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ABSTRACT

As the field of machine learning for combinatorial optimization advances, tra-
ditional problems are resurfaced and readdressed through this new perspective.
The overwhelming majority of the literature focuses on small graph problems,
while several real-world problems are devoted to large graphs. Here, we focus
on two such problems: influence estimation, a #P-hard counting problem, and
influence maximization, an NP-hard problem. We develop GLIE, a Graph Neu-
ral Network (GNN) that inherently parameterizes an upper bound of influence
estimation and train it on small simulated graphs. Experiments show that GLIE
provides accurate influence estimation for real graphs up to 10 times larger than
the train set. More importantly, it can be used for influence maximization on
considerably larger graphs, as the predictions ranking is not effected by the drop
of accuracy. We develop a version of Cost Effective Lazy Forward optimization
with GLIE instead of simulated influence estimation, surpassing the benchmark
for influence maximization, although with a computational overhead. To balance
the time complexity and quality of influence, we propose two different approaches.
The first is a Q-network that learns to choose seeds sequentially using GLIE’s
predictions. The second defines a provably submodular function based on GLIE’s
representations to rank nodes fast while building the seed set. The latter provides
the best combination of time efficiency and influence spread, outperforming SOTA
benchmarks.

1 INTRODUCTION

Several real-world problems can be cast as a combinatorial optimization problem over a graph. From
distributing packages (Mathew et al., 2015) to improving the general health (Wilder et al., 2018)
and vehicles’ management (Touati-Moungla & Jost, 2012), optimization on graphs lies in the core
of many real-world applications that are vital to our way of living. Unfortunately, the majority of
these problems are NP-hard, and hence we can only approximate their solution in a satisfactory time
limit that matches the real world requirements. Recent machine learning methods have emerged
as a promising solution to develop heuristic methods that provide fast and accurate approximations
(Bengio et al., 2020). The general idea is to train a supervised or unsupervised learning model to
infer the solution given an unseen graph and the problem constraints. The models tend to consist
of Graph Neural Networks (GNNs) to encode the graph and the nodes, Q-learning (Watkins &
Dayan, 1992; Sutton & Barto, 2018) to produce sequential predictions, or a combination of both. The
practical motivation behind learning to solve combinatorial optimization problems, is that inference
time is faster than running an exact combinatorial solver (Joshi et al., 2019). That said, specialized
combinatorial algorithms like CONCORDE for the Traveling Salesman Problem (TSP) or GUROBI in
general, cannot be surpassed yet (Kool et al., 2018).

Though many such methods have been proposed for a plethora of problems, influence maximization
(IM) has not been addressed yet extensively. IM addresses the problem of finding the set of nodes
in a network that would maximize the number of nodes reached by starting a diffusion from them
(Kempe et al., 2003). The problem is proved to be NP-hard, from a reduction to the set-cover
problem. Moreover, the influence estimation (IE) problem that is embedded in IM, i.e., estimating
the number of nodes influenced by a given seed set, is #P-hard as it is analogous to counting s-t
connectedness and would require 2|E| possible combinations to compute exactly, where |E| is the
number of network edges (Wang et al., 2012). Typically, influence estimation is approximated using
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repetitive Monte-Carlo (MC) simulations of the independent cascade (IC) diffusion model. In general,
the seed set is built greedily, taking advantage of the submodularity of the influence function which
guarantees an at least (1− 1

e ) approximation to the optimal. Although the latter lacks of efficiency
as one still has to estimate influence for every candidate seed in every step of building the seed
sets. Hence, several scalable algorithms Borgs et al. (2014); Tang et al. (2015) and heuristics Chen
et al. (2009); Jung et al. (2012) were developed capitalizing on sketches or the structure of the graph
to produce more efficient solutions. IM can be applied on a plethora of real-world tasks, such as
epidemic containment (Wilder et al., 2017), diminishing fake news (Budak et al., 2011), and running
viral marketing campaigns (Domingos & Richardson, 2001).

We address IM using neural networks, to capitalize on the aforementioned advantages as well as their
ability to easily incorporate contextual information such as user profiles and topics (Tian et al., 2020),
a task that remains unsolvable for non-specialized IM algorithms and heuristics. We propose GLIE, a
GNN that provides efficient IE for a given seed set and a graph with influence probabilities. It can be
used as a standalone influence predictor with competitive results for graphs up to 10 times larger than
the train set. Moreover, we leverage GLIE for IM, combining it with CELF (Leskovec et al., 2007),
that typically does not scale beyond networks with thousands of edges. The proposed method runs in
networks with millions of edges in seconds, and exhibits better influence spread than a state-of-the-art
algorithm and previous GNN-RL methods for IM. In addition, we develop GRIM, a Q-learning
architecture that utilizes GLIE’s representations and predictions to obtain seeds sequentially, while
minimizing the number of influence estimations throughout steps. Finally, we propose PUN, a method
that uses GLIE’s representations to compute the number of neighbors predicted to be uninfluenced and
uses it as an approximation to the marginal gain. We prove PUN’s influence spread is submodular and
monotone, and hence can be optimized greedily with a guarantee, in contrast to prior learning-based
methods. The experiments indicate that PUN provides the best balance between influence quality and
computational efficiency.

The paper is organized as follows. Section 2 presents an overview of relevant approaches and clarifies
the advantage of the proposed models. Section 3 describes the proposed methods, starting with IE
and advancing progressively towards faster methods for IM. Section 4 exhibits and interprets the
experimental results for IE and IM. Finally, Section 5 summarizes the contribution and presents future
steps.

2 RELATED WORK

The first approach to solving combinatorial optimization (CO) using neural networks was based on
attention-based NNs for discrete structures, POINTERNETS (Vinyals et al., 2015), followed by an
architecture that combines POINTERNETS with an actor-critic training to find the best route for TSP
(Bello et al., 2016). The first architecture that utilized graph-based learning was S2N-DQN (Dai et al.,
2017), usingSTRUCT2VEC to encode the states of the nodes and the graph, and training a Q-learning
model that chooses the right node to add in a solution given the current state.

Based on S2V-DQN, a DQN (Mnih et al., 2015) for the network dismantling problem was recently
proposed (Fan et al., 2020) (Li et al., 2019). The model, named FINDER, uses a deep Q-learning
architecture where the representations are derived by three GRAPHSAGE layers. The reward is based
on size of the giant connected component size, i.e., every new node (seed) chosen, aims to dismantle
the network as much as possible. Some of the main advantages of FINDER is that it is trained on
small synthetic data, which are easy to make, and can extrapolate to relatively large graphs. On the
other hand, one of the core disadvantages is that it can not work with directed graphs and weighted
edges. Another recent supervised deep learning approach on IM, GCOMB (Manchanda et al., 2020),
utilizes a probabilistic greedy to produce scores on graphs and trains a GNN to predict them. A
Q-network receives the scores along with an approximate calculation of the node’s neighborhood
correlation with the seed set, to predict the next seed. This approach, though scalable and comparable
to SOTA in accuracy, has to be trained on a large random subset of the graph (30% of it) and tested
on the rest. This makes the model graph-specific, i.e., it has to be retrained to perform well on a
new graph. This imposes a serious overhead, considering the time required for training, subsampling
and labeling these samples using the probabilistic greedy method with traditional IE. As shown in
(Manchanda et al., 2020) Appendix G, it takes at least hundreds of minutes and is thus out of our
scope. Finally, recent works on learning approximations to submodular policies ? require a large

2



Under review as a conference paper at ICLR 2022

number of ground truth evaluation to create the training trajectories, which rendering the training too
time consuming. Moreover, such methods require a novel neural network encoding to capture the
state of IM, which has not been developed yet.

In this paper, we propose an approach that combines the advantages of the aforementioned methods,
in that it is only trained on small simulated data once and generalizes to larger graphs, and it addresses
the problem of IM in weighted directed networks. Furthermore, the approach can be broken down
to a GNN for influence estimation and three IM methods. The former can act alone as influence
predictor and be competitive with relevant methods, such as DMP (Lokhov & Saad, 2019) for graphs
up to one scale larger than the train set. GLIE is used to propose CELF-GLIE, CELF Leskovec et al.
(2007) with GLIE as influence estimator, GRIM, a Q-network that learns how to choose seeds using
the GLIE’s estimations and hidden representations, and PUN, an adaptive IM method that optimizes
greedily a submodular influence spread using GLIE’s representations.

We note here that the majority of the relevant literature on DL for CO address small graphs (Vinyals
et al., 2015; Dai et al., 2017; Kool et al., 2018; Prates et al., 2019) which makes them not applicable
to our task. More scalable, unsupervised methods (Karalias & Loukas, 2020) are tailored to specific
problems and is non-trivial to adjust them to our problem, with the exception of (Li et al., 2018)
which was found significantly worse than the SOTA algorithm we compare with in Manchanda et al.
(2020).

3 METHODOLOGY

3.1 GRAPH LEARNING FOR INFLUENCE ESTIMATION (GLIE)

In this section, we introduce GLIE (GNN Learning Influence Estimation), which aims to learn how
to estimate the influence of a seed set S over a graph G = (V,E). Let A ∈ Rn×n be the adjacency
matrix and X ∈ Rn×d be the features of nodes, representing which nodes belong to the seed set by 1
and 0 otherwise:

Xu =

{
{1}d, u ∈ S
{0}d, u /∈ S . (1)

For the derivation of the corollary, we set d = 1. More dimensions will become meaningful when
we parameterize the problem. If we normalize A by each row, we form a row-stochastic transition
matrix, as:

Auv = pvu =

{
1

deg(u) , v ∈ N (u)

0, v /∈ N (u)
, (2)

where deg(u) is the in-degree of node u andN (u) is the set of neighbors of u. Based on the weighted
cascade (Kempe et al., 2003), each row u stores the probability of node u being influenced by each
of the other nodes that are connected to it by a directed link v → u. Note that, in case of directed
influence graphs, A should correspond to the transpose of the adjacency matrix. The influence
probability p(u|S) resembles the probability of a node u getting influenced if its neighbors belong
in the seed set, i.e., during the first step of the diffusion. We can use message passing to compute a
well-known upper bound p̂(u|S) of p(u|S) for node u:

p̂(u|S) = Au ·X =
∑

v∈N (u)∩S

1

deg(u)
=

∑

v∈N (u)∩S
pvu ≥ 1−

∏

v∈N (u)∩S
(1− pvu) = p(u|S), (3)

where the second equality stems from the definition of the weighted cascade and the inequality
from the proof in Zhou et al. (2015), App. A. As the diffusion covers more than one-hop, the
derivation requires repeating the multiplication to approximate the total influence spread. To be
specific, computing the influence probability of nodes that are not adjacent to the seed set requires
estimating recursively the probability of their neighbors being influenced by the seeds. If we let
H1 = A ·X, and we assume the new seed set St to be the nodes influenced in the step t− 1, their
probabilities are stored in Ht, much like a diffusion in discrete time. We can then recompute the new
influence probabilities with Ht+1 = A ·Ht,

Corollary 3.0.1. The repeated product Ht+1 = A·Ht computes an upper bound to the real influence
probabilities of each infected node at step t+ 1.
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The proof can be found in Appendix A.1. In reality, due to the existence of cycles, two problems
arise with this computation. Firstly, if the process is repeated the influence of the original seeds
may increase again, which comes in contrast with the independent cascade model. This can be
controlled by minimizing the repetitions, e.g., four repetitions cause the original seeds to be able to
reinfect other nodes in a network with triangles. To this end, we leverage up to three neural network
layers. Another problem due to cycles pertains to the probability of neighbors influencing each other.
In this case, the product of the complementary probabilities in Eq. (3) does not factorize for the
non-independent neighbors. This effect was analyzed extensively in Lokhov & Saad (2019), App. B,
and proved that the influence probability computed by p(u|S) is itself an upper bound on the real
influence probability for graphs with cycles. Intuitively, the product that represents non-independent
probabilities is larger than the product of independent ones. This renders the real influence probability,
which is complementary to the product, smaller than what we compute.

We can thus contend that the estimation p̂(u|S) provides an upper bound on the real influence
probability—and we can use it to compute an upper bound to the real influence spread of a given seed
set i.e., the total number of nodes influenced by the diffusion. Since message passing can compute
inherently an approximation of influence estimation, we can parameterize it to learn a function that
tightens this approximation based on supervision. In our neural network architecture, each layer
consists of a GNN with a batchnorm and dropout omitted here, and starting from H0 = X ∈ Rn×d

we have:
Ht+1 = ReLU([Ht,AHt]W0). (4)

The readout function that summarizes the graph representation based on all nodes’ representations is
a summation over all the final representations with skip connections:

HG
S =

∑

v∈V
[Hv

0,H
v
1, . . . ,H

v
t ]. (5)

This representation captures the probability of all nodes being active throughout each layer. The
output that represents the predicted influence spread is derived by:

σ̂(S) = ReLU(HG
SWo). (6)

Note that, the derived representations of each layerHi
t , untrained, are the upper bound of the influence

probability of seed set’s the t-hop neighbors. The parameters of the intermediate layers Wt are trained
such that the upper bound is reduced and the final layer Wo can combine the probabilities to derive a
cumulative estimate for the total number of influenced nodes. We empirically verify this by examining
the layer activations which can be seen in Fig. 1 and the heatmaps indicate a difference between
columns (nodes) expected to be influenced, meaning we could potentially predict not only the number
but also who will be influenced. However, since σ̂ is derived by multiple layers, the relationships and
thresholds to determine the exact influenced set is not straight forward. Below we experiment with
different such sets extracted from H for the purpose of IM.

3.2 COST EFFECTIVE LAZY FORWARD WITH GLIE (CELF-GLIE)

The original Cost Effective Lazy Forward (Leskovec et al., 2007) is an acceleration to the original
greedy algorithm that is based on the constraint that a seed’s spread will never get bigger in subsequent
steps. The influence spread is computed for every node in the first iteration and kept in a sorted
list. In each step, the marginal gain is computed for the node with the best influence spread in the
previous round. If it is better than the previously second node, it is chosen as the next seed because it
is necessarily bigger than the rest. This property stems from submodularity, i.e., the marginal gain
can never increase with the size of the seed set. If the first node’s current gain is smaller than the
second previous gain, the list is resorted and the process is repeated until the best node is found. The
worst-case complexity is similar to greedy but in practice it can be hundreds of times faster, while
retaining greedy’s original guarantee.

In our case, we propose a straight forward adaptation where we substitute the original CELF IE
based on MC IC with the output of GLIE. We redirect the reader in the Appendix B, where we show
that the estimations of GLIE are monotonous and submodular in practice, and hence σ̂ is suitable
for optimizing with CELF. Since we do not prove the submodularity of σ̂, we can not contend that
the theoretical guarantee is retained. CELF-GLIE has two main computational bottlenecks. First,

4



Under review as a conference paper at ICLR 2022

Influence set 
representation

Set influence

Overlap

Seed influence

Action (new seed)

Candidate seeds

INFLUENCE ESTIMATION
Compute for every candidate seed before the Q-network

ReadOut

<latexit sha1_base64="bj5/PXvRWwwvKiEDd3D4l4386No=">AAACHnicbVDLSgNBEJyNr7i+ol4EL4sh4CnsSkCPQS/ejGIekIQwO+kkQ2YfzPRKwhK/xYNX/Qxv4lW/wl9wdhMkJjbMUFR1U93lhoIrtO0vI7Oyura+kd00t7Z3dvdy+wc1FUSSQZUFIpANlyoQ3IcqchTQCCVQzxVQd4dXiV5/AKl44N/jOIS2R/s+73FGUVOd3FELYYRx+isW3wHt3kQ4mZidXN4u2mlZy8CZgTyZVaWT+251AxZ54CMTVKmmY4fYjqlEzgRMzFakIKRsSPvQ1NCnHqh2nF4wsQqa6Vq9QOrno5Wy8xMx9ZQae67u9CgO1KKWkP9pzQh7F+2Y+2GE4LOpUS8SFgZWEofV5RIYirEGlEmud7XYgErKUIdmFuZtwlGym/q10Qk5i3ksg9pZ0SkVS7elfPlyllWWHJMTckocck7K5JpUSJUw8kieyQt5NZ6MN+Pd+Ji2ZozZzCH5U8bnD7tyoyY=</latexit>

Output

<latexit sha1_base64="zD9WQbVg7fQXtpMLWuzDCBfHyo4=">AAACHXicbVDLSsNAFJ3UV42vqAsXboKl4KokUtBl0Y07K9gHtKFMppN26OTBzI20hHyLC7f6Ge7ErfgV/oKTNEhtvTDD4Zx7OfceN+JMgmV9aaW19Y3NrfK2vrO7t39gHB61ZRgLQlsk5KHoulhSzgLaAgacdiNBse9y2nEnN5neeaRCsjB4gFlEHR+PAuYxgkFRA+OkD3QKSf5LktzFEMWQpvrAqFg1Ky9zFdgFqKCimgPjuz8MSezTAAjHUvZsKwInwQIY4TTV+7GkESYTPKI9BQPsU+kk+QGpWVXM0PRCoV4AZs4uTiTYl3Lmu6rTxzCWy1pG/qf1YvCunIQF6igakLmRF3MTQjNLwxwyQQnwmQKYCKZ2NckYC0xAZaZXF22iabab/LVRCdnLeayC9kXNrtfq9/VK47rIqoxO0Rk6Rza6RA10i5qohQhK0TN6Qa/ak/amvWsf89aSVswcoz+lff4AVRSi+Q==</latexit>

2nd Layer

<latexit sha1_base64="nJ+FhxIQcnK30jjjyxZ9+atp+cM=">AAACK3icbVDLSgNBEJz1GeNr1aOXwRDwFHYloMegFw8eIpgHJDHMTjo6ODu7zPRKwrJf4Ld48Kqf4Unx6tlfcJIs4qthmKKqm+quIJbCoOe9OHPzC4tLy4WV4ura+samu7XdNFGiOTR4JCPdDpgBKRQ0UKCEdqyBhYGEVnBzMtFbt6CNiNQFjmPohexKiaHgDC3Vd8sHl2kXYYSpGmQZncHZZ3h6xsags6zYd0texZsW/Qv8HJRIXvW++9EdRDwJQSGXzJiO78XYS5lGwSVkxW5iIGb8hl1Bx0LFQjC9dHpORsuWGdBhpO1TSKfs94mUhcaMw8B2hgyvzW9tQv6ndRIcHvVSoeIEQfGZ0TCRFCM6yYYOhAaOcmwB41rYXSm/ZppxtAkWy99t4tFkN/NlYxPyf+fxFzQPKn61Uj2vlmrHeVYFskv2yD7xySGpkVNSJw3CyR15II/kybl3np1X523WOufkMzvkRznvn1aIqKQ=</latexit>

1st Layer

<latexit sha1_base64="+giw3PGcCZxNLb5ydEESwpYmiks=">AAACK3icbVDJSgNBEO1xjXEb9eilMQQ8hRkJ6DHoxYOHCGaBJIaeTiVp0rPQXSMJw3yB3+LBq36GJ8WrZ3/BzoLExIKmH+9V8aqeF0mh0XHerZXVtfWNzcxWdntnd2/fPjis6jBWHCo8lKGqe0yDFAFUUKCEeqSA+Z6Emje4Guu1B1BahMEdjiJo+awXiK7gDA3VtvPufdJEGGKiMU3pFE4/zZMbNgKVptm2nXMKzqToMnBnIEdmVW7b381OyGMfAuSSad1wnQhbCVMouIQ024w1RIwPWA8aBgbMB91KJuekNG+YDu2GyrwA6YSdn0iYr/XI90ynz7CvF7Ux+Z/WiLF70UpEEMUIAZ8adWNJMaTjbGhHKOAoRwYwroTZlfI+U4yjSTCbn7eJhuPd9K+NSchdzGMZVM8KbrFQvC3mSpezrDLkmJyQU+KSc1Ii16RMKoSTR/JMXsir9WS9WR/W57R1xZrNHJE/ZX39AHkfqLg=</latexit>

+

<latexit sha1_base64="tk1uIw9vnvjBFUgOSZUbAwmLSgE=">AAACBXicbVDLSsNAFL3xWeur6tJNsBQEoSRS0GXRjcsW7APaUCbTm3boZBJmJmIpXbtwq5/hTtz6HX6Fv+CkDVJbLwwczrmXc+b4MWdKO86Xtba+sbm1ndvJ7+7tHxwWjo6bKkokxQaNeCTbPlHImcCGZppjO5ZIQp9jyx/dpnrrAaVikbjX4xi9kAwECxgl2lD1i16h6JSd2dirwM1AEbKp9Qrf3X5EkxCFppwo1XGdWHsTIjWjHKf5bqIwJnREBtgxUJAQlTeZBZ3aJcP07SCS5gltz9jFiwkJlRqHvtkMiR6qZS0l/9M6iQ6uvQkTcaJR0LlRkHBbR3b6a7vPJFLNxwYQKpnJatMhkYRq002+tGgTP6bZ1K+Nachd7mMVNC/LbqVcqVeK1ZusqxycwhmcgwtXUIU7qEEDKCA8wwu8Wk/Wm/VufcxX16zs5gT+jPX5A87bmHQ=</latexit>

S

<latexit sha1_base64="E5/CRARnFBrRcL4C5ES9D1Sj8NQ=">AAACBnicbVDLSsNAFL3xWeOr6tLNYCm4KokUdFl047I++oA2lMl00g6dTMLMRCyhexdu9TPciVt/w6/wF5y0QWrrhYHDOfdyzhw/5kxpx/myVlbX1jc2C1v29s7u3n7x4LCpokQS2iARj2Tbx4pyJmhDM81pO5YUhz6nLX90lemtByoVi8S9HsfUC/FAsIARrA11e2f3iiWn4kwHLQM3ByXIp94rfnf7EUlCKjThWKmO68TaS7HUjHA6sbuJojEmIzygHQMFDqny0mnSCSobpo+CSJonNJqy8xcpDpUah77ZDLEeqkUtI//TOokOLryUiTjRVJCZUZBwpCOUfRv1maRE87EBmEhmsiIyxBITbcqxy/M28WOWTf3amIbcxT6WQfOs4lYr1ZtqqXaZd1WAYziBU3DhHGpwDXVoAIEAnuEFXq0n6816tz5mqytWfnMEf8b6/AFFsJiw</latexit>

Mean

<latexit sha1_base64="wpY2BYmCIJpnxFNMT+zgenLx/5E=">AAACGnicbVDLSsNAFJ34rPUVHzs3wVJwVRIp6LLoxo1QwT6gLWUyvW2HTiZh5kZaQ//EhVv9DHfi1o1f4S84TYvU1gszHM65l3M4fiS4Rtf9slZW19Y3NjNb2e2d3b19++CwqsNYMaiwUISq7lMNgkuoIEcB9UgBDXwBNX9wPdFrD6A0D+U9jiJoBbQneZczioZq28dNhCEm6a9ZcgtUjsdtO+cW3HScZeDNQI7Mpty2v5udkMUBSGSCat3w3AhbCVXImYBxthlriCgb0B40DJQ0AN1K0vRjJ2+YjtMNlXkSnZSdv0hooPUo8M1mQLGvF7UJ+Z/WiLF72Uq4jGIEyaZG3Vg4GDqTKpwOV8BQjAygTHGT1WF9qihDU1g2P28TDSfZ9K+Nachb7GMZVM8LXrFQvCvmSlezrjLkhJySM+KRC1IiN6RMKoSRR/JMXsir9WS9We/Wx3R1xZrdHJE/Y33+AP3iocE=</latexit>

Mean

<latexit sha1_base64="wpY2BYmCIJpnxFNMT+zgenLx/5E=">AAACGnicbVDLSsNAFJ34rPUVHzs3wVJwVRIp6LLoxo1QwT6gLWUyvW2HTiZh5kZaQ//EhVv9DHfi1o1f4S84TYvU1gszHM65l3M4fiS4Rtf9slZW19Y3NjNb2e2d3b19++CwqsNYMaiwUISq7lMNgkuoIEcB9UgBDXwBNX9wPdFrD6A0D+U9jiJoBbQneZczioZq28dNhCEm6a9ZcgtUjsdtO+cW3HScZeDNQI7Mpty2v5udkMUBSGSCat3w3AhbCVXImYBxthlriCgb0B40DJQ0AN1K0vRjJ2+YjtMNlXkSnZSdv0hooPUo8M1mQLGvF7UJ+Z/WiLF72Uq4jGIEyaZG3Vg4GDqTKpwOV8BQjAygTHGT1WF9qihDU1g2P28TDSfZ9K+Nachb7GMZVM8LXrFQvCvmSlezrjLkhJySM+KRC1IiN6RMKoSRR/JMXsir9WS9We/Wx3R1xZrdHJE/Y33+AP3iocE=</latexit>

�̂(s)

<latexit sha1_base64="YCzKP8zTMuyZ/6I7z3yJbIUbg2M=">AAACFXicbVDLSsNAFJ3UV62PRl26GSyFuimJFHRZdOOygn1AE8pkOmmHzkzCzEQsod/hwq1+hjtx69qv8BectEFq64ULh3Pu5RxOEDOqtON8WYWNza3tneJuaW//4LBsHx13VJRITNo4YpHsBUgRRgVpa6oZ6cWSIB4w0g0mN5nefSBS0Ujc62lMfI5GgoYUI22ogV32xkinnqIjjmY1dT6wK07dmQ9cB24OKiCf1sD+9oYRTjgRGjOkVN91Yu2nSGqKGZmVvESRGOEJGpG+gQJxovx0HnwGq4YZwjCSZoWGc3b5I0VcqSkPzCVHeqxWtYz8T+snOrzyUyriRBOBF0ZhwqCOYNYCHFJJsGZTAxCW1GSFeIwkwtp0Vaou28SPWTb1a2Maclf7WAedi7rbqDfuGpXmdd5VEZyCM1ADLrgETXALWqANMEjAM3gBr9aT9Wa9Wx+L04KV/5yAP2N9/gCXJJ7I</latexit>

r = �̂(S [ s0) � �̂(S)

<latexit sha1_base64="fZkAel85+LFs92T5/dbcL6b6WfM=">AAACM3icbVDLSgMxFM3UV62vUZdugqXYLlpmpKAboejGZUX7gM5QMmnahmYyQ5IRy9Cv8FtcuNWvEHfiVvwFM+0gtfVA4HDOvZyb44WMSmVZb0ZmZXVtfSO7mdva3tndM/cPmjKIBCYNHLBAtD0kCaOcNBRVjLRDQZDvMdLyRleJ37onQtKA36lxSFwfDTjtU4yUlrpmWcAL6AyRih1JBz6aFG+hg6MQypMSLC84pa6ZtyrWFHCZ2CnJgxT1rvnt9AIc+YQrzJCUHdsKlRsjoShmZJJzIklChEdoQDqacuQT6cbTb01gQSs92A+EflzBqTq/ESNfyrHv6UkfqaFc9BLxP68Tqf65G1MeRopwPAvqRwyqACYdwR4VBCs21gRhQfWtEA+RQFjpJnOF+ZjwIblN/sbohuzFPpZJ87RiVyvVm2q+dpl2lQVH4BgUgQ3OQA1cgzpoAAwewTN4Aa/Gk/FufBifs9GMke4cgj8wvn4AWkmpUA==</latexit>

O

<latexit sha1_base64="9dfh5jBTW4B+e1LcsOzgr24gdbk=">AAACD3icbVDLSsNAFL3xWeOr6tJNsBRclUQKuiy6cVnBPiANZTKdtEMnM2FmIpbQj3DhVj/Dnbj1E/wKf8FJG6S2Xhg4nHMv58wJE0aVdt0va219Y3Nru7Rj7+7tHxyWj47bSqQSkxYWTMhuiBRhlJOWppqRbiIJikNGOuH4Jtc7D0QqKvi9niQkiNGQ04hipA3l90I6FJrGRNn9csWtubNxVoFXgAoU0+yXv3sDgdOYcI0ZUsr33EQHGZKaYkamdi9VJEF4jIbEN5Aj4xJks8hTp2qYgRMJaR7XzoxdvMhQrNQkDs1mjPRILWs5+Z/mpzq6CjLKk1QTjudGUcocLZz8/86ASoI1mxiAsKQmq4NHSCKsTUt2ddEmecyzqV8b05C33McqaF/UvHqtflevNK6LrkpwCmdwDh5cQgNuoQktwCDgGV7g1Xqy3qx362O+umYVNyfwZ6zPH9ienNY=</latexit>

Store for 
training

n ⇥ 1

<latexit sha1_base64="CCEqGwEzfGQVsDkBjHs6QbEGVkg=">AAACDnicbVDLTgIxFL2DL8QX6tJNIyFxRWYMiS6JblxiIo8IhHRKBxo6nUl7x0gI/+DCrX6GO+PWX/Ar/AULTAyCN2lycs69OafHj6Uw6LpfTmZtfWNzK7ud29nd2z/IHx7VTZRoxmsskpFu+tRwKRSvoUDJm7HmNPQlb/jD66neeODaiEjd4SjmnZD2lQgEo2ipe0XaKEJuiNfNF9ySOxuyCrwUFCCdajf/3e5FLAm5QiapMS3PjbEzphoFk3ySayeGx5QNaZ+3LFTU2nTGs8QTUrRMjwSRtk8hmbGLF2MaGjMKfbsZUhyYZW1K/qe1EgwuO2Oh4gS5YnOjIJEEIzL9PukJzRnKkQWUaWGzEjagmjK0JeWKizbx4zSb+bWxDXnLfayC+nnJK5fKt+VC5SrtKgsncApn4MEFVOAGqlADBgqe4QVenSfnzXl3PuarGSe9OYY/43z+AGEXnAA=</latexit>

n ⇥ 1

<latexit sha1_base64="CCEqGwEzfGQVsDkBjHs6QbEGVkg=">AAACDnicbVDLTgIxFL2DL8QX6tJNIyFxRWYMiS6JblxiIo8IhHRKBxo6nUl7x0gI/+DCrX6GO+PWX/Ar/AULTAyCN2lycs69OafHj6Uw6LpfTmZtfWNzK7ud29nd2z/IHx7VTZRoxmsskpFu+tRwKRSvoUDJm7HmNPQlb/jD66neeODaiEjd4SjmnZD2lQgEo2ipe0XaKEJuiNfNF9ySOxuyCrwUFCCdajf/3e5FLAm5QiapMS3PjbEzphoFk3ySayeGx5QNaZ+3LFTU2nTGs8QTUrRMjwSRtk8hmbGLF2MaGjMKfbsZUhyYZW1K/qe1EgwuO2Oh4gS5YnOjIJEEIzL9PukJzRnKkQWUaWGzEjagmjK0JeWKizbx4zSb+bWxDXnLfayC+nnJK5fKt+VC5SrtKgsncApn4MEFVOAGqlADBgqe4QVenSfnzXl3PuarGSe9OYY/43z+AGEXnAA=</latexit>

i = 1, . . . , n

<latexit sha1_base64="BBxCLSQbs0Bgi09BthHFKIh8KSI=">AAACEHicbVDLSsNAFJ3UV62vqks3g6XgopRECroRim5cVrAPaEKZTCbt0MlMmJmIJfQnXLjVz3Anbv0Dv8JfcNIGqa0XLhzOuZdzOH7MqNK2/WUV1tY3NreK26Wd3b39g/LhUUeJRGLSxoIJ2fORIoxy0tZUM9KLJUGRz0jXH99keveBSEUFv9eTmHgRGnIaUoy0oVx65dRcFgitanxQrth1ezZwFTg5qIB8WoPytxsInESEa8yQUn3HjrWXIqkpZmRachNFYoTHaEj6BnIUEeWls8xTWDVMAEMhzXINZ+ziR4oipSaRby4jpEdqWcvI/7R+osNLL6U8TjTheG4UJgxqAbMCYEAlwZpNDEBYUpMV4hGSCGtTU6m6aBM/ZtnUr41pyFnuYxV0zutOo964a1Sa13lXRXACTsEZcMAFaIJb0AJtgEEMnsELeLWerDfr3fqYnxas/OcY/Bnr8wfsaJzW</latexit>

s

<latexit sha1_base64="23SfVbqOtw1ZZiJvEHNjSo3deTc=">AAACBXicbVDLSsNAFL2pr1pfVZdugqXgqiRS0GXRjcsW7APaUCbTm3boZBJmJmIJXbtwq5/hTtz6HX6Fv+CkLVJbLwwczrmXc+b4MWdKO86XldvY3Nreye8W9vYPDo+KxyctFSWSYpNGPJIdnyjkTGBTM82xE0skoc+x7Y9vM739gFKxSNzrSYxeSIaCBYwSbaiG6hdLTsWZjb0O3AUowWLq/eJ3bxDRJEShKSdKdV0n1l5KpGaU47TQSxTGhI7JELsGChKi8tJZ0KldNszADiJpntD2jF2+SEmo1CT0zWZI9Eitahn5n9ZNdHDtpUzEiUZB50ZBwm0d2dmv7QGTSDWfGECoZCarTUdEEqpNN4Xysk38mGVTvzamIXe1j3XQuqy41Uq1US3VbhZd5eEMzuECXLiCGtxBHZpAAeEZXuDVerLerHfrY76asxY3p/BnrM8fRDKYvA==</latexit>

Glie

<latexit sha1_base64="Fk+yZoO5t2ged73NhKug865kUn8=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKexKQI9BD3qMYB6QLGF20kmGzM6uM73BsOQ7vHhQxKsf482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFRw0SJ5lDnkYx0K2AGpFBQR4ESWrEGFgYSmsHoZuY3x6CNiNQDTmLwQzZQoi84Qyv5HYQnNDy9lQKm3WLJLbtz0FXiZaREMtS6xa9OL+JJCAq5ZMa0PTdGP2UaBZcwLXQSAzHjIzaAtqWKhWD8dH70lJ5ZpUf7kbalkM7V3xMpC42ZhIHtDBkOzbI3E//z2gn2r/xUqDhBUHyxqJ9IihGdJUB7QgNHObGEcS3srZQPmWYcbU4FG4K3/PIqaVyUvUq5cl8pVa+zOPLkhJySc+KRS1Ild6RG6oSTR/JMXsmbM3ZenHfnY9Gac7KZY/IHzucPTLSScw==</latexit>

Q-Net

<latexit sha1_base64="w8LxOw29hEndwhN5v8L3YiSEZW0=">AAACG3icbVDLSgNBEJyNrxhfUfHkZTEEvBh2JaDHoBdPkoB5QLKE2UknGTL7YKZXEpZ8igev+hnexKsHv8JfcDZZJCY2zFBUdVNFuaHgCi3ry8isrW9sbmW3czu7e/sH+cOjhgoiyaDOAhHIlksVCO5DHTkKaIUSqOcKaLqj20RvPoJUPPAfcBKC49GBz/ucUdRUN39S6yCMMZ79isUX94DTaTdfsErWbMxVYKegQNKpdvPfnV7AIg98ZIIq1batEJ2YSuRMwDTXiRSElI3oANoa+tQD5cSz+FOzqJme2Q+kfj6aM3bxIqaeUhPP1ZsexaFa1hLyP60dYf/aibkfRgg+mxv1I2FiYCZdmD0ugaGYaECZ5DqryYZUUoa6sVxx0SYcJ9nUr41uyF7uYxU0Lkt2uVSulQuVm7SrLDklZ+Sc2OSKVMgdqZI6YSQmz+SFvBpPxpvxbnzMVzNGenNM/ozx+QNjS6Hv</latexit>

n ⇥ 1

<latexit sha1_base64="CCEqGwEzfGQVsDkBjHs6QbEGVkg=">AAACDnicbVDLTgIxFL2DL8QX6tJNIyFxRWYMiS6JblxiIo8IhHRKBxo6nUl7x0gI/+DCrX6GO+PWX/Ar/AULTAyCN2lycs69OafHj6Uw6LpfTmZtfWNzK7ud29nd2z/IHx7VTZRoxmsskpFu+tRwKRSvoUDJm7HmNPQlb/jD66neeODaiEjd4SjmnZD2lQgEo2ipe0XaKEJuiNfNF9ySOxuyCrwUFCCdajf/3e5FLAm5QiapMS3PjbEzphoFk3ySayeGx5QNaZ+3LFTU2nTGs8QTUrRMjwSRtk8hmbGLF2MaGjMKfbsZUhyYZW1K/qe1EgwuO2Oh4gS5YnOjIJEEIzL9PukJzRnKkQWUaWGzEjagmjK0JeWKizbx4zSb+bWxDXnLfayC+nnJK5fKt+VC5SrtKgsncApn4MEFVOAGqlADBgqe4QVenSfnzXl3PuarGSe9OYY/43z+AGEXnAA=</latexit>

Grim

<latexit sha1_base64="mkcTSQC2MCD3iLZEIWCWoydrYiA=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKexKQI9BD3qMYB6QLGF20kmGzM6uM73BsOQ7vHhQxKsf482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFRw0SJ5lDnkYx0K2AGpFBQR4ESWrEGFgYSmsHoZuY3x6CNiNQDTmLwQzZQoi84Qyv5HYQnNDy91SKcdoslt+zOQVeJl5ESyVDrFr86vYgnISjkkhnT9twY/ZRpFFzCtNBJDMSMj9gA2pYqFoLx0/nRU3pmlR7tR9qWQjpXf0+kLDRmEga2M2Q4NMveTPzPayfYv/JToeIEQfHFon4iKUZ0lgDtCQ0c5cQSxrWwt1I+ZJpxtDkVbAje8surpHFR9irlyn2lVL3O4siTE3JKzolHLkmV3JEaqRNOHskzeSVvzth5cd6dj0VrzslmjskfOJ8/YgaSgQ==</latexit>

Pun

<latexit sha1_base64="8jtdPxKGxsiYPMAcv7UMbSO+b74=">AAAB83icbVBNS8NAEJ34WetX1aOXYBE8lUQKeix68VjBfkATyma7aZduNmF3Viyhf8OLB0W8+me8+W/ctjlo64OBx3szzMyLMsE1et63s7a+sbm1Xdop7+7tHxxWjo7bOjWKshZNRaq6EdFMcMlayFGwbqYYSSLBOtH4duZ3HpnSPJUPOMlYmJCh5DGnBK0UBMieUNO8aeS0X6l6NW8Od5X4BalCgWa/8hUMUmoSJpEKonXP9zIMc6KQU8Gm5cBolhE6JkPWs1SShOkwn988dc+tMnDjVNmS6M7V3xM5SbSeJJHtTAiO9LI3E//zegbj6zDnMjPIJF0sio1wMXVnAbgDrhhFMbGEUMXtrS4dEUUo2pjKNgR/+eVV0r6s+fVa/b5ebdwUcZTgFM7gAny4ggbcQRNaQCGDZ3iFN8c4L86787FoXXOKmRP4A+fzB6yykhs=</latexit>

Glie

<latexit sha1_base64="Fk+yZoO5t2ged73NhKug865kUn8=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKexKQI9BD3qMYB6QLGF20kmGzM6uM73BsOQ7vHhQxKsf482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFRw0SJ5lDnkYx0K2AGpFBQR4ESWrEGFgYSmsHoZuY3x6CNiNQDTmLwQzZQoi84Qyv5HYQnNDy9lQKm3WLJLbtz0FXiZaREMtS6xa9OL+JJCAq5ZMa0PTdGP2UaBZcwLXQSAzHjIzaAtqWKhWD8dH70lJ5ZpUf7kbalkM7V3xMpC42ZhIHtDBkOzbI3E//z2gn2r/xUqDhBUHyxqJ9IihGdJUB7QgNHObGEcS3srZQPmWYcbU4FG4K3/PIqaVyUvUq5cl8pVa+zOPLkhJySc+KRS1Ild6RG6oSTR/JMXsmbM3ZenHfnY9Gac7KZY/IHzucPTLSScw==</latexit>

Glie

<latexit sha1_base64="Fk+yZoO5t2ged73NhKug865kUn8=">AAAB9HicbVDLSgNBEJyNrxhfUY9eBoPgKexKQI9BD3qMYB6QLGF20kmGzM6uM73BsOQ7vHhQxKsf482/cZLsQRMLGoqqbrq7glgKg6777eTW1jc2t/LbhZ3dvf2D4uFRw0SJ5lDnkYx0K2AGpFBQR4ESWrEGFgYSmsHoZuY3x6CNiNQDTmLwQzZQoi84Qyv5HYQnNDy9lQKm3WLJLbtz0FXiZaREMtS6xa9OL+JJCAq5ZMa0PTdGP2UaBZcwLXQSAzHjIzaAtqWKhWD8dH70lJ5ZpUf7kbalkM7V3xMpC42ZhIHtDBkOzbI3E//z2gn2r/xUqDhBUHyxqJ9IihGdJUB7QgNHObGEcS3srZQPmWYcbU4FG4K3/PIqaVyUvUq5cl8pVa+zOPLkhJySc+KRS1Ild6RG6oSTR/JMXsmbM3ZenHfnY9Gac7KZY/IHzucPTLSScw==</latexit>

Sum

<latexit sha1_base64="kFlaCuIQeTEczX6e5oHEet5TSTg=">AAAB83icbVBNSwMxEM3Wr1q/qh69BIvgqexKQY9FLx4r2g/oLiWbpm1okl2SiViW/g0vHhTx6p/x5r8xbfegrQ8GHu/NMDMvTgU34PvfXmFtfWNzq7hd2tnd2z8oHx61TGI1ZU2aiER3YmKY4Io1gYNgnVQzImPB2vH4Zua3H5k2PFEPMElZJMlQ8QGnBJwUhsCewNDs3sppr1zxq/4ceJUEOamgHI1e+SvsJ9RKpoAKYkw38FOIMqKBU8GmpdAalhI6JkPWdVQRyUyUzW+e4jOn9PEg0a4U4Ln6eyIj0piJjF2nJDAyy95M/M/rWhhcRRlXqQWm6GLRwAoMCZ4FgPtcMwpi4gihmrtbMR0RTSi4mEouhGD55VXSuqgGtWrtrlapX+dxFNEJOkXnKECXqI5uUQM1EUUpekav6M2z3ov37n0sWgtePnOM/sD7/AGvwpId</latexit>

A>

<latexit sha1_base64="oeEzO2upmY11zr1JHnQ9E9++kEU=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69BIvgqSRS0GPVi8cK9gPaWDbbTbu62Q27E6GE/gcvHhTx6v/x5r9x2+agrQ8GHu/NMDMvTAQ36HnfTmFldW19o7hZ2tre2d0r7x+0jEo1ZU2qhNKdkBgmuGRN5ChYJ9GMxKFg7fDxeuq3n5g2XMk7HCcsiMlQ8ohTglZqXd73UCX9csWrejO4y8TPSQVyNPrlr95A0TRmEqkgxnR9L8EgIxo5FWxS6qWGJYQ+kiHrWipJzEyQza6duCdWGbiR0rYkujP190RGYmPGcWg7Y4Ijs+hNxf+8borRRZBxmaTIJJ0vilLhonKnr7sDrhlFMbaEUM3trS4dEU0o2oBKNgR/8eVl0jqr+rVq7bZWqV/lcRThCI7hFHw4hzrcQAOaQOEBnuEV3hzlvDjvzse8teDkM4fwB87nD27Djws=</latexit>

s

<latexit sha1_base64="t5Z8j6uw1dDrul9BiPoeucvIxm0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6perVpr1ir12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A4OuM/g==</latexit>

s

<latexit sha1_base64="t5Z8j6uw1dDrul9BiPoeucvIxm0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6perVpr1ir12zyOIpzBOVyCB9dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4A4OuM/g==</latexit>

=

<latexit sha1_base64="XP9iErG+L6qrY8EDX+rDc8RxBHg=">AAACBXicbVDLSgNBEOz1GeMr6tHLYAh4CrsS0IsQ9OIxAfOAZAmzk95kyOyDmVkxhJw9eNXP8CZe/Q6/wl9wNlkkJjYMFFXdVE15seBK2/aXtba+sbm1ndvJ7+7tHxwWjo6bKkokwwaLRCTbHlUoeIgNzbXAdiyRBp7Alje6TfXWA0rFo/Bej2N0AzoIuc8Z1YaqX/cKRbtsz4asAicDRcim1it8d/sRSwIMNRNUqY5jx9qdUKk5EzjNdxOFMWUjOsCOgSENULmTWdApKRmmT/xImhdqMmMXLyY0UGoceGYzoHqolrWU/E/rJNq/cic8jBONIZsb+YkgOiLpr0mfS2RajA2gTHKTlbAhlZRp002+tGgTP6bZ1K+NachZ7mMVNC/KTqVcqVeK1ZusqxycwhmcgwOXUIU7qEEDGCA8wwu8Wk/Wm/VufcxX16zs5gT+jPX5A+wtmIY=</latexit>

L̂S

<latexit sha1_base64="7zTrdAR4gsqi8D5fz/nDX5Zs1s0=">AAAB8HicbVA9SwNBEJ3zM8avqKXNYRCswp0EtAzaWFhENB+SHGFvs5cs2d07dueEcORX2FgoYuvPsfPfuEmu0MQHA4/3ZpiZFyaCG/S8b2dldW19Y7OwVdze2d3bLx0cNk2casoaNBaxbofEMMEVayBHwdqJZkSGgrXC0fXUbz0xbXisHnCcsECSgeIRpwSt9NgdEsxuJ737XqnsVbwZ3GXi56QMOeq90le3H9NUMoVUEGM6vpdgkBGNnAo2KXZTwxJCR2TAOpYqIpkJstnBE/fUKn03irUthe5M/T2REWnMWIa2UxIcmkVvKv7ndVKMLoOMqyRFpuh8UZQKF2N3+r3b55pRFGNLCNXc3urSIdGEos2oaEPwF19eJs3zil+tVO+q5dpVHkcBjuEEzsCHC6jBDdShARQkPMMrvDnaeXHenY9564qTzxzBHzifP814kGo=</latexit>

mS

<latexit sha1_base64="vx/z9SO37d1o65IRwHHfZ1wV0PE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexKQI9BLx4jMQ9IljA7mU2GzGOZmRXCkk/w4kERr36RN//GSbIHTSxoKKq66e6KEs6M9f1vr7CxubW9U9wt7e0fHB6Vj0/aRqWa0BZRXOluhA3lTNKWZZbTbqIpFhGnnWhyN/c7T1QbpuSjnSY0FHgkWcwItk5qikFzUK74VX8BtE6CnFQgR2NQ/uoPFUkFlZZwbEwv8BMbZlhbRjidlfqpoQkmEzyiPUclFtSE2eLUGbpwyhDFSruSFi3U3xMZFsZMReQ6BbZjs+rNxf+8XmrjmzBjMkktlWS5KE45sgrN/0ZDpimxfOoIJpq5WxEZY42JdemUXAjB6svrpH1VDWrV2kOtUr/N4yjCGZzDJQRwDXW4hwa0gMAInuEV3jzuvXjv3seyteDlM6fwB97nDzC8jb4=</latexit>

⊙

n ⇥ 1

<latexit sha1_base64="CCEqGwEzfGQVsDkBjHs6QbEGVkg=">AAACDnicbVDLTgIxFL2DL8QX6tJNIyFxRWYMiS6JblxiIo8IhHRKBxo6nUl7x0gI/+DCrX6GO+PWX/Ar/AULTAyCN2lycs69OafHj6Uw6LpfTmZtfWNzK7ud29nd2z/IHx7VTZRoxmsskpFu+tRwKRSvoUDJm7HmNPQlb/jD66neeODaiEjd4SjmnZD2lQgEo2ipe0XaKEJuiNfNF9ySOxuyCrwUFCCdajf/3e5FLAm5QiapMS3PjbEzphoFk3ySayeGx5QNaZ+3LFTU2nTGs8QTUrRMjwSRtk8hmbGLF2MaGjMKfbsZUhyYZW1K/qe1EgwuO2Oh4gS5YnOjIJEEIzL9PukJzRnKkQWUaWGzEjagmjK0JeWKizbx4zSb+bWxDXnLfayC+nnJK5fKt+VC5SrtKgsncApn4MEFVOAGqlADBgqe4QVenSfnzXl3PuarGSe9OYY/43z+AGEXnAA=</latexit>

mS [v] = 1
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Figure 1: A visual depiction of the pipeline for GRIM and PUN. The layers of GLIE are depicted by
a heatmap of an actual seed during inference time, showing how the values vary through different
nodes (columns).

although it alleviates the need to test every node in every step, in practice it still requires IE for more
than one nodes in each step. Second, it requires computing the initial IE for every node in the first
step. We will try to alleviate both with the two subsequent methods.

3.3 GRAPH REINFORCEMENT LEARNING FOR INFLUENCE MAXIMIZATION (GRIM)

We develop a method that computes only one IE in every step, along with the initial IE for all
nodes. We first utilize the activations mentioned above to define the influence set representation
LS ∈ {0, 1}n, which can be computed by adding the activations of each layer Ht, summing along
the axis of the hidden layer size, and thresholding to get a binary vector:

LS = 1

{
T∑

t=0

∑dt

i=0 H
i
t

dt
≥ 0

}
, (7)

where T is the number of layers, and Hi
t ∈ Rn×1 is a column from Ht. This vector contains a

label for each node whose sign indicates if it is predicted to be influenced. We compute the average
representation because dt varies throughout layers, and since we add all layer’s outputs, we need an
equal contribution from each layer’s dimension to the final output. We utilize this to compute the
difference between the influence of the current seed set and the initial influence of each other node.

We aim to build a method that learns how to pick seeds sequentially. The model needs to receive
information from GLIE regarding the state (graph and seed set), and decide on the next action
(seed). Note that, GLIE can not provide a direct estimate of a new candidate’s s marginal gain
without rerunning GLIE(S ∪ s,G), which is what we try to avoid. To this end, we utilize a double
Q-network (Van Hasselt et al., 2016) and the model is depicted in Fig. 1 (middle and right part).
During the first step, GLIE provides an IE for all candidate seeds, and the node with the highest is
added to the seed set, similar to GLIE-CELF. We also keep a list of each node’s initial influence set
Ls. Subsequently, the Q-network produces a Q-value for each node s using as input the estimated
influence of the current seed set σ̂(S), the initial influence of the node σ̂(s), and the interaction
between them. The interaction is defined as the difference between their corresponding influence sets
O(S, s) =

∑n
i=0 1{Li

s − Li
S ≥ 0}, as predicted by GLIE. The latter aims to measure how different

is the candidate node from the seed set, in order to quantify the potential gain of adding it. The
Q-network is called Graph Reinforcement for Influence Maximization (GRIM), and its architecture
is composed by two layers:

Q(u, S,G) = ReLU(ReLU([σ̂S , σ̂s, O(S, s)]Wk)Wq), (8)

where Wq ∈ Rhd×1, and hd is the hidden layer size. We utilize a greedy policy to choose the next
seed, similar to Dai et al. (2017): π(u|S) = argmaxu∈S Q(u, S,G). Given the chosen action u, the
reward is computed based on the marginal gain, i.e., the estimated influence of the new seed set minus
the influence of the seed set before the action, as computed by GLIE in:

r = σ̂(S ∪ u)− σ̂(S). (9)
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During training, we use epsilon-greedy to simulate an IM “game” and balance between exploration
and exploitation. We store as a train tuple the current state-action embedding {σ̂(S), σ̂(s′), O(S, s′)},
the new state embedding along with all next possible actions {σ̂(S ∪ s), σ̂(s), O(S, s)}, s ∈ V and
the reward r. Throughout the IM, we randomly sample from the memory and train the parameters of
GRIM. GLIE is frozen, because apart from providing graph and node embeddings, it is only used for
the computation of the reward—thus, it is not updated. The strategy to pretrain a graph encoding
layer on a supervised task and use it as part of the Q-network has proven beneficial in similar works
(Mirhoseini et al., 2021). In our case though we found out that without the overlapO and with simpler
features such as the degree, the model performs rather poorly, which means we can not alleviate the
burden of computing IE for every node in the first step.

3.4 POTENTIALLY UNINFLUENCED NEIGHBORS (PUN)

Computing the influence spread of every node in the first step is too computationally demanding. We
thus seek a method that can surpass this hinder and provide adequate performance. We first need to
redefine a simpler influence set representation then in 7. Let L̂S , L

′
S ∈ {0, 1}n be the binary vectors

with 1s in nodes predicted to be uninfluenced and nodes predicted to be influenced respectively:

L̂S = 1

{
d1∑

i=0

Hi
1 ≤ 0

}
L′S = 1

{
d1∑

i=0

Hi
1 ≥ 0

}
(10)

L′S is simpler than LS defined in Eq. (7) and provides a more rough estimate, but it allows for a
simpler influence spread which we can optimize greedily.

σm(S) = |L′S | (11)

We can use L̂S and message passing to predict the amount of a node’s neighborhood that remains un-
influenced, i.e., the Potentially Uninfluenced Neighbors (PUN), weighted by the respective probability
of influence For a node u,

mS [u] =
∑

v∈N(u)

Au,vL̂v = A>u · L̂S ∈ Rn×1. (12)

For efficiency, we can compute mS = AT L̂ which can be considered an approximation to all nodes
marginal gain on their immediate neighbors. We can thus optimize this using argmax(mS), as
shown in Fig. (1). In order to establish that σm can be optimized greedily with a theoretical guarantee
of (1− 1

e )OPT, we prove its monotonocity and submodularity in Appendix A.2.
Theorem 1. The influence spread σm is submodular and monotone.

PUN can be seen in the left part of Fig. 1. We start by setting the first seed as the node with the highest
degree, which can be considered a safe assumption as in practice it is always part of seed sets. We
use GLIE(S,G) to retrieve L̂S , which we use to find the next node based on argmaxv∈G\S mS [v]

and the new L̂S∪{v}. One disadvantage of PUN is that σm is an underestimation of the predicted
influence, as can be seen in Fig. 2. Contrasted with the upper bound, DMP, σm is not as accurate as σ̂,
but allows us to compute efficiently a submodular proxy for the marginal gain. This underestimation
means that a part of the network considered uninfluenced in L̂S is measured as potential gain for their
neighbors, hence the ranking based on mS can be effected negatively. As we observed in Fig. 2, the
divergence of σm increases with the size of the seed set.

For this purpose, we will use adaptive full-feedback selection (AFF), where after selecting a new seed
node, we remove it from the network along with nodes predicted to be influenced. It has been proved
in the seminal work of Golovin & Krause (2011) that an AFF greedy algorithm for a submodular and
monotonic function is guaranteed to have a competitive performance with the optimal policy. In our
case, we will use an AFF update every k seeds, as it adds a small computational overhead if we do it
in every step. The benefit to PUN is twofold. Firstly, as we remove the influenced node and truncate
the seed set, GLIE produces a more valid estimate because it performs better when the graph and
seed set are smaller. Secondly, as the neighborhood size decreases, the effect of missed influenced
nodes is diminished in mS . These can be observed in the “Adaptive” plots of Fig. 2 (b), (d) and in
other related figures in Appendix B, where we employ an AFF every 10 seeds and we contrast the
aforementioned gap between the upper bound DMP and σm(S).
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4 EXPERIMENTS

All the experiments are performed in a PC with an NVIDIA GPU TITAN V (12GB RAM), 256GB
RAM and an Intel(R) Xeon(R) W-2145 CPU @ 3.70GHz. The python implementation can be found
in the supplementary material.

4.1 INFLUENCE ESTIMATION

For training in the influence estimation task, we create a set of labeled samples, each consisting of
the seed set S and the corresponding influence spread σ(S). We create 100 Barabasi-Albert Barabási
& Albert (1999) and Holme-Kim Holme & Kim (2002) undirected graphs ranging from 100 to 200
nodes and 30 from 300 to 500 nodes. 60% are used for training, 20% for validation and 20% for
testing. We have used these network models because the degree distribution resembles the one of real
world networks. The influence probabilities are assigned based on the weighted cascade model, i.e.,
a node u has equal probability 1/deg(u) to be influenced by each of her N (u) nodes. This model
requires a directed graph, hence we turn all undirected graphs to directed ones by appending reverse
edges. Though estimating influence probabilities is a problem on its own (Panagopoulos et al., 2020;
Du et al., 2014), in the absence of extra data, the weighted cascade is considered more realistic than
pure random assignments (Kempe et al., 2003). To label the samples, we run the CELF algorithm
using 1, 000 Monte Carlo (MC) ICs for influence estimation, for up to 5 seeds. The optimum seed set
for size 1 to 5 is stored, along with 30 random negative samples for each seed set size. Each sample is
accompanied with its ground truth influence spread computed with MC ICs. This amounts to a total
of 20, 150 training samples. More details about the training parameters are presented in Appendix
B.1.

Graph # Nodes # Edges

Si
m Test/Train 100− 500 950− 4, 810

Large 1, 000− 2, 000 11, 066− 19, 076

Sm
al

l Crime (CR) 829 2, 946
HI-II-14 (HI) 4, 165 26, 172
GR Colab (GR) 5, 242 28, 980

L
ar

ge Enron (EN) 33, 697 361, 622
Facebook (FB) 63, 393 1, 633, 660
Youtube (YT) 1, 134, 891 5, 975, 246

Table 1: Graph datasets.

We evaluate the models in three
different types of graphs. The
first is the test set of the dataset
mentioned above. The second is a
set of 10 power-law large graphs
(1, 000 – 2, 000 nodes) to evalu-
ate the capability of the model to
generalize in networks that are
larger by one factor. The third
is a set of three real-world graphs,
namely the Crime (CR), HI-II-
14 (HI), and GR collaborations
(GR). More information about the
datasets is given in Table 1. The
real graphs are evaluated for varying seed set sizes, from 2 to 10, to test our model’s capacity to
extrapolate to larger seed set sizes. Due to the size of the latter two graphs (HI and GR), we take
for each seed set size the top nodes based on the degree as the optimum seed set along with a 30
random seed sets for the large simulated graphs and 3 for the real graphs, to validate the accuracy of
the model in non-significant sets of nodes.

We have compared the accuracy of influence estimation with DMP (Lokhov & Saad, 2019). We
could not utilize the influence estimation of UBLF (Zhou et al., 2015) because its central condition

(a) (b) (c) (d)

Figure 2: Difference between DMP influence estimate and σm in standard IM and adaptive IM with
full feedback every 10 seeds, in two datasets (Crime and GR).
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Graph
(seeds)

DMP GLIE
MAE Time MAE Time

Test (1 – 5) 0.076 0.05 0.046 0.0042
Large (1 – 5) 0.086 0.44 0.102 0.0034
CR (1 – 10) 0.009 0.11 0.044 0.0029
HI (1 – 10) 0.041 2.84 0.056 0.0034
GR (1 – 10) 0.122 4.32 0.084 0.0042

Table 2: Average mean absolute error (MAE) devided by the average influence and time (in seconds)
throughout all seed set sizes and samples, along with the real average influence spread.

Graph
(seeds)

Seed
Overlap

DMP-CELF GLIE-CELF
Influence Time Influence Time

CR(20) 14 221 83 229 1.0
HI(20) 13 1, 235 8, 362 1, 281 5.49
GR(20) 12 295 16, 533 393 7.01

Table 3: Influence maximization for 20 seeds with CELF, using the proposed (GLIE) substitute for
influence estimation and evaluating with 10, 000 MC independent cascades (IC).

is violated by the weighted cascade model and the computed influence is exaggerated to the point
it surpasses the nodes of the network. The average error throughout all datasets and the average
influence can be seen in Table 2, along with the average time.We evaluate the retrieved seed set using
the independent cascade, and the results are shown in Table 3. We should underline here that this task
would require more then 3 hours for the Crime dataset and days for GR using the traditional approach
with 1, 000 MC IC. As we can see in Table 3, GLIE-CELF allows for a significant acceleration in
computational time, while the retrieved seeds are more effective. Moreover, in CELF, the majority of
time is consumed in the initial computation of the influence spread, i.e., the overhead to compute
100 instead of the 20 seeds shown in Table 3, amounts to 0.11, 0.22 and 0.19 seconds for the three
datasets respectively.

4.2 INFLUENCE MAXIMIZATION

The training parameters for GRIM are analyzed in Appendix B (B.1). For comparison, we use a
state-of-the-art IM method, IMM (Tang et al., 2015) which capitalizes on reverse reachable sets
(Borgs et al., 2014) to estimate influence. Specifically, it produces a series of such influence sketches
and uses them to approximate the influence spread without any simulation when building the seed set.
This results in remarkable acceleration while retaining a theoretical guarantee with high probability.
Note that, IMM is considered state-of-the-art and has similar influence spreads with Tang et al. (2014),
while surpassing various heuristics (Jung et al., 2012). We set e = 0.5 as proposed by the authors. We
also compare with FINDER, which is analyzed in Section 2 , and with the most well known heuristic
methods for the Independent Cascade PMIA (Wang et al., 2012), DEGREEDISCOUNT (Chen et al.,
2009) and K-CORES (Malliaros et al., 2020) .

Graph GLIE-CELF GRIM PUN K-CORE PMIA DEGDISC IMM FINDER
CR 522 509 521 455 520 512 516 502
GR 1,102 997 1, 076 421 1, 013 919 1, 085 897
HI 2, 307 1, 302 2,308 2, 024 2, 291 2, 229 2, 290 2, 274
EN 14,920 14, 022 14, 912 10, 918 14, 855 13, 808 14, 848 12, 596
FB 8,710 7, 418 8, 409 4, 174 5, 613 8, 247 8, 625 5, 746
YT 189, 515 187, 808 187, 808 89, 546 189, 746 194,834 194, 521 34, 941

Table 4: Influence spread computed by 10,000 MC ICs for 100 seeds.

The results for the influence spread of 100 and 200 seeds as computed by simulations of MC ICs can
be seen in Table (4) and (5), while the time results are shown in Table 6. The top result is in bold and
the second best is underlined. The influence spread for smaller seed sets and the time for heuristics
are attached in Appendix C, along with comparisons of PUN without the use of GPU. One can see
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Graph GLIE-CELF GRIM PUN K-CORE PMIA DEGDISC IMM FINDER
CR 661 650 657 647 656 644 650 642
GR 1, 617 1, 502 1,626 701 1, 566 1415 1, 617 1, 286
HI 2, 685 2, 631 2,688 2, 540 2, 685 2, 614 2, 668 2, 625
EN 17, 601 16, 642 17,614 13, 015 17, 534 16, 500 17, 497 17, 244
FB 10, 981 9, 406 10, 626 6, 434 7, 688 10, 309 11,007 10, 801
YT 246,439 241, 000 244, 579 110, 409 242, 057 236, 726 247, 178 50, 435

Table 5: Influence spread computed by 10,000 MC ICs for 200 seeds.

100 seeds 200 seeds
Graph GLIE-CELF GRIM PUN IMM FINDER GLIE-CELF GRIM PUN IMM FINDER
CR 1.25 0.91 0.15 0.13 0.41 2.00 2.03 0.25 0.19 0.41
GR 3.41 0.69 0.17 0.57 2.36 4.55 1.79 0.26 0.95 2.36
HI 1.20 2.59 0.17 0.56 1.01 2.19 0.60 0.27 1.29 1.01
EN 5.89 4.85 0.52 4.78 9.30 15.49 5.49 0.97 10.47 9.30
FB 120.6 100.00 1.42 69.90 56.8 287.7 123.95 3.1 171.25 56.80
YT 119.00 48.00 13.20 55.40 191.00 151.33 100.00 28.92 82.13 191.00

Table 6: Computational time in seconds.

that GLIE-CELF exhibits overall superior influence quality compared to the rest of the methods, but
is quite slower. GRIM is slightly faster than GLIE-CELF but is the second slowest method. This
quantifies the substantial overhead caused by computing the influence spread of all candidate seeds in
the first step. Their time difference amounts to how many more IEs GLIE-CELF performs in every
step compared to GRIM, which performs only one. This is more obvious with PUN, which requires
only one IE in every step and no initial computation. It is from 3 to 60 times faster than IMM while
its computational overhead moving from smaller to larger graphs is less than linear to the number
of nodes. In terms of influence quality, PUN is first or second in the majority of the datasets in both
seed set sizes. We can thus contend that it provides the best accuracy-efficiency tradeoff from the
examined methods. IMM is the third slowest method, but it is very accurate, specially for smaller
seed set sizes. FINDER exhibits the least accurate performance, which is understandable given that it
solves a relevant problem and not exactly IM for IC. The computational time presented is the time
required to solve the node percolation, in which case it may retrieve a bigger seed set than 100 nodes.
Thus, we can hypothesize it is quite faster for a limited seed set, but the quality of the retrieved seeds
is the least accurate among all methods.

5 CONCLUSION

We have proposed GLIE, a GNN-based solution for the problem of influence estimation. We showcase
its accuracy in that task and utilized it to address the problem of influence maximization. We developed
three methods based on the representations and the predictions of GLIE. GLIE-CELF, an adaptation
of a classical algorithm that surpasses SOTA but with significant computational overhead. GRIM, a Q-
learning model that learns to retrieve seeds sequentially using GLIE’s predictions and representations.
And PUN, a submodular function that acts as proxy for the marginal gain and can be optimized
adaptively, striking a balance between efficiency and accuracy.

A typical IM algorithm needs a significant contribution in order to take into account the topic of
the information shared or the user’s characteristics (Chen et al., 2016) i.e., conditional diffusion.
An important practical advantage of a neural network approach is the easy incorporation of such
complementary data by adding the corresponding embeddings in the input, as has been done in
similar settings (Tian et al., 2020). We thus deem an experiment with contextual information a natural
next step, given a proper dataset. Our approach can also be utilized to address the minimum vertex
cover in large graphs, as it is a problem related to influence maximization and there exists models that
work well in both (Manchanda et al., 2020). Finally, we also plan to examine the potential of training
online the reinforcement learning, i.e., receiving real feedback from each step of the diffusion that
could update both, the Q-NET and GLIE. This would allow the model to adjust its decisions based on
the partial feedback received during the diffusion.
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Ethics and Reproducibility Our influence maximization methods can potentially be used for large
scale manipulation in social media. For example, targeting the right susceptible users with specific
political advertisements might maximize the effect of the campaign on the general intent to vote.
On the bright side, there has been extensive research on battling such effects (Tu et al., 2020), by
producing campaigns that are equally effective and hence balancing each other (Bharathi et al., 2007).
More importantly, GLIE can be used as part of the mitigation strategy (Tu et al., 2020), as a black box
that substitutes the method’s RR-set based influence estimation, to actually increase the balance of
political exposure in the given social network for the running campaigns. Moreover, our methods
can inherently be utilized in the context of limiting fake news spreading similar to other influence
maximization algorithms (Budak et al., 2011).

Regarding the reproducibility of our experiments, we have attached all codes in the supplementary
files along with detailed instructions on how to reproduce the results. We also point to the codes we
utilized to run the benchmarks. All data can be downloaded through an anonymous repository.
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SUPPLEMENTARY MATERIAL:
LEARNING GRAPH REPRESENTATIONS FOR INFLUENCE MAXIMIZATION

Appendix A gathers the proofs of theorems and corollaries, appendix B includes the training details
and plots in support of the arguments in the main text, and finally, appendix C shows extra results.

APPENDIX A

We recall the first corollary from Sec. 3 and detail the proof below.

Corollary 3.0.2. The repeated product Ht+1 = A·Ht computes an upper bound to the real influence
probabilities of each infected node at step t+ 1.

Proof. We have:

p̂t(u|St) = Au ·Ht (13)

=
∑

v∈N (u)∩St

p̂vpvu (14)

≥
∑

v∈N (u)∩St

pvpvu (15)

≥ 1−
∏

v∈N (u)∩St

(1− pvpvu) (16)

= pt(u|St) (17)
(18)

• (15) stems from Eq. 3 in the manuscript:

p̂(u|S) = Au ·X =
∑

v∈N (u)∩S

1

deg(u)
=

∑

v∈N (u)∩S
pvu ≥ 1−

∏

v∈N (u)∩S
(1− pvu) = p(u|S).

(19)

• (16) can be proved by induction similar to Zhou et al. (2015). For every pv ≤ 1 , the base case∑
v∈X pvpvu ≥ 1−∏v∈X (1− pvpvu) is obvious for |X | = 1. For |X | > 1, we have:

1−
∏

v∈X
(1− pvpvu) = 1− (1− pxpxu)

∏

v∈X\x
(1− pvpvu)

= 1−
∏

v∈X\x
(1− pvpvu) + pxpxu

∏

v∈X\x
(1− pvpvu)

≤
∑

v∈X\x
pvpvu + pxpxu

∏

v∈X\x
(1− pvpvu)

≤
∑

v∈X\x
pvpvu + pxpxu

=
∑

v∈X
pvpvu. (20)

• (17) we have p(u|v) = pvpvu per definition of the independent cascade, and consequently p(u|S) =
1 −∏v∈N (u)∩S(1 − pvpvu), where pv = 1 for v ∈ S1, which are the initial seed set that are
activated deterministically. We can thus contend that Eq. equation 18 stands, and the computed
probabilities are an upper bound of the real influence probabilities. Hence the influence spread,
which is computed as σ̂(S) =

∑
(u,v)∈E puv is also an upper bound to the real σ(S).
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Now we address the Theorem from Sec. 3.4 and detail the proof below.

Theorem 1. The influence spread σm is submodular and monotone.

For the purposes of the proof, Xi ∈ {0, 1}n×d is the input and Hi ∈ Rn×hd is the output of the first
neural layer for the input seed set Si, and P ∈ {1}hd×1. Moreover we define the support function
supp(v) = {i ∈ [1, n], vi 6= 0} James et al. (2013) as the set of indices of non zero rows in a matrix
such as Xi. Finally let R represent ReLU and btr, sttr the mean and standard deviation computed by
the batchnorm. Each step is justified further below.

Proof. Monotonocity, ∀i < j, Si ⊂ Sj :

supp(Xj) ⊃ supp(Xi) (21)
supp(XjW ) ⊇ supp(XiW ) (22)

supp(AXjW ) ⊇ supp(AXiW ) (23)
supp(R(AXjW )) ⊇ supp(R(AXiW )) (24)

supp

(
R(AXjW )− btr

sttr

)
⊇ supp

(
(R(AXiW )− btr)

sttr

)
(25)

supp(Hj) ⊇ supp(H(Si)) (26)
supp(HjP ) ⊇ supp(HiP ) (27)
|1>0 {HjP} | ≥ |1>0 {HiP} | (28)

|L′j | ≥ |L′i| (29)

σm(Sj) ≥ σm(Si) (30)
(31)

1. (21) stems by the definition of X in Eq. (1).

2. (22) Xj is a convex hull that contains Xi (Boyd et al., 2004). We multiply both sides by a real
matrix W ∈ Rd×hd which can equally dilate both convex hulls in terms of direction and norm.
This equal transformation cannot change the sign of the difference between the elements of Xi

and Xj and hence cannot interfere with the support of Xj over Xi. The statement becomes more
obvious for X ∈ {0, 1}n×1 and W ∈ R1×1. Note that both can result in zero matrices so we use
subset or equal.

3. (23) A is a non-negative matrix.

4. (24) ReLU is a non negative monotonically increasing function.

5. (25) Subtract by the same number and divide by the same positive number.

6. (26) Definition in Eq. (4).

7. (27) P is positive.

8. (28) By definition of the support.

9. (29) By definition of L′S .

For the proof of submodularity we have to define Xiu = XSi∪u, u ∈ V and note by the definition of
the input that |Xju −Xj | = |Xiu −Xi| for the l1 norm (sum of all elements):

14
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Proof. Submodularity ∀i < j, Si ⊂ Sj , ,:

|Xju −Xj | = |Xiu −Xi| (32)
A|Xju −Xj | = A|Xiu −Xi| (33)
|A(Xju −Xj)| = |A(Xiu −Xi)| (34)
|AXju −AXj | = |AXiu −AXi| (35)

|AXjuW −AXjW | = |AXiuW −AXiW | (36)
R(|AXjuW −AXjW |)− 2btr = R(|AXiuW −AXiW | − 2btr) (37)

|R(AXjuW )−R(AXjW )− 2btr| = |R(AXiuW )−R(AXiW )− 2btr| (38)
supp(R(AXjuW )−R(AXjW )− 2btr) = supp(R(AXiuW )−R(AXiW )− 2btr)

(39)
supp(R(AXjuW − btr))− supp(R(AXjW )− btr) ⊆ supp(R(AXiuW − btr))− supp(R(AXiW )− btr)

(40)
supp(Hju)− supp(Hj) ⊆ supp(Hiu)− supp(Hi) (41)

σm(Sj ∪ {u})− σm(Sj) ≤ σm(Si ∪ {u})− σm(Si) (42)
(43)

1. Distributive property

2. (36) Similar to multiplication by A.

3. (40) The norm of the difference is distributed equally, but the right hand difference has as least
the same or more positive elements because the norm of A ,which is stochastic ,is bounded by V
hence Xu can give up to the same gain to AXj and AXi, the same number btr is subtracted, and
more elements are activated by Xj then Xi as shown in Eq. 29.

4. (41) We skipped dividing by sttr for brevity.

5. (42) Arrive with similar steps as 27 - 30.

Regarding the approximation of the marginal gain we first show that choosing the node corresponding
to the maximum mS will give the maximum L′ju: A′uL̂j ≥ A′v L̂i ⇒ L′ju ≥ L′iv .

A′uL̂j =
∑

v∈N(u)

A′uvL̂j [v] =
∑

v∈N(u)

AuvL
′
j [u] =

∑

v∈N(u)

AuvXju (44)

(45)

This means that mS gives the node u that improves the biggest number of rows in AXju that are not
already considered influenced. Since we know from eq. 30 that a AXiu ≥ AXiv ⇒ |L′iu| ≥ |L′iv|,
the claim concludes. Hence choosing the best node using the marginal gain approximation is as good
as the real influence spread. Now we prove the submodularity of the proposed marginal gain.

Proof. Submodularity for the approximation of the marginal gain, ∀i < j, Si ⊂ Sj , starting from
(28):

|1>0 {HjP} | ≥ |1>0 {HiP} |
|1≤0 {HjP} | ≤ |1≤0 {HiP} | (46)

A′uL̂j ≤ A′uL̂i (47)
mSj [u] ≤ mSi [u] (48)

(|L′j |+mSj
[u])− |L′j | ≤ (|L′i|+mSi

[u])− |L′i| (49)

σm(Sj ∪ {u})− σm(Sj) ≤ σm(Si ∪ {u})− σm(Si) (50)
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1. (30) Complementarity between elements that are ≤ 0 and elements > 0.

2. (32) Definition in Eq. (10) and multiply with non-negative row u from matrix A′.

3. (33) Definition in Eq. ( 12).

4. (34) Adding and subtracting |Lj | and |Li|.
5. (1) By definition of σm in Eq. (11) and the marginal gain of u, we arrive at submodularity in Eq.

(1).

APPENDIX B

B.1 TRAINING

As mentioned in the main text each training sample for GLIE corresponds to a triple of a graph G a
seed set S and a ground truth influence spread σ(S) that serves as a label to regress on. We use two
different ways to come up with the seed sets S for varying sizes of S from 1 to 5. We use random
seed sets in order to capture the average influence spread expected for a seed set of about that size.
This creates "average samples" which would constitute the whole dataset in other problems. In IM
however, the difference in σ between an average seed set and the optimum seed set can be significant,
hence training solely on the random sets would render our model unable to predict larger values that
correspond to the optimum. We thus add in the samples the optimum seed set for each size, taken
using Celf and MC ICs for influence estimation. For each size, we have the 30 random seed sets and
the optimum, which is a more balanced form of supervision, as you expect the crucial majority of
the seed sets to have an average σ. Regarding the training procedure, we have used a small scale
grid-search using the validation set to find the optimum batch size 64, dropout 0.4, number of layers
2, hidden layer size 64, and feature dimension 50. More importantly, we observed that it is beneficial
to decrease the hidden layer size (by a factor of 2) as the depth increases, i.e., go from 32 to 16.
This means that the 1-hop node representations are more useful compared to the 2-hop ones and so
on—validating the aforementioned conclusion that the approximation to the influence estimation in
Eq. (3), diverges more as the message passing depth increases. The training then proceeds for 100
epochs with an early stopping of 50 and learning rate of 0.01.

GRIM is trained on a dataset that consists of 50 random BA graphs of 500 – 2, 000 nodes. It is trained
by choosing 100 seeds sequentially, to maximize the reward (delay = 2 steps) for each network. Since
the immediate reward corresponds to the marginal gain, the sum of these rewards at the end of the
“game” corresponds to the total influence of the seed set. An episode corresponds to completing the
game for all 50 graphs; we play 500 episodes, taking roughly 40 seconds each. The exploration is set
to 0.3 and declines with a factor of 0.99. The model is optimized using ADAM, as in GLIE. We store
the model that has the best average influence over all train graphs in a training episode. In order to
diminish the computational time of the first step in GLIE-CELF and GRIM, we focus on candidate
seeds that surpass a certain degree threshold based on the distribution, a common practice in the
literature (Chen et al., 2009; Manchanda et al., 2020).
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B.2 ADAPTIVE FULL FEEDBACK

We see in Fig. 3 that the pattern that is prevalent in the two datasets described in Section 3.4 is
retained in other graphs.

(a) (b)

(c) (d)

Figure 3: Difference between DMP influence estimate and σm in regular and adapting with full
feedback every 10 seeds.

B.3 GLIE SUBMODULARITY AND MONOTONICITY

In this section we design an experiment to empirically prove that GLIE’s output is submodular and
monotonous. For each of the real datasets, we use the seed set retrieved by GLIE-CELF and a random
seed set to quantify the differences between subsequent estimations. To be specific, we have a
sequence S that represents the seed set and a sequence R that represents the random nodes, with
Sj being the seed set up to jth element and sj being the jth element, and similarly rj for R. We
compute the marginal gain to check for monotonicity:

mss = σ̂(Sj ∪ sj+1)− σ̂(Sj) (51)

msr = σ̂(Sj ∪ rj+1)− σ̂(Sj), (52)

and for submodularity, we have , with i = j − 1 :

sss = (σ̂(Si ∪ sj+1)− σ̂(Si))− (σ̂(Sj ∪ sj+1)− σ̂(Sj)) (53)

ssr = (σ̂(Si ∪ rj+1)− σ̂(Si))− (σ̂(Sj ∪ rj+1)− σ̂(Sj)). (54)
In Figures 4 to 7, we plot m and s for some of our datasets. Regarding s, since we require a constant
node, we randomly sample one of the seeds sj and a random node rj and visualize the sequences of
both s with regard to adding them in every step. The values of these functions correspond to nodes,
and range from tens to thousands, depending on the datasets. For monotonicity and submodularity,
we verify that m and s are always more than zero. Moreover, we see that they decrease with the size
of the seed set, as well as the observation that adding a random seed provides worst marginal gains (
in monotonicity plots) than adding the chosen seed.

17



Under review as a conference paper at ICLR 2022

0 20 40 60 80
Seed set size

0

5

10

15

20

# 
No

de
s

Monotonicity CR
mss

msr

20 40 60 80
Seed set size

0

2

4

6

8

# 
No

de
s

Submodularity CR
sss

ssr

Figure 4: Monotonicity and submodularity for the Crime (CR) dataset.
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Figure 5: Monotonicity and submodularity for the HI-II-14 (HI) dataset.
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Figure 6: Monotonicity and submodularity for the Enron (EN) dataset.
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Figure 7: Monotonicity and submodularity for the Facebook (FB) dataset.
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B.4 IMM AND PUN WITH UNIFORM PROBABILITIES

We compare IMM and PUN on the same graphs with uniform influence probabilities p = 0.01 in
Figure 8. We clearly observe that PUN outperforms IMM.

(a) (b)

(c) (d)

(e) (f)

Figure 8: PUN vs. IMM for IC with p = 0.01.
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APPENDIX C

C.5 RESULTS FOR SMALLER SEED SETS

Graph GLIE-CELF GRIM PUN K-CORE PMIA DEGDISC IMM FINDER
CR 228 232 227 126 224 227 228 232
GR 402 208 374 184 342 272 387 379
HI 1, 300 1, 304 1, 307 866 1, 274 1, 234 1,316 1, 110
EN 8, 189 8, 185 8, 205 5741 8, 041 7, 988 8,208 3, 964
FB 4,487 4, 480 4, 263 1594 2491 4, 489 4, 481 1, 823
YT 105,897 104, 824 104, 106 67, 084 97, 622 104, 706 105, 888 3, 799

Table 7: Influence spread computed by 10,000 MC ICs for 20.

Graph GLIE-CELF GRIM PUN K-CORE PMIA DEGDISC IMM FINDER
CR 381 371 378 263 378 368 375 367
GR 738 553 700 303 654 556 725 635
HI 1,914 1, 905 1, 908 1, 407 1, 899 1, 824 1, 589 1, 904
EN 11,819 11, 114 11, 757 9, 796 11, 686 11, 183 10, 698 7, 133
FB 6, 631 5, 879 6, 329 2, 974 6, 574 4, 489 6,724 5, 649
YT 147, 631 148, 250 145, 796 78, 575 145, 863 143, 161 148,597 9, 152

Table 8: Influence spread computed by 10,000 MC ICs for 50.

C.6 COMPUTATIONAL TIME OF HEURISTICS

100 seeds 200 seeds
Graph PMIA DEGDISC K-CORE PUN PMIA DEGDISC K-CORE PUN
CR 0.13 0.04 0.04 0.15 0.21 0.06 0.04 0.25
GR 0.70 0.12 1.5 0.17 0.80 0.13 1.5 0.26
HI 1.24 0.13 0.12 0.17 1.36 0.14 0.12 0.27
EN 24.83 1.96 2.17 0.52 26.74 2.06 2.17 0.97
FB 21.2 8.86 10.62 1.42 22.77 9.29 10.62 3.1
YT 3838.5 52.39 74.91 13.2 4006.29 54.38 74.91 28.92

Table 9: Computational time of heuristic approaches compared to PUN.

C.7 PUN’S COMPUTATIONAL TIME WITHOUT GPU

We performed experiments to compare PUN without the use of GPU in Table (10), where it is visible
that GPU provides a substantial acceleration, but PUN remains the faster option even without it.

Graph PUN GPU PUN CPU IMM
CR 0.15 0.17 0.13
GR 0.17 0.27 0.57
HT 0.17 0.20 0.56
EN 0.52 2.44 4.78
FB 1.42 17.5 69.9
YT 13.2 97.5 55.4

Table 10: Comparison between PUN CPU and GPU computational times for 100 seeds.

C.8 RELATIVE ERROR OF GLIE FOR LARGER SEED SETS

To quantify the potential of GLIE for larger seed sets, we sample 9 random seed sets and 1 with
the highest degree nodes and compute the error of DMP and GLIE, with the ground truth influence
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divided by the average influence in Table (11). We see that the error does not increase significantly as
the seed set increases, and that GLIE outperforms DMP in GR while the reverse happens in CR and
HT.

Graph Seeds DMP GLIE
CR 20 0.005 0.031
CR 50 0.006 0.059
CR 100 0.017 0.152
GR 20 0.161 0.029
GR 50 0.125 0.042
GR 100 0.093 0.082
HT 20 0.010 0.105
HT 50 0.004 0.062
HT 100 0.002 0.113

Table 11: Relative error for diffusion prediction of larger seed sets.
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