; θπ)/Zt, where k1(·; θπ) : [0, T] →
RdS×dX and k2(·; θπ) : [0, T] → RdS×dX are two time dependent functions (Appendix F.2).
We can derive the functional forms of k1 and k2 since the two are solutions to systems of
ODEs related to algebraic Riccati equations (Appendix G). We can also directly use function
approximators like neural networks or kernel methods for the two. For model calibration, we
use a negative mean square loss with the derivation deferred to Appendix E: L(θϕ, θS) :=

−E
[∑dS

i=1

[
log(Si

t+∆t) − log(Si
t) − ϕi(Yt; θϕ)∆t − θiS

]2]
, where in this case θS is a dS × 1

vector. Therefore, to implement FaLPO, we can parameterize the candidate policy function using Π
and optimize (5).

Note that the methodology of FaLPO is also generally applicable to other decision-making problems
besides portfolio optimization. In Appendix H, we use linear quadratic control with stochastic factors
as an example to demonstrate the generality of FaLPO.

4 THEORY

We theoretically analyze both the asymptotic and non-asymptotic characteristics of FaLPO.

4.1 ASYMPTOTIC ANALYSIS

FaLPO applies the policy functional form and model calibration derived from continuous-time
models to discrete-time policy learning. We show that FaLPO can achieve the optimal performance
asymptotically (i.e. with infinite data and perfect optimization). In the following, we describe the
assumptions and results and provide the formal theorem in the end.

We provide an intuitive description on the assumptions, with the formal statements provided in
Appendix I.1. First, we assume that the portfolio optimization problem satisfies some standard
regularity conditions (Higham et al., 2002): the drift and volatility are locally Lipschitz continuous;
meanwhile, the asset prices, the stochastic factors, and the wealth process under the optimal policy
have bounded moments. Second, we assume that the utility function U(z) has linear growth on
z ∈ Z . Note that some widely used cases like power utility with γ < 1 and exponential utility with
lower-bounded wealth satisfy this assumption. Third, we consider only admissible policies with
parameters in A and we assume that A covers the optimal continuous-time policy parameter. A policy
is admissible if it is predictable and if the wealth process Zπ

t ∈ Z for any t ∈ [0, T] almost surely.
It is a common practice to only consider such admissible policies in portfolio optimization. The
last two assumptions are artifacts of the current theoretical analysis; in practice FaLPO can achieve
reasonable performance without enforcing them (see Section 5).

With the foregoing assumptions, we show that the performance of FaLPO can asymptotically converge
to that of the best policy in discrete time. In detail, we define V ∗

∆t := V (π∗) where π∗ is an optimal
discrete-time admissible policy with time interval ∆t, i.e., V ∗

∆t is the optimal performance obtained
without constraining to the functional form (3) or leveraging model calibration like (5). Next, define

6

Under review as a conference paper at ICLR 2023

θ∗∆t := (θ∗ϕ,∆t, θ
∗
π,∆t, θ

∗
S,∆t) ∈ argmax(θϕ,θπ,θS)∈A H(θϕ, θπ, θS) with the policy functional form

(3), such that V (θ∗∆t) is the performance that FaLPO can achieve with infinite data and perfect
optimization. Then, Theorem 4.1 shows that the gap between V ∗

∆t and V (θ∗∆t) converges to zero as
∆t goes to zero.

THEOREM 4.1 With assumptions in Appendix I.1, lim∆t→0

(
V ∗
∆t − V (θ∗∆t)

)
= 0.

Theorem 4.1 justifies the methodology of FaLPO under a small time interval. The proof is provided
in Appendix I.2 and Appendix I.3.

4.2 NON-ASYMPTOTIC ANALYSIS

We study the finite-sample performance of FaLPO. We describe the problem setup, major assumptions,
and then provide the theorem. In each iteration, we collect B independent trajectories to estimate
the gradient of H . Let θn be the estimate after the nth iteration, and N the total number of iterations.
we analyze the average estimate θ̄ :=

∑N
n=1 θn
N instead of θN , which is a common technique for

stochastic optimization analysis. Specifically, we aim to bound the expected difference between V ∗
∆t

and V (θ̄). Note that it is extremely challenging to theoretically analyze a non-convex stochastic
optimization (5) without further specifications in problem setup and assumptions (Polyak, 1963;
Bhandari & Russo, 2019; Jin et al., 2021; Ma, 2020; Wang et al., 2019). Therefore, we consider a
projection-based variant of FaLPO, under which the optimization process is conducted in a bounded
parameter set B ⊆ A. Furthermore, we assume that the objective function H is strongly concave in
B with a local maximal point θ†∆t := (θ†ϕ,∆t, θ

†
P,∆t, θ

†
S,∆t). Similar local curvature assumptions are

commonly used to analyze non-convex problems (Bach et al., 2017; Loh, 2017). With the above
setup and assumptions, the expected gap between V ∗

∆t and V (θ̄) satisfies the following finite-sample
bound in Theorem 4.2.

THEOREM 4.2 With the aforementioned projection-based FaLPO algorithm and assumptions, both
detailed in Appendix J.2, there exist positive constants C1, C2, C3, and C4 such that

E[V ∗
∆t − V (θ̄)] ≤ e∆t

1− λ
+

H(θ∗∆t)−H(θ†)

1− λ
+

C1 log(N)

N(1− λ)

+
C1 log(N)

BN(1− λ)

[
(1− λ)2C2 + λ2C3 + 2λ(1− λ)C4

]
,

(7)

where λ ∈ [0, 1]. Also, e∆t is an error term not related to N or B but dependent on ∆t with
lim∆t→0 e∆t = 0.

Theorem 4.2 provides a non-asymptotic upperbound on the gap between the optimal performance V ∗
∆t

and the one achieved by FaLPO V (θ̄). We briefly comment on each term in the upperbound. e∆t

1−λ
bounds the asymptotic performance gap caused by leveraging the continuous-time policy functional
form constraint and model calibration, and we explain its connection to Theorem 4.1 in Appendix J.4.
H(θ∗

∆t)−H(θ†
∆t)

1−λ controls the performance gap between the local optimal point θ†∆t and the global
optimal point θ∗∆t. The remaining terms characterize the performance gap between θ̄ and θ†∆t.

Theorem 4.2 has two implications. First, the bound in (7) is a rational function of λ. Accordingly,
there exist situations where a λ ∈ (0, 1) provides a smaller upper bound than λ = 0, indicating the
possibility that tuning λ can provide better performance (see experiments in Appendix J). Second,
when λ = 1, the bound diverges to infinity. This makes sense since when λ = 1, H(θϕ, θπ, θS) =
L(θϕ, θS) does not contain θπ: the algorithm does not learn the policy. We prove the theorem in
Appendices J.1, J.3 and J.4.

5 EXPERIMENTS

By incorporating continuous-time finance models into policy learning, FaLPO can deal with high
data noise and complex factor effects. In this section, we demonstrate the improved performance of
FaLPO against existing portfolio optimization methods, over synthetic and real-world experiments.

7

Under review as a conference paper at ICLR 2023

Methods Explicit Factor
Representation

Continuous-Time
Model

Discrete-Time
Model

MMMC ✖ ✔ ✖

DDPG ✖ ✖ ✖

SLAC ✔ ✖ ✔

RichID ✔ ✔ ✖

CT-MB-RL ✖ ✔ ✖

FaLPO ✔ ✔ ✖

Table 1: Competing methods and their
characteristics.

Annual Volatility 0.1 0.2 0.3
FaLPO −0.465± 0.446 −1.35± 0.155 −2.737± 0.219

DDPG −1.650± 0.456 −3.30± 1.294 −5.495± 1.269

SLAC −0.750± 0.210 −5.50± 0.011 −6.160± 0.012

RichID −3.350± 0.111 −5.65± 0.102 −6.325± 0.048

CT-MB-RL −2.850± 0.014 −5.35± 0.020 −6.160± 0.026

MMMC −4.723± 7.619 −5.602± 4.299 −6.124± 3.217

Table 2: Average terminal utility after tuning with
standard deviation for synthetic data

5.1 SYNTHETIC EXPERIMENTS

Metrics We compare different methods using the average terminal utility since it is the ultimate goal
in our portfolio optimization problem formulation and is commonly used in continuous-time finance
models. There exist other statistics measuring the performance of portfolios (see Section B). These
statistics are not equivalent or consistent with the utility, and thus we do not emphasize them.

Methods We compare FaLPO with five competing methods representing various approaches in
prior work (Table 1). (i) Merton Model with Model Calibration (MMMC): model calibration of a
classic continuous-time finance baseline, which does not consider stochastic factors (Merton, 1969),
combined with closed-from policy function. (ii) Deep Deterministic Policy Gradient (DDPG): a
state-of-the-art model-free RL method with deterministic policy (Silver et al., 2014), which many
empirical portfolio optimization methods build on. (iii) Stochastic latent actor critic (SLAC): a
state-of-the-art representation learning RL method that explicitly learns representation of latent
variables (Lee et al., 2020). (iv) Model-based RL with rich observations (RichID): a state-of-the-art
model-based RL method with representation learning (Mhammedi et al., 2020). (v) Continuous-time
model-based RL (CT-MB-RL): policy gradient optimizing the performance objective using the policy
functional form derived from continuous-time models, but directly treating the features as the factors.

For policy gradient methods, we pick a deterministic policy approach like DDPG as, when compared
to non-deterministic policy gradient alternatives, they are more suitable to portfolio optimization due
to the continuous action space, high exploration cost, and high noise in financial data (Appendix A.2).
For portfolio optimization, different variance reduction methods for policy gradient (Schulman
et al., 2015; 2017; Xu et al., 2020) only provide minor performance improvements (Aboussalah,
2020). We hence do not report such results. For areas of RL with representation learning and
model-based RL, we focus on those (SLAC and RichID) explicitly learning a representation of latent
variables, since such methods are more closely related to FaLPO. There are other techniques like
data augmentation, feature construction, adversarial training, and regularization that can improve the
empirical performance of portfolio optimization (see survey in Hambly et al., 2021, Section 4.3). In
this work, we focus on the central methodological task of policy learning, and most such techniques
can be directly combined with our proposed method.

Protocol We simulate environments with the Kim–Omberg model and implement the considered
methods to compare their performance. Note that a key data generating parameter in portfolio
optimization is the signal-to-noise ratio, which can be roughly characterized by the ratio between the
scale of the drift and the scale of the volatility (see Appendix K.1 for detailed explanation). We test
our method under different signal-to-noise ratios. To this end, we randomly generate stock drifts to
around 10% (to mimic the real-world average return of stocks in SP500), vary the scale of volatility
in {10%, 20%, 30%}, and simulate data following the procedure in Appendix K.2. Then, we apply
the considered methods to maximize the terminal power and exponential utility with different γ’s.
For each method, we tune the learning rate and other method-specific hyperparameters with early
stopping (Appendix K.3). With each method-hyperparameter-environment combination, we repeat
training, validation, and testing five times.

Results For exponential utility maximization, Table 2 summarizes the average test utility after
hyperparameter selection with 10 stocks, 10 features, and γ = 5. FaLPO outperforms all the
competing methods in terms of average terminal utility. This performance gain may be explained
by the factor representation learning informed by the continuous-time finance model, as other
methods are incapable of doing so. Meanwhile, MMMC and CT-MB-RL underperform, which
suggests the disadvantage of using oversimplified models. Compared with the more sophisticated
RL methods like SLAC and RichID, the simple DDPG is fairly competitive. This is consistent

8

Under review as a conference paper at ICLR 2023

Methods Energy Material Industrials Mix
FaLPO −2.4± 1.9 −3.2± 1.0 −6.3± 2.3 −3.5± 1.5

DDPG −6.6± 1.2 −7.3± 1.5 −7.3± 2.1 −2.5× 104 ± 3.3× 108

SLAC −6.8± 0.2 −7.0± 1.5 −342.4± 886.8 −3.0× 108 ± 4.3× 1012

RichID −6.5± 0.1 −6.9± 1.4 −6.9± 0.4 −8.1± 3.9

CT-MB-RL −4.2± 6.2 −5.4± 4.3 −11655± 32947.5 −5.7± 3.1

MMMC −8.5± 7.6 −6.5± 1.7 −11.0± 5.4 −7.5± 4.4

Table 3: Average terminal utility for real-world data.
Mix denotes a mix of stocks in the previous three sec-
tors.

●
●

●

●

●

●

●

●

●

●

●

●
● ● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

● ●

●
●

● ●

●
●

●
●

●
●

●
●

● ●
●

●
●

●0.0

0.2

0.4

0.6

0.8

Q1 2018 Q4 2018 Q1 2020 Q1 2022
Date

A
ve

ra
ge

 R
et

u
rn

●

●

●

γ=5
γ=7
γ=9

Figure 4: FaLPO average return over portfo-
lio terminal dates.

with the existing observation that more complicated RL solutions may not always be suitable for
portfolio optimization due to the large noise and idiosyncrasy in the data. In the appendix, we
provide additional experimental results with different problem dimensions (Appendix K.4.1), other γ
values (Appendix K.4.2), and different utility functions (Appendix K.4.3). The results are consistent.
Appendix K.4.4 studies a simplified case, where the optimal performance can be mathematically
derived. FaLPO achieves a similar performance as the theoretically optimal one.

5.2 REAL-WORLD STOCK TRADING

In this section, we present an application of FaLPO for real-world stock trading problems. Following
the synthetic portfolio optimization setup, we study the six considered methods for 21-day (one
month) stock trading in four different stock sectors using the daily stock price data from Yahoo finance
between January 4, 2006 and April 1, 2022. For factors, we follow existing works (Aboussalah, 2020;
De Prado, 2018; Dixon et al., 2020) and consider economic indexes, technical analysis indexes, and
sector-specific features such as oil prices, gold prices, and related ETF prices, leading to around 30
factors for each sector. In each sector we select 10 stocks according to the availability and trading
volume in the considered time range (Appendix L.1). The training, validation, and testing data are
constructed using rolling windows (Appendix L.3). Table 3 reports the achieved average utility of
each method under the selected hyperparamters. FaLPO achieves the highest average utility in all
four sectors.

Next, we conduct the training-tuning-testing procedure above with γ ∈ {5, 7, 9}, and report the
returns of FaLPO in each quarter in Figure 4. Recall that a smaller γ corresponds to taking more risk.
This is consistent with the observation in Figure 4 that the smaller the γ the bigger the return but the
larger the fluctuations. Also, the return fluctuates and drops around late 2018 and early 2020. The
former corresponds to the abrupt bear market at the end of 2018, and the latter is consistent with the
time period that COVID-19 bursts. Under these two time periods, the financial market was especially
noisy and unpredictable. We also implement sensitivity analysis on λ in Appendix L.4 and observe
that a non-zero small λ works well in practice.

6 EPILOGUE

Conclusion This work proposes FaLPO, a new decision-making framework for portfolio optimiza-
tion with stochastic factors. By using continuous-time finance models to regularize policy learning,
FaLPO is able to handle high noise and complex effects in financial data. We demonstrate FaLPO’s
benefits both theoretically and empirically. We focus on policy learning and defer more advanced
feature engineering methods to future work.

Limitations FaLPO has two potential limitations. First, while we show the extension of FaLPO to
problems beyond portfolio optimization, FaLPO is not applicable when there is no suitable parametric
model to derive the optimal policy functional form. In such cases, the model-regularized policy
learning of FaLPO cannot be implemented. Second, the performance of FaLPO still relies on good
features (Yt) to generate factors (Xt). In the presence of unpredictable market events (like COVID-
19), or when the features do not contain any useful signals (like the Merton case in Appendix K.4.4),
additional caution needs to be taken when applying FaLPO.

Reproducibility The assumptions and proof details are provided in Appendices I and J. The
experiment implementation details are reported in Appendices K and L.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Amine Mohamed Aboussalah. What is the value of the cross-sectional approach to deep reinforcement
learning? Available at SSRN, 2020.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021.

Yacine Aı̈t-Sahalia. Closed-form likelihood expansions for multivariate diffusions. The Annals of
Statistics, 36(2):906–937, 2008.

Yacine Ait-Sahalia and Robert L Kimmel. Estimating affine multifactor term structure models using
closed-form likelihood expansions. Journal of Financial Economics, 98(1):113–144, 2010.

Levon Avanesyan. Optimal investment in incomplete markets with multiple Brownian externalities.
PhD thesis, Princeton University, 2021.

Levon Avanesyan, Mykhaylo Shkolnikov, and Ronnie Sircar. Construction of forward performance
processes in stochastic factor models and an extension of widder’s theorem. arXiv preprint
arXiv:1805.04535, 2018.

Stephen H Bach, Bryan He, Alexander Ratner, and Christopher Ré. Learning the structure of
generative models without labeled data. In International Conference on Machine Learning, pp.
273–282. PMLR, 2017.

Krzysztof Bartoszek, Sylvain Glémin, Ingemar Kaj, and Martin Lascoux. Using the Ornstein–
Uhlenbeck process to model the evolution of interacting populations. Journal of theoretical
biology, 429:35–45, 2017.

Maximilian Behr, Peter Benner, and Jan Heiland. Invariant Galerkin Ansatz spaces and Davison-
Maki methods for the numerical solution of differential Riccati equations. arXiv preprint
arXiv:1910.13362, 2019.

Yoshua Bengio. Using a financial training criterion rather than a prediction criterion. International
Journal of Neural Systems, 8(04):433–443, 1997.

Alexandros Beskos and Gareth O Roberts. Exact simulation of diffusions. The Annals of Applied
Probability, 15(4):2422–2444, 2005.

Jalaj Bhandari and Daniel Russo. Global optimality guarantees for policy gradient methods. arXiv
preprint arXiv:1906.01786, 2019.

Homanga Bharadhwaj, Mohammad Babaeizadeh, Dumitru Erhan, and Sergey Levine. Information
prioritization through empowerment in visual model-based rl. arXiv preprint arXiv:2204.08585,
2022.

Lukas Biewald. Experiment tracking with weights and biases, 2020. URL https://www.wandb.
com/. Software available from wandb.com.

Jaya PN Bishwal. Parameter estimation in stochastic differential equations. Springer, 2007.

Tomas Björk. Arbitrage theory in continuous time. Oxford university press, 2009.

Simone P Blomberg, Suren I Rathnayake, and Cheyenne M Moreau. Beyond brownian motion
and the ornstein-uhlenbeck process: Stochastic diffusion models for the evolution of quantitative
characters. The American Naturalist, 195(2):145–165, 2020.

George Chacko and Luis M Viceira. Dynamic consumption and portfolio choice with stochastic
volatility in incomplete markets. The Review of Financial Studies, 18(4):1369–1402, 2005.

Yevgen Chebotar, Karol Hausman, Marvin Zhang, Gaurav Sukhatme, Stefan Schaal, and Sergey
Levine. Combining model-based and model-free updates for trajectory-centric reinforcement
learning. In International conference on machine learning, pp. 703–711. PMLR, 2017a.

10

https://www.wandb.com/
https://www.wandb.com/

Under review as a conference paper at ICLR 2023

Yevgen Chebotar, Mrinal Kalakrishnan, Ali Yahya, Adrian Li, Stefan Schaal, and Sergey Levine. Path
integral guided policy search. In 2017 IEEE international conference on robotics and automation
(ICRA), pp. 3381–3388. IEEE, 2017b.

Marco Corazza and Francesco Bertoluzzo. Q-learning-based financial trading systems with ap-
plications. University Ca’Foscari of Venice, Dept. of Economics Working Paper Series No, 15,
2014.

Marcos Lopez De Prado. Advances in financial machine learning. John Wiley & Sons, 2018.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472. Citeseer, 2011.

Matthew F Dixon, Igor Halperin, and Paul Bilokon. Machine Learning in Finance. Springer, 2020.

Kenji Doya. Reinforcement learning in continuous time and space. Neural computation, 12(1):
219–245, 2000.

Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, and Ruslan Salakhutdinov. Mismatched
no more: Joint model-policy optimization for model-based rl. arXiv preprint arXiv:2110.02758,
2021.

Eugene F Fama and Kenneth R French. The cross-section of expected stock. The Journal of Finance,
47(2):427–465, 1992.

Eugene F Fama and Kenneth R French. A five-factor asset pricing model. Journal of financial
economics, 116(1):1–22, 2015.

Vicky Fasen. Statistical estimation of multivariate ornstein–uhlenbeck processes and applications to
co-integration. Journal of Econometrics, 172(2):325–337, 2013.

Damir Filipović and Eberhard Mayerhofer. Affine diffusion processes: theory and applications. In
Advanced financial modelling, pp. 125–164. De Gruyter, 2009.

Wendell Fleming and Raymond Rishel. Deterministic and stochastic optimal control. Springer, 1975.

Wendell H Fleming and Sanjoy K Mitter. Optimal control and nonlinear filtering for nondegenerate
diffusion processes. Stochastics: An International Journal of Probability and Stochastic Processes,
8(1):63–77, 1982.

Wendell H Fleming and Halil Mete Soner. Controlled Markov processes and viscosity solutions,
volume 25. Springer Science & Business Media, 2006.

Jean-Pierre Fouque, Ronnie Sircar, and Thaleia Zariphopoulou. Portfolio optimization and stochastic
volatility asymptotics. Mathematical Finance, 27(3):704–745, 2017.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar, et al. Bayesian reinforcement
learning: A survey. Foundations and Trends® in Machine Learning, 8(5-6):359–483, 2015.

Amit Goyal and Pedro Santa-Clara. Idiosyncratic risk matters! The journal of finance, 58(3):
975–1007, 2003.

Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. Continuous deep q-learning
with model-based acceleration. In International conference on machine learning, pp. 2829–2838.
PMLR, 2016.

Mao Guan and Xiao-Yang Liu. Explainable deep reinforcement learning for portfolio management:
an empirical approach. In Proceedings of the Second ACM International Conference on AI in
Finance, pp. 1–9, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861–1870. PMLR, 2018.

11

Under review as a conference paper at ICLR 2023

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565. PMLR, 2019.

Ben Hambly, Renyuan Xu, and Huining Yang. Recent advances in reinforcement learning in finance.
arXiv preprint arXiv:2112.04553, 2021.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: an optimal algorithm for
stochastic strongly-convex optimization. In Proceedings of the 24th Annual Conference on
Learning Theory, pp. 421–436. JMLR Workshop and Conference Proceedings, 2011.

Florian Herzog, Gabriel Dondi, Hans P Geering, and Lorenz Schumann. Continuous-time multivariate
strategic asset allocation. In Proceedings of the 11th Annual Meeting of the German Finance
Association, Session 2B, pp. 1–34. Citeseer, 2004.

Desmond J Higham, Xuerong Mao, and Andrew M Stuart. Strong convergence of euler-type methods
for nonlinear stochastic differential equations. SIAM Journal on Numerical Analysis, 40(3):
1041–1063, 2002.

Vladimı́r Holỳ and Petra Tomanová. Estimation of ornstein-uhlenbeck process using ultra-high-
frequency data with application to intraday pairs trading strategy. arXiv preprint arXiv:1811.09312,
2018.

Guosheng Hu, Yuxin Hu, Kai Yang, Zehao Yu, Flood Sung, Zhihong Zhang, Fei Xie, Jianguo Liu,
Neil Robertson, Timpathy Hospedales, et al. Deep stock representation learning: From candlestick
charts to investment decisions. In 2018 IEEE international conference on acoustics, speech and
signal processing (ICASSP), pp. 2706–2710. IEEE, 2018.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in Neural Information Processing Systems, 32, 2019.

Zhengyao Jiang, Dixing Xu, and Jinjun Liang. A deep reinforcement learning framework for the
financial portfolio management problem. arXiv preprint arXiv:1706.10059, 2017.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. On nonconvex
optimization for machine learning: Gradients, stochasticity, and saddle points. Journal of the ACM
(JACM), 68(2):1–29, 2021.

Hilbert J Kappen. Path integrals and symmetry breaking for optimal control theory. Journal of
statistical mechanics: theory and experiment, 2005(11):P11011, 2005.

Hilbert Johan Kappen and Hans Christian Ruiz. Adaptive importance sampling for control and
inference. Journal of Statistical Physics, 162(5):1244–1266, 2016.

Ioannis Karatzas and Steven Shreve. Brownian motion and stochastic calculus, volume 113. springer,
1987.

Belhal Karimi, Blazej Miasojedow, Eric Moulines, and Hoi-To Wai. Non-asymptotic analysis of
biased stochastic approximation scheme. In Conference on Learning Theory, pp. 1944–1974.
PMLR, 2019.

Taesup Kim, Sungjin Ahn, and Yoshua Bengio. Variational temporal abstraction. Advances in Neural
Information Processing Systems, 32, 2019.

Tong Suk Kim and Edward Omberg. Dynamic nonmyopic portfolio behavior. The Review of Financial
Studies, 9(1):141–161, 1996.

Holger Kraft. Optimal portfolios and heston’s stochastic volatility model: an explicit solution for
power utility. Quantitative Finance, 5(3):303–313, 2005.

Michael Laskin, Denis Yarats, Hao Liu, Kimin Lee, Albert Zhan, Kevin Lu, Catherine Cang, Lerrel
Pinto, and Pieter Abbeel. Urlb: Unsupervised reinforcement learning benchmark. arXiv preprint
arXiv:2110.15191, 2021.

12

Under review as a conference paper at ICLR 2023

Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. Stochastic latent actor-critic:
Deep reinforcement learning with a latent variable model. Advances in Neural Information
Processing Systems, 33:741–752, 2020.

Xiao-Yang Liu, Hongyang Yang, Jiechao Gao, and Christina Dan Wang. Finrl: Deep reinforcement
learning framework to automate trading in quantitative finance. In Proceedings of the Second ACM
International Conference on AI in Finance, pp. 1–9, 2021.

Po-Ling Loh. Statistical consistency and asymptotic normality for high-dimensional robust m-
estimators. The Annals of Statistics, 45(2):866–896, 2017.

Tengyu Ma. Why do local methods solve nonconvex problems? Beyond the Worst-Case Analysis of
Algorithms, pp. 465, 2020.

Sidra Mehtab and Jaydip Sen. A robust predictive model for stock price prediction using deep
learning and natural language processing. Available at SSRN 3502624, 2019.

Robert C Merton. Lifetime portfolio selection under uncertainty: The continuous-time case. The
review of Economics and Statistics, pp. 247–257, 1969.

Robert C Merton. Continuous-time finance. Blackwell Cambridge, MA, 1992.

Robert C Merton et al. An intertemporal capital asset pricing model. Econometrica, 41(5):867–887,
1973.

Zakaria Mhammedi, Dylan J Foster, Max Simchowitz, Dipendra Misra, Wen Sun, Akshay Krish-
namurthy, Alexander Rakhlin, and John Langford. Learning the linear quadratic regulator from
nonlinear observations. Advances in Neural Information Processing Systems, 33:14532–14543,
2020.

Johannes Muhle-Karbe, Max Reppen, and H Mete Soner. A primer on portfolio choice with small
transaction costs. Annual Review of Financial Economics, 9:301–331, 2017.

Rémi Munos. Policy gradient in continuous time. Journal of Machine Learning Research, 7:771–791,
2006.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynam-
ics for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pp. 7559–7566. IEEE, 2018.

Abhishek Nan, Anandh Perumal, and Osmar R Zaiane. Sentiment and knowledge based algorithmic
trading with deep reinforcement learning. In International Conference on Database and Expert
Systems Applications, pp. 167–180. Springer, 2022.

Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic
approximation approach to stochastic programming. SIAM Journal on optimization, 19(4):1574–
1609, 2009.

Bernt Oksendal. Stochastic differential equations: an introduction with applications. Springer
Science & Business Media, 2013.

Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli. Stochas-
tic variance-reduced policy gradient. In International Conference on Machine Learning, pp.
4026–4035. PMLR, 2018.

PCB Phillips. The structural estimation of a stochastic differential equation system. Econometrica:
Journal of the Econometric Society, pp. 1021–1041, 1972.

Peter CB Phillips and Jun Yu. Maximum likelihood and gaussian estimation of continuous time
models in finance. In Handbook of financial time series, pp. 497–530. Springer, 2009.

Boris T Polyak. Gradient methods for the minimisation of functionals. USSR Computational
Mathematics and Mathematical Physics, 3(4):864–878, 1963.

13

Under review as a conference paper at ICLR 2023

Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and rein-
forcement learning by approximate inference. Proceedings of Robotics: Science and Systems VIII,
2012.

A Max Reppen and H Mete Soner. Bias-variance trade-off and overlearning in dynamic decision
problems. arXiv preprint arXiv:2011.09349, 2020.

Rori V Rohlfs, Patrick Harrigan, and Rasmus Nielsen. Modeling gene expression evolution with an
extended Ornstein–Uhlenbeck process accounting for within-species variation. Molecular biology
and evolution, 31(1):201–211, 2014.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897. PMLR,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. Pegasos: Primal estimated
sub-gradient solver for svm. Mathematical programming, 127(1):3–30, 2011.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387–395. PMLR, 2014.

Freek Stulp and Olivier Sigaud. Path integral policy improvement with covariance matrix adaptation.
In Proceedings of the 29th International Coference on International Conference on Machine
Learning, pp. 1547–1554, 2012.

Jingrui Sun and Jiongmin Yong. Stochastic Linear-Quadratic Optimal Control Theory: Open-Loop
and Closed-Loop Solutions. Springer Nature, 2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Peter Tankov. Financial modelling with jump processes. CRC press, 2003.

Evangelos Theodorou, Jonas Buchli, and Stefan Schaal. A generalized path integral control approach
to reinforcement learning. The Journal of Machine Learning Research, 11:3137–3181, 2010.

Brandon Trabucco, Xinyang Geng, Aviral Kumar, and Sergey Levine. Design-bench: Benchmarks
for data-driven offline model-based optimization. arXiv preprint arXiv:2202.08450, 2022.

Vladimir Vapnik. Principles of risk minimization for learning theory. In Advances in neural
information processing systems, pp. 831–838, 1992.

Oldrich Vasicek. An equilibrium characterization of the term structure. Journal of financial economics,
5(2):177–188, 1977.

J. von Neumann and O. Morgenstern. Theory of games and economic behavior. Princeton University
Press, 1947.

Jessica A Wachter. Portfolio and consumption decisions under mean-reverting returns: An exact
solution for complete markets. Journal of financial and quantitative analysis, 37(1):63–91, 2002.

Haoran Wang, Thaleia Zariphopoulou, and Xunyu Zhou. Exploration versus exploitation in reinforce-
ment learning: a stochastic control approach. arXiv preprint arXiv:1812.01552, 2018.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods: Global
optimality and rates of convergence. arXiv preprint arXiv:1909.01150, 2019.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A
locally linear latent dynamics model for control from raw images. Advances in neural information
processing systems, 28, 2015.

14

Under review as a conference paper at ICLR 2023

Ivo Welch and Amit Goyal. A comprehensive look at the empirical performance of equity premium
prediction. The Review of Financial Studies, 21(4):1455–1508, 2008.

Zhuoran Xiong, Xiao-Yang Liu, Shan Zhong, Hongyang Yang, and Anwar Walid. Practical deep
reinforcement learning approach for stock trading. arXiv preprint arXiv:1811.07522, 2018.

Pan Xu, Felicia Gao, and Quanquan Gu. An improved convergence analysis of stochastic variance-
reduced policy gradient. In Uncertainty in Artificial Intelligence, pp. 541–551. PMLR, 2020.

Jiongmin Yong and Xun Yu Zhou. Stochastic controls: Hamiltonian systems and HJB equations,
volume 43. Springer Science & Business Media, 1999.

Pengqian Yu, Joon Sern Lee, Ilya Kulyatin, Zekun Shi, and Sakyasingha Dasgupta. Model-based
deep reinforcement learning for dynamic portfolio optimization. arXiv preprint arXiv:1901.08740,
2019.

Thaleia Zariphopoulou. A solution approach to valuation with unhedgeable risks. Finance and
stochastics, 5(1):61–82, 2001.

15

Under review as a conference paper at ICLR 2023

APPENDIX

A RELATED LITERATURE

In this section, we discuss related literature.

A.1 CONTINUOUS-TIME FINANCE MODELS

Existing strategies for solving portfolio optimization using continuous-time finance models

can be loosely summarized as performing three steps:

1. Choosing the model for the dynamics, i.e. the type of stochastic differential equation (SDE).
2. Estimating the parameter of the selected model (which is also referred to as model fitting,

model identification, or calibration).
3. Solving for the optimal policy under the estimated model.

The third step leverages stochastic optimal control tools (Fleming & Rishel, 1975; Fleming & Mitter,
1982; Fleming & Soner, 2006; Yong & Zhou, 1999).

Finding and estimating an appropriate model for stochastic optimal control requires significant
domain knowledge. For instance, in finance, the modeler must specify both which features are
relevant and how they affect stock prices (Fama & French, 1992). If not every relevant factor is
correctly specified, optimal control can hardly lead to good performances. As a result, in stock
trading, control methods would hand pick three to five economic indices as the factors and assume
they follow a simple (often linear) SDE. But indeed trading can benefit from much richer datasets
including related option prices, technical indicators, and interest rates (Aboussalah, 2020; De Prado,
2018; Dixon et al., 2020; Mehtab & Sen, 2019).

Further, even with a correctly specified model and factors, likelihood-based estimation for SDE
control models can be very challenging (Phillips & Yu, 2009). As a result, methods like Aı̈t-Sahalia
(2008); Ait-Sahalia & Kimmel (2010) seek to replace the exact likelihood with other likelihood-based
objective functions, while maintaining theoretical guarantees. However, the proposed objective
function needs to be derived for each specific problem, and the derivation can be challenging. Other
methods like Fasen (2013); Holỳ & Tomanová (2018) rely on more specific parametric or low-
dimensional setups. To alleviate these issues, our framework extends the existing continuous-time
finance models by allowing for a flexible and generalized definition of stochastic factor dynamics.
Further, we simultaneously conduct policy learning and model calibration in an RL manner, with a
square-loss objective that avoids the calculation of an exact likelihood.

A.2 REINFORCEMENT LEARNING

RL aims to conduct the aforementioned three steps by (i) relying more on data (ii) in an end-to-end
fashion. Methods like model-free RL assume no parametric forms on the dynamics, and directly learn
the optimal policy while explicitly learning the model (step 1) and estimating the parameters (step 2).

Discrete-Time Model-Free RL There exist many discrete-time model-free RL methods (Sutton &
Barto, 2018). In this category, deep deterministic policy gradient (DDPG) is the most relevant one,
and is empirically most widely used for portfolio optimization (Hambly et al., 2021). The reason
is twofold. First of all, DDPG is a policy-gradient based method, and thus can naturally handle
continuous states and actions in portfolio optimization with simple procedures. Second, DDPG learns
a deterministic policy instead of a stochastic one like Haarnoja et al. (2018). This characteristic is
especially important in portfolio optimization where the policy learning goal is a deterministic policy
since the cost of a stochastic policy is extremely expensive.

Continuous-Time Model-Free RL Continuous-time model-free RL (Wang et al., 2018; Doya,
2000; Munos, 2006) aims to solve for a continuous-time policy. However, such methods do not use
or assume any SDE structure, and thus struggle with the common open questions in model-free RL
like poor stability and sample complexity. As one example, path integral methods stem from the

16

Under review as a conference paper at ICLR 2023

theoretical result that the value function of a type of continuous-time decision-making problems
can be expressed in closed form as a Feyman-Kac path integral (Fleming & Rishel, 1975; Kappen,
2005). A series of control/RL methods follow the rationale of optimizing the policy to maximize
such an integral. Specifically, Theodorou et al. (2010) propose an open-loop control strategy; Kappen
& Ruiz (2016) builds RL with importance sampling; Chebotar et al. (2017a;b); Stulp & Sigaud
(2012) combine path integral with other model-based or model-free RL methods. However, the core
derivation only holds for decision-making satisfying Kappen & Ruiz (2016, Equation (1)), which is
equivalent to assuming that the action does not affect the randomness in decision-making. Such an
assumption is limiting, and does not hold for portfolio optimization, where how to allocate the wealth
in order to minimize the risk is key to a successful policy.

Model-based RL and RL with Representation Learning Model-based RL and RL with represen-
tation learning are two active research areas but without a clear general state-of-the-art (Bharadhwaj
et al., 2022; Eysenbach et al., 2021; Trabucco et al., 2022; Janner et al., 2019; Deisenroth & Ras-
mussen, 2011; Nagabandi et al., 2018; Laskin et al., 2021; Lee et al., 2020; Watter et al., 2015;
Chebotar et al., 2017a; Hafner et al., 2019; Kim et al., 2019). The closest to FaLPO are those that
learn an explicit representation of a latent variable like Lee et al. (2020); Mhammedi et al. (2020).
But such methods are unable to leverage continuous-time finance models for portfolio optimization.

Bayesian RL Our proposed framework is also related to Bayesian models (Ghavamzadeh et al.,
2015; Rawlik et al., 2012), if we treat the learned representation of factors as the hidden variable.
Strictly formulating an NSFM as a Bayesian model requires assumptions specifying the conditional
distributions, and thus requires more domain knowledge. The optimization of Bayesian methods is
also more challenging.

RL for Stock Trading Various efforts have been made on applying RL to stock trading (Corazza &
Bertoluzzo, 2014; Hambly et al., 2021; Nan et al., 2022; Xiong et al., 2018; Guan & Liu, 2021; Liu
et al., 2021; Hu et al., 2018; Yu et al., 2019). However, these methods focus more on feature selection
or empirical performance-improving techniques. Methodologically, they do not take advantage of
continuous-time finance models.

A.3 EMPIRICAL RISK MINIMIZATION

Another related area is Empirical Risk Minimization (ERM) (Vapnik, 1992). ERM studies the
minimization of an objective function using the averages over training data to construct an empirical
loss function. Recent work connected ERM with simulation-based and data-based offline decision-
making methods (Reppen & Soner, 2020). More specifically, when the random input is observable
and unaffected by actions, and a training set is available, the decision-making problem can be
formulated as an ERM problem. As a result, the portfolio optimization may be reformulated as an
ERM extension.

B OTHER OBJECTIVE FUNCTIONS

Note that the goal of portfolio optimization is to maximize the return while minimize or constrain
the risk. In practice, one can use different objective functions for such a goal, like mean-variance
objective (Hambly et al., 2021), Sharpe ratio, and so on. In this work, we consider utility maximization
with power utility and exponential utility. The proposed method also works with other objective
functions, as long as we can derive (part of) the optimal policy structure. Note that the selection
among these objective functions is more a user-preference question.

17

Under review as a conference paper at ICLR 2023

C GRADIENT ESTIMATES

In this section, we discuss the gradient estimation for both V and L. Assume that we collect B
independent trajectories for St and Yt, denoted as

D := {(s0,k, y0,k), (s∆t,k, y∆t,k), (s2∆t,k, y2∆t,k), · · · (sM∆t,k, yM∆t,k)}Bk=1 .

Then, the gradient estimate for V (θϕ, θπ) is defined as

∇̄V (θϕ, θπ) :=
1

B

B∑
k=1

∇̃Vk(θϕ, θπ) with ∇̃Vk(θϕ, θπ) := ∇θϕ,θπU(z
π(·;θϕ,θπ),∆t
T,k).

The terminal wealth in the trajectory k under the policy where π(·; θπ) is denoted as zπ(·;θπ),∆t
T,k with

z
π(·;θπ),∆t
T,k := z0 +

M∑
m=1

zm−1

[dS∑
i=1

πi(m∆t, ym∆t; θϕ, θπ)
si(m+1)∆t − sim∆t

sim∆t

]
.

Next, we consider the gradient of L:

∇̄L(θϕ, θS) :=
1

B

B∑
k=1

∇̃Lk(θϕ, θS).

Specifically for likelihood and negative mean square loss, we have

∇̃LLikelihood,k(θϕ, θS) :=
1

M

M−1∑
m=0

∇θϕ,θS log(P(s(m+1)∆t,k, ϕ(y(m+1)∆t,k; θϕ)

| sm∆t,k, ϕ(ym∆t,k; θϕ); θS)),

∇̃LNMSL,k(θϕ, θS) :=− 1

M

M−1∑
m=0

dS∑
i=1

∇θϕ,θS

(
log(si(m+1)∆t,k)− log(sim∆t,k)

− E
[∫ (m+1)∆t

m∆t

f j
S(Xs; θS)

− 1

2

dS∑
i=1

(gijS (Xs; θS))
2ds

∣∣∣∣sm∆t,k, ϕ(ym∆t,k; θϕ)

])2

.

As a result, in each iteration, we collect B trajectories to estimate the gradient of H(θϕ, θπ).

D A PRIMER ON STOCHASTIC DIFFERENTIAL EQUATIONS (SDES)

We provide a general formulation of SDEs with two examples.

D.1 FORMULATION OF SDES

SDEs are a generalization of ordinary differential equations to dynamic systems influenced by random
fluctuations. The structure of the randomness can in principle be quite general, such as with jump
processes where the state evolution is no longer continuous (Tankov, 2003). Although our method can
be generalized to all SDEs, we restrict ourselves to practical settings where the source of randomness
is a Brownian motion.

Let Wt be a multi-dimensional independent standard Brownian motion. For a random process St, an
SDE is typically expressed using a differential form as

dSt = f(St) dt+ g(St) dWt, or St = S0 +

∫ t

0

f(St) dt+

∫ t

0

g(St) dWt, (8)

18

Under review as a conference paper at ICLR 2023

where f(·) and g(·) are functions of St. The stochastic integral
∫ t

0
g(St)dWt is the accumulation

of influence to the state due to the noise. We refer the reader to Karatzas & Shreve (1987) for
details on the construction of stochastic integrals and SDE theory. Important here is that Equation (8)
defines the transition of St in an infinitesimal time step. The drift coefficient f(St) characterizes the
deterministic part of the change of St, and the diffusion coefficient g(St) models the randomness in
the transition of St.

D.2 EXAMPLES

As concrete examples, we discuss two families of SDEs widely used in finance, economics, and
biology: Geometric Brownian motion (GBM) and Ornstein–Uhlenbeck (OU) processes (Merton
et al., 1973; Vasicek, 1977; Bartoszek et al., 2017; Blomberg et al., 2020; Rohlfs et al., 2014). The
OU structure appears in both applications below, and the financial application uses GBM as a base,
but extends it with OU drift coefficients. The two types of SDEs are given by

GBM:
dSt

St
= µdt+ σ dWt, OU: dSt = µSt dt+ σ dWt,

where dSt

St
:=
{

dSit

Sit

}
denotes the component-wise division of St, and the matrices µ and σ define

the drift and diffusion coefficients.

We refer the interested reader to Fleming & Soner (2006) for more information on these topics.
We now briefly formulate two classic stochastic optimal control models for decision-making with
stochastic factors. The stochastic factors appear as the drift coefficients of other state variables and
are themselves modeled as SDEs.

D.3 ITÔ’S FORMULA

Itô’s Formula is a fundamental analytical tool for SDEs, and crucial for their analysis. We only
provide a simple version here, which is sufficient for our analysis. A more general and rigorous
statement with assumptions and proof of Itô’s formula and integral can be found in Karatzas & Shreve
(1987, Theorem 3.3).

LEMMA D.1 (Itô’s Formula) Consider a twice differentiable function G, and St following

dSt = f(St) dt+ g(St) dWt.

Then, we have

dG(t, St) =

{
∂G

∂t
+

(
∂G

∂St

)⊤

f(St) +
1

2
Tr

[
g(St)

⊤ ∂2G

∂S2
t

g(St)

]}
dt+

(
∂G

∂St

)⊤

g(St)dWt.

LEMMA D.2 For a suitable bounded process St, the Itô integral
∫ t

0
StdWt satisfies:

E
[∫ t

0

StdWt

]
= 0, E

[(∫ t

0

StdWt

)2
]
= E

[∫ t

0

S2
t dt

]
.

The latter is also referred to as Itô’s isometry

E MODEL CALIBRATION

We discuss two model calibration loss functions, log-likelihood and negative mean square loss.

E.1 LOG-LIKELIHOOD

We can use log-likelihood as L for model calibration. The log-likelihood of SDEs is derived in a
sequential manner. Specifically, for (2) the log-likelihood is derived as

LLog−Likelihood(θϕ, θS) := E[log(PθS (St+∆t, ϕ(Yt+∆t; θϕ) | St, ϕ(Yt; θϕ)))], (9)

where PθS denotes the conditional likelihood according to (2) but with parameter θS instead of θ∗S .
Then, in specific models, one can derive PθS (St+∆t, ϕ(Yt+∆t) |St, ϕ(Yt); θ) (Phillips, 1972; Holỳ &
Tomanová, 2018; Beskos & Roberts, 2005) or the approximation of it (Ait-Sahalia & Kimmel, 2010).

19

Under review as a conference paper at ICLR 2023

E.2 NEGATIVE MEAN SQUARE LOSS

For the SDE system (2), one can also use a negative mean square loss (NMSL) as the calibration
objective. To derive this loss function, we first drive the dynamics of log price by applying Itô’s
Formula Lemma D.1 to (2):

d log(Si
t) = f i

S(Xt; θS)dt−
1

2

dW∑
j=1

(gijS (Xs; θS)])
2dt+

dW∑
j=1

gijS (Xs; θS)]dW
j
t . (10)

Then, combined with Lemma D.2, under proper assumptions of Lemma D.2, we pose expectation
over both sides of the above equation, and derive

E[d log(Si
t)] = f i

S(Xt; θS)dt−
1

2

dW∑
j=1

(gijS (Xs; θS)])
2dt.

In words, the expectation of the log price change in an infinitesimal time is f i
S(Xt; θS)dt −

1
2

∑dW

j=1(g
ij
S (Xs; θS)])

2dt. Therefore, one can estimate the parameter θS by minimizing the mean
square loss between the log price change and the expected log price change:

LNMSL(θS) := −E
[dS∑

i=1

(
log(Si

t+∆t)− log(Si
t)− E

[∫ t+∆t

t

f i
S(Xs; θS)

− 1

2

dW∑
j=1

(gijS (Xs; θS))
2ds

∣∣∣∣St, Xt

])2]
.

(11)

It can be easily proved that the true data generating SDE parameter satisfies

θ∗S ∈ argmaxLNMSL(θS).

Further, if we take Xt = ϕ(Yt; θϕ) and parameterize the objective as LNMSL(θϕ, θS) :=

−E
[∑dS

i=1

[
log(Si

t+∆t)− log(Si
t)− ϕi(Yt; θϕ)∆t− θiS

]2]
, we can prove

θ∗ϕ, θ
∗
S ∈ argmaxLNMSL(θϕ, θS).

Note that in practice it can be very hard to calculate the expectation E
[∫ t+∆t

t
f i
S(Xs; θS) −

1
2

∑dW

j=1(g
ij
S (Xs; θS))

2ds
∣∣St, Xt

]
. Therefore, when ∆t is small, we replace the conditional ex-

pectation via E
[
f i
S(XS ; θS)∆t − 1

2

∑dW

j=1(g
ij
S (XS ; θS))

2∆t

∣∣∣∣St, Xt

]
. Accordingly the calibration

objective is defined as

LNMSL(θS) ≈ −E
[dS∑

i=1

(
log(Si

t+∆t)− log(Si
t)−f i

S(Xs; θS)∆t+
1

2

dW∑
j=1

(gijS (Xs; θS))
2∆t

])2]
.

(12)

E.3 OTHER MODEL CALIBRATION OBJECTIVE

Another potential model calibration objective following the same rationale as (11) is

LNMSL−X(θϕ, θS) := −E
[dX∑

i=1

(
ϕ(Yt+∆t; θϕ)

i − ϕ(Yt; θϕ)
i

− E
[∫ t+∆t

t

f i
X(ϕ(Ys; θϕ)

i; θS)ds

∣∣∣∣ϕ(Yt; θϕ)
i

])2]
,

which is derived using the conditional expectation of Xt+∆ given Xt. However, the true data-
generating parameter (θ∗ϕ, θ

∗
S) is not a maximal point of LNMSL−X . To more clearly see this, this

loss function encourages the representation function ϕ to take a constant output so that Xt is constant
over time with f i

X(Xs; θS) = 0, and LNMSL−X(θϕ) = 0. We also try this loss in experiments, and
it leads to poor validation and test performances.

20

Under review as a conference paper at ICLR 2023

F APPLICATIONS OF FALPO TO DIFFERENT STOCHASTIC FACTOR MODELS
IN CONTINUOUS-TIME FINANCE

FaLPO can be used with many stochastic factor models in continuous-time finance models. In
this section, we discuss the Merton model (Appendix F.1), Kim–Omberg (Appendix F.2) and EVE
(Appendix F.3).

F.1 MERTON MODEL

Merton model (Merton, 1969) is a classic setup for portfolio optimization. It studies the allocation of
capital across a set of financial assets in order to maximize profits and minimize risks.

F.1.1 MODELING

Consider p risky assets with prices St = {Si
t}

p
i=1 and an additional risk-free money market account

with, for simplicity, zero interest rate of return (like cash). The Merton model does not include factors.
The dynamics for asset prices is formulated as

dSi
t

Si
t

= µdt+ σdWt. (13)

The parameters µ, σ are p× p matrices, with σ denoting the volatility of assets. Further, we use Z̃ π̃
t

to denote the wealth at time point t under the continuous-time policy π̃. Under the famous and widely
used self-financing assumption (Björk, 2009), we have

dZ̃ π̃
t

Z̃ π̃
t

= π̃tµdt+ π̃tσdWt.

An investor’s goal is to maximize the expected utility of capital U(ZT) at some future time point T :

max
π̃t

Eπ̃t

[
U(Z̃ π̃

T)|Z0 = z, S0 = s
]
. (14)

Negative values in the policy output are allowed, meaning the agent can short any asset.

F.1.2 POLICY FUNCTIONAL FORM

For the Merton model, Π in (3) can be explicitly derived.

LEMMA F.1 (Policy Functional Form for Merton Model) For a Merton model defined in (13), under
common assumptions, the optimal policy for portfolio optimization (14), with power utility follows

π̃∗ = µ(σσ⊤)−1.

The optimal policy for portfolio optimization (14) with exponential utility follows

π̃∗ =
µ(σσ⊤)−1

Z̃ π̃∗
t

.

Proof. Lemma F.1 is a classic result in continuous-time finance, proposed in Merton (1969). □

In words, in a Merton model, the optimal policy is independent of time, stock prices, features, and
factors. The optimal investment strategy is to keep a constant fraction or amount of wealth in each
asset all along, depending on the choice of utility function. Let θπ be a dS × 1 parameter vector.
According to Lemma F.1, in FaLPO, we parameterize the candidate policy function as

π(t, St, Zt, Yt; θϕ, θπ) = Π(t, St, Zt, ϕ(Yt; θϕ); θπ) = θπ

for power utility, and

π(t, St, Zt, Yt; θϕ, θπ) = Π(t, St, Zt, ϕ(Yt; θϕ); θπ) =
θπ
Zt

for exponential utility.

21

Under review as a conference paper at ICLR 2023

F.1.3 MODEL CALIBRATION

According to the Merton model formulation, there exist no factors affecting the evolution of stock
prices. Therefore, we do not add the model calibration objective in FaLPO for Merton problem.

F.2 KIM–OMBERG

Kim–Omberg model (Kim & Omberg, 1996) is a standard model for portfolio optimization with
predictable asset returns, which has been discussed extensively in the empirical literature (Welch &
Goyal, 2008; Muhle-Karbe et al., 2017).

F.2.1 MODELING

In Kim–Omberg model, the stock dynamics are formulated as

dSi
t

Si
t

= Xi
t dt+

dW∑
j=1

σij dW j
t

dXt = µ(ω −Xt) dt+ v dWt.

The portfolio optimization goal is formulated as

max
π̃t

Ṽ (π̃t) with Ṽ (π̃t) := Eπ̃t
[U(Z̃ π̃

t)|X0 = x, Z0 = z, S0 = s]. (15)

F.2.2 POLICY FUNCTIONAL FORM

An optimal policy function is derived in Lemma F.2

LEMMA F.2 Under common assumptions in Kim & Omberg (1996); Herzog et al. (2004), an optimal
policy functional form for (15) with power utility is derived as

π̃∗ =
1

1− γ
(σσ⊤)−1

[
Xt + σv⊤(k3(t)Xt + k2(t))

]
,

where k2(t) and k3(t) satisfy

dk1(t)

dt
+

1

2
Tr
{
v⊤(k2(t)k2(t)

⊤ + k3(t))v
}
+ (µω)⊤k2(t)−

γ

2(γ − 1)
(k2(t)

⊤vv⊤k2(t)) = 0,

dk2(t)

dt
+ k3(t)vv

⊤k2(t)− µ⊤k2(t) + k3(t)µω − γ

γ − 1
((σσ⊤)−1σvk2(t) + k3(t)vv

⊤k2(t)) = 0,

dk3(t)

dt
+ k3(t)vv

⊤k3(t)− k3(t)µ− µ⊤k3(t)

− γ

γ − 1
((σσ⊤)−1 + (σσ⊤)−1σv⊤k3(t) + k3(t)vσ

⊤(σσ⊤)−1 + k3(t)vv
⊤k3(t)) = 0,

with k1(T) = 0, k2(T) = 0, and k3(T) = 0. Note that k1(t) is a scalar, k2(t) is a dS × 1 vector, and
k3(t) is a dX × dX . And the ODE of k3(t) is the famous matrix Ricatti equation.

Similarly, an optimal policy functional form for (15) with exponential utility is derived as

π̃∗
t = (σσ⊤)−1 1

−γ2Zt

[
X(t) + σv⊤(k3(t)Xt + k2(t))

]
,

where k2(t) and k3(t) satisfy

dk1(t)

dt
+

1

2
Tr
{
v⊤(k2(t)k2(t)

⊤ + k3(t))v
}
+ (µω)⊤k2(t)−

1

2
(k2(t)

⊤vv⊤k2(t)) = 0,

dk2(t)

dt
+ k3(t)vv

⊤k2(t)− µk2(t) + k3(t)µω − ((σσ⊤)−1σvk2(t) + k3(t)vv
⊤k2(t)) = 0,

dk3(t)

dt
+ k3(t)vv

⊤k3(t)− k3(t)µ− µ⊤k3(t)

− ((σσ⊤)−1 + (σσ⊤)−1σv⊤k3(t) + k3(t)vσ
⊤(σσ⊤)−1 + k3(t)vv

⊤k3(t)),

with k1(T) = 0, k2(T) = 0, and k3(T) = 0.

22

Under review as a conference paper at ICLR 2023

F.2.3 MODEL CALIBRATION

Following the derivation in Appendix E.2, the negative mean square loss for Kim–Omberg model can

be derived as L(θϕ, θS) := −E
[∑dS

i=1

[
log(Si

t+∆t) − log(Si
t) − ϕi(Yt; θϕ)∆t − θiS

]2]
, where in

this case θS is a dS × 1 vector.

F.3 EVE MODEL WITH STOCHASTIC MARKOVIAN FACTORS

We take EVE model (Avanesyan et al., 2018) with stochastic Markovian factors as another example.

F.3.1 MODELING

We first detail the modeling of EVE, which formulates the dynamics of asset prices by

dSi
t

Si
t

= µi(Xt; θS)dt+

dW∑
j=1

σji(Xt; θS)dW
j
t , i = 1, 2, · · · , dS ,

dXt =
(
M⊤Xt + ω

)
dt+ κ(Xt; θS)

⊤dBt,

Bt = ρ⊤Wt +A⊤W⊥
t .

(16)

We use Wt and W⊥
t to denote two sets of independent Brownian motions. ρ denotes a correlation

matrix with components ρij ∈ [−1, 1]. Therefore, B is indeed another Brownian motion. We let µ,
σ, and κ be parametric functions, with θS denoting all the parameters. The SDE parameters include
all the parameter matrices and β’s. Again, with Zt as the wealth, we aim to maximize the power
utility at the terminal time T > 0 as the performance objective:

Ṽ (π̃t) = Eπ̃

[
(Z̃ π̃

T)
1−γ

1− γ

]
.

EVE model poses further assumptions on (16).

ASSUMPTION F.3 M has non-negative off-diagonal entries and ω ∈ [0,∞)k. Further, we assume
that there exist λ(x), Λ and L, and N such that µ(·), σ(·), κ(·) and ρ satisfy

λ(x)⊤λ(x) = µ(x)⊤σ(x)−1
(
σ(x)−1

)⊤
µ(x) = Λ⊤x

κ(x)⊤κ(x) = diag(L1x1, L2x2, · · · , Lkxk), with L1, L2, · · · , Lk ≥ 0

Γκ(x)⊤ρ⊤λ(x) = N⊤x.

(17)

The conditions in Assumption F.3 are necessary for the process of Xt to be [0,∞)k-valued and affine.
Under these conditions, the SDE in (16) has a unique weak solution which is affine and takes values
in [0,∞)k (Filipović & Mayerhofer, 2009). Further, the EVE model requires the following two
assumptions:

ASSUMPTION F.4 (Assumption 2.2 in Avanesyan et al. (2018)) The functions µ : RdX → R
dS ,

σ : RdX → R
dW×dS are continuous. More over, the columns of ρ belong to the range of left-

multiplication by σ(x) for all x ∈ RdX .

ASSUMPTION F.5 (EVE Condition in Avanesyan et al. (2018)) For some p ∈ [0, 1],

ρ⊤ρ = pI,

where I is the identity matrix. Note that when p = 1, ρ is a vector and thus we define p := ρ⊤ρ.

F.3.2 CONCRETE EXAMPLE

We consider a more concrete example of EVE satisfying the formulation and assumptions in Ap-
pendix F.3.1. Specifically, we use Dµ, Dσ, and Dλ to denote diagonal matrices. Further, let D(x)
denote the diagonal matrix whose diagonal is x. Also, we use x◦k for any k ∈ R to denote the
component-wise power operation (Hadamard power).

23

Under review as a conference paper at ICLR 2023

Then, we define

µ(x) := Dµx
◦ 3

2

σ(x) := DσD(x)

κ(x) := ρ−1DκD(x◦ 1
2).

Then, we have

λ(x) = D−1
σ Dµx

◦ 1
2 .

Further, we pose

ρ⊤ρ = ρρ⊤ = I.

Then,

λ(x) =
(
σ(x)−1

)⊤
µ(x) = D−1

σ x◦ 1
2 and λ(x)⊤λ(x) = D−2

σ x,

κ(x)⊤κ(x) = DκD(x◦ 1
2)
(
ρ−1

)⊤
ρ−1DκD(x◦ 1

2) = D2
κD(x),

Γκ(x)⊤ρ⊤λ(x) = ΓD(x◦ 1
2)Dκ

(
ρ−1

)⊤
ρ⊤D−1

σ x◦ 1
2 = ΓD(x◦ 1

2)DκD
−1
σ x◦ 1

2 = ΓDκD
−1
σ x.

Such a setup is shown satisfies (16).

F.3.3 POLICY FUNCTIONAL FORM

The policy functional form of the EVE model with Markovian stochastic factors ca be derived as:

LEMMA F.6 Under the assumptions in Appendix F.3.1 and Appendix F.3.2, the optimal policy
function follows:

π∗
t =

1

γ
σ(Xt)

−1

(
λ(Xt) + qρκ(Xt)k2(t)

⊤
)
,

with

dki2(t)

dt
+

1

2
Li(k2(t)

i)2 +

dX∑
j=1

(M +N)ijk2(t)
j +

Γ

2q
Λi = 0, i = 1, 2, · · · , dX

dk1(t)

dt
+ ω⊤k2(t) = 0.

For the specific example in F.3.2, in FaLPO, we parameterize the candidate policy as

π(t, Yt, Zt; θϕ, θπ) = Π(t, Yt, Zt; θϕ, θπ) = ϕ(Yt)
1
2 k(t; θπ).

F.4 MODEL CALIBRATION

Following the derivations in Section E.2, we can derive the calibration objective as:

L(θS) := − min
θS=(C1,C2)

E
∥∥∥∆ log(St)− C1ϕ(Yt; θϕ)

◦ 3
2∆t− C2ϕ(Yt; θϕ)

◦2∆t
∥∥∥2
2
.

G SOLUTIONS OF RICCATI DIFFERENTIAL EQUATIONS

According to the analysis in Section F, the optimal policy function is closely related to the solutions
of Riccati differential equations, which also have closed-form solutions.

Specifically, with abuse of notation, let A, B and D be p× p matrices, and X(t) : [0, T] → R
p×p as

a function of t solving the following Riccati differential equation:

∂dX(t)

dt
= A⊤X(t) +X(t)A−X(t)BB⊤X(t) +D⊤D,

X(0) = X0.
(18)

24

Under review as a conference paper at ICLR 2023

Following the analysis and assumptions in (Behr et al., 2019), the unique symmetric positive stabiliz-
ing solution of X(t) follows:

X(t) = X∞ − etÂ
⊤(

X∞ −X0

)[
I − (XL − etÂXLe

tÂ⊤
)(X∞ −X0)

]−1
etÂ,

where
ÂXL +XLÂ

⊤ +BB⊤ = 0,

with Â := A−BB⊤X∞, and

0 = A⊤X∞ +X∞A+D⊤D.

Note that with (18) we can further derive the policy functional forms without using neural networks
to parameterize time-dependent fucntions.

H EXTENSION TO LINEAR QUADRATIC CONTROL (LQC)

The methodology of FaLPO can also be applied to decision-making problems other than portfolio
optimization. To implement FaLPO, one needs to first construct a neural stochastic factor model
combining factor representation with a continuous-time model. Then, the policy learning is conducted
while leveraging policy functional form and model calibration. As an example, we implement
FaLPO to linear quadratic control (LQC), and detail modeling (Section H.1), policy functional form
(Section H.2) and model calibration (Section H.3).

H.1 MODELING

We consider the problem of LQC (Sun & Yong, 2020) but with stochastic factor Xt following an OU
process. With slight abuse of notation, we use St to denote the sate variable in this section:

dSt = (BSt + UAt +Xt) dt+

dW∑
j=1

DjAt dW
j
t ,

Xt = µXt dt+ v dWt,

(19)

where B, U , µ, v, and Dj are redefined as matrices with appropriate dimensions. With At = π(·)
following the policy π, we aim to solve

max
π

V (π) with V (π) := Eπ

[∫ T

0

[
(QSt)

⊤St + (RAt)
⊤At

]
dt+ (GST)

⊤ST

]
, (20)

with Q, R, and G as known matrices with appropriate dimensions, and T is terminal time. Further,
we apply the modeling strategy in Section 3.1 and aim to learn the representation of stochastic factors
from the available features Yt:

Xt = ϕ(Yt; θ
∗
ϕ).

H.2 POLICY FUNCTIONAL FORM

By taking Ξt (the combination of St and Xt) as the state variables, we can reformulate the problem
as a classic LQC problem:

dΞt = BΞΞt + UΞAt +

dW∑
j=1

(DΞ
j At + βΞ

t)dW
j
t ,

with all the coefficients redefined. Then, under common assumptions in Sun & Yong (2020); Yong &
Zhou (1999), it can be derived that the optimal policy satisfies:

π̃∗(t, ξ) = ΛΞ(KΞ(t))−1(UΞ)
⊤
KΞ(t)ξ,

where

ΛΞ(KΞ(t)) = R+

dW∑
j=1

(D⊤
j K

Ξ(t)Dj).

25

Under review as a conference paper at ICLR 2023

Also, KΞ(t) solves the differential Riccati equation:

KΞ(t) =− e(B
Ξ)⊤(T−t)GΞeB

Ξ(T−t)

−
∫ T

t

e(B
Ξ)⊤(T−τ)KΞ(τ)⊤UΞ

(
ΛΞ(KΞ(τ))⊤

)−1
(UΞ)⊤KΞ(τ)e(B

Ξ)⊤(T−τ)dτ,

with
KΞ(T) = 0.

Therefore, we can formulate the candidate policy as

π(t, St, Yt; θϕ, θπ) = Π(t, St, Yt; θϕ, θπ) = k1(t; θπ)St + k2(t; θπ)ϕ(Yt; θϕ). (21)

H.3 MODEL CALIBRATION

According to (19) and following the derivation strategy in Appendix E.2, we can derive the negative
mean square loss for LQC as

L(θϕ, θS) := E
[
∥St+∆tSt − ϕ(Yt; θϕ)∆t− C1St − C2At∥22

]
, (22)

with θS = {C1, C2}.

As a summary, to apply FaLPO to LQC with stochastic factors, we parameterize candidate policies
following (21) and maximize

(1− λV (θϕ, θπ)) + λL(θϕ, θS),

with V in (20) and L in (22).

I EXTENDED RESULTS FOR THEOREM 4.1

I.1 ASSUMPTIONS AND DEFINITIONS

To start with, we consider stochastic factor models such that the optimal feedback admissible policy
admits a functional form as

π̃∗
t = Π(t,Xt; θ

∗
π̃).

Also, we consider the L function such that the true data generating parameters θ∗S , θ
∗
ϕ satisfy

θ∗S , θ
∗
ϕ ∈ argmax

θϕ,θS

L(θϕ, θS), (23)

while other options for L can also be empirically used in our method.

DEFINITION I.1 For a continuous-time policy π̃t := Π(t, St, Zt, ϕ(Yt; θϕ); θπ̃), we define its value
function as

Ṽ (θϕ, θπ) := E[U(Z π̃
T)].

Accordingly, we define the continuous-time version objective function as

H̃(θϕ, θπ̃, θS) := (1− λ)Ṽ (θϕ, θπ̃) + λL(θϕ, θS).

DEFINITION I.2 For t ∈ [m∆t, (m+ 1)∆t), define ⌊t⌋ := m∆t and ⌊π̃∗
t ⌋ := π̃∗

⌊t⌋.

DEFINITION I.3 For the continuous-time optimal policy π̃∗, we use ⌊π̃∗⌋ to denote the piece-wise
constant version π̃∗. We use Z̃

⌊π̃∗⌋
t to denote the wealth process when implementing the optimal

continuous-time policy π̃(·; θ∗ϕ, θ∗π) in the piece-wise constant manner. Specifically,

dZ̃
⌊π̃∗⌋
t :=Z̃

⌊π̃∗⌋
⌊t⌋

dS∑
i=1

(π̃∗
⌊t⌋)

idSi
t

Si
⌊t⌋

=

dS∑
i=1

{
Πi(⌊t⌋, X⌊t⌋; θ

∗
π̃)f

i
S(Xt; θ

∗
S)

Si
t

Si
⌊t⌋

Z̃
⌊π̃∗⌋
⌊t⌋ dt

+Πi(⌊t⌋, X⌊t⌋; θ
∗
π̃)

dW∑
j=1

gijS (Xt; θ
∗
S)

Si
t

Si
⌊t⌋

Z̃
⌊π̃∗⌋
⌊t⌋ dW j

t

}
.

26

Under review as a conference paper at ICLR 2023

Further, remember Z̃ π̃∗

t is used to denote the continuous-time wealth process under the policy π̃∗. By
the dynamics of continuous-time wealth process Z̃ π̃

t in Section 2.3 the dynamics of Z̃ π̃∗

t is derived as

dZ̃ π̃∗

t

Z̃ π̃∗
t

= Π(t,Xt; θ
∗
π̃)

⊤fS(Xt; θ
∗
S)dt+Π(t,Xt; θ

∗
π̃)

⊤gS(Xt; θ
∗
S)

⊤dWt.

ASSUMPTION I.4 For each R > 0, if ∥x∥ ≤ R and t ≤ T , we assume that there exists a CR > 0
such that

∥Π(t, x; θ∗π)∥ ∨ ∥fS(x; θ∗S)∥ ∨ ∥gS(x; θ∗S)∥ ∨ ∥fX(x; θ∗S)∥ ∨ ∥gX(x; θ∗S)∥ ≤ CR,

and Π(t, x; θ∗π) is locally Lipschitz with Lipschitz constant CR.

For some p > 2, there exists a constant A such that

E
[

sup
0≤t≤T

|Z̃ π̃∗

t |p
]
∨ E
[

sup
0≤t≤T

|Z̃⌊π̃∗⌋
t |p

]
∨ E
[

sup
0≤t≤T

∥Xt∥p
]
∨ E
[

sup
0≤t≤T

∥log(St)∥p
]
≤ A.

Note that Assumption I.4 requires the stochastic processes to have bounded high-order moments. For
a specific model like Kim–Omberg, this is not guaranteed to hold for every initial value and SDE
coefficient, but one can derive model-specific sufficient conditions for Assumption I.4. In practice
when implementing the method, we calculate the empirical moments of wealth, factors and asset
prices to approximately check whether Assumption I.4 holds.

With Assumption I.4, we define a stopping time:

DEFINITION I.5 For R > 0, define a stopping time

τR :=

{
inf

0≤t≤T
| |Z̃ π̃∗

t | ≥ R or ∥Xt∥ ≥ R or ∥log(St)∥ ≥ R or |Z̃⌊π̃∗⌋
t | ≥ R

}
.

ASSUMPTION I.6 The utility function U(z) has a linear bound on Z:

|U(z)| ≤ CU (|z|+ 1).

Note that Assumption I.6 holds as long as the utility function is bounded at the smallest value in Z .
Specifically for power utility, Assumption I.6 is equivalent to setting γ ∈ (0, 1).

ASSUMPTION I.7 There exists ∆t′ > 0 such that for any ∆t < ∆t′ , ⌊π̃∗⌋ is also an admissible
policy.

I.2 LEMMAS

LEMMA I.8 Consider n non-negative constants c1, c2, · · · , cn. The following inequality is true:

(

n∑
i=1

ci)
2 ≤ n

n∑
i=1

c2i .

Proof. The proof follows the Cauchy-Schwartz inequality. □

LEMMA I.9 (θ∗ϕ, θ
∗
π̃, θ

∗
S) maximizes both Ṽ (θϕ, θπ̃) and L(θϕ, θS).

Proof. First of all, since θπ̃∗ is defined to be the optimal parameter for the continuous-time policy
and θ∗ϕ is defined to be the true data generating parameter, (θ∗ϕ, θ

∗
π) maximizes Ṽ . Then, by (23),

(θ∗ϕ, θ
∗
S) maximize L. □

LEMMA I.10 For any δ > 0,

E[sup
0≤t≤T

(Z̃
⌊π̃∗⌋
t − Z̃ π̃∗

t)2] ≤ E
[

sup
0≤t≤T

(Z̃
⌊π̃∗⌋
t∧τR − Z̃ π̃∗

t∧τR)
2
]
+

2p+1δA

p
+

(p− 2)8A

pδ2/(p−2)Rp
.

Proof. Proof by applying Young’s inequality. See derivation in Higham et al. (2002, Equation (2.8)).
□

27

Under review as a conference paper at ICLR 2023

LEMMA I.11 For any t ≤ τR, the difference between the coefficients of the dynamics of Z̃ π̃∗

t and
Z̃

⌊π̃∗⌋
t are bounded by:

∣∣∣∣∣
dS∑
i=1

Π(t,Xt; θ
∗
π)f

i
S(Xt; θ

∗
S)Z̃

π̃∗

t −
dS∑
i=1

Π(⌊t⌋, X⌊t⌋; θ
∗
π)f

i
S(Xt; θ

∗
S)Z̃

⌊π̃∗⌋
⌊t⌋

Si
t

Si
⌊t⌋

∣∣∣∣∣
2

≤ 5d2S exp(2R)C4
R

[
exp(2R)R2|t− ⌊t⌋|2 + exp(2R)R2

∣∣Xt −X⌊t⌋
∣∣2

+R2
∥∥S⌊t⌋ − St

∥∥2 + exp(2R)
∣∣∣Z̃ π̃∗

t − Z̃
⌊π̃∗⌋
t

∣∣∣2 + exp(2R)
∣∣∣Z̃⌊π̃∗⌋

t − Z̃
⌊π̃∗⌋
⌊t⌋

∣∣∣2],
and∣∣∣∣∣

dS∑
i=1

[
Π(⌊t⌋, X⌊t⌋; θ

∗
π)

dW∑
j=1

(
gijS (Xt; θ

∗
S)

Si
t

Si
⌊t⌋

Z̃
⌊π̃∗⌋
⌊t⌋

)]
−

dS∑
i=1

[
Π(t,Xt; θ

∗
π)

dW∑
j=1

(
gijS (Xt; θ

∗
S)Z̃

π̃∗

t

)]∣∣∣∣∣
2

≤5d2S exp(2R)C4
R

[
exp(2R)R2|t− ⌊t⌋|2 + exp(2R)R2

∣∣Xt −X⌊t⌋
∣∣2

+R2
∥∥S⌊t⌋ − St

∥∥2 + exp(2R)
∣∣∣Z̃ π̃∗

t − Z̃
⌊π̃∗⌋
t

∣∣∣2 + exp(2R)
∣∣∣Z̃⌊π̃∗⌋

t − Z̃
⌊π̃∗⌋
⌊t⌋

∣∣∣2].
Proof.

By triangle inequality∣∣∣∣∣
dS∑
i=1

π̃i
tf

i
S(Xt; θ

∗
S)Z̃

π̃∗

t −
dS∑
i=1

π̃i
⌊t⌋f

i
S(Xt; θ

∗
S)Z̃

⌊π̃∗⌋
⌊t⌋

Si
t

Si
⌊t⌋

∣∣∣∣∣
≤

dS∑
i=1

1

Si
⌊t⌋

∣∣f i
S(Xt; θ

∗
S)
∣∣(∣∣∣π̃i

tZ̃
π̃∗

t Si
⌊t⌋ − π̃i

⌊t⌋Z̃
π̃∗

t Si
⌊t⌋

∣∣∣
+
∣∣∣π̃i

⌊t⌋Z̃
π̃∗

t Si
⌊t⌋ − π̃i

⌊t⌋Z̃
⌊π̃∗⌋
⌊t⌋ Si

⌊t⌋

∣∣∣+ ∣∣∣π̃i
⌊t⌋Z̃

⌊π̃∗⌋
⌊t⌋ Si

⌊t⌋ − π̃i
⌊t⌋Z̃

⌊π̃∗⌋
⌊t⌋ Si

t

∣∣∣).
For any t ≤ τR, we can further bound the right hand side by Assumption I.4∣∣∣∣∣

dS∑
i=1

π̃i
tf

i
S(Xt; θ

∗
S)Z̃

π̃∗

t −
dS∑
i=1

π̃i
⌊t⌋f

i
S(Xt; θ

∗
S)Z̃

⌊π̃∗⌋
⌊t⌋

Si
t

Si
⌊t⌋

∣∣∣∣∣
≤dS exp(R)C2

R

[
exp(R)R

(
|t− ⌊t⌋|+

∥∥Xt −X⌊t⌋
∥∥)

+ exp(R)
(∣∣∣Z̃ π̃∗

t − Z̃
⌊π̃∗⌋
t

∣∣∣+ ∣∣∣Z̃⌊π̃∗⌋
t − Z̃

⌊π̃∗⌋
⌊t⌋

∣∣∣)+R
∥∥S⌊t⌋ − St

∥∥].
Then, by Lemma I.8∣∣∣∣∣

dS∑
i=1

π̃i
tf

i
S(Xt; θ

∗
S)Z̃

π̃∗

t −
dS∑
i=1

π̃i
⌊t⌋f

i
S(Xt; θ

∗
S)Z̃

⌊π̃∗⌋
⌊t⌋

Si
t

Si
⌊t⌋

∣∣∣∣∣
2

≤5d2S exp(2R)C4
R

[
exp(2R)R2

(
|t− ⌊t⌋|2 +

∣∣Xt −X⌊t⌋
∣∣2)

+ exp(2R)
(∣∣∣Z̃ π̃∗

t − Z̃
⌊π̃∗⌋
t

∣∣∣2 + ∣∣∣Z̃⌊π̃∗⌋
t − Z̃

⌊π̃∗⌋
⌊t⌋

∣∣∣2)+R2
∥∥S⌊t⌋ − St

∥∥2]
=5d2S exp(2R)C4

R

[
exp(2R)R2|t− ⌊t⌋|2 + exp(2R)R2

∣∣Xt −X⌊t⌋
∣∣2

+R2
∥∥S⌊t⌋ − St

∥∥2 + exp(2R)
∣∣∣Z̃ π̃∗

t − Z̃
⌊π̃∗⌋
t

∣∣∣2 + exp(2R)
∣∣∣Z̃⌊π̃∗⌋

t − Z̃
⌊π̃∗⌋
⌊t⌋

∣∣∣2].
28

Under review as a conference paper at ICLR 2023

Similarly ∣∣∣∣∣∣
dS∑
i=1

[
π̃i
⌊t⌋

dW∑
j=1

(
gijS (Xt; θ

∗
S)

Si
t

Si
⌊t⌋

Z̃
⌊π̃∗⌋
⌊t⌋

)]
−

dS∑
i=1

[
π̃i
t

dW∑
j=1

(
gijS (Xt; θ

∗
S)Z̃

π̃∗

t

)]∣∣∣∣∣∣
2

≤ 5d2S exp(2R)C4
R

[
exp(2R)R2|t− ⌊t⌋|2 + exp(2R)R2

∣∣Xt −X⌊t⌋
∣∣2

+R2
∥∥S⌊t⌋ − St

∥∥2 + exp(2R)
∣∣∣Z̃ π̃∗

t − Z̃
⌊π̃∗⌋
t

∣∣∣2 + exp(2R)
∣∣∣Z̃⌊π̃∗⌋

t − Z̃
⌊π̃∗⌋
⌊t⌋

∣∣∣2].
□

LEMMA I.12 With τR defined in Definition I.5,

E
∥∥Xt∧τR −X⌊t∧τR⌋

∥∥2 ≤ 2C2
R(∆t2 +∆t),

E
∥∥St∧τR − S⌊t∧τR⌋

∥∥2 ≤ 2 exp(2R)C2
R(∆t2 +∆t),

E
∥∥∥Z̃⌊π̃∗⌋

⌊t∧τR⌋ − Z̃
⌊π̃∗⌋
t∧τR

∥∥∥2 ≤ 2R2 exp(4R)C4
R(∆t2 +∆t).

Proof. By the dynamics of Xt and Lemma I.8, we can derive

E
∥∥Xt∧τR −X⌊t∧τR⌋

∥∥2 ≤ 2∆tE
∫ t∧τR

mt∧τR
∆t

∥fX(Xs; θ
∗
S)∥

2
ds+2E

∥∥∥∥∥
∫ t∧τR

mt∧τR
∆t

gX(Xs; θ
∗
S)

⊤dWs

∥∥∥∥∥
2

,

where mt∧τR satisfies mt∧τR∆t ≤ (t ∧ τR) < (mt∧τR + 1)∆t. Further, we apply Itô’s isometry
with stopping time (Lemma D.2), and derive

E
∥∥Xt∧τR −X⌊t∧τR⌋

∥∥2 ≤ 2∆tE
∫ t∧τR

mt∧τR
∆t

∥fX(Xs; θ
∗
S)∥

2
ds+ 2E

∫ t∧τR

mt∧τR
∆t

∥gX(Xs; θ
∗
S)∥

2
ds.

By Assumption I.4, we derive

E
∥∥Xt∧τR −X⌊t∧τR⌋

∥∥2 ≤ 2C2
R(∆t2 +∆t).

Similarly
E
∥∥St∧τR − S⌊t∧τR⌋

∥∥2 ≤ 2 exp(2R)C2
R(∆t2 +∆t),

and
E
∥∥∥Z̃⌊π̃∗⌋

⌊t∧τR⌋ − Z̃
⌊π̃∗⌋
t∧τR

∥∥∥2 ≤ 2R2 exp(4R)C4
R(∆t2 +∆t).

□

LEMMA I.13

E
[

sup
0≤t≤τ

(Z̃ π̃∗

t∧tk
− Z̃

⌊π̃∗⌋
t∧tk

)2
]
≤10(T + 4)Td2SC

4
R exp(4R)R2

[
∆t2 + 2C2

R(∆t2 +∆t)

+ 2C2
R(∆t2 +∆t) + 2 exp(4R)C4

R(∆t2 +∆t)
]

+ 10(T + 4)d2SC
4
R exp(4R)

∫ τ

0

E sup
0≤r≤s

∣∣∣Z̃ π̃∗

r∧τR − Z̃
⌊π̃∗⌋
r∧τR

∣∣∣2ds.
Proof.

By Cauchy–Schwarz inequality and the dynamics of Z̃ π̃∗

t and Z̃
⌊π̃∗⌋
t , for any τ ≤ T

E
[

sup
0≤t≤τ

(Z̃ π̃∗

t∧tk
− Z̃

⌊π̃∗⌋
t∧tk

)2
]

≤2TE
[

sup
0≤t≤τ

∫ t∧τR

0

∣∣∣∣∣
dS∑
i=1

π̃i
sf

i
S(Xs; θ

∗
S)Z̃

π̃∗

s −
dS∑
i=1

π̃i
⌊s⌋f

i
S(Xs; θ

∗
S)Z̃

⌊π̃∗⌋
⌊s⌋

Si
s

Si
⌊t⌋

∣∣∣∣∣
2

ds

]

+ 2E
[

sup
0≤t≤τ

∣∣∣∣∣∣
dW∑
j=1

∫ t∧τR

0

[dS∑
i=1

π̃i
sg

ij(Xs; θ
∗
S)Z̃

π̃∗

s − π̃i
⌊s⌋g

ij(X⌊s⌋; θ
∗
S)S

i
s/S

i
⌊s⌋

]
dW j

s

∣∣∣∣∣∣
2]
.

29

Under review as a conference paper at ICLR 2023

Then, by Doob’s martingale inequality

E
[

sup
0≤t≤τ

(Z̃ π̃∗

t∧tk
− Z̃

⌊π̃∗⌋
t∧tk

)2
]

≤2TE
[

sup
0≤t≤τ

∫ t∧τR

0

∣∣∣∣∣
dS∑
i=1

π̃i
sf

i
S(Xs; θ

∗
S)Z̃

π̃∗

s −
dS∑
i=1

π̃i
⌊s⌋f

i
S(Xs; θ

∗
S)Z̃

⌊π̃∗⌋
⌊s⌋

Si
s

Si
⌊t⌋

∣∣∣∣∣
2

ds

]

+ 8TE
[(dW∑

j=1

∫ t∧τR

0

[dS∑
i=1

π̃i
sg

ij(Xs; θ
∗
S)Z̃

π̃∗

s − π̃i
⌊s⌋g

ij(X⌊s⌋; θ
∗
S)S

i
s/S

i
⌊s⌋

]
dW j

s

)2]
.

Next, we apply Lemma I.11,

E
[

sup
0≤t≤τ

(Z̃ π̃∗

t∧tk
− Z̃

⌊π̃∗⌋
t∧tk

)2
]

≤10(T + 4)d2SC
4
R exp(2R)E

[∫ τ∧τR

0

(
exp(2R)R2|s− ⌊s⌋|2 + exp(2R)R2

∣∣Xs −X⌊s⌋
∣∣2

+R2
∥∥S⌊s⌋ − Ss

∥∥2 + exp(2R)
∣∣∣Z̃ π̃∗

s − Z̃⌊π̃∗⌋
s

∣∣∣2 + exp(2R)
∣∣∣Z̃⌊π̃∗⌋

s − Z̃
⌊π̃∗⌋
⌊s⌋

∣∣∣2)ds].
Therefore, combined with I.12,

E
[

sup
0≤t≤τ

(Z̃ π̃∗

t∧tk
− Z̃

⌊π̃∗⌋
t∧tk

)2
]
≤10(T + 4)Td2SC

4
R exp(4R)R2

[
∆t2 + 2C2

R(∆t2 +∆t)

+ 2C2
R(∆t2 +∆t) + 2 exp(4R)C4

R(∆t2 +∆t)
]

+ 10(T + 4)d2SC
4
R exp(4R)

∫ τ

0

E sup
0≤r≤s

∣∣∣Z̃ π̃∗

r∧τR − Z̃
⌊π̃∗⌋
r∧τR

∣∣∣2ds.
□

LEMMA I.14 With the definitions and assumptions in Section I.1,

lim
∆t→0

E[(Z̃⌊π̃∗⌋
T − Z̃ π̃∗

T)2] = 0.

Proof.

By Lemma I.13, we apply the Gronwall inequality and obtain

E
[

sup
0≤t≤T

(Z̃ π̃∗

t∧tk
− Z̃ π̃∗

t∧tk
)2
]

≤ 10(T + 4)Td2SC
4
R exp(4R)R2

[
∆t2 + 2C2

R(∆t2 +∆t)

+ 2C2
R(∆t2 +∆t) + 2 exp(4R)C4

R(∆t2 +∆t)
]
exp(10(T + 4)d2SC

4
R exp(4R)).

Then, combined with Lemma I.10, for any δ > 0,

E[sup
0≤t≤T

(Z̃ π̃∗

t − Z̃
⌊π̃∗⌋
t)2]

≤ 10(T + 4)Td2SC
4
R exp(4R)R2

[
∆t2 + 2C2

R(∆t2 +∆t)

+ 2C2
R(∆t2 +∆t) + 2 exp(4R)C4

R(∆t2 +∆t)
]
exp(10(T + 4)d2SC

4
R exp(4R))

+
2p+1δA

p
+

(p− 2)8A

pδ2/(p−2)Rp
.

Therefore, E[sup0≤t≤T (Z̃
π̃∗

t − Z̃
⌊π̃∗⌋
t)2] converges to 0 as ∆t goes to 0. □

30

Under review as a conference paper at ICLR 2023

I.3 PROOF

For ease of presentation, we define

θ := (θϕ, θπ, θS), θ∗ := (θ∗ϕ, θ
∗
π̃, θ

∗
S) and θ∗∆t := (θ∗ϕ,∆t, θ

∗
π,∆t, θ

∗
S,∆t).

Note that every discrete-time admissible policy is a continuous-time admissible policy. Thus, the
continuous-time admissible policy set includes the discrete-time admissible policy set. Therefore,

Ṽ (θ∗) ≥ V ∗
∆t.

In other words, it is enough to bound Ṽ (θ∗)− V (θ∗∆t) for the proof. By Lemma I.9, θ∗ maximizes
Ṽ and L simultaneously, leading to

Ṽ (θ∗)− V (θ∗∆t) ≤
H̃(θ∗)−H(θ∗∆t)

1− λ
.

By Assumption I.7, for ∆t ≤ ∆t′, θ∗ is also an admissible parameter θ∗ ∈ A, leading to H(θ∗)−
H(θ∗∆t) ≤ 0. Further, for any δ > 0, by adding and subtracting equal terms,

Ṽ (θ∗)− V (θ∗∆t)

≤ 1

1− λ
[H̃(θ∗)−H(θ∗) +H(θ∗)−H(θ∗∆t)]

≤ 1

1− λ

∣∣∣H̃(θ∗)−H(θ∗)
∣∣∣.

(24)

Next, we focus on
∣∣∣H̃(θ∗; δ)−H(θ∗; δ)

∣∣∣, which by definition has∣∣∣H̃(θ∗; δ)−H(θ∗; δ)
∣∣∣ = (1− λ)

∣∣∣E[U(Z̃ π̃∗

T ; δ)− U(Z̃
⌊π̃∗⌋
T ; δ)]

∣∣∣,
where λL(θ∗) in both H̃(θ∗; δ) and H(θ∗; δ) omit each other. By Lemma I.14, we have
lim∆t→0 Z̃

⌊π̃∗⌋
T

P−→ Z̃ π̃∗

T . Since U(z; δ) is a continuous function, we implement the continuous
mapping theorem and derive

lim
∆t→0

U(Z̃
⌊π̃∗⌋
T ; δ)

P−→ U(Z̃ π̃∗

T ; δ). (25)

By assumption I.4,
{
Z̃

⌊π̃∗⌋
T

}
∆t<∆t′

with different finite ∆t is uniformly integrable. Then, following

Assumption I.6, U(Z̃
⌊π̃∗⌋
T ; δ) is also uniformly integrable since U(z; δ) has a linear bound. Combined

with (25), we derive
lim

∆t→0
E[U(Z̃

⌊π̃∗⌋
T ; δ)] −→ E[U(Z̃ π̃∗

T ; δ)],

which finishes the proof.

J EXTENDED RESULTS OF THEOREM 4.2

In this section, we study the non-asymptotic guarantees on the performance of FaLPO.

J.1 ANOTHER VERSION OF THEOREM 4.2

DEFINITION J.1 For two random vectors v and w, we define the trace of the covariance matrix as

Var(v) :=E[∥v∥22 − ∥E[v]∥22],
Cov(v, w) :=E[v⊤w]− E[v]⊤E[w].

Further, we use Var θ(v) and Covθ(v, w) to denote the conditional version of the two given θ:

Varθ(v) :=E[∥v∥22 − ∥E[v|θ]∥22 |θ],
Covθ(v, w) :=E[v⊤w|θ]− E[v|θ]⊤E[w|θ].

31

Under review as a conference paper at ICLR 2023

Note that it is challenging to theoretically analyze a non-convex stochastic optimization (5), while
there are various ad-hoc procedures providing good empirical performances. To provide theoretical
analysis, in this section, we study a projection-based version of FaLPO (Algorithm 2). Specifically,
the learning/optimization process is conducted in a bounded parameter space B, under which we
assume that the objective function is strongly concave regarding the parameters.

Algorithm 2 Projected FaLPO

1: Input: Hyperparameter λ, learning rate η, number of iterations N , the strongly concave region
B, and batch size B.

2: Output: θϕ, θπ , and θS
3: Initialize neural networks with initial parameters (θϕ, θπ, θS) ∈ B.
4: Parameterize the policy function by (3).
5: for n ∈ [N] do
6: Collect B trajectories.
7: Estimate the gradients of H following the procedure in Appendix C with the parameter λ.
8: Update θS and θR with learning rate η by gradients.
9: Project the achieved update to B.

10: end for
11: Return θϕ, θπ , and θS .

For ease of presentation, we define

θ∗ := (θ∗ϕ, θ
∗
π̃, θ

∗
S), θ

∗
∆t := (θ∗ϕ,∆t, θ

∗
π,∆t, θ

∗
S,∆t) and θ† := (θ†ϕ,∆t, θ

†
π,∆t, θ

†
S,∆t).

Let θn be the estimation after the nth iteration, and θ̄ :=
∑N−1

n=0 θn
N the average estimation. It is a

common technique to consider the average estimation θ̄ instead of the final estimations θN for such
analysis. Then, we provide a new version of Theorem 4.2.

DEFINITION J.2 With the gradient estimations discussed in Appendix C, we define

∇̃Hk(θ) := (1− λ)∇̃Vk(θ) + λ∇̃Lk(θ).

THEOREM J.3 With assumptions in Section J.2, λ ∈ [0, 1), and η < 1
CL

as the learning rate,

E[V ∗
∆t − V (θ̄)]

≤H̃(θ∗)−H(θ∗∆t)

1− λ
+

H(θ∗∆t)−H(θ†)

1− λ
+

CB log(N)

2N(1− λ)

+
1

2NB(1− λ)
E
[N−1∑

n=0

1

n+ 1
[(1− λ)2Var θn

(
∇̃Vk(θn)

)
+ λ2Var θn

(
∇̃Lk(θn)

)
+ 2λ(1− λ)Covθn(∇̃Vk(θn), ∇̃Lk(θn))]

]
.

Also, there exits situations where a λ ∈ (0, 1) provides smaller value for (1− λ)2Var
(
∇̃Hk(θn)

)
+

λ2Var
(
∇̃Lk(θn)

)
+ 2λ(1− λ)Cov(∇̃Hk(θn), ∇̃Rk(θn)) than λ = 0. In other words, there exist

cases where tuning λ may provide better performances.

J.2 ASSUMPTIONS

ASSUMPTION J.4 There exits a constant CB > 0 such that the parameter region B is a convex set
and satisfies the following conditions

1. In B ⊆ A, H(θϕ,∆t, θπ,∆t, θS,∆t) is locally m-strongly concave with a local maximal point
(θ†ϕ,∆t, θ

†
P,∆t, θ

†
S,∆t) ∈ B.

2. For any θ ∈ B, ∥θ∥ ≤ CB .

32

Under review as a conference paper at ICLR 2023

3. For any θ ∈ B, the expectation of the gradient estimation is bounded by∥∥∥∥∥E
[∑B

k=1 ∇̃Hk(θ)

B

]∥∥∥∥∥
2

≤ CB.

These assumptions are widely used in existing analysis (Papini et al., 2018; Karimi et al., 2019;
Agarwal et al., 2021; Bhandari & Russo, 2019; Wang et al., 2019; Xu et al., 2020).

ASSUMPTION J.5 At the nth iteration, we use the learning rate as ηn+1 = 1
nm .

Note that in practice we will tune the learning rate η as a hyperparameter, since we may not know m.
However, it is a common practice to set the learning rate as in Assumption J.5 (Hazan & Kale, 2011;
Nemirovski et al., 2009; Shalev-Shwartz et al., 2011)

J.3 TECHNICAL LEMMAS FOR THEOREM 4.2

LEMMA J.6 With Assumption J.4 and J.5, we have

H(θ†)−H(θ̄) ≤ 1

2N

N−1∑
n=0

 1

n+ 1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)

B

∥∥∥∥∥
2


+
1

N

N−1∑
n=0

[(
∇H(θn)−

∑B
k=1 ∇̃Hk(θn)

B

)⊤

(θ† − θn)

]
.

Proof. By the strong concavity of H in Assumption J.4,

∇H(θn)(θ
† − θn) ≥ H(θ†)−H(θn) +

m

2

∥∥θn − θ†
∥∥2 . (26)

Further, since θn+1 is the projection of θn + ηn+1

∑B
k=1 ∇̃Hk(θn)

B to B, the projection satisfies∥∥∥∥∥θn + ηn+1

∑B
k=1 ∇̃Hk(θn)

B
− θ†

∥∥∥∥∥
2

≥
∥∥θn+1 − θ†

∥∥2 ,
which suggests∥∥θn − θ†

∥∥2 − ∥∥θn+1 − θ†
∥∥2

≥
∥∥θn − θ†

∥∥2 − ∥∥∥∥∥θn + ηn+1

∑B
k=1 ∇̃Hk(θn)

B
− θ†

∥∥∥∥∥
2

= −ηn+1

∑B
k=1 ∇̃Hk(θn)

B

⊤(
2θn + ηn+1

∑B
k=1 ∇̃Hk(θn)

B
− 2θ†

)
= −η2n+1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)

B

∥∥∥∥∥
2

2

− 2ηn+1

(
θn − θ†

)⊤∑B
k=1 ∇̃Hk(θn)

B
.

(27)

We reorder (27) and derive

−
(
θn − θ†

)⊤∑B
k=1 ∇̃Hk(θn)

B
≤ 1

2ηn+1

(∥∥θn − θ†
∥∥2

+ η2n+1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)

B

∥∥∥∥∥
2

2

−
∥∥θn+1 − θ†

∥∥2).
33

Under review as a conference paper at ICLR 2023

Taking the result back to (26):

H(θ†)−H(θn) ≤

(
∇H(θn)−

∑B
k=1 ∇̃Hk(θn)

B

)⊤

(θ† − θn)

+
1

2ηn+1

∥∥θn − θ†
∥∥2 − ∥∥θn+1 − θ†

∥∥2 + η2n+1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)

B

∥∥∥∥∥
2


− m

2

∥∥θn − θ†
∥∥2 ,

=

(
∇H(θn)−

∑B
k=1 ∇̃Hk(θn)

B

)⊤

(θ† − θn) +
1

2
(η−1

n+1 −m)
∥∥θn − θ†

∥∥2
− 1

2ηn+1

∥∥θn+1 − θ†
∥∥2 + 1

2
ηn+1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)

B

∥∥∥∥∥
2

.

(28)

By averaging over n with Assumption J.5 we get

H(θ†)−H(θ̄) ≤
N−1∑
n=0

(H(θ†)−H(θn))/N

≤ 1

2N

N−1∑
n=0

 1

n+ 1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)

B

∥∥∥∥∥
2


+
1

N

N−1∑
n=0

[(
∇H(θn)−

∑B
k=1 ∇̃Hk(θn)

B

)⊤

(θ† − θn)

]
,

where the first inequality is due to condition 1 of Assumption J.4. □

J.4 PROOF OF THEOREM 4.2

Note that every discrete-time admissible policy is a continuous-time admissible policy. Thus, the
continuous-time admissible policy set includes the discrete-time admissible policy set. Therefore,

Ṽ (θ∗) ≥ V ∗
∆t.

Therefore, it is enough to bound Ṽ (θ∗)− V (θ̄) for the proof. By Lemma I.9, θ∗ maximizes Ṽ and L
simultaneously. Therefore,

Ṽ (θ∗)− V (θ̄) ≤ H̃(θ∗)−H(θ̄)

1− λ
=

H̃(θ∗)−H(θ∗∆t) +H(θ∗∆t)−H(θ†) +H(θ†)−H(θ̄)

1− λ
.

(29)

Then, we use the convergence result for Algorithm 2 detailed by Lemma J.6 :

H(θ†)−H(θ̄) ≤ 1

2N

N−1∑
n=0

 1

n+ 1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)

B

∥∥∥∥∥
2


+
1

N

N−1∑
n=0

[(
∇H(θn)−

∑B
k=1 ∇̃Hk(θn)

B

)⊤

(θ† − θn)

]
.

(30)

Then, we take expectation on both sides

E[H(θ†)−H(θ̄)] ≤ 1

2N

N−1∑
n=0

E

 1

n+ 1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)

B

∥∥∥∥∥
2


+
1

N

N−1∑
n=0

E
[(

∇H(θn)−
∑B

k=1 ∇̃Hk(θn)

B

)⊤

(θ† − θn)

]
.

(31)

34

Under review as a conference paper at ICLR 2023

For the last component of (31), since ∇̃Hk(θn) is an unbiased gradient estimator:

E
[(

∇H(θn)−
∑B

k=1 ∇̃Hk(θn)

B

)⊤

(θ† − θn)

]

= E
[
E
[(

∇H(θn)−
∑B

k=1 ∇̃Hk(θn)

B

)⊤

(θ† − θn)

∣∣∣∣θn]] = 0.

Then, for the first component in (31)

E

 1

n+ 1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)

B

∥∥∥∥∥
2


=E

[
E
[

1

n+ 1

∥∥∥∥∥
∑B

k=1 ∇̃Hk(θn)

B

∥∥∥∥∥
2

|θn
]]

=
1

n+ 1
E

[
Varθn(

∑B
k=1 ∇̃Hk(θn)

B
) +

∥∥∥∥∥E
[∑B

k=1 ∇̃Hk(θn)

B
|θn
]∥∥∥∥∥

2]

≤ 1

n+ 1
E

[
Varθn(

∑B
k=1 ∇̃Hk(θn)

B
) + C2

B

]
,

where the last inequality is due to condition 3 of Assumption J.4. Then, (31) can be further derived as

E[H(θ†)−H(θ̄)] ≤ 1

2N

N−1∑
n=0

E

[
1

n+ 1
Varθn(

∑B
k=1 ∇̃Hk(θn)

B
) +

1

n+ 1
CB

]
.

As a result,

E[H(θ∗∆t)−H(θ̄)]

=E[H(θ∗∆t)−H(θ†) +H(θ†)−H(θ̄)]

≤H(θ∗∆t)−H(θ†) +
CB log(N)

2N

+ E
N−1∑
n=0

η[(1− λ)2Var θn
(
∇̃Vk(θn)

)
+ λ2Var θn

(
∇̃Lk(θn)

)
]

BN(n+ 1)

+ E
N−1∑
n=0

η[2λ(1− λ)Covθn(∇̃Vk(θn), ∇̃Lk(θn))]

BN(n+ 1)

}
.

Taking the results back to (29) we finish the proof.

K EXTENDED RESULTS FOR SYNTHETIC EXPERIMENTS

For synthetic portfolio optimization, we provide details for drift and volatility (Appendix K.1), data
generation (Appendix K.2), hyperparameter tuning (Appendix K.3), and extended experimental results
(Appendix K.4). We consider 21-day trading, and generate 1000 trajectories with 21 observations for
training, 1000 for validation, and 1000 for testing. To compare different methods, we calculate the
average terminal utility as the metric.

K.1 DRIFT AND VOLATILITY

Drift and volatility are two important concepts characterising the strength of signal and noise in
financial markets. To demonstrate this, for an asset price Si

t and time interval ∆t, define return as:

returni
t =

Si
t+∆t − Si

t

Si
t

.

35

Under review as a conference paper at ICLR 2023

The returni
t can be daily, monthly or yearly, depending on the length of ∆t. For a specific asset,

drift (f i(Xt; θ
∗
S) in (2)) is approximately the expectation of the return, while volatility (gi(Xt; θ

∗
S))

is approximately the return’s standard deviation. Given multiple assets, drift (f(Xt; θ
∗
S)) is a vector

and volatility (g(Xt; θ
∗
S)) is a matrix. When generating synthetic data (Appendix K.2), we fix the

scale of drift and vary the scale of volatility, which is defined as the average value of each component.

K.2 DATA GENERATION

We simulate data for St and Xt following SDE (6). To this end, drift and volatility are randomly
picked while mimicking the historical stock price data, with an average annual return around as
0.1 and average annual volatility in {0.1, 0.2, 0.3}, leading to a daily return around 0.1

252 and a daily
volatility around {0.1/252, 0.2/252, 0.3/252}. The true representation function is selected as a
component-wise exponential operation. Then, we discritize the SDE following the explicit Euler
method, and generate data accordingly (Beskos & Roberts, 2005).

The specific configurations for data generation is:

• Define two scalars: Cd, and Cv determining the scale of drift and volatility:

Cd = 0.1/252, , and Cv ∈ {0.1/252, 0.2/252, 0.3/252} .

• σ is selected as a random matrix, whose components follow a uniform distribution in
[0.5Cv, 1.5Cv].

• v is selected as a random matrix, whose components follow a uniform distribution in
[−1.5CdCv, 1.5CdCv].

• µ is selected as a diagonal matrix whose diagonal components follow a uniform distribution
in [0.9, 1].

• The initial values of X are randomly generated from a uniform distribution on [−2Cd, 2Cd].

• The initial prices of assets are randomly generated from a uniform distribution in [20, 30].

Note that the design makes sure that the simulated price has approximately a yearly return of 0.1 and
yearly volatility in {0.1, 0.2, 0.3}. Table 4 reports the experimental setup parameters.

Experiment Configurations Values

Time Interval ∆t 1 (Day)
Terminal Time T 21

Scale of Annual Drift 0.1

Scale of Annual Volatility {0.1, 0.2, 0.3}
Number of Simulated Trajectories 1000

Utility Function {Power,Exponential}
Risk Aversion γ {0.1, 3, 5, 10}

Number of Replications under Each Hyperparameter 5
Compute Resources AWS ec2 m5ad.24xlarge

Table 4: Setup for synthetic experiments

K.3 EARLY STOPPING AND HYPERPARAMETER TUNING

For better performance, we conduct early stopping for all methods using the average validation utility
with the patience as 5 steps. The considered hyperparameters include the learning rate, λ, and batch
size. For each configuration, we conduct training for 5 times, and average the results. Then, we
pick the configuration providing the best average validation utility, and test it on the test data and
calculate the average test utility per trajectory. The tuning process is conducted using the software
wandb (Biewald, 2020). Table 5 reports the hyperparameter values.

36

Under review as a conference paper at ICLR 2023

Hyperparameters Values

Batch Size {100, 50}
λ {0, 05, 0.1, 0.9}

Learning Rate {0.0005, 0.001, 0.01, 0.1}

Table 5: Hyperparameters for synthetic experiments

K.4 SYNTHETIC EXPERIMENT RESULTS

To gain a more holistic understanding of the performance of FaLPO in a variety of settings, we conduct
experiments under different number of stocks to be traded (Appendix K.4.1), different risk preferences
(Appendix K.4.2), and alternative utility functions (Appendix K.4.3). Finally, we also compare the
performance of various methods under the Merton model as a sanity check (Appendix K.4.4).

K.4.1 SYNTHETIC EXPERIMENT RESULTS WITH DIFFERENT DIMENSIONS

Tables 6 and 7 report the synthetic experiment results with the number of simulated stocks (dS)
varying in {10, 15}. The performance is not strictly negatively correlated with the number of
dimensions of the problem or the annual volatility in simulation. The reason is that the noise in the
problem is indeed determined by the whole volatility matrix σ, which is randomly generated in the
synthetic experiment (Appendix K.2). In other words, the dimension and average scale cannot fully
characterize the extent of the noise in a synthetic task.

Annual Volatility in Simulation 0.1 0.2 0.3

Methods

FaLPO −0.465± 0.446 −1.35± 0.155 −2.737± 0.219

DDPG −1.650± 0.456 −3.30± 1.294 −5.495± 1.269

SLAC −0.750± 0.210 −5.50± 0.011 −6.160± 0.012

RichID −3.350± 0.111 −5.65± 0.102 −6.325± 0.048

CT-MB-RL −2.850± 0.014 −5.35± 0.020 −6.160± 0.026

MMMC −4.723± 7.619 −5.602± 4.299 −6.124± 3.217

Table 6: Average terminal utility after tuning with standard deviation for synthetic data with
dS = 10 and dW = 10.

Annual Volatility in Simulation 0.1 0.2 0.3

Methods

FaLPO −2.463± 3.744 −1.021± 0.278 −2.243± 0.547

DDPG −3.976± 1.428 −1.443± 0.751 −5.205± 1.858

SLAC −4.749± 0.139 −6.129± 0.016 −6.526± 0.012

RichID −4.973± 0.448 −6.321± 0.038 −6.641± 0.022

CT-MB-RL −3.074± 0.014 −5.714± 0.023 −6.363± 0.021

MMMC −5.388± 5.688 −6.465± 4.978 −7.155± 5.965

Table 7: Average terminal utility after tuning with standard deviation for synthetic data with
dS = 15 and dW = 15.

K.4.2 SYNTHETIC EXPERIMENT RESULTS WITH DIFFERENT VALUES OF γ

Tables 8 and 9 report experimental results with dS = 10, dW = 10, and γ ∈ {3, 10} for an
exponential utility. FaLPO outperforms the competing methods in most scenarios.

37

Under review as a conference paper at ICLR 2023

Annual Volatility in Simulation 0.1 0.2 0.3

Methods

FaLPO −0.003± 0.0021 −0.0055± 0.0008 −0.0132± 0.0028

DDPG −0.003± 0.001 −0.0105± 0.006 −0.0205± 0.0034

SLAC −0.003± 0.0007 −0.0153± 0.0013 −0.0192± 0.0011

RichID −0.012± 0.0005 −0.0188± 0.0002 −0.0211± 0.0

CT-MB-RL −0.01± 0.0 −0.0179± 0.0 −0.0206± 0.0

MMMC −0.0162± 0.0212 −0.0194± 0.0135 −0.0210± 0.0102

Table 8: Average terminal utility after tuning with standard deviation for synthetic data with
γ = 10.

Annual Volatility in Simulation 0.1 0.2 0.3

Methods

FaLPO −4.575± 3.325 −17.9358± 2.3349 −56.0405± 13.0502

DDPG −23.113± 4.3472 −51.6559± 11.7981 −50.0399± 13.8451

SLAC −23.514± 11.7077 −68.6816± 0.0254 −76.1371± 0.0355

RichID −44.629± 1.8797 −69.481± 0.9413 −77.232± 0.1091

CT-MB-RL −34.842± 0.4686 −65.41± 0.1331 −75.4364± 0.122

MMMC −59.2338± 77.4511 −70.8667± 49.2500 −76.8619± 37.448

Table 9: Average terminal utility after tuning with standard deviation for synthetic data with
γ = 3.

K.4.3 SYNTHETIC EXPERIMENT RESULTS WITH POWER UTILITY

We also conduct synthetic experiments maximizing the expected power utility for portfolio optimiza-
tion. The results are summarized in Figure 5.

24

25

26

27

28

CT−MB−RL FaLPO DDPG RichID SLAC
Methods

A
ve

ra
ge

 U
ti

li
ty

(a) γ = 0.1

30

33

36

39

CT−MB−RL FaLPO DDPG RichID SLAC
Methods

A
ve

ra
ge

 U
ti

li
ty

(b) γ = 0.2

50

60

70

80

CT−MB−RL FaLPO DDPG RichID SLAC
Methods

A
ve

ra
ge

 U
ti

li
ty

(c) γ = 0.3

Figure 5: Average Terminal Power Utility

K.4.4 SYNTHETIC EXPERIMENT FOR THE MERTON CASE

As a sanity check, we study a Merton problem where the optimal performance can be mathematically
derived, in order to compare the performance of FaLPO to the optimal one. We simulate data
following a Merton model in Appendix F.1, with dS = 10, dW = 10. With an exponential utility
function with γ = 5, according to Lemma F.1, the optimal policy can be derived as

π̃∗ =
µ(σσ⊤)−1

Zt
. (32)

Further, by taking (32) back into (14), we can derive the optimal expected terminal utility as

max
π̃t

Eπ̃[U(Z π̃
T)|z0] = −e−γz0

γ
e−

1
2µ

⊤(σσ⊤)−1µT ,

which is the theoretically optimal performance. Then, to implement FaLPO, we generate fake features
which are independent from the asset prices: the optimal policy is not dependent on these features.
Ideally, FaLPO should be able to automatically ignore the fake features, and deliver performance
similar to the theoretically optimal derivation. The results of FaLPO, MMMC, and the theoretically
optimal derivation are reported in Figure 6. Note that FaLPO achieves slightly worse performance
compared to the other two. The reason for the slight suboptimality of FaLPO in the Merton case is
twofold: i. the expected terminal utility is derived for a continuous-time policy while FaLPO learns a

38

Under review as a conference paper at ICLR 2023

discrete-time policy with time interval ∆t; ii. FaLPO uses an over-complicated model with stochastic
factors, while the true data generating process follows a Merton model without stochastic factors.

4.6

4.8

5.0

5.2

FaLPO MMMC Optimal
Methods

N
eg

at
iv

e
A

ve
ra

ge
/E

x
p

ec
te

d

T
er

m
in

al
 U

ti
li
ty

Figure 6: Negative average terminal utility of FaLPO and MMMC, and negative expected optimal
terminal utility. The smaller the better.

L EXTENDED RESULTS OF REAL-WORLD STOCK TRADING

L.1 PROTOCOL

We consider 21-day stock trading in four different stock sectors using the daily stock price data from
Yahoo finance between January 4, 2006 and April 1, 2022. More specifically, we use the adjusted
close price as the daily trading price. For factors, we consider economic indexes, technical analysis
indexes (generated by python package TA), and sector-specific features such as oil prices, gold prices,
and related ETF prices, leading to around 30 factors for each sector. In each sector we select 10
stocks according to the availability and trading volume in the considered time range. The considered
sectors, stocks, and the features are provided in Table 10. We consider the same competing methods
in Section 5.1 and compare the performance using the average achieved terminal utility over different
trajectories as the metric. The larger the utility the better.

Sectors Stocks Features for Factors

Energy APA, COP, CVX, HAL, HES,
MRO, OKE, OXY, VLO, WMB

SP500 returns, MACD of stock prices,
RSI of stock prices, oil prices, gasoline prices
US Dollar/USDX - Index - Cash (DX-Y.NYB)

Industrial BA, CAT, DE, EMR, ETN,
GE, HON, LMT, LUV, PNR,

SP500 returns, MACD of stock prices,
RSI of stock prices,

ETF prices including DIA, EXI, IYJ and VIS

Materials APD, AVY, BLL, DD, ECL,
FMC, IFF, IP, NEM, VMC

SP500 returns, MACD of stock prices,
RSI of stock prices, gold prices, silver prices,

ETF prices including IYM and VAW

Table 10: Selected stocks and features

L.2 EXTRA PENALTIES

For real-world experiments, we consider two extra penalty terms for better stability. The first penalty
is the model calibration loss discussed in Appendix E.3. Given a trajectory with time interval ∆t,
τ := {ti, sti , xti | i ∈ [m]}, it is defined as

−λ1 min
C,b

m∑
i=1

∥∥ϕ(Xti+1)− Cϕ(Xti)− b
∥∥2
2
,

where C is a matrix and b a vector of proper dimensions. As discussed in Appendix E.3, this penalty
encourages a simple representation function ϕ. The second penalty is the negative sample variance of
the terminal wealth, with the parameter λ2 determining its strength. The intuition of this penalty is to
further penalize the instability of the algorithm performance. The second penalty is implemented for
all the competing methods except MMMC for a fair comparison.

39

Under review as a conference paper at ICLR 2023

L.3 TRAIN-VALIDATION-TEST SPLIT BY SLIDING WINDOW

We detail the sliding window method for train-validation-test split for real-world portfolio optimiza-
tion experiments (Figure 7). In financial markets, the dynamics under asset prices and factors vary
over time, leading us to construct a sliding window on the dataset for training, validation and testing.
Specifically, given a dataset of asset prices and observed features, we construct several windows of
observations of equal length. We divide each window into three contiguous periods, the first used for
training, the second for validation, and the third for testing. We refer to the length (in days) of the
training period as the training size (same for validation and test periods).

After constructing one window, we move the start time point by a fixed number of days (the window
gap), and construct the second window. A given method is trained on the training set of each window
separately, and then validated and tested on the corresponding validation and test sets. The final
validation and test performances are calculated by averaging over each window. The experimental
setup is summarized in Table 11. We report the considered hyperparameter values in Table 12.

Time

Train Validation TestWindow 1

Window 2

Window 3

Window Gap
...

Train Validation Test

Train Validation Test

Figure 7: Demonstration of sliding window.

Experiment Configurations Values

Time Interval ∆t 1 (Day)
Terminal Time T 21

Utility Function Exponential

Risk Aversion γ 5

Number of Replications under Each Hyperparameter 10
Compute Resources AWS ec2 m5ad.24xlarge

Table 11: Setup for real-world experiments.

40

Under review as a conference paper at ICLR 2023

Hyperparameters Values

Batch Size {100, 200, 400}
λ {0.1, 0.5, 0.9}

Learning Rate {0.0005, 0.001, 0.01, 0.1}
Window Gap {63, 126}

Train Size {1260}
Validation Size {63}

Test Size {63}

Table 12: Hyperparameters for real-world experiments

L.4 SENSITIVITY ANALYSIS ON λ

According to (5), the value of λ determines the weight of the FaLPO model calibration. In this
section, we conduct sensitivity analysis of FaLPO on λ. Under the same protocol as the experiments
in Section 5.2, we also report FaLPO with different values of λ when applied to different sectors.
The results are reported in Figure 8. Compared to the case without model calibration (λ = 0), a
small non-zero λ provides higher terminal utilities and lower variance. This observation justifies our
method of incorporating model calibration into policy learning. Then, when λ gets bigger and close
to one, the performance of FaLPO decays while the variance also gets smaller.

−10

−5

0

0.00 0.25 0.50 0.75

λ

A
ve

ra
ge

 U
ti

li
ty

(a) Oil

−6

−4

−2

0.00 0.25 0.50 0.75

λ

A
ve

ra
ge

 U
ti

li
ty

(b) Material

−20

−15

−10

−5

0

0.00 0.25 0.50 0.75

λ

A
ve

ra
ge

 U
ti

li
ty

(c) Industrials

−10

−5

0

0.00 0.25 0.50 0.75

λ
A

ve
ra

ge
 U

ti
li
ty

(d) Mix

Figure 8: Sensitivity analysis for λ

M MORE INFORMATION FOR COMPETING METHODS

Here we provide more information for the implemented competing methods. First of all, we focus
on policy learning methods, without studying other performance improving techniques like data
augmentation or feature engineering. (See Appendix A.2 for a review of such methods.) Such
techniques can be easily applied to FaLPO. Further, for a thorough comparison, we summarize the
existing policy-learning methods for portfolio optimization with the following four representatives.
Note that, all the following methods take asset price data and features as the input for a fair comparison.

• DDPG is implemented with the gradient estimation detailed in Appendix C and also dis-
cussed in Nan et al. (2022); Xiong et al. (2018); Jiang et al. (2017). This design makes sure
that DDPG can leverage offline data without exploration.

• SLAC (Lee et al., 2020) learns a representation of factors jointly with policy learning. But
in this process, no parametric models are used.

• RichID (Mhammedi et al., 2020) falls into the category of model-based policy learning like
Yu et al. (2019). It first learns the representation of factors and then conduct policy learning.
In this process, both steps take advantage of a parametric model. For better performance in
portfolio optimization, we pick Kim-Omberg model as the used model, instead of the LQR
model original proposed with this method.

• CT-MB-RL is a policy gradient method optimizing the performance objective using the pol-
icy functional form derived from continuous-time models, but without factor representation
learning.

41

Under review as a conference paper at ICLR 2023

We also implement MMMC as a representative of continuous-time finance methods. More compli-
cated and advanced continuous-time finance methods are hard to implement for two reasons. First, to
implement such methods, we need to estimate all the parameters of a multivariate SDE (like σ, v, µ
and ω in Section 3.3). It is challenging since the derivation of likelihood requires solving multivariate
stochastic integrals (Ait-Sahalia & Kimmel, 2010), Second, deriving explicit optimal policy functions
is also difficult, which involves solving high-dimensional PDEs (like k2(t) and k3(t) in Lemma F.2).
Further, such pure continuous-time models are expected to underperform, since they assume that the
data exactly follow a parametric SDE and tend to underfit. This can also be seen by our comparison
with CT-MB-RL (Section 5), which is a model-based RL method by relying on a Kim-Omberg model.
As a result, we focus our empirical comparison to more competitive RL methods.

Note that FaLPO circumvents the two aforementioned challenges. First, our model calibration does
not aim to fit all the parameters in an SDE, but only those related to learning θϕ and θπ. That is
why our model calibration loss in Section 3.3 has such an easy-to-calculate form with the parameter
θS as a simple vector. Second, FaLPO does not need a fully derived closed-form solution for the
optimal policy. Like in Section 3.3, we use neural networks to parameterize K(t) and ϕ(), instead
of fully deriving them like continuous-time finance methods. Being able to bridge this gap between
continuous-time finance models and high multidimensional stock trading problems is one of our
contributions.

N EXPERIMENTS WITH TRANSACTION COSTS

In this section, we consider the case with transaction costs. Usually, the cost of borrowing a stock
to short can vary but typically ranges from 0.3% to 3% per year. Therefore, we take 1% annual
transaction cost for short selling an asset. (The fees are applied daily.) Under this setting, we replicate
our real-world experiments for the oil sector, using the same protocol. After the tuning procedure in
Appendix L.3, the achieved results are reported in Table 13. It should be noticed that the results are
consistent with those without transaction costs.

Methods Average Utility

FaLPO −2.25± 1.649

DDPG −6.795± 0.8247

SLAC −7.115± 0.8872

RichID −6.365± 0.5989

CT-MB-RL −5.57± 5.036

Table 13: Average terminal utility in oil sector with transaction costs

O EXPERIMENTS WITH DIFFERENT INITIAL WEALTH

We vary the initial wealth in {3000, 5000, 8000, 1000} for portfolio optimization using stocks in the
oil sector following the same protocol as the experiments in Section 5.2. The results are summarized
in Table 14. Specifically, FaLPO achieves superior performance to the competing methods with
different initial wealth. Also, it should be noticed that all the methods achieve higher terminal utility
given more initial wealth.

Initial Wealth 3000 5000 8000 10000

FaLPO −21.08± 16.775 −2.4± 1.9 −0.243± 0.1209 −0.03595± 0.008896

DDPG −909.5± 3443.846 −6.6± 1.2 −0.34665± 0.01809 −0.046755± 0.00444

SLAC −11865± 47260.664 −6.8± 0.2 0.35465± 0.07427 −0.04558± 0.00142

RichID −45.51± 8.368 −6.5± 0.1 −0.33125± 0.009791 −0.045365± 0.0001446

CT-MB-RL −28.715± 18.303 −4.2± 6.2 −0.30995± 0.1441 −0.043055± 0.002061

Table 14: Average terminal utility in oil sector with different initial wealth

42

	Introduction
	Background
	Portfolio Optimization
	Deep Deterministic Policy Gradient
	Stochastic Factor Models

	Factor Learning Portfolio Optimization
	Neural Stochastic Factor Models
	Model-Regularized Policy Learning
	Example of FaLPO

	Theory
	Asymptotic Analysis
	Non-Asymptotic Analysis

	Experiments
	Synthetic Experiments
	Real-World Stock Trading

	Epilogue
	Related Literature
	Continuous-Time Finance Models
	Reinforcement Learning
	Empirical Risk Minimization

	Other Objective Functions
	Gradient Estimates
	A Primer on Stochastic Differential Equations (SDEs)
	Formulation of SDEs
	Examples
	Itô's Formula

	Model Calibration
	Log-Likelihood
	Negative Mean Square Loss
	Other Model Calibration Objective

	Applications of FaLPO to Different Stochastic Factor Models in Continuous-Time Finance
	Merton Model
	Modeling
	Policy Functional Form
	Model Calibration

	Kim–Omberg
	Modeling
	Policy Functional Form
	Model Calibration

	EVE Model with Stochastic Markovian Factors
	Modeling
	Concrete Example
	Policy Functional Form

	Model Calibration

	Solutions of Riccati Differential Equations
	Extension to Linear Quadratic Control (LQC)
	Modeling
	Policy Functional Form
	Model Calibration

	Extended Results for Theorem 4.1
	Assumptions and Definitions
	Lemmas
	Proof

	Extended Results of Theorem 4.2
	Another Version of Theorem 4.2
	Assumptions
	Technical Lemmas for Theorem 4.2
	Proof of Theorem 4.2

	Extended Results for Synthetic Experiments
	Drift and Volatility
	Data Generation
	Early Stopping and Hyperparameter Tuning
	Synthetic Experiment Results
	Synthetic Experiment Results with Different Dimensions
	Synthetic Experiment Results with Different values of Lg
	Synthetic Experiment Results with Power Utility
	Synthetic Experiment for the Merton Case

	Extended Results of Real-World Stock Trading
	Protocol
	Extra Penalties
	Train-Validation-Test Split by Sliding Window
	Sensitivity Analysis on Lg

	More Information for Competing Methods
	Experiments with Transaction Costs
	Experiments with Different Initial Wealth

