
Separation and Bias of Deep Equilibrium Models on
Expressivity and Learning Dynamics

Zhoutong Wu1

ztwu@stu.pku.edu.cn
Yimu Zhang2

zym24@stu.pku.edu.cn

Cong Fang2,3
†

fangcong@pku.edu.cn
Zhouchen Lin2,3,4†

zlin@pku.edu.cn

1 Academy for Advanced Interdisciplinary Studies, Peking University
2 State Key Lab of General AI, School of Intelligence Science and Technology, Peking University

3 Institute for Artificial Intelligence, Peking University
4 Pazhou Laboratory (Huangpu), Guangzhou, Guangdong, China

Abstract

The deep equilibrium model (DEQ) generalizes the conventional feedforward
neural network by fixing the same weights for each layer block and extending
the number of layers to infinity. This novel model directly finds the fixed points
of such a forward process as features for prediction. Despite empirical evidence
showcasing its efficacy compared to feedforward neural networks, a theoretical
understanding for its separation and bias is still limited. In this paper, we take a
step by proposing some separations and studying the bias of DEQ in its expressive
power and learning dynamics. The results include: (1) A general separation is
proposed, showing the existence of a width-m DEQ that any fully connected neural
networks (FNNs) with depth O(mα) for α ∈ (0, 1) cannot approximate unless
its width is sub-exponential in m; (2) DEQ with polynomially bounded size and
magnitude can efficiently approximate certain steep functions (which has very large
derivatives) in L∞ norm, whereas FNN with bounded depth and exponentially
bounded width cannot unless its weights magnitudes are exponentially large; (3)
The implicit regularization caused by gradient flow from a diagonal linear DEQ
is characterized, with specific examples showing the benefits brought by such
regularization. From the overall study, a high-level conjecture from our analysis
and empirical validations is that DEQ has potential advantages in learning certain
high-frequency components.

1 Introduction

Implicit deep learning [1], a paradigm that generalizes the recursive principles of traditional explicit
models, has gained renewed interest with the advent of novel neural network architectures. Among
these, deep equilibrium model (DEQ) [2] stands out as a commonly utilized model. In contrast to
explicit neural network that derives features through forward propagation, DEQ computes features
directly by solving an equilibrium equation induced by the implicit layer. Since the equilibrium state
is also the limit point of the infinitely recursive iterations of the implicit layer, DEQ can be regarded
as a new neural network that models the limit of a multi-layer weight-tied neural network with the
depth going to infinity.

†Corresponding author.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

Nowadays, DEQ has become a popular and widely studied model in the field of machine learning.
On the empirical side, competitive performances against explicit feedforward neural networks have
been achieved in various real applications such as natural language processing [2], computer vision
[3], image generation [4], and solving inverse problems [5]. On the theoretic side, a main research
line is to study the well-posedness of DEQ. This line aims to analyze when unique equilibrium can
be guaranteed by DEQ and some weight parameterization and initialization techniques have been
proposed to ensure the well-posedness [6, 7, 8].

However, despite wide studies on DEQ, an understanding of the basic learning theory for its sep-
aration and bias against explicit feedforward neural networks is still limited. For the expressivity,
a preliminary study about the connections between DEQ and fully-connected network (FNN) is
provided in the seminar work [2], where it is proved that every FNN can be reformulated as a large
DEQ under a specific weight re-parameterization, whereas, a deeper study on the provable and
quantitative advantage of DEQ in its expression power is still lacking. Besides, there is another
research line that studies the learning properties of DEQ using the so-called neural tangent kernel
(NTK) view [9], originating from analyzing FNNs [10, 11]. It has been shown that under suitable
initialization, the dynamic of over-parameterized DEQ can be approximated by a linear kernel model
[12, 13], therefore the global convergence of gradient descent algorithm and possible generalization
can be achieved under some regimes. However, in the NTK regime, it is shown that DEQs are almost
equivalent to not-so-deep explicit FNNs for high dimensional Guassian mixtures [14], and it is still
not known whether DEQs have potential advantages over FNNs in more general settings. A study on
the separation and bias of DEQ over FNN can provide us with clear and intuitive suggestions about
when DEQ is preferred in practice, thus it is strongly desired. In this paper, we initialize the study by
analyzing the expressive power and learning dynamics of DEQs. The main results are sketched as
follows.

1. We first propose a general separation showing that there exists a width-m DEQ which cannot
be approximated to a constant accuracy by an FNN with depth O(mα) for α ∈ (0, 1) unless
its width is exp(Ω(m1−α)). This is achieved by comparing the the number of linear regions
that the two networks can generate. Based on the result, we further prove that a width-m
DEQ can generate at most 2m linear regions, which has provable advantages than FNNs.

2. We then propose another separation, where a steep function in [0, 1]d being the solution
to fixed point equation is considered as the target function. We show that a DEQ with
size and magnitude bounded by O(ε−1) can approximate this function to O(ε)-accuracy in
L∞ norm, whereas an FNN with bounded depth and exponentially bounded width cannot
unless its weights is exp(Ω(d)). For the technical contribution, we manage to show that
an approximation of the fixed point mapping by the implicit layer can also guarantee the
approximation the solution defined by the fixed point equation even if the Lipschitz constant
of the fixed point mapping is very close to 1 by a new observation as shown in Lemma 3.

3. Finally, we study the bias of DEQ from the perspective of learning dynamics. We propose a
general characterization of regularization for gradient flow in an overparameterized setting.
We further analyze the dynamics of both gradient flow and gradient descent, showing that
under mild conditions, convergence is guaranteed, and the model tends to produce ‘dense’
features. Then we offer a concrete example on a specific Out-of-Distribution (OOD) task,
demonstrating that this bias can help reduce the OOD error.

Finally, we conduct experiments to validate our theoretical results. From the overall study, a high-level
conjecture is that DEQ has potential advantages in learning certain high-frequency components.

Notations. We use standard notation O(·) and Ω(·) to hide constants. We use σ to denote the ReLU
function, i.e., σ(x) = max(0, x), and we use sgn(·) to denote the sign function. We use diag(·) to
transform a vector into a diagonal matrix with the vector’s elements on the diagonal. We denote by
∥ · ∥p the ℓp vector norm or the subordinate matrix norm, and by ∥h∥Lp(k) the Lp-norm of a function
h on a compact set K. For a vector or vector-valued function v, we denote vi the i-th entry of the
vector or the function. For a function u : R → R, we denote u◦n the n-fold composition of u.

2 Related Works

In this section we briefly review the literature that are most related to us.

2

Theoretical Studies on DEQs. Theoretical research on DEQs has primarily focused on ensuring
their well-posedness [6, 7]. To guarantee well-posedness, strategies like new parameterizations [6, 7],
regularization [15], and special initialization [8] were proposed. Another research line delves into
the learning properties of DEQ. The expressivity of DEQ is preliminarily studied in [2]. Regarding
learning dynamics, some works [16, 17, 13] couple the dynamics of over-parameterized DEQs with
a linear kernel using the NTK method. They manage to prove the global convergence and study
the generalization [17]. Other studies examine DEQs in a linear framework or infinite-width limit.
For instance, Kawaguchi [16] studies the convergence of linear DEQ, while Gao et al. [18] explore
information propagation in DEQ and show its equivalence to a Gaussian process in the infinite-width
limit. Nevertheless, an in-depth study on the potential or quantifiable advantage of DEQ over FNN is
still lacking.

Separations on Expressivity of Neural Networks. The separation on expressivity of neural
networks is a fundamental study characterizing functions that can be approximated efficiently by one
neural architecture but cannot by another. These architectures include FNNs [19, 20], CNNs [21],
RNNs [22], etc. Since DEQ can be viewed as an infinitely deep weight-tied network, depth separation
[23] is most relevant to our study. A key study by Telgarsky [24] constructs a saw-tooth function with
many oscillations to give a separation, which further inspires a series of separations [25, 26, 27]. In
addition to depth, some recent works study the separation regrading the overall number of neurons
[28] or the magnitude of parameters [29] of the networks. In this paper, the first separation is also
inspired by Telgarsky’s construction, whereas we focus on the separation between DEQ and FNN
and provide a more refined analysis of networks’ depth. The second separation is new.

Implicit Bias of Learning Dynamics on Neural Networks. The implicit bias of learning dynamics
plays a key role in determining what particular optima can be found by the algorithms when there
are multiple optima. A series of papers study the implicit regularization of gradient-based methods,
showing that under varying settings, these algorithms bias towards solutions with specific properties
[30, 31], such as norm minimization [32], sparsity [33] and low complexity [34, 35, 36]. Due to
the theoretical barrier in analyzing nonlinear neural networks [37], most existing works focus on
simplified models such as random feature models [38, 32], networks with quadratic activations [39]
and diagonal linear networks [33]. This paper follows similar strategies and analyzes the implicit
bias of a simplified diagonal linear DEQ from learning dynamics.

3 Preliminaries of DEQ

The DEQ is an implicit-depth model [2] that employs the same weights in each layer block of a
feedforward neural network and extends the number of layer to infinity. The layer blocks used in
DEQ can be fully connected, convolutional, or Transformer blocks, resulting in different variants of
deep equilibrium networks. In this paper, we consider a vanilla DEQ with ReLU activation as the
generalization of an FNN for the separation result and a simplified linear diagonal DEQ for the bias
analysis. Specifically, an L-layer FNN from Rd to Rs can be expressed as

z1 = x; zi+1 = σ(Wiz
i + bi), 1 ≤ i ≤ L− 2; y = WLz

L, (1)

where x ∈ Rd and y ∈ Rs. In DEQ, each Wi and bi in Eq. (1) is replaced by the same weight W and
bias b, and a linear transform of the input Ux is added to each layer, i.e., zl = σ(Wzl−1+Ux+b)
for all l. By extending the layer l to infinity, the feature and the prediction of this DEQ can be
expressed as

z = σ(Wz+Ux+b),

y = Az,
(2)

where W ∈ Rm×m,U ∈ Rm×d, b ∈ Rm, and A ∈ Rs×m. We call σ(Wz+Ux+b) the implicit
layer and m the width of DEQ. In this paper, we mainly consider s = 1, i.e., DEQ as a scalar function
on Rd.

In [2], the authors show that every FNN can be reformulated as a large DEQ with specific weight
reparameterization. Specifically, the depth-L FNN described in Eq. (1) is equivalent to a DEQ in the

3

form of Eq.(2) with

A =
(
0, · · · ,WL

)
,W =

0

W2 0
W3 0

. . .
. . .

WL−1 0

 ,U =

W1

0
...
0

 ,b =

b1

b2

...
bL−1

 . (3)

4 Separation on the Expressivity of DEQ

In this section, we focus on the separations on the expressivity of DEQ with ReLU activation. We
follow the common ways to compare the expressivity from the actual size (width and depth) of the
networks. More explanations on the fairness of the comparison are provided in Appendix A.4. We
will show that DEQ is more parameter-efficient in approximating specific target functions than FNN.

4.1 General Separation over FNNs

The following theorem states a general separation between DEQ and FNN from the size of networks.
The motivation behind the theorem is a common observation that functions with many linear pieces
are typically hard to be approximated by functions having fewer linear pieces.
Theorem 1. Let m ∈ N+. Assume that L ≤ mα for some 0 < α < 1. Then there exists a function
Nd : [0, 1]d → R computed by a width-m ReLU-DEQ, such that for any function Nf : [0, 1]d → R
computed by a depth-L ReLU- FNN with width at most 2m

1−α−1, it holds that∫
[0,1]d

|Nd(x)−Nf (x)|dx ≥ 1

16
.

The proof is provided in Appendix A.1. It involves quantifying the number of linear regions1

generated by a DEQ compared to an FNN. Specifically, we show in the proof that there exists a DEQ
producing 2m linear pieces whereas no-so-deep FNNs, i.e., FNNs with depth O(mα) cannot generate
such a large number of linear regions unless the width is sub-exponentially large.

Moreover, the example of the hard-to-approximate DEQ enables us to derive an exact bound on the
number of linear regions that a DEQ can generate. This result is of independent interest and is stated
in the proposition below.
Proposition 1. Let m > 0. A width-m ReLU-DEQ has at most 2m linear regions in the input space.
Moreover, this upper bound is attainable, i.e., there exists a width-m ReLU-DEQ that computes a
function with 2m linear regions on Rd.
Remark 1. As a comparison, the work of [40] analyzes ReLU-FNNs. It shows that for a ReLU-FNN
with a total of Ñ neurons of arbitrary depth, the maximal number of linear regions is bounded above
by 2Ñ . To the best of our knowledge, it is yet to be determined whether this bound is achievable.
Moreover, there is evidence suggesting that this upper bound is not achievable for FNNs that when
the input dimension is 1 (See Lemma 5 in Appendix A.1 for details). Consequently, width-m DEQs
can potentially generate a larger number of linear regions compared to FNNs with m neurons, as
DEQs have been shown to achieve their upper bound.

Theorem 1 shows that there exists a width-m DEQ that is hard to be approximated by FNN with
depth O(mα). This theorem along with Proposition 1 reveals that, although DEQ computes features
by solving an equilibrium function induced by a shallow implicit layer, its complexity in terms of
expressing linear regions of DEQ can be larger than that of not-so-deep FNN.

4.2 Separation on Certain Steep Functions

In this section, we present another separation concerning both the size and parameter magnitude
of neural networks, which more explicitly reveals the bias and potential advantages of DEQ on

1We follow the definition of linear regions in [40]: For any piecewise linear function F : Rn0 → R, a linear
region of the function is a connected subset D ⊂ Rn0 satisfying 1) F is linear on D; 2) If F is linear on some
connected set D̃ ⊃ D, then D̃ = D.

4

expressivity. The separation is based on the observation that the fixed point of a DEQ can be rewritten
as the solution to an optimization problem under certain conditions.

To be specific, consider a simple quadratic optimization problem with the optimization variable
z ∈ Rm and a parameter x ∈ Rd:

min
z

1

2
zTA(x) z+bT (x) z+c, (4)

where A(x) is a positive definite matrix parameterized by x and ηI ≻ A(x) ≻ 0 for some
η > 0. Approximating z = z(x), i.e., the optimum as a function of the parameter x, serves useful
primitives in various applications. Directly approximating z(x) by FNN requires the approximation
of z(x) = −A(x)−1 b(x). On the other hand, from the optimality condition, z(x) is implicitly
defined through fixed point equation

z = z−1

η
(A(x) z+b(x)) .

Hence, approximating z(x) by DEQ may only require the approximation of the fixed point mapping
z− 1

η (A(x) z+b(x)) by the implicit layer. To some extent, the approximation problem is ‘altered’
due to the model difference, which possibly leads to distinctive division in approximation.

Now, we construct a workable instance. The objective function of our central interest is a special case
of Eq.(4) given by:

min
z

(1 + δ − x1)z
2 − δx1z, x ∈ [0, 1]d, (5)

where δ = 2−d. The solution function is calculated as

g(x) =
δx1

2(1 + δ − x1)
, x ∈ [0, 1]d, (6)

and it can also be determined by the following fixed point equation

z = g̃(z,x) := (x1 − δ)z +
1

2
δx1. (7)

Note that g(x) has very large derivative when x1 is near 1. It can be regarded as a continuous version
of the common indicator function of the first entry 1

21x1=1(x). The separation is presented as follows.

Theorem 2. Let g(x) be defined as in Eq.(6) for x ∈ [0, 1]d and 1
4 ≥ ε > 0.

A. For any function Nfnn(x) implemented by an FNN with depth L and width k where L ≤ C

and k ≤ 2
d

2C for some constant C = O(1). If

∥Nfnn(x)− g(x)∥L∞([0,1]d) ≤
1

16
,

then there exists a weight parameter Wij of the FNN for 1 ≤ i ≤ L and 1 ≤ j ≤ k, such
that

|Wij | ≥ 2
d

2C .

B. There exists a function Ndeq implemented by a DEQ with width bounded by 5ε−1 and
weights bounded 2ε−1, such that

∥Ndeq(x)− g(x)∥L∞([0,1]d) ≤ ε.

Remark 2. The inapproximability result of FNN in Theorem 2 is stated from the perspective of
weight magnitude, which holds practical significance. Exponentially large weight often results in
exponential iterations of optimization algorithms in learning with this model, as also noted in [41].
Additionally, neural networks in practice typically have small weights due to techniques such as
(standard) small initialization, normalization, and gradient clipping.

The proof is shown in Appendix A.2. In Theorem 2, the inapproximability of FNNs is relatively
simple: Direct calculation shows that the derivative of the target function g(x) is exponentially large
when x1 > 1− δ. To approximate g(x) in L∞ norm requires FNNs to have large derivative in certain
region, resulting in exponentially large weight for FNNs with bounded depth. On the other hand, the

5

proof of the approximability of DEQs is more technical. While g̃ in Eq. (7) seems more benign, it
is not clear how to construct the approximation using the implicit layer in Eq. (2) that resembles an
1-layer FNN with very limited expressive power. Moreover, even if we manage to approximate g̃ in
Eq. (7), it will not necessarily imply a good approximation between the fixed point of DEQ and the
solution of z = g̃(z,x), i.e., the target function due to the Lipschitz constant of g̃ with respect to z
being very close to 1 when x1 is around 1 according to Eq. (7). We provide a proof sketch of this
result in Section 4.3.

Further insights and implications can be gleaned from Theorem 2. First, it suggests that DEQ may
excel in approximating functions induced by fixed-point iterations. In other words, DEQ may be
better suited for representing algorithms. Second, Theorem 2 implies that functions with large
derivative, or high-frequency components, may be approximated more efficiently by DEQ, as the
function to be approximated by the implicit layer can have much smaller derivative.

4.3 Proof Sketch of B. in Theorem 2

As discussed in Section 4.2, we want to approximate g̃ using the implicit layer of DEQ. Due to the
limited expressive power of the implicit layer, we propose an equivalent reparameterization of DEQ.
Lemma 1. Consider a revised DEQ defined as

z = Vσ(Wz+Ux+b),

y = Bz,
(8)

where x ∈ Rd, z ∈ Rm,W ∈ Rq×m,U ∈ Rq×d, V ∈ Rm×q , b ∈ Rq , B ∈ Rp×m and ∥WV∥2 ≤
1. Then any revised DEQ can be represented by a vanilla DEQ defined as in Eq. (2) with width q.

Lemma 1 enables us to approximate g̃(z,x) using the revised implicit layer, denoted by h̃(z,x).
Then the crux of the proof centered in bounding the error between the equilibria of two fixed-point
equations. To begin, for every x we denote û(z) = z − g̃(z,x), v̂(z) = z − h̃(z,x) and consider
|û◦2(z)− v̂◦2(z)|. Suppose that û(z) is Lû-Lipschitz, then we have

|û◦2(z)− v̂◦2(z)| ≤ |û◦2(z)− û ◦ v̂(z)|+ |û ◦ v̂(z)− v̂◦2(z)| ≤ (Lû + 1)|û(z)− v̂(z)|.
Thus if Lû < 1, by recursion, we can bound distance the between the infinitely composition of û(z)
and v̂(z), from which the error of the two fixed points can be bounded.

Lemma 2. Let Ω ⊂ R be a compact set, and u(z,x), v(z,x) : Ω × [0, 1]d → Ω be two functions.
Assume that for all x ∈ [0, 1]d, u(·,x) and v(·,x) are Lipschitz continuous with Lipschitz constant
Lu, Lv < 1, respectively. Then for any x ∈ [0, 1]d, it holds that

|zu(x)− zv(x)| ≤ min{(1− Lu)
−1, (1− Lv)

−1} ·max
z∈Ω

|u(z,x)− v(z,x)|,

where zu(x) and zv(x) are the fixed point of z = u(z,x) and z = v(z,x), respectively.

In our case, u(z,x) and v(z,x) in this Lemma represent g̃(z,x) and h̃(z,x), respectively. When
x1 < 1− poly(d)−1, by calculating ∂g̃(z,x)

∂z , we have (1− Lg̃)
−1 < poly(d). Leveraging this and

Lemma 2, we just need ∥h̃ − g̃∥∞ ≤ poly(d)−1 to achieve a final accuracy of O(ε). However,
when x ≥ 1 − δ, we only have (1 − Lg̃)

−1 < exp(Ω(d)), which may necessitate an exponential
width for the implicit layer to achieve O(ε) accuracy. In fact, h̃(z,x) = xiz gives an example
that even assuming ∥h̃ − g̃∥∞ ≤ exp(Ω(d))−1 is not sufficient to achieve O(ε) accuracy since
zh̃(1) − zg̃(1) =

1
2 . So it seems difficult to bound the error without a specific structure of h̃. To

overcome the issue, we observe a novel property that enables us to effectively bound the error.
Lemma 3. Let ξ > 0. Under the conditions in Lemma 2, if for any interval T ⊂ Ω with diam(T) > ξ,
u(z,x) = v(z,x) has a zero in T for all x, then it holds that

|zu(x)− zv(x)| ≤ ξ, ∀x ∈ [0, 1]d.

The intuition behind Lemma 3 is that if for any x, z − u(z,x) and z − v(z,x) as two monotone
univariate functions w.r.t. z can take the same value at frequent intervals, then their zeros will also be
close to each other. By using this Lemma, it suffices to construct such h̃(z,x) that equals g̃(z,x) at
frequent interval of length O(ε) for every x.

6

5 The Bias on Learning Dynamics of DEQ

In this section, we study the implicit bias of a simplified linear diagonal DEQ and present a concrete
example illustrating how such an implicit bias may improve generalization. Specifically, we focus on
the overparameterized setting and our analysis is beyond the lazy training regime.

To ensure tractability, we follow the common techniques (e.g. see [31, 39]) to reduce a matrix
problem to a vector problem by considering only the diagonal elements of the weight matrix. Our
primary focus is on the following model:

f(w,x) =

d∑
i=1

1

1− wi
xi := ⟨β,x⟩, βi =

1

1− wi
. (9)

The model can be regarded as a diagonal linear DEQ in Eq. (2) with activation σ = Id, weights
W = diag(w1, w2, · · · , wd), U = Id, b = 0 and A = (1, 1, · · · , 1)T ∈ Rd. Although simplified,
this model is essentially a nonlinear model and it retains the implicit nature of DEQ.

Our primary focus lies in minimizing the expected square loss:

min
w

L(w) :=
1

2
E(x,y)∼D[(y − f(w,x))2]. (10)

We are given access to a set of i.i.d. training examples {(xi, yi)}Ni=1, and we denote the (half) square
loss on these examples by L̂(w) = 1

2

∑N
i=1(yi − f(w, xi))

2. As mentioned above, we focus on the
overparameterized setting that N ≤ d. Moreover, let

X = (x1, · · · ,xN)T , µmin = λmin(XXT), µmax = λmax(XXT),

where µmin > 0 can hold when N ≤ d and the data matrix X is of full rank. We mainly consider
the dynamics of gradient flow (GF) and gradient descent (GD) with fixed stepsize η on minimizing
L̂(w), expressed as follows

(GF) ẇ(t) = −∇wL̂(w(t)); (GD) wk+1 = wk − η∇wL̂(wk). (11)

The main theorem below gives a general characterization of the bias of diagonal linear DEQ in the
overparameterized regime. The proof is based on the technique proposed in [31].
Theorem 3. Let βi in Eq. (9) be initialed as βi(0) > 0 for all i. Suppose that gradient flow for the
parameterization problem in Eq. (10) converges to some β̂ satisfying Xβ̂ = y, then

β̂ = argmin
β

Q(β), s.t. Xβ = y, (12)

where Q(β) =
∑d

i=1 qi(βi) and qi(x) =
1

2x2 + βi(0)
−3x.

Remark 3. In Theorem 3, our proof shows that β(t) remains positive for all entries throughout the
training process. Within the space where β > 0, Q(β) is convex and has a unique minimum. The
restriction to positive entries arises from our simplification on A in Eq. (9) to be an all-one vector.
To accommodate negative entries, one could assign −1 to the corresponding entry. In this case, qi(x)
becomes qi(x) = 1

2x2 − βi(0)
−3x with βi(0) < 0, which is convex for x < 0.

All the proofs in this section are included in Appendix A.3. The theorem implies that the bias of the
(simplified) DEQ significantly differs from that of conventional linear models and two-layer linear
network which tends to give a minimum ℓ2-norm interpolator [42]. Specifically, the predictor β̂
hardly admits parameters of small magnitude due to the penalty term 1

2

∑d
i=1

1
β2
i

. Meanwhile, the
predictor can endure parameters of greater magnitude as the penalty qi(x) increase almost linearly
when x is large.

We then study the implicit bias from the learning dynamics of GF and GD. We show that when
µmin > 0, under mild conditions, the convergence of both algorithms is guaranteed. Moreover, in this
case, a positive lower bound of the ℓ∞ norm of the iterates can be derived, indicating that the model
inclines to produce ‘dense’ features in learning process.
Assumption 1. Denote by β0 the initialization of β of the model in Eq. (9). There exists an optima
β̂∗, i.e., X β̂∗ = y and a constant c > 0, such that

∥β̂∗∥∞ − ∥β̂∗ − β0∥2 ≥ c > 0.

7

Theorem 4. Let {β(t)} be the process following GF in Eq. (11) and {βk} the iterates following GD
in Eq. (11). Assume that µmin > 0 and the initialization β(0) and β0 satisfy Assumption 1 with an
optima β̂∗.

A. {β(t)} converges to an optima β∞
f with ∥β∞

f ∥∞ ≥ c. Moreover, for any t ≥ 0, we have
c ≤ ∥β(t)∥∞ ≤ ∥β̂∗∥∞ + ∥β̂∗ − β0∥2.

B. If there exists a constant C > 0 such that ∥βk∥∞ ≤ C for all k, then {βk} converges to an
optima β∞

d with ∥β∞
d ∥∞ ≥ c. Moreover, for any k ≥ 0, we have c ≤ ∥βk∥∞ ≤ C.

Remark 4. The assumption in Theorem 4 that ∥βk∥∞ is uniformly bounded can be removed if we
manually incorporate a constraint on β and optimize the problem using projected gradient descent.
In practice, certain reparameterization tricks [6, 7] are proposed to ensure that I−W ⪰ mI for
some m > 0, thus corresponding to the aforementioned assumption.

Theorem 4 does not require the updates to stay in a small domain near the initialization, so it is beyond
the lazy training regime. Importantly, the ‘dense’ bias observed in β is not a direct consequence of our
model assumption even though we only assume the diagonal elements to be nonzero. In fact, utilizing
the diagonal elements can still lead to sparse features (e.g., see [39]). We believe that this bias in
DEQs stems essentially from their network architecture. On the other hand, the current implicit bias
holds for GF and GD, whereas other optimization algorithms may induce different implicit biases,
which we aim to explore in future work.

Based on our results above, we now provide a concrete example to show the advantages brought by
the bias of DEQ in out-of-distribution (OOD) tasks. This is motivated by the fact that diversifying
spurious features can improve OOD generalization [43]. Specifically, we focus on generalization
on the unseen domain (GOTU) setting [36], a rather strong case of OOD generalization where part
of the distribution domain is unseen at training but used at testing. As an example, we here utilize
the setting in Theorem 3.11 in [36]. Consider the sample space S = {−1, 1}d and a linear boolean
function f : S → R defined as

f(x) = f̂(∅) +
d∑

i=1

f̂({i})xi, (13)

where f̂({i}) = Ex∼U{−1,1}d [xif(x)], f̂(∅) = EX∼U{−1,1}d [f(x)] and ∼UU refers to uniform
sampling from U . In training, the k-th component of every accessible sample is fixed as 1, i.e., the
unseen domain is U = {x ∈ {±1}d : xk = −1}. Denote by f̃S\U the function learned on S\U . The
GOTU error is the defined as the generalization completely on the unseen domain, i.e.,

GOTU(f, f̃ ,U) = EX∼UU [l(f̃S\U (X), f(X))],

where l is the quadratic loss function. It is shown in [36] that learning this function with diagonal
linear network results in a GOTU error of 4f̂({k})2 + O(ε) for an infinitesimal ε. On the other
hand, the following proposition shows that under mild conditions, learning such function with
DEQ achieves smaller GOTU error, where we consider DEQ in Eq. (9) with a bias term, i.e.,
f(w,x) =

∑d
i=1

1
1−wi

xi + b.

Proposition 2. Let f(x) be defined as in Eq. (13). Assume that

f̂({i}) > 0, ∀1 ≤ i ≤ d, f̂({k}) > 1, |f̂(∅)| ≤ 2|f̂({k})|.
Consider learning f using gradient flow on population loss2 on a linear diagonal DEQ with bias
initialized by wi(0) = b(0) = 0 for all i with unseen domain U = {x ∈ {±1}d : xk = −1}. Then
the loss converges to 0, and it holds for the generalization error on the unseen that

GOTU ≤ 4

(
f̂({k})−

(
4 + 3f̂({k})

)− 1
3

)2

< 4f̂({k})2.

In this setting, the function x 7→ xk has a higher frequency component (i.e., degree) compared to
the constant function 1. Consequently, the inductive bias of DEQ enables the model to capture some
information about the high-frequency components. We further conduct experiments to study the
potential advantages of DEQ in learning high-frequency components in Appendix B.2.

2It is identical to the setting in Theorem 3.11, [36]. Note that optimizing the population loss in generalization
cannot reduce the OOD error.

8

0 200 400 600 800 1000
iteration

10 1

100

101

te
st

 lo
ss

DEQ,W=5
FNN,L=4,W=3
FNN,L=3,W=5
FNN,L=2,W=10

(a) Sawtooth function I.

0 5 10 15 20 25 30
iteration

10 3

10 2

10 1

te
st

 lo
ss

DEQ,W=50
FNN,L=3,W=50
DEQ,W=40
FNN,L=4,W=30
DEQ,W=30
FNN,L=3,W=30

(b) g(x) with δ = 2−10.

0 50 100 150 200 250 300
Iteration

0

1

2

3

4

5

Lo
ss

FNN Train
DEQ Train
FNN GOTU
DEQ GOTU

(c) OOD function f1.

0 200 400 600 800 1000
iteration

10 1

100

te
st

 lo
ss

DEQ,W=10
FNN,L=4,W=6
FNN,L=3,W=10
FNN,L=2,W=15

(d) Sawtooth function II.

0 5 10 15 20 25 30
iteration

10 2

10 1

te
st

 lo
ss

DEQ,W=50
FNN,L=3,W=50
DEQ,W=40
FNN,L=4,W=30
DEQ,W=30
FNN,L=3,W=30

(e) g(x) with δ = 2−20.

0 200 400 600 800 1000
Iteration

0

1

2

3

4

5

Lo
ss

FNN Train
DEQ Train
FNN GOTU
DEQ GOTU

(f) OOD function f2.

Figure 1: Test losses of FNN and DEQ networks with various width W and depth L. (a) and (d) apply
Sawtooth function I and II with 25 and 210 linear regions, respectively. (b) and (e) apply function
g(x) defined in Eq. (5) with δ = 2−10 and δ = 2−20, respectively. (c) and (f) show the train loss
and the GOTU error of FNN and DEQ on the boolean function f1, f2 with unseen domain given by
Eq. (14) and Eq. (15).

6 Experiments

In this section, we conduct experiments on FNNs and DEQs based on our theoretical results. We first
evaluate the expressivity of both networks on the functions proposed in our two separation results.
Then we experiment on specific OOD tasks. Several additional experiments on audio representation
and mutiscale DEQ are provided in Appendix B.2.

Piecewise functions. We first verify the results in Section 4.1. The target function is designed as a
saw-tooth function, as defined in Lemma 4 in Appendix A.1, which can be exactly computed by a
DEQ. We set the number of linear regions of the saw-tooth function to 25 and 210 and experiments
on other sawtooth functions can be seen in Appendix B.1. According to Proposition 1, a DEQ with
width 5 and 10 can compute the above functions.

Figure 1(a) and Figure 1(d) show that DEQ can achieve nearly zero test loss, demonstrating the
saw-tooth function with 2m linear regions can be computed by DEQ. On the other hand, a not-so-deep
and not-so-wide FNN fails to achieve test loss as low as DEQ, thus verifying the separation results
between FNN and DEQ.

Solution to quadratic optimization problem. We then validate the ability of DEQ to approximate
the solution function to certain optimization problems. We empirically demonstrate that DEQ can
approximate such function better than an FNN with a similar number of parameters. We consider
the objective function g(x) defined in Eq. (6), with the input dimension d 10 and 20, and thus δ in
target function being 2−10 and 2−20. The input space is x ∈ [0, 1]d with the sampling distribution
p(x) = 1

2(1−δ) for 0 < x1 < 1 − δ and p(x) = 1
2δ for 1 − δ < x1 < 1. To verify results under

different network parameters, we adjust the layer number and hidden dimension of FNN and the layer
width of DEQ while keeping the total number of parameters of both networks similar.

As shown in Figure 1(b) and Figure 1(e), for different network parameters and target functions,
DEQ consistently achieves a lower test loss than FNN, demonstrating the superiority of DEQ to
approximate and represent functions as solutions to certain optimization problems.

9

(a) Features of diagonal DEQ. (b) Features of vanilla DEQ. (c) Features of FNN.

Figure 2: The heatmaps of diagonal DEQ, vanilla DEQ and FNN. We dispaly the magnitude of
feature z of DEQ and the magnitude of feature before the fully-connented layer of FNN. The x-axis
represents features 1-20 and darker colors indicate smaller features.

Out-of-Distribution tasks. We further perform experiments on the implicit bias of DEQ to verify
the advantage of DEQ on OOD tasks. We consider 2 linear boolean functions f : S → R in the form
of Eq. (13) and unseen domains U ⊂ {±1}d. The first function is an example of the mean function
and the second function is a part of DTFT. Experiments on other OOD functions can be found in
Appendix B.1.

f1(x) = 1.25x0 + 1.25x1 + 1.25x2 + · · ·+ 1.25x10, U = {x ∈ {±1}10 : x2 = −1}, (14)

f2(x) =

9∑
n=0

sin
(πn
10

)
xn, U = {x ∈ {±1}10 : x1 = −1} (15)

For each experiment, we generate all binary sequences in {±1}d\U for training. We employ AdamW
optimizer with ℓ2 loss and a cosine annealing scheduler. We can observe in Figure1 (c) that the
GOTU error of f1 is below the threshold of generalization error based on the Proposition 2. As shown
in Figure1 (c) and Figure1 (f), the training loss converges to 0 and the generalization error on the
unseen is bounded, which empirically demonstrates the advantage of DEQ on OOD tasks.

In Figure 2, we display the heatmap of the features of diagonal DEQ, vanilla DEQ and FNN trained
on the target function with the unseen domain defined in Eq.(14). As the darker colors indicate
smaller magnitude of features, we can confirm that the learned features of DEQ are indeed ‘denser’
than those of FNN.

7 Conclusions and Future Directions

In this paper, we provide two separations of DEQ and FNN and analyze the bias of DEQ through the
lens of learning dynamics. Our theoretical results provably show the advantage of DEQ over FNN in
specific problems and quantify certain learning properties of DEQ. Overall, we conjecture that DEQ
may be advantageous in learning certain high-frequency components.

There are many directions that remain to study. First, it is expecting to study the expressivity and bias
of more general DEQs. Second, extending our bias analysis under gradient methods to stochastic
methods is intriguing. Additionally, it remains promising to incorporate the advantages of DEQ
in commonly used networks in real applications. Besides, we also aim to explore DEQ’s potential
in representing algorithms for reasoning or in-context learning, as evidence suggests the learned
networks perform algorithms in some of these tasks.

Acknowledgements

C. Fang and Z. Lin were supported by National Key R&D Program of China (2022ZD0160300). C.
Fang was also supported by the NSF China (No. 62376008). Z. Lin was also supported and the NSF
China (No. 62276004).

10

References
[1] L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Tsai, “Implicit deep learning,” SIAM

Journal on Mathematics of Data Science, 2021.

[2] S. Bai, J. Z. Kolter, and V. Koltun, “Deep equilibrium models,” Advances in Neural Information
Processing Systems, 2019.

[3] S. Bai, V. Koltun, and J. Z. Kolter, “Multiscale deep equilibrium models,” Advances in Neural
Information Processing Systems, 2020.

[4] A. Pokle, Z. Geng, and J. Z. Kolter, “Deep equilibrium approaches to diffusion models,”
Advances in Neural Information Processing Systems, 2022.

[5] D. Gilton, G. Ongie, and R. Willett, “Deep equilibrium architectures for inverse problems in
imaging,” IEEE Transactions on Computational Imaging, 2021.

[6] E. Winston and J. Z. Kolter, “Monotone operator equilibrium networks,” Advances in Neural
Information Processing Systems, 2020.

[7] M. Revay, R. Wang, and I. R. Manchester, “Lipschitz bounded equilibrium networks,” arXiv
preprint arXiv:2010.01732, 2020.

[8] A. Agarwala and S. S. Schoenholz, “Deep equilibrium networks are sensitive to initialization
statistics,” in International Conference on Machine Learning, 2022.

[9] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Convergence and generalization in
neural networks,” Advances in Neural Information Processing Systems, 2018.

[10] S. Du, J. Lee, H. Li, L. Wang, and X. Zhai, “Gradient descent finds global minima of deep
neural networks,” in International Conference on Machine Learning, 2019.

[11] Z. Allen-Zhu, Y. Li, and Z. Song, “A convergence theory for deep learning via over-
parameterization,” in International Conference on Machine Learning, 2019.

[12] T. Gao, H. Liu, J. Liu, H. Rajan, and H. Gao, “A global convergence theory for deep relu implicit
networks via over-parameterization,” in International Conference on Learning Representations,
2022.

[13] Z. Ling, X. Xie, Q. Wang, Z. Zhang, and Z. Lin, “Global convergence of over-parameterized
deep equilibrium models,” in International Conference on Artificial Intelligence and Statistics,
2023.

[14] Z. Ling, L. Li, Z. Feng, Y. Zhang, F. Zhou, R. C. Qiu, and Z. Liao, “Deep equilibrium models
are almost equivalent to not-so-deep explicit models for high-dimensional gaussian mixtures,”
in International Conference on Machine Learning, 2024.

[15] S. Bai, V. Koltun, and J. Z. Kolter, “Stabilizing equilibrium models by jacobian regularization,”
in International Conference on Machine Learning, M. Meila and T. Zhang, Eds., 2021.

[16] K. Kawaguchi, “On the theory of implicit deep learning: Global convergence with implicit
layers,” in International Conference on Learning Representations, 2021.

[17] T. Gao and H. Gao, “On the optimization and generalization of overparameterized implicit
neural networks,” arXiv preprint arXiv:2209.15562, 2022.

[18] T. Gao, X. Huo, H. Liu, and H. Gao, “Wide neural networks as gaussian processes: Lessons
from deep equilibrium models,” Advances in Neural Information Processing Systems, 2023.

[19] R. Eldan and O. Shamir, “The power of depth for feedforward neural networks,” in Conference
on Learning Theory, 2016.

[20] M. Telgarsky, “Representation benefits of deep feedforward networks,” arXiv preprint
arXiv:1509.08101, 2015.

11

[21] Z. Wang and L. Wu, “Theoretical analysis of the inductive biases in deep convolutional networks,”
Advances in Neural Information Processing Systems, 2024.

[22] M. Emami, M. Sahraee-Ardakan, P. Pandit, S. Rangan, and A. K. Fletcher, “Implicit bias of
linear rnns,” in International Conference on Machine Learning, 2021.

[23] A. Daniely, “Depth separation for neural networks,” in Conference on Learning Theory, 2017.

[24] M. Telgarsky, “Benefits of depth in neural networks,” in Conference on Learning Theory, 2016.

[25] I. Safran and O. Shamir, “Depth-width tradeoffs in approximating natural functions with neural
networks,” in International Conference on Machine Learning, 2017.

[26] V. Chatziafratis, S. G. Nagarajan, and I. Panageas, “Better depth-width trade-offs for neural
networks through the lens of dynamical systems,” in International Conference on Machine
Learning, 2020.

[27] E. Malach, G. Yehudai, S. Shalev-Schwartz, and O. Shamir, “The connection between approx-
imation, depth separation and learnability in neural networks,” in Conference on Learning
Theory, 2021.

[28] G. Vardi, D. Reichman, T. Pitassi, and O. Shamir, “Size and depth separation in approximating
benign functions with neural networks,” in Conference on Learning Theory, 2021.

[29] G. Vardi and O. Shamir, “Neural networks with small weights and depth-separation barriers,”
Advances in Neural Information Processing Systems, 2020.

[30] S. Gunasekar, J. Lee, D. Soudry, and N. Srebro, “Characterizing implicit bias in terms of
optimization geometry,” in International Conference on Machine Learning, 2018.

[31] B. Woodworth, S. Gunasekar, J. D. Lee, E. Moroshko, P. Savarese, I. Golan, D. Soudry, and
N. Srebro, “Kernel and rich regimes in overparametrized models,” in Conference on Learning
Theory, 2020.

[32] P. L. Bartlett, A. Montanari, and A. Rakhlin, “Deep learning: a statistical viewpoint,” Acta
Numerica, 2021.

[33] E. Moroshko, B. E. Woodworth, S. Gunasekar, J. D. Lee, N. Srebro, and D. Soudry, “Implicit
bias in deep linear classification: Initialization scale vs training accuracy,” Advances in Neural
Information Processing Systems, 2020.

[34] Y. Cao, Z. Fang, Y. Wu, D. Zhou, and Q. Gu, “Towards understanding the spectral bias of deep
learning,” in International Joint Conference on Artificial Intelligence, Z. Zhou, Ed., 2021.

[35] N. Rahaman, A. Baratin, D. Arpit, F. Draxler, M. Lin, F. Hamprecht, Y. Bengio, and A. Courville,
“On the spectral bias of neural networks,” in International Conference on Machine Learning.
PMLR, 2019.

[36] E. Abbe, S. Bengio, A. Lotfi, and K. Rizk, “Generalization on the unseen, logic reasoning and
degree curriculum,” in International Conference on Machine Learning, 2023.

[37] G. Vardi and O. Shamir, “Implicit regularization in relu networks with the square loss,” in
Conference on Learning Theory, 2021.

[38] A. Jacot, B. Simsek, F. Spadaro, C. Hongler, and F. Gabriel, “Implicit regularization of random
feature models,” in International Conference on Machine Learning, 2020.

[39] Y. Li, T. Ma, and H. Zhang, “Algorithmic regularization in over-parameterized matrix sensing
and neural networks with quadratic activations,” in Conference On Learning Theory, 2018.

[40] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of linear regions of deep
neural networks,” Advances in Neural Information Processing Systems, 2014.

[41] G. Yehudai and O. Shamir, “On the power and limitations of random features for understanding
neural networks,” Advances in Neural Information Processing Systems, 2019.

12

[42] A. V. Varre, M.-L. Vladarean, L. Pillaud-Vivien, and N. Flammarion, “On the spectral bias of
two-layer linear networks,” Advances in Neural Information Processing Systems, 2024.

[43] Y. Lin, L. Tan, Y. Hao, H. Wong, H. Dong, W. Zhang, Y. Yang, and T. Zhang, “Spurious feature
diversification improves out-of-distribution generalization,” arXiv preprint arXiv:2309.17230,
2023.

[44] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[45] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-cam: Visual
explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017.

[46] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern
Recognition, 2009.

[47] Z. Huang, S. Bai, and J. Z. Kolter, “(Implicit)2: Implicit layers for implicit representations,”
Advances in Neural Information Processing Systems, 2021.

13

A Proofs and Discussions

A.1 Proofs in Subsection 4.1

In following technical lemma, we show that there exists a width-m ReLU-DEQ computing a function
with 2m linear regions.

Lemma 4. Let m ∈ N+. For all m ≥ 1, consider the following function on [0, 1]d:

ϕ(m)(x) =

{
2mx1 − 2i, x1 ∈

[
2i
2m , 2i+1

2m

]
, 0 ≤ i ≤ 2m−1 − 1,

−2mx1 + 2i+ 2, x1 ∈
[
2i+1
2m , 2i+2

2m

]
, 0 ≤ i ≤ 2m−1 − 1.

Then there exists a DEQ with width m that exactly computes −ϕ(m)(x) + 2mx1 on [0, 1]d. Moreover,
the DEQ has 2m linear regions on [0, 1]d.

Proof. Since 2mx1 is a linear function with respect to z1, by definition, −ϕ(m)(x) + 2mx1 has 2
linear regions on

[
2i
2m , 2i+2

2m

]
× [0, 1]d−1 for all 0 ≤ i ≤ 2m−1 − 1. Thus it has 2m linear regions on

[0, 1]d. It suffices to show that existence of a DEQ computing −ϕ(m)(x) + 2mx1.

Consider a width-m DEQ with weight matrices as follows:

AT =

−2m

−2m−1

...
−2

 ,W =

0
−4 0
−8 −4 0

...
...

...
. . .

−2m −2m−1 −2m−2 · · · 0

 ,U1 =

2
4
...

2m

 ,b =

−1
−1

...
−1

 ,

where U1 denotes the first column of U and U = (U1 0). When a DEQ is equipped with the
above weight matrices, direct calculations show that the fixed point z satisfy

z1(x) = σ(2x1 − 1), zt(x) = σ

(
−

t−1∑
i=1

2t−i+1zi(x) + 2tx1 − 1

)
, ∀2 ≤ t ≤ m. (16)

Note that {ϕ(m)(x)} admits a recursive expression:

ϕ(m+1)(x) = 2ϕ(m)(x)− 2σ(2ϕ(m)(x)− 1), ∀m ≥ 0 (17)

for ϕ(0)(x) := x1. We now show by induction that zt(x) = σ(2ϕ(t−1)(x)− 1) for all 1 ≤ t ≤ m.
When t = 1, it is true immediately from Eq. (16) and (17). Assume it is true for some t < m, then
by Eq. (16) we have

zt+1(x) = σ

(
t∑

i=1

−2t−i+2zi(x) + 2t+1x1 − 1

)

= σ

(
t∑

i=1

−2t−i+2σ(2ϕ(i−1)(x)− 1) + 2t+1x1 − 1

)

= σ

(
t∑

i=1

−2t−i+2

(
ϕ(i−1)(x)− ϕ(i)(x)

2

)
+ 2t+1x1 − 1

)
= σ(−2t+1ϕ(0)(x) + 2ϕ(t)(x) + 2t+1x1 − 1) = σ(2ϕ(t)(x)− 1),

where we use the induction in the second line, Eq. (17) in the third line, and ϕ(0)(x) = x1 in the last
line. Thus the induction holds.

14

Using the induction and Eq. (17) for the DEQ, we have

Az(x) =

m∑
i=1

−2m+1−izi(x)

=

m∑
i=1

−2m+1−iσ(2ϕ(i−1)(x)− 1)

=

m∑
i=1

−2m+1−i

(
ϕ(i−1)(x)− ϕ(i)(x)

2

)
= −2mϕ(0)(x) + ϕ(m)(x) = ϕ(m)(x)− 2mx1,

and the lemma follows.

To prove the theorem, we also need the following lemma which is proved in [20].
Lemma 5 (Lemma 2.1 in [20]). Let k ∈ N+, L ≥ 2 and ρ(x) : R → R be a piecewise affine linear
function with p pieces. Then every f : R → R implemented by an FNN with depth L, width k and
activation function ρ has at most (pk)L−1 linear regions.

Note that the in Lemma 4, the function computed by DEQ is a variant of the saw-tooth function that
has many linear regions. On the other hand, Lemma 5 provides an upper bound on the number of
linear regions generated by FNN. Combining these two lemmas and using a technique similar to that
in Theorem 1.1 in [24], we are able to prove Theorem 1.

Proof of Theorem 1. Let Nd(x) be the DEQ in Lemma 4 that computes 2mx1 −ϕ(m)(x) and denote
the width of the FNN that computes Nf (x) by k. For any y ∈ [0, 1]d−1, define py(x) : [0, 1] →
[0, 1]d as py = (x1,y). Then for Nf ◦ py(x) : [0, 1] → R, by Lemma 5, the number of linear regions
is upper bounded by

(pk)L−1 ≤ 2(m
1−α−1)(L−1) ≤ 2m−2,

where p = 2 denotes the number of linear pieces of ReLU activation function. Therefore, Nf ◦
py(x)− 2mx has at most 2m−2 linear regions on [0, 1].

Note that ϕ(m)(x) only depends on the first entry of x, for simplicity, we define φ(m)(x) : R → R as
φ(m)(x) = ϕ(m) ◦ py(x). Now we claim that there exists at least 3 · 2m−3 − 2 small intervals {Tl}l
on [0, 1] with diam(Tl) = 2−m, such that for any y, it holds that

sgn
(
φ(m)(x)− 1

2

)
̸= sgn

(
Nf ◦ py(x)− 2mx− 1

2

)
, ∀x ∈ Tl, ∀l.

For simplicity, denote φ̃(x) = φ(m)(x)− 1
2 and Ñf (x) = Nf ◦ py(x)− 2mx− 1

2 . Denote Pϕ and

PN the partitions of [0, 1] into intervals so that sgn (φ̃(x)) and sgn
(
Ñf (x)

)
remains constant within

each interval, respectively. Let Iϕ be the set of all intervals partitioned by Pϕ and IN be the set of
all intervals partitioned by PN . By definition, |Iϕ| = 2m + 1. Since Ñf (x) has at most 2m−2 linear
regions, the number of the boundary points of the intervals in IN is upper bounded 2m−2 + 1. So
there are at least 2m + 1 − (2m−2 + 1) = 3 · 2m−2 intervals in Iϕ that do not intersect with any
boundary points of intervals, i.e., lie completely in an interval in IN . Denote this set of intervals
by I ′

ϕ. On the other hand, since sgn(Ñf (x)) remains constant on every interval in IN , for every
J ∈ IN that contains iJ intervals in I ′

ϕ, there will be iJ+1
2 intervals when iJ is odd and iJ

2 intervals
when iJ is even, on which sgn(φ̃(x)) = sgn(Ñf (x)). Note that

∑
J∈IN

iJ ≥ 3 · 2m−2. Therefore,
among the sets in I ′

ϕ, the number of sets on which sgn(φ̃(x)) ̸= sgn(Ñf (x)) is at least

3 · 2m−2 −
∑
J∈IN

iJ + 1

2
≥ 2m−3,

where we use the fact that |IN | ≤ 2m−2 +1. Note that except for two intervals, every T ∈ I ′
ϕ can be

represented as
[
4i+1
2m+1 ,

4i+3
2m+1

]
or
[
4i−1
2m+1 ,

4i+1
2m+1

]
for some i, thus diam(Tl) = 2−m, which proves the

15

claim. Moreover, on each Tl, direct calculations show
∫
Tl

∣∣ϕ(m)(x)− 1
2

∣∣ dx ≥ 2−m−2. Therefore,
by using the claim, we have∫

[0,1]d
|Nd(x)−Nf (x)|dx

=

∫
[0,1]d−1

∫
[0,1]

∣∣∣2mx1 − ϕ(m)(x1)−Nf ◦ py(x1)
∣∣∣ dx1dy

≥
∫
[0,1]d−1

∫
⋃

l Tl

∣∣∣2mx1 − ϕ(m)(x1)−Nf ◦ py(x1)
∣∣∣dx1dy

≥
∫
[0,1]d−1

∫
⋃

l Tl

∣∣∣∣12 − ϕ(m)(x1)

∣∣∣∣dx1dy

≥
∫
[0,1]d−1

|Tl| · 2−m−2dy

≥(3 · 2m−3 − 2) · 2−m−2 ≥ 1

16
.

Next we turn to proof Proposition 1. We use Diag(·) to extract the diagonal elements of a matrix into
a vector. The proof of Proposition 1 relies on following explicit expression of ReLU DEQ.

Lemma 6. Let W,U,b be the weights of a DEQ with ∥W ∥2 < 1. Then for any x ∈ Rd, there
exists a diagonal matrix D ∈ Rd×d whose diagonal entries are either 1 or 0, such that

sgn(diag((I−WD)−1)(Ux+b)) = Diag(D). (18)

Moreover, fix D, for all x that Eq. (18) holds, we have

z(x) = (I−DW)−1D(Ux+b). (19)

Proof. Recall that the fixed point z(x) satisfies

z = σ(Wz+Ux+b). (20)

For each zi, if the i-th entry of (Wz+Ux+b) is smaller than 0, then zi = 0. Without loss of
generality, we assume that the first t (t ≤ m) entries of (Wz+Ux+b) are greater than 0, and the
rest m− t entries are smaller than 0. Denote by v = Ux+b and the corresponding block matrices
z,W,v by

z =

(
z̃
0

)
,W =

(
W11 W12

W21 W22

)
,v =

(
v1

v2

)
, (21)

where z̃ ∈ Rt,W11 ∈ Rt×t, and v1 ∈ Rt. Then, Eq.(20) is equivalent to

z̃ = W11z̃+ v1, W21z̃+ v2 ≤ 0, z̃ > 0. (22)

Now we define D =

(
It 0
0 0

)
and show that it is the desired matrix. Note that ∥W ∥2 < 1 and

∥D∥2 = 1, we have
∥W11∥2 = ∥WD∥2 ≤ ∥W ∥2∥D∥2 < 1,

showing that It −W11 is invertible. Thus Eq.(22) gives

z̃ = (It −W11)
−1v1 > 0, W21(It −W11)

−1v1 + v2 ≤ 0. (23)

Additionally, by simple calculation, we have

(I−DW)−1 =

(
(It −W11)

−1 (It −W11)
−1W12

0 I

)
,

(I−WD)−1 =

(
(It −W11)

−1 0
W21(It −W11)

−1 I

)
.

(24)

16

Combining Eq. (21), (23) and (24), we have

(I−WD)−1(Ux+b) =

(
W11z̃+ v1

W21(It −W11)
−1v1 + v2

)
,

z =

(
(It −W11)

−1v1

0

)
= (I−DW)−1D(Ux+b).

Finally, since the output of the implicit layer is unique, in the sense of permuting the entries of D,
there always exists a matrix D such that the lemma follows.

Note that there are at most 2m diagonal matrix whose diagonal entries are either 1 or 0, the upper
bound of the number of linear regions is 2m. Thus Proposition 1 follows straightforwardly from
Lemma 6 and 4.

A.2 Proofs in Subsection 4.2

A.2.1 Inapproximability of FNNs

The goal of this section is to prove the following proposition, which is an extended version of the
inapproximability result in Theorem 2.
Assumption 2. The activation function σ̃ is of C0(R) and continuous differentiable except for at
most finitely many points. And there exists an absolute constant Cσ̃ > 0, such that |σ̃′(x)| ≤ Cσ̃ for
all x on which σ̃ is differentiable.
Proposition 3 (Inapproximability of FNN). Let Nfnn(x) be computed by an FNN with depth L, width
k, and an activation function σ̃ satisfying Assumption 2 on x ∈ [0, 1]d. Let g(x) be defined as in
Eq.(6), and 1

4 ≥ ε > 0. If ∥Nfnn(x)− g(x)∥L∞([0,1]d) ≤ ε, then there exists a weight parameter Wij

of the FNN for 1 ≤ i ≤ L and 1 ≤ j ≤ k, such that

|Wij | ≥
1

Cσ̃k
· 2

d−4
L .

Proof. By assumption, Nfnn(x) is of C0(Rd) and continuous differentiable except for at most finitely
many points, then by the intermediate value theorem, we have

max
x∈[0,1]d

∣∣∣∣∂Nfnn(x)

∂x1

∣∣∣∣ ≥ ∣∣∣∣g1(1)− g1(1− δ)

δ

∣∣∣∣ ≥ 1
2 − δ(1−δ)

4δ − 2 · 1
16

δ
≥ 1

8δ
− 1 ≥ 2d−4, (25)

where ∂Nfnn(x)
∂x1

refers to the subgradient on the non-differentiable points. Additionally, by definition,

Nfnn(x) = WLσ̃ (WL−1σ̃(· · · σ̃(W1 x+b1) · · ·) + bL−1)

Then direct calculation gives

∇Nfnn(x) = WT
1 D1 · · ·WT

L−1DL−1W
T
L , (26)

where Dl = diag(σ̃′(Wlσ̃(· · · σ̃(W1x+ b1) · · ·) + bl)) for 1 ≤ l ≤ L− 1. By Assumption 2, it
holds that

∥Dl∥∞ ≤ Cσ̃, ∀1 ≤ l ≤ L− 1.

Then combining Eq. (25) and (26), we have

2d−4 ≤ ∥∇Nfnn(x)∥∞ ≤
L∏

i=1

∥DiWi∥∞ ≤ CL
σ̃ ·

L∏
i=1

∥Wi∥∞.

Therefore, there exists at least one Wi for 1 ≤ i ≤ L, such that

∥Wi∥∞ ≥ C−1
σ̃ 2

d−4
L .

Finally, by the definition of ∥ · ∥∞, there exists an entry Wij with 1 ≤ j ≤ k, such that

|Wij | ≥
1

Cσ̃k
· 2

d−4
L .

17

Remark 5. Assumption 2 is mild and one can verify that most commonly used activation functions
such as ReLU, GeLU, sigmoid and tanh satisfy the assumption.

To prove the inapproximability of FNNs in Theorem 2, we take Cσ̃ = 1 in Proposition 3 as |σ′(x)| ≤ 1
and derive

|Wij | ≥ k−1 · 2
d−4
L ≤ 2−

d
2C + d−4

C ≥ 2−
d

2C ,

which finishes the proof.

A.2.2 Approximability of DEQs

This section centers around the approximability result of DEQs. We restate the approximability result
of Theorem 2 as the following proposition.
Proposition 4 (Approximability of DEQ). Let g(x) be defined as in Eq.(6) on [0, 1]d. ∀ 1

4 ≥ ε > 0,

there exists a DEQ Ndeq with width bounded by 5ε−1 and weights bounded by 2ε−1, such that

∥Ndeq(x)− g(x)∥L∞([0,1]d) ≤ ε.

The proof of the proposition requires some intermediate steps regrading the constructing approxima-
tion by DEQ and bounding the fixed-points’ error. For simplicity, in the rest of the section, for any
function f which is continuous differentiable except for at most finitely many points, we denote f ′

the derivative of f on the differentiable points, and the subgradient of f on the non-differentiable
points.

The next lemma considers approximating the square function using a 2-layer FNN.
Lemma 7. For any N ∈ N+, there exists a function ϕ implemented by a 2-layer ReLU FNN with
width 2N such that

|ϕ(x)− x2| ≤ 4N−2, |ϕ′(x)| ≤ 2− 1

N
, ∀x ∈ [−1, 1].

Proof. Denote 1
N by t for simplicity. Let {xi}2N+1

i=1 be 2N + 1 points on R be defined as follows:

x1 = −1, x2 = −1 + t, · · · , x2N = 1− t, x2N+1 = 1.

We consider the following function ϕ(x) that interpolates x2 on all {xi}2N+1
i=1 :

ϕ(x) = σ(tx) + σ(−tx) +

N−1∑
i=1

σ(2tx− 2it2) +

N−1∑
i=1

σ(−2tx+ 2it2). (27)

It can be seen that ϕ(x) can be implemented by a 2-layer ReLU FNN with width 2N and weight
bounded by 2t. By the interpolation property of ϕ(x), on every [xj , xj+1], it holds

max
x∈[xj ,xj+1]

|ϕ(x)− x2| = ϕ

(
xj + xj+1

2

)
−
(
xj + xj+1

2

)2

=
t2

4
.

Thus we have |ϕ(x)− x2| ≤ 4N−2 for all x ∈ [−1, 1]. Moreover, since ϕ(x) is convex, we have

|ϕ′(x)| ≤ 1− (1− t)2

t
= 2− t.

We now move to prove the equivalence between the revised DEQ and vanilla DEQ.

Proof of Lemma 1. For any ẑ0 ∈ Rm, we define a sequence {ẑk} as

ẑk+1 = σ(WVẑk +Ux+ b).

Since ∥WV∥2 ≤ 1, {ẑk} converges and the limit ẑ∗ is the fixed point of ẑ = σ(WVẑ+Ux+b).
Now we set z0 = Vy0 and define another sequence {zk} as

zk+1 = Vσ(Wzk +Ux+b), ∀k ≥ 0.

18

It follows immediately by induction that zk = Vẑk for all k ≥ 0. Note that {zk} converges and the
limit z∗ is exactly the fixed point of the revised DEQ in Eq. (8). Therefore, it holds that

z∗ = lim
k→∞

zk = lim
k→∞

Vẑk = Vẑ∗.

The desired DEQ is constructed as

ẑ = σ(WVẑ+Ux+b),

ŷ = (BV)ẑ

In the following we turn to bound the error between the equilibria of two fixed-point equations. We
start with the proof of Lemma 2.

Proof of Lemma 2. The existence of zu and zv follows from the fixed point theorem since u(·,x) and
v(·,x) are contraction mappings. For simplicity, we denote ux(z) = u(z,x) and vx(z) = v(z,x).
Note that the range of ux and vx are in Ω. Then ∀n ∈ N+, we have

∥u◦n
x − v◦nx ∥∞ ≤

∥∥∥u◦n
x − ux

(
v◦(n−1)
x

)∥∥∥
∞

+
∥∥∥ux

(
v◦(n−1)
x

)
− v◦nx

∥∥∥
∞

≤ Lu

∥∥∥u◦(n−1)
x − v◦(n−1)

x

∥∥∥
∞

+ ∥ux − vx∥∞

≤ Lu

(∥∥∥u◦(n−2)
x − v◦(n−2)

x

∥∥∥
∞

+ ∥ux − vx∥∞
)
+ ∥ux − vx∥∞

≤ · · ·
≤ (1 + Lu + · · ·+ Ln−1

u)∥ux − vx∥∞

=
1− Ln

u

1− Lu
∥ux − vx∥∞.

By definition, ∀(z,x) ∈ Ω×[0, 1]d, zu(x) = limn→∞ u◦n
x (z), and zv(x) = limn→∞ v◦nx (z). Hence,

we have

|zu(x)− zv(x)| ≤ lim
n→∞

|u◦n
x (z)− v◦nx (z)|

≤ lim
n→∞

1− Ln
u

1− Lu
·max
z∈Ω

|u(z,x)− v(z,x)|

≤ 1

1− Lu
·max
z∈Ω

|u(z,x)− v(z,x)|.

Finally, by the symmetry of u and v, we also have |zu(x) − zv(x)| ≤ 1
1−Lv

·maxz∈Ω |u(z,x) −
v(z,x)|. The proof is finished.

We also need Lemma 3 to bound the error.

Proof of Lemma 3. We use the intermediate value theorem to proof the lemma. Define q(z,x) =
z − v(z,x). The fixed point zv(x) is the unique zero of q(z,x) = 0. Since v(z,x) is Lv Lipschitz
with respect to z and Lv < 1, q(z,x) is monotonically increasing with respect to z for all x.

Fix zu, the proof proceeds by discussing the following 2 cases:

• If q(zu,x) ≤ 0, i.e., u(zu,x) = zu ≤ v(zu,x), we consider T = [zu, zu + ξ] ⊂ Ω.
By assumption, there exists z∗ ∈ T , such that u(z∗,x) = v(z∗,x). Note that q(·,x) is
monotonically increasing, thus we have q(z∗,x) ≥ 0. By the continuity of q(z,x) w.r.t.
z and the intermediate value theorem, q(z,x) must have a zero in [zu, z0] ⊂ T , which is
zv(x) by definition. Hence, it holds that |zu − zv| ≤ ξ.

• If q(zu,x) ≥ 0, i.e., u(zu,x) = zu ≥ v(zu,x), we consider T = [zu − ξ, zu] ⊂ Ω. It
follows from similar deductions that |zu − zv| ≤ ξ in this case.

19

We finish the proof.

With the results above, we begin our formal proof of Proposition 4. The proof is sketched as follows:
First, we consider a fixed point equation z = g̃(z,x) that induces the target function g(x). We show
that there exists a function h̃(z,x) : Rd+1 → R computed by a 2-layer FNN with width O(ε−1) that
can approximate g̃(z,x) in sup-norm to an accuracy of O(ε2). Moreover, z = h̃(z,x) is a well-posed
fixed point equation and induces a revised DEQ. Second, we bound the error between g(x) and h(x),
where h(x) is the fixed point of z = h̃(z,x). The proof is further divided into two parts: When
1− x1 > ε

2 , by using Lemma 2, we can bound the error ∥h− g∥ by ε · ∥h̃− g̃∥. When 1− x1 < ε
2 ,

we show that the conditions of Proposition 4 holds for ξ = ε, thus ∥h− g∥ is upper bounded by ε.

Proof of Proposition 4. Let g(x) be defined as in Eq.(6). Recall that g(x) is the fixed point of the
fixed point equation

z = g̃(z,x) := zx1 + δ
(x1

2
− z
)
.

Approximate g̃ using 2-layer FNN. By Lemma 7,∀N ∈ N+, there exist a ∈ R2N , b̃ ∈ R2N ,W̃ ∈
R2N and a function ϕ(x) = aTσ(W̃x+ b̃) , such that for all x ∈ [−1, 1], it holds

|ϕN (x)− x2| ≤ 4N−2, |ϕ′
N (x)| ≤ 2− 1

N
. (28)

Now, we define

h̃(z,x) =
1

2

[
ϕN

(
z +

x1

2

)
− ϕN

(
z − x1

2

)]
+ δ

(x1

2
− z
)
.

1. h̃(z,x) can be implemented by a 2-layer ReLU FNN with width 4N + 2 for (z,x) ∈[
−δ, 1

2

]
× [0, 1]d. To see this, when (z,x) ∈

[
−δ, 1

2

]
× [0, 1]d, it holds z + x1

2 ∈ [0, 1],
z − x1

2 ∈ [−1, 0]. Then

(
aT

2
aT

2 −δ δ
)
σ

W̃ 0

0 W̃
0 1
0 −1

(1 1
2 0

1 − 1
2 0

)(z
x1

x−1

)
+

b̃

b̃
0
0

=
(

aT

2
aT

2 −δ δ
)
σ

W̃
(
z + x1

2

)
+ b̃

W̃
(
z − x1

2

)
+ b̃(

z − x1

2

)
−
(
z − x1

2

)

=
1

2
aTσ

(
W̃
(
z +

x1

2

)
+ b

)
+

1

2
aTσ

(
W̃
(
z − x1

2

)
+ b̃

)
+ δ

(
σ
(
−z +

x1

2
− σ

(
z − x1

2

)))
=
1

2

[
ϕN

(
z +

x1

2

)
− ϕN

(
z − x1

2

)]
+ δ

(x1

2
− z
)
= h̃(z,x),

(29)

where the first line resembles a function implemented by an FNN with width 4N + 2.

2. h̃(z,x) approximate g̃(z,x) well on (z,x) ∈
[
−δ, 1

2

]
× [0, 1]d. Since z + x1

2 ∈ [0, 1] and
z − x1

2 ∈ [−1, 0], from Eq. (28), we have

|h̃(z,x)− g̃(z,x)| = 1

2

[
ϕN

(
z +

x1

2

)
−

(
z +

x1

2

)2
]
− 1

2

[
ϕN

(
z − x1

2

)
−

(
z − x1

2

)2
]

≤ 1

2

∣∣∣∣ϕN

(
z +

x1

2

)
−

(
z +

x1

2

)2
∣∣∣∣+ 1

2

∣∣∣∣ϕN

(
z − x1

2

)
−

(
z − x1

2

)2
∣∣∣∣

≤ 1

2

(
t2

4
+

t2

4

)
=

t2

4
.

(30)

20

3. The fixed point equation z = h̃(z,x) is well-posed on
[
−δ, 1

2

]
× [0, 1]d. for the partial

derivative ∂h̃(z,x)
∂z , we have∣∣∣∣∣∂h̃(z,x)∂z

∣∣∣∣∣ = 1

2

(
ϕ′
N

(
z +

x1

2

)
− ϕ′

N

(
z − x1

2

))
− δ

≤ 1

2

(
ϕ′
N

(
z +

x1

2

)
− ϕ′

N

(
z +

x1

2
− 1
))

− δ

≤ 1− δ < 1,

where the second line holds because ϕ′(x) is monotonically increasing and x1 < 1. There-
fore, the fixed point equation z = h̃(z,x) has a unique solution for all x.

4. Note that h̃(z,x) can be computed by a revised DEQ defined in Eq. (8) with

V =
(

aT

2
aT

2 −δ δ
)
, W =

W̃

W̃
1
−1

 , B = 1.

And it can be verified that ∥WV∥2 = 1 − t − 2δ ≤ 1. By Lemma 1, the fixed point of
z = h̃(z,x) can be computed by a DEQ with width 4N + 2, which we denote by Ndeq(x).
Further calculations show that the weight of the DEQ is also bounded by 2t.

Approximate g using the induced DEQ. We will bound ∥Ndeq(x)− g(x)∥L∞([0,1]d) using Lemma
2 and Lemma 3. Let Ω = [−δ, 1

2] and assume that t > 10δ. It can be easily verified that both the
range of g̃(z,x) and h̃(z,x) are in Ω when (z,x) ∈ Ω× [0, 1]d.

1. When x1 ≤ 1 − t
2 , by definition, the Lipschitz constant of g̃(·,x) is upper bounded by

max
∣∣∣∂g̃(z,x)∂z

∣∣∣. Leveraging Lemma 2 and Eq.(30), we have

|Ndeq(x)− g(x)| ≤
∣∣∣∣1− ∂g̃(z,x)

∂z

∣∣∣∣−1

|h̃(z,x)− g̃(z,x)| ≤ 2

t
· t

2

4
=

t

2
.

2. When 1 > x1 > 1− t
2 , if z + x1

2 = nt for some N
2 − 1 ≤ n ≤ N , we have

z − x1

2
= nt− x1

2
∈
((

n− N

2

)
t,

(
n− N

2
− 1

)
t

)
.

Note that ϕN (x) > x2 for all x ∈ [0, 1]\tN and ϕN (x) = x2 for all x ∈ [0, 1] ∩ tN. Thus,
when z = nt− x1

2 , we have

h̃(z,x) <
1

2

((
z +

x1

2

)2
−
(
z − x1

2

)2)
+ δ

(x1

2
− z
)
= g̃(z,x).

For every T ⊂ Ω with |T | ≤ t, there exists zg ∈ T , such that zg = nt− x1

2 . Thus, from the
above analysis, we know that h̃(zg,x) < g̃(zg,x).

On the other hand, if z = x1

2 − kt for some 0 ≤ k ≤ N
2 − 1, we have

z +
x1

2
= kt+

x1

2
∈
((

−k +
N

2
− 1

)
t,

(
−k +

N

2

)
t

)
.

Similarly, we have

h̃(z,x) >
1

2

((
z +

x1

2

)2
−
(
z − x1

2

)2)
+ δ

(x1

2
− z
)
= g̃(z,x).

For every T ⊂ Ω with |T | ≤ t, there exists zl ∈ T , such that zl = x1

2 − kt. Thus we have
h̃(zg,x) > g̃(zg,x). From the intermediate value theorem, there exists z∗ ∈ T , such that
h̃(z∗,x) = g̃(z∗,x). Thus it follows from Lemma 3 immediately that

|Ndeq(x)− g(x)| ≤ t.

21

Additionally, when x1 = 1, by simple calculations, we have h̃
(
1
2 ,x
)
= g̃

(
1
2 ,x
)
= 1

2 , indicating that
Ndeq(x) = g(x) = 1

2 . Combining all the results above, we have

|Ndeq(x)− g(x)| ≤ |g(x)− z̄′| ≤ t, x ∈ [0, 1]d.

By choosing t = ε, we finish the proof.

A.3 Proofs in Section 5

We start with the proof of Theorem 3.

Proof of Theorem 3. Denote {β(t)} the process that follows the gradient flow dynamics ẇ(t) =

−∇wL̂(w(t)) initialized by β(0) > 0. Recall that the empirical loss is 1
2∥Xβ − y ∥22, then the

dynamics of {β(t)} can be computed as follows:

dβ(t)

dt
= ∇wβ(t) · dw(t)

dt

= ∇wβ(t) ·
(
−∇w

(
1

2
∥Xβ(t)− y ∥22

))
= ∇wβ(t)2 ·

(
−∇β

(
1

2
∥X β̃(t)− y ∥22

))
= −

(
XT r(t)

)
⊙ β̃(t)⊙4,

(31)

where r(t) = Xβ(t)− y denotes the residual. For any t > 0, it can be verified easily from Eq. (31)
that

−1

3
β(t)⊙−3 +

1

3
β(0)⊙−3 = −XT

∫ t

0

r(s)ds. (32)

For simplicity, we denote v(t) =
∫ t

0
r(s)ds. Then from Eq. (32), we have

β(t) =
(
3XTv(t) + β(0)⊙−3

)⊙− 1
3 . (33)

By assumption, β(t) converges to some β∞ ∈ Rd when t → ∞, thus v(t) converges to some
v∞ :=

∫∞
0

r(s)ds. By letting t → ∞ in Eq. (33), we have

β∞ =
(
3XTv∞ + β(0)⊙−3

)⊙− 1
3 . (34)

Next we want to show that β∞ satisfies the KKT condition of the optimization problem in Eq. (12).
Given access to the expression of Q(β), the KKT optimality conditions can be expressed as

Xβ∗ = y, ∇Q(β∗) = Xv,

for some v ∈ Rd. By the definition of Q(β), ∇Q(β∗) = XT v is equivalent to(
XT v

)
i
= (∇Q(β∗))i = q′(β∗

i) = −(β∗
i)

−3 + βi(0)
−3, ∀i.

On the other hand, from Eq. (34), it can be verified that

−(β∞
i)−3 + βi(0)

−3 = −3(XTv∞)i − βi(0)
−3 + βi(0)

−3 = −3(XTv∞)i, ∀i.

Thus it holds that ∇Q(β∞) = − 1
3 Xv∞. Combining this with the assumption that Xβ∞ = y, we

derive that β∞ satisfies the KKT condition. Moreover, it can be observed that Q(β) is convex, which
makes β∞ an optimum of the problem.

Proof of Theorem 4. Gradient Flow. We first show that the distance between β(t) and β̂∗ is bounded.
From the dynamic of β(t) shown in Eq. (31), we can derive that the gradient flow of ∥β(t)− β̂∗∥22
as below:

d

dt
∥β(t)− β̂∗∥22 =

(
dβ(t)

dt

)T

(β(t)− β̂∗) = −
∥∥∥X(β(t)− β̂∗)⊙ β(t)⊙2

∥∥∥2
2
≤ 0. (35)

22

Therefore, ∥β(t)− β̂∗∥22 is monotonically non-increasing and upper bounded by ∥β(0)− β̂∗∥22 for
all t. By Assumption 1, we have

∥β(t)∥∞ ≤ ∥β(t)− β̂∗∥∞ + ∥β̂∗∥∞
≤ ∥β(t)− β̂∗∥2 + ∥β̂∗∥∞
≤ ∥β̂∗∥∞ + ∥β̂∗ − β(0)∥2.

On the other hand, we also have

∥β(t)∥∞ ≥ ∥β̂∗∥∞ − ∥β(t)− β̂∗∥2 ≥ ∥β̂∗∥∞ − ∥β̂∗ − β(0)∥2 ≥ c (36)

for all t. To prove the convergence, we denote r(t) = Xβ(t)− y. The gradient flow of ∥r(t)∥22 is

d

dt
∥r(t)∥22 =

(
dβ(t)

dt

)T

XT r(t) = −(r(t)T XXT r(t))⊙ β(t)⊙4. (37)

Combining this with the fact that µmin > 0 and the lower boundedness of ∥β(t)∥∞, we then have

d

dt
∥r(t)∥22 ≤ −c4µmin∥r(t)∥22,

which proves the convergence of gradient flow. Thus β(t) converges to an optima β∞
f . By letting

t → ∞ and using the lower boundedness of ∥β(t)∥∞, we know that ∥β∞
f ∥∞ ≥ c.

Gradient Descent. The proof of gradient descent follows from a similar strategy. We first give an
explicit expression of the update on βk. In the following we denote rk = Xβk − y. Recall that the
gradient descent iterate on wi is

wk+1
i = wk

i − η
1

(1− wi)2
xir

k,

where xi denotes the i-th column of X. Then by the definition of β, we have

βk+1
i =

1

1− wk+1
i

=

(
1

1− wk
i

− 1

1− wk
i + ηβ2

i x
T
i r

k

)
1− wk

i

ηβ2
i x

T
i r

k

=
βk
i − βk+1

i

η(βk
i)

3xT
i r

k
,

Equivalently, the update of β can be expressed as

βk+1 = βk − ηXT rk ⊙ uk, uk :=
(
βk
)⊙3 ⊙ βk+1. (38)

We now show that with an appropriate choice of η, the distance between βk and β̂∗ is bounded. By
Eq. (38), we have

∥βk+1 − β̂∗∥22 − ∥βk − β̂∗∥22 = ∥βk+1 − βk∥22 − 2(βk − β̂∗)T (βk+1 − βk)

= η2
∥∥XT rk ⊙ uk

∥∥2
2
− 2η

∥∥∥rk ⊙ (uk)⊙
1
2

∥∥∥2
2

≤ µmaxη
2

n∑
i=1

(rki u
k
i)

2 − 2η

n∑
i=1

(rki)
2uk

i

=

n∑
i=1

(
µmaxη

2(uk
i)

2 − 2ηuk
i

)
(rki)

2.

(39)

Assume βk > 0 for all k so that uk
i > 0 for all i. Now we set η < 1

Cµmax
. With these conditions, it

holds for each i that
µmaxη

2(uk
i)

2 − 2ηuk
i ≤ 0.

Combining this with Eq. (39), we have ∥βk+1 − β̂∗∥22 ≤ ∥βk − β̂∗∥22. Similar to Eq. (36), by
Assumption 1, it can be shown that ∥βk∥∞ ≥ c > 0 for all k. We then turn to analyze the update of
∥rk∥2. Note that the square loss function is µmax-smooth w.r.t. β, thus we have

∥rk+1∥22 ≤ ∥rk∥22 + 2(rk)TX(βk+1 − βk) + µmax∥βk+1 − βk∥22.

23

Substituting the update of βk in Eq. (38) into the above equation, we have

∥rk+1∥22 ≤ ∥rk∥22 − 2η(rk)TX
(
XT rk ⊙ (βk+1)3 ⊙ βk

)
+ η2µmax

∥∥XT rk ⊙ (βk+1)3 ⊙ βk
∥∥2
2

= ∥rk∥22 − 2η

n∑
i=1

(lki)
2uk

i + η2µmax

n∑
i=1

(lki u
k
i)

2,

(40)
where we denote XT rk = lk for simplicity. For every fixed lki , the quadratic function f(uk

i) =
−2η(lki)

2uk
i +η2µmax(l

k
i u

k
i)

2 attains its minima at uk
i = 1

ηµmax
> C, from which we know that f(uk

i)

is monotonically decreasing for uk
i < C. Hence, by the fact that uk

i > c, it holds that

−2η(lki)
2uk

i + η2µmax(l
k
i u

k
i)

2 ≤ (−2ηc+ η2µmaxc
2)(lki)

2 ≤ 0, ∀1 ≤ i ≤ n. (41)

Note that
∑n

i=1(l
k
i)

2 = ∥XT rk∥22 ≤ µmax∥rk∥22. Leveraging this and Eq. (40) and Eq. (41), we have

∥rk+1∥22 ≤ (1− (−2ηc+ η2µmaxc
2))∥rk∥22.

Moreover, to ensure β1
i =

β0
i

1+η(β0
i)

3xT
i r0

≥ 0 for all i, we choose

η ≤ 1

∥β0∥3∞xT
i r

0
≤ 1

C3∥X ∥2∥r0∥2
≤ 1

C4µmax∥r0∥2
.

With this choice of η, we can prove by induction that the assumption βk > 0 holds for all k. Indeed,
k = 0 follows immediately from assumption. If βt > 0 holds, then from update of βt+1, we have

βt+1
i =

βt
i

1 + η(βt
i)

3xT
i r

t
≥ βt

i

1 + η(βt
i)

3∥xT
i ∥2∥rt∥2

≥ βt
i

1 + ηC3∥X ∥2∥r0∥2
≥ 0.

Thus the induction holds. Finally, we set η = min
{

2
C4µmax

, 1
C4µmax∥r0∥2

}
, then βk converges to an

optimal β∞
d . It follows from ∥βk∥∞ ≥ c that ∥β∞

d ∥∞ ≥ c. We finish the proof.

Next, we move to prove Proposition 2. For completeness, we formally introduce the definition of
GOTU in [36] as below.

Definition 1 (Generalization on the Unseen, [36]). Let ℓ : R× R → R be a loss function and S be a
given sample space. During training, part of S is not sampled, which we call the unseen domain U ,
while in testing, we sample from the full set S. Let f be the target function and f̃S\U the function
learned by a learning algorithm on S\U . The generalization on the unseen for an algorithm f̃ and
target function f is defined as

GOTU(f, f̃ ,U) = EX∼UU [ℓ(f̃S\U (X), f(X))],

where ∼UU refers to uniform sampling from U .

Proof of Proposition 2. We first give an explicit expression of the expected loss and gradient flow
dynamics. Denote

f̃β(x) =

d∑
i=1

βixi + b = f(w,x) =

d∑
i=1

1

1− wi
xi + b.

By definition, the half ℓ2 loss on any sample x is

ℓ(f̃β(x), f(x)) =
1

2
(f̃β(x)− f(x)) =

1

2

(
b− f̂(∅) +

d∑
i=1

(
βi − f̂({i})

)
xi

)2

Denote the distribution on the training set by Ud−1
−k . Note that {1, x1, · · · , xd} are orthogonal in the

Hilbert space S = {±1}d equipped with the inner product ⟨g, h⟩ = Ex∼U{±1}d [g(x)h(x)]. Denote

24

the distribution on the training samples by Ud−1
−k . By using Parseval’s Theorem, the expected loss on

the training set can be expressed as:

EUd−1
−k

[ℓ(f̃β(x), f(x))] =
1

2
EUd−1

−k

(b− f̂(∅) +
d∑

i=1

(
βi − f̂({i})

)
xi

)2

=
1

2

(
b− f̂(∅) + βk − f̂({k})

)2
+

1

2

d∑
i ̸=k

(βi − f̂({i}))2.

Then we can derive the gradient flow for βi and b as below

db(t)

dt
= −(b(t)− f̂(∅) + βk(t)− f̂({k})),

dβk(t)

dt
= −(b(t)− f̂(∅) + βk(t)− f̂({k}))βk(t)

4,

dβi(t)

dt
= −(βi(t)− f̂({i}))βi(t)

4, ∀i ̸= k.

For simplicity, denote B = f̂(∅) + f̂({k}). Using the above, we have

d

dt
(b(t) + βk(t)−B)2 = −2(b(t) + βk(t)−B)2(1 + βk(t)

4),

d

dt
(βi(t)− f̂({i}))2 = −2(βi(t)− f̂({i}))2βi(t)

4,

(42)

which shows that |b(t) + βk(t)−B|2 and |βi(t)− f̂({i})|2 is monotonically nonincreasing. Since
βi(0) and f̂({i}) are greater than 0, from the monotonicity we know that βi(t) > 0 for all t.
Therefore, the convergence of gradient flow follows from Eq. (42) that both |b(t) + βk(t)−B|2 and
|βi(t)− f̂({i})|2 decrease linearly.

Denote the limit of βi(t) and b(t) by β∞
i and b∞, respectively. We now turn to estimate the GOTU

error.

1. When B > 1, it holds that b(0) + βk(0) − B < 0, thus b(t) and βk(t) is monotonically
increasing. Using the fact that βk(t) > βk(0) = 1, we know that

d

dt
(βk(t)− b(t)) = −2(b(t) + βk(t)−B)2(βk(t)

4 − 1) < 0.

Combing this with β∞
k + b∞ = B, it can be verified that β∞

k ≥ B+1
2 . Then by definition

and Parseval’s theorem, the GOTU loss is

GOTU(f, f̃β , {xk = −1}) =
(
b∞ − f̂(∅)− β∞

k + f̂({k})
)2

+

d∑
i ̸=k

(β∞
i − f̂({i}))2

= 4(f̂({k})− β∞
k)2,

where we use the convergence of the flow in the second line. Leveraging the bound of β∞
k ,

we derive that

4(f̂({k})− β∞
k)2 ≤ 4

(
f̂({k})− B + 1

2

)2

. (43)

By the assumption that f̂(∅) < 2f̂({k}), we have B+1
2 < 3f̂({k})+1

2 < 2f̂({k}). Leverag-
ing this in Eq. (43), we know that

GOTU(f, f̃β , {xk = −1}) ≤ (f̂({k}) + 1)2. (44)

2. When B < 1, similar to the proof of Theorem 3, we have from the dynamic of βk(t) that

βk(t)
−3 − 1 = 3

∫ t

0

(b(s) + βk(t)−B)ds ≤ 3(1−B),

25

where we use the monotonicity of b(s) + βk(t) − B and the convergence of the flow.
Therefore, it holds that β∞

k ≥ (3(1−B) + 1)−
1
3 . We can bound the GOTU error as

4(f̂({k})− β∞
k)2 ≤ 4(f̂({k})− (3(1−B) + 1)−

1
3)2. (45)

By using the assumption that f̂(∅) > −2f̂({k}), Eq. (45) gives

GOTU(f, f̃β , {xk = −1}) ≤ 4

(
f̂({k})−

(
4 + 3f̂({k})

)− 1
3

)2

. (46)

Then the proposition follows from Eq. (44) and (46).

A.4 Discussion on Comparison Fairness

In this section, we provide a detailed discussion on the fairness of the comparison in the separation
results between the expressivity on DEQs and FNNs.

Concerns may arise regarding the fairness of comparing finite-depth FNNs to DEQs, which resemble
infinite-depth weight-tied FNNs. However, as stated in Section 4, our separation results are mainly
stated from the actual size of the network (Theorem 2 also considers the parameter magnitude).
Characterizing expressivity in term of the depth and width of the network is a common approach as
these dimensions can be manipulated in practice. From a theoretical perspective, one primary goal
for the comparison is to investigate how the DEQ architecture influences the model capacity with the
same number of parameters as FNN whose weights are not tied. This analysis provides intuitions
for understanding the model bias of DEQ. Note that one conceptual understanding here is no free
lunch. Our separation results provide concrete examples of functions that DEQs can approximate
more parameter-efficiently. Thus, we believe that it is reasonable to compare the expressivity from
the actual size as well as the number of parameters of the networks.

Another concern is whether our separation remains valid when considering the actual memory and
computational costs associated with training DEQs. If a DEQ needs exponentially more computational
cost than FNN, it could be justifiable to compare a DEQ to an FNN of exponentially larger depth.
Nevertheless, considering these issues is beyond the scope of this paper since they are also determined
by the forward and backward algorithms used. For completeness, we provide some comparisons
based on the computational cost of the forward propagation of DEQs as follows.

For the DEQ in Theorem 1, we claim that it needs one step to converge using fixed-point iteration.
This is achieved by initializing iteration point z0 according to Eq. (16) (While it may seem tricky
to initialize z0 as the fixed point, the logic here is that we first observe such convergence under this
initialization that we claim this z0 to be the fixed point). Then from the definition of W,U and b,
each entry t of z1 can be calculated as

z1t = σ

(
t−1∑
i=1

wtiz
0
i + ut1x1 − bt

)
= σ

(
−

t−1∑
i=1

2t−i+1z0i + 2tx1 − 1

)
= z0t ,

showing that it converges in one iteration. Additionally, if we set z0 = 0, which may be considered
less ad hoc, and denote the fixed point by z∗. Then using the lower-triangularity of W, we can
show by induction that zkt = z∗t for all 1 ≤ t ≤ k. Thus, the convergence is achieved in at most m
iterations, which still remains far from exponential.

For the DEQ in Theorem 2, we claim that it needs log2(ε
−1) + log2(b − a) iterations to achieve

an O(ε)-solution using bisection method. Given the DEQ, we can derive a revised DEQ, i.e., z =
Vσ(Wz+Ux+b) based on our Lemma 1 (One can inversely derive the revised DEQ through rank-
one decomposition, and we admit any version of it). Then for the function z −Vσ(Wz +Ux+ b),
we choose some [a0, b0] as the initial interval such that this function has opposite signs on a0 and
b0. Then after k iterations the solution z∗ will lie within an interval [ak, bk]. From the definition
of the algorithm, we know that bi+1 − ai+1 = 2−1(bi − ai), leading to bk − ak ≤ 2−k(b0 − a0).
To achieve an O(ε)-solution, i.e., 2−k(b0 − a0) ≤ ε, we can require k ≥ log2 ε

−1 + log2(b
0 − a0),

which proves our claim.

26

0 200 400 600 800 1000
iteration

10 5

10 4

10 3

10 2

10 1

100

101

te
st

 lo
ss

DEQ,W=1
FNN,L=4,W=3
FNN,L=3,W=5
FNN,L=2,W=10

(a) 21 linear regions.

0 200 400 600 800 1000
iteration

10 1

100

te
st

 lo
ss

DEQ,W=3
FNN,L=4,W=3
FNN,L=3,W=6
FNN,L=2,W=12

(b) 23 linear regions.

0 200 400 600 800 1000
iteration

10 1

100

te
st

 lo
ss

DEQ,W=15
FNN,L=4,W=10
FNN,L=3,W=15
FNN,L=2,W=20

(c) 215 linear regions.

Figure 3: Test loss of FNN and DEQ trained on sawtooth functions with 21, 23, 215 linear regions.

6 8 10 12 14 16 18 20
d

2

4

6

8

10

12

In
fin

ity
 n

or
m

 o
f W

DEQ,width=50
FNN,L=3,W=50

Figure 4: Results on steep target functions applying DEQ and FNN with comparable performance on
loss. We plot the infinity norm of the weights of DEQ and FNN with d = 6, 8, 10, 12, 14, 16, 18, 20.

For the memory cost, DEQ’s memory usage is comparable to that of constant-depth FNN. Since
the DEQs we consider in our theorems have fewer parameters, they are more advantageous than the
corresponding FNNs in memory consumption. Consequently, our comparisons are likely to remain
valid even when actual memory and computational costs are taken into account.

B Experiment Details

B.1 Supplementary Experiments on Separation Results

More experiments on piecewise functions. We first experiment on other sawtooth functions with
varying number of linear regions in the setting of Figure 3 to further validate our theoretical results.
Figure 3 presents the test loss for sawtooth functions with 21, 23 and 215 linear regions. For all
experiments, we execute our programs on Nvidia GTX 1660 and all the programs occupy less than
10M memory and run for less than 2 minutes. Consistent with our results in Section 6, we observe that
DEQ outperforms FNN with similar size of network on every sawtooth function in our experiment
and the test loss of DEQ converges closer to zero loss.

Additionally, we conduct an experiment to investigate the performance of DEQ and FNN on sawtooth
function with similar actual computational cost to further strengthen the fairness as discussed in
Appendix A.4. Following the standard setting, all models in our experiment are trained using ℓ2
loss with AdamW optimizer [44], with a learning rate of 5e-4, weight decay of 1e-4 and a cosine
annealing scheduler for 1000 iterations. Table 1 indicates that when training on sawtooth function
under similar computational cost, DEQ also performs better than FNN.

More experiments on steep target functions. To verify the statements of the magnitude of weights
in Theorem 2, we add an experiment to examine the infinity norm of the weights of DEQ and FNN
when training on steep target functions with varying d, as shown in Figure 4. In this experiment, we
train a 3-layer FNN and a 50-width DEQ model using the ℓ2 loss. Following standard settings, we
employ a mini-batch SGD optimizer with a learning rate of 0.005, weight decay of 1e-4 and a cosine
annealing scheduler for all models. The infinity norm of the weights of DEQ remains approximately

27

Model Parameter number layer hidden dimension Average FLOPs/Iter Loss
DEQ 251 - - 3.44e5 0.078± 0.004
FNN 2401 4 30 3.18e5 0.094± 0.006
FNN 2281 3 40 3.03e5 0.082± 0.004
FNN 2801 2 200 3.84e5 0.085± 0.007

Table 1: Training settings of experiment. We apply DEQ with width-10 and FNN trained on sawtooth
target function with 25 linear regions while keeping FLOPs per iteration similar.

0 200 400 600 800 1000
Iteration

0

1

2

3

4

5

Lo
ss

FNN Train
DEQ Train
FNN GOTU
DEQ GOTU

(a) OOD function f1.

0 200 400 600 800 1000
Iteration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Lo
ss

FNN Train
DEQ Train
FNN GOTU
DEQ GOTU

(b) OOD function f2.

Figure 5: Train and test loss of DEQ and FNN trained on OOD tasks f1 and f2.

constant when d increases, while the infinity norm of FNN rises with d, verifying the theoretical
claims that DEQ with polynomially bounded size and magnitude can efficiently approximate certain
steep functions in infinity norm while FNN cannot.

B.2 Experiments on the Bias on Learning Dynamics

More experiments on Out-of-Distribution tasks. We conduct more out-of-distribution (OOD)
experiments on the following 2 functions and unseen domains. The first function is a higher-
dimensional extension of Eq. (14) which is a form of mean function. The second function is the
majority function for 3 bits with a maximum degree of 3. The mathematical expressions of these
functions are presented below.

f1(x) = 1.25 ∗ x0 + 1.25 ∗ x1 + · · ·+ 1.25 ∗ x20, U = {x ∈ {±1}10 : x1 = −1},

f2(x) =
1

2
(x0 + x1 + x2 − x1x2x3), U = {x ∈ {±1}10 : x0x1 = −1}.

For all experiments, we generate all binary sequences in Uc = {±1}d\U for training. Figure 5(a)
shows that the GOTU error does not increase significantly compared to Figure 1 where the ambient
dimension is 10. In consistency with our results in Section 6, we can learn from Figure 5(a) that
when learning a linear boolean function on population loss on DEQ, the training loss converges to
zero and the generalization error on the unseen is bounded. As shown in Figure 5(b), when learning
the unlinear boolean function, DEQ can also achieve nearly zero train loss with smaller GOTU error
compared with FNN.

Experiment on salinecy map. We further provide a visualization experiment to investigate whether
the ‘dense’ bias property still holds for more general DEQs, particularly those with inner structures
resembling ResNet or Transformer architectures. Specifically, we conduct an experiment using
Grad-CAM [45] to generate the saliency map of Multiscale DEQ (MDEQ [3]), which is a variant of
ResNet-DEQ and compare it with that of ResNet-50 trained for image classification on ImageNet
[46]. The saliency map highlights the regions that are crucial for the model’s prediction, which can
be regarded as the features. It is shown in Figure 6 that MDEQ allocates attention to more features
such as the fences and trees in the background, indicating that MDEQ may generate dense features.
The intuitive experiment suggests that our bias results may be applicable to a wider array of DEQs
with general architectures.

28

(a) Raw image of horses. (b) MDEQ’s saliency map. (c) ResNet’s saliency map.

(d) Raw image of dogs. (e) MDEQ’s saliency map. (f) ResNet’s saliency map.

Figure 6: The saliency map of Multiscale DEQ (MDEQ) and ResNet.

0 50000 100000 150000 200000

0.6

0.4

0.2

0.0

0.2

0.4

0.6 DEQ construction
error

(a) Audio reconstruction using DEQ.

0 50000 100000 150000 200000

0.6

0.4

0.2

0.0

0.2

0.4

0.6 FNN construction
error

(b) Audio reconstruction using FNN.

Figure 7: The reconstruction results with DEQ and FNN and the error computed by subtracting the
original signal.

Experiment on audio representation. Inspired by the overall studies, we conduct an experiment
on a real task of audio representation to verify the potential advantage of DEQ in learning functions
with high-frequency component. We utilize the setting of experiments in [47], where the very-high-
frequency audio signals were represented using a conventional explicit network and an (implicit)2
network, which is a variant of DEQ employing a neural block with three layers and specific activation
functions such as sin(x) Although Huang et al. [47] show that (implicit)2 network outperforms
conventional explicit networks in audio representation [47], revealing the advantage of DEQ to an
extend, it is unclear whether the superiority of the (implicit)2 network is attributed solely to the
carefully-designed block. In contrast, we apply DEQ and FNN in their basic forms to represent the
audio signal in our experiment to further explore the potential advantages of DEQ in real scenarios.

For our audio representation task, we aim to train a function that can reconstruct an given audio signal
over a period of time. The spectrum of an audio signal contains many high-frequency components,
making it difficult to reconstruct the audio signal for a not-so-large FNN.

Following the setting in [47], we train the models to fit a 7-second music piece. We set the width of
DEQ to 20, the layer of FNN to 3 and the hidden dimension of FNN to 20. This setting enables the
model to exactly fit the audio signal based on our experiments.

29

In Figure 7, we show the reconstruction results with DEQ and FNN and the error computed by
subtracting the original signal. We observe that DEQ outperforms FNN with a noticeable error,
verifying the advantages of DEQ in representing high-frequency components.

30

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See Abstract and Introduction, where enumerates the contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Related Works and Section 5. We mention that we study a simplified DEQ
due to technical issues.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

31

Justification: For assumptions, see Section 5. For proofs, see Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 6. We provide details of our experiment.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

32

Answer: [Yes]
Justification: We will provide the open access to the code after the paper publication.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 6 and Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: This paper does not include experiments on large real datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.

33

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix B.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper mainly focus on the theory of neural networks.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to

34

https://neurips.cc/public/EthicsGuidelines

generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper focuses on theory.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: See Section 6 and Appendix B. Although experiments in Appendix B.2 utilize
another experiment, the code, data and models are created by ourselves.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

35

paperswithcode.com/datasets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

36

	Introduction
	Related Works
	Preliminaries of DEQ
	Separation on the Expressivity of DEQ
	General Separation over FNNs
	Separation on Certain Steep Functions
	Proof Sketch of B. in Theorem 2

	The Bias on Learning Dynamics of DEQ
	Experiments
	Conclusions and Future Directions
	Proofs and Discussions
	Proofs in Subsection 4.1
	Proofs in Subsection 4.2
	Inapproximability of FNNs
	Approximability of DEQs

	Proofs in Section 5
	Discussion on Comparison Fairness

	Experiment Details
	Supplementary Experiments on Separation Results
	Experiments on the Bias on Learning Dynamics

