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Abstract

We investigate a novel safe reinforcement learning problem with step-wise violation
constraints. Our problem differs from existing works in that we focus on stricter
step-wise violation constraints and do not assume the existence of safe actions,
making our formulation more suitable for safety-critical applications that need
to ensure safety in all decision steps but may not always possess safe actions,
e.g., robot control and autonomous driving. We propose an efficient algorithm

SUCBVI, which guarantees an O(v/ST) or gap-dependent O(S /Caap + SZAH?)

step-wise violation and an O(v H3SAT) regret. Lower bounds are provided to
validate the optimality in both violation and regret performance with respect to
the number of states S and the total number of steps 7. Moreover, we further
study an innovative safe reward-free exploration problem with step-wise violation
constraints. For this problem, we design the algorithm SRF-UCRL to find a near-
optimal safe policy, which achieves a nearly state-of-the-art sample complexity
6((% + %)(log(%) +5)), and guarantees an O(1/ST) violation during
exploration. Experimental results demonstrate the superiority of our algorithms in
safety performance and corroborate our theoretical results.

1 Introduction

In recent years, reinforcement learning (RL) (Sutton & Barto, 2018) has become a powerful framework
for decision-making and learning in unknown environments. Despite the ground-breaking success of
RL in games (Lanctot et al., 2019), recommendation systems (Afsar et al., 2022) and complex tasks
in simulation environments (Zhao et al., 2020), most existing RL algorithms focus on optimizing
the cumulative reward and do not take into consideration the risk aspect, e.g., the agent runs into
catastrophic situations during control. The lack of strong safety guarantees hinders the application
of RL to broader safety-critical scenarios such as autonomous driving, robotics and healthcare. For
example, for robotic control in complex environments, it is crucial to prevent the robot from getting
into dangerous situations, e.g., hitting walls or falling into water pools, at all times.

To handle the safety requirement, a common approach is to formulate safety as a long-term expected
violation constraint in each episode. This approach focuses on seeking a policy whose cumulative
expected violation in each episode is below a certain threshold. However, for applications where an
agent needs to avoid disastrous situations throughout the decision process, e.g., a robot needs to avoid
hitting obstacles at each step, merely reducing the long-term expected violation is not sufficient to
guarantee safety.
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Motivated by this fact, we investigate safe reinforcement learning with a more fine-grained constraint,
called step-wise violation constraint, which aggregates all nonnegative violations at each step (no
offset between positive and negative violations permitted). We name this problem Safe-RL-SW.
Our step-wise violation constraint differs from prior expected violation constraint (Wachi & Sui,
2020; Efroni et al., 2020b; Kalagarla et al., 2021) in two aspects: (i) Minimizing the step-wise
violation enables the agent to learn an optimal policy that avoids unsafe regions deterministically,
while reducing the expected violation only guarantees to find a policy with low expected violation,
instead of a per-step zero-violation policy. (ii) Reducing the aggregated nonnegative violation allows
us to have a risk control for each step, while a small cumulative expected violation can still result in a
large cost at some individual step and cause danger, if other steps with smaller costs offset the huge
cost.

Our problem faces two unique challenges. First, the step-wise violation requires us to guarantee a
small violation at each step, which demands very different algorithm design and analysis from that
for the expected violation (Wachi & Sui, 2020; Efroni et al., 2020b; Kalagarla et al., 2021). Second,
in safety-critical scenarios, the agent needs to identify not only unsafe states but also potentially
unsafe states, which are states that may appear to be safe but will ultimately lead to unsafe regions
with a non-zero probability. For example, a self-driving car needs to learn to slow down or change
directions early, foreseeing the potential danger in advance in order to ensure safe driving (Thomas
et al., 2021). Existing safe RL works focus mainly on the expected violation (Wachi & Sui, 2020;
Liu et al., 2021b; Wei et al., 2022), or requiring some other assumptions such as imposing the prior
knowledge of a safe action for each state (Amani et al., 2021). Moreover, many previous works also
require strong assumptions that exclude discrete tabular MDP (Amani et al., 2021; Wachi et al., 2021;
Wang et al., 2023) which is considered in our paper. Hence, techniques in previous works cannot be
applied to handle step-wise violations. More detailed comparisons are provided in Section 2.

To systematically handle these two challenges, we formulate safety as an unknown cost function for
each state without assuming safe actions, and consider minimizing the step-wise violation instead of
the expected violation. We propose a general algorithmic framework called Safe UCBVI (SUCBVI).
Specifically, in each episode, we first estimate the transition kernel and cost function in an optimistic
manner, tending to regard a state as safe at the beginning of learning. After that, we introduce novel
dynamic programming to identify potentially unsafe states and determine safe actions, based on
our estimated transition and costs. Finally, we employ the identified safe actions to conduct value
iteration. This mechanism can adaptively update dangerous regions, and help the agent plan for the
future, which keeps her away from all states that may lead to unsafe states. As our estimation becomes
more accurate over time, the safety violation becomes smaller and eventually converges to zero. Note
that without the assumption of safe actions, the agent knows nothing about the environment at the
beginning. Thus, it is impossible for her to achieve an absolute zero violation. Nevertheless, we show
that SUCBVI can achieve a sub-linear O(v/ST') cumulative violation or an O(S/Cgap, + SZAH?)
gap-dependent violation that is independent of 7". This violation implies that as the RL game proceeds,
the agent eventually learns how to avoid unsafe states. We also provide a matching lower bound to
demonstrate the optimality of SUCBVI in both violation and regret.

Furthermore, we apply our step-wise safe RL framework to the reward-free exploration (Jin et al.,
2020) setting. In this novel safe reward-free exploration, the agent needs to guarantee small step-wise
violations during exploration, and also output a near-optimal safe policy. Our algorithm achieves ¢
cumulative step-wise violation during exploration, and also identifies a c-optimal and safe policy. See
the definition of e-optimal and e-safe policy in Section 6.1. Another interesting application of our
framework is safe zero-sum Markov games, which we discuss in Appendix B.

The main contributions of our paper are as follows.

* We formulate the safe RL with step-wise violation constraint problem (Safe-RL-SW), which
models safety as a cost function for states and aims to minimize the cumulative step-wise violation.
Our formulation is particularly useful for safety-critical applications where avoiding disastrous
situations at each decision step is desirable, e.g., autonomous driving and robotics.

* We provide a general algorithmic framework SUCBVI, which is equipped with an innovative
dynamic programming to identify potentially unsafe states and distinguish safe actions. We estab-
lish an O(VH3SAT) regret and an O(v/ST) or O(S/Cygap + S? AH?) gap-dependent violation
guarantees, which exhibits the capability of SUCBVI in attaining high rewards while maintaining
small violation.



 We further establish an Q(v/ HST) regret and an 2(v/.ST') violation lower bounds for Safe-RL-SW.
The lower bounds demonstrate the optimality of algorithm SUCBVI in both regret minimization
and safety guarantee, with respect to factors S and 7.

* We consider step-wise safety constraints in the reward-free exploration setting, which is called the
Safe-RFE-SW problem. In this setting, we design an efficient algorithm SRF-UCRL, which ensures
€ step-wise violations during exploration and plans a e-optimal and e-safe policy for any reward

functions with probability at least 1 — §. We obtain an 5((% + #) (log(}) 4+ S)) sample

complexity and an o (v ST) violation guarantee for SRE-UCRL, which shows the efficiency of
SRF-UCRL in sampling and danger avoidance even without reward signals. To the best of our
knowledge, this work is the first to study the step-wise violation constraint in the RFE setting.

2 Related Work

Safe RL. Safety is an important topic in RL, which has been extensively studied. The constrained
Markov decision process (CMDP)-based approaches handle safety via cost functions, and aim to
minimize the expected episode-wise violation, e.g., (Yu et al., 2019; Wachi & Sui, 2020; Qiu et al.,
2020; Efroni et al., 2020b; Turchetta et al., 2020; Ding et al., 2020; Singh et al., 2020; Kalagarla et al.,
2021; Simdo et al., 2021; Ding et al., 2021), or achieve zero episode-wise violation, e.g., (Liu et al.,
2021b; Bura et al., 2021; Wei et al., 2022; Sootla et al., 2022). Apart from CMDP-based approaches,
there are also other works that tackle safe RL by control-based approaches (Berkenkamp et al., 2017;
Chow et al., 2018; Dalal et al., 2018; Wang et al., 2022), policy optimization (Uchibe & Doya, 2007;
Achiam et al., 2017; Tessler et al., 2018; Liu et al., 2020; Stooke et al., 2020) and safety shields
(Alshiekh et al., 2018).

In recent years, there are also some works studying step-wise violations with additional assumptions.
Now we provide detailed comparisons between existing papers with instantaneous constraints.
Turchetta et al. (2016); Wachi et al. (2018) propose a GP-based algorithm, which assumes that
the transition is deterministic and known, while modeling the reward and cost functions using
Gaussian Processes. By using this particular structure, they can infer the safety cost by estimating
the parameters. Wachi et al. (2021) assumes the reward and cost functions have a generalized linear
structure. Their algorithm explores in a safe space until a time ¢* when the agent explores sufficiently.
However, the upper bound of the exploring time ¢* is not given in their paper. In fact, under the
tabular MDP setting ¢t* can be infinite.

Amani et al. (2021) further considers the reward and cost functions to have a linear structure. It makes
two assumptions: (a) There exists a safe action in each state, which prevents the agent from going to
a potentially unsafe state. (b) The feature set is a star convex set, which helps them change actions
continuously. However, this makes their works infeasible in tabular MDPs: The feature set in tabular
MDPs consists of one-hot vectors and is not a star convex set. Hence, the work Amani et al. (2021)
cannot solve our problem. Shi et al. (2023) considers safe RL in linear mixture MDPs. Their work
also contains assumption (b), making it infeasible in tabular MDPs. Moreover, although they do not
have assumption (a), it assumes the transition set A(s, a) is known, which is not needed in our paper.
Thus our paper is more challenging since we need to estimate A(s, a) in our algorithm adaptively.

There are some other papers investigating the safety of RL problems. Alshiekh et al. (2018) represents
the safe state by the reactive system, and uses shielding to calculate and restrict the agent within a
safe trajectory completely. The main difference between their work and our work is that we need to
dynamically update the estimated safe state, while they require to know the mechanism and state to
calculate the shield. Dalal et al. (2018) considers restricting the safe action by projecting the action
into the closest safe actions. They achieve this goal by solving a convex optimization problem on
the continuous action set. However, in their paper, they do not consider the situation where a state
can have no safe actions. To be more specific, they do not consider the situation when the convex
optimization problem has no solutions. Le et al. (2019) considers the decision-making problem with
a pre-collected dataset. Turchetta et al. (2020) and Sootla et al. (2022) both consider cumulative cost
constraints rather than step-wise constraints. The former uses a teacher for intervention to keep the
agent away from the unsafe region, while the latter encourages safe exploration by augmenting a
safety state to measure safety during training.

Reward-free Exploration with Safety. Motivated by sparse reward signals in realistic applica-
tions, reward-free exploration (RFE) has been proposed in Jin et al. (2020), and further developed



in Kaufmann et al. (2021); Ménard et al. (2021). In RFE, the agent explores the environment without
reward signals. After enough exploration, the reward function is given, and the agent needs to plan
a near-optimal policy based on his knowledge collected in exploration. Safety is also important in
RFE: We need to not only guarantee that our outputted policy is safe, but also ensure small violations
during exploration.

Recently, Miryoosefi & Jin (2022); Huang et al. (2022) also study RFE with safety constraints.
Compared to our paper, Miryoosefi & Jin (2022) only considers the safety constraint after the
exploration phase. Huang et al. (2022) differs from our work in the following aspects: (i) They allow
different reward functions during exploration and after exploration, and the agent can directly know
the true costs during training. In our work, the cost function is the same during and after exploration,
but the agent can only observe the noisy costs of a state when she arrives at that state. (ii) They
require prior knowledge of safe baseline policies, while we do not need such an assumption. (iii) They
consider the zero-expected violation during exploration, while we focus on keeping small step-wise
violations.

3 The Safe MDP Model

Episodic MDP. In this paper, we consider the finite-horizon episodic Markov Decision Process
(MDP), represented by a tuple (S, A, H, P, r). Here S is the state space, A is the action space, and H
is the length of each episode. P = {P), : S x A = Ag}peqpy is the transition kernel, and Py, (s'|s, a)
gives the transition probability from (s,a) to s” at step h. 7 = {ry : S x A = [0,1]}pem is
the reward function, and (s, a) gives the reward of taking action «a in state s at step h. A policy
= {7 : § = A}peim) consists of H mappings from the state space to action space. In each
episode k, the agent first chooses a policy 7*. At each step h € [H], the agent observes a state
sy, takes an action a}’, and then goes to a next state s}, with probability P, (s, | s, ay). The

algorithm executes 7' = H K steps. Moreover, the state value function V;™ (s, a) and state-action
value function Q7 (s, a) for a policy 7 can be defined as

H

Vhﬂ(S) =E, Z Th’(sh’aﬂ—h’(sh’)) Sy = 3‘|7
h'=h
H
QZ(Saa) = Eﬂ— Z T}L/(Sh/,ﬂ'h/(sh/)) Sp = S§,ap = a] .
h'=h

Safety Constraint. To model unsafe regions in the environment, similar to Wachi & Sui (2020); Yu
et al. (2022), we define a safety cost function ¢ : S — [0, 1]. Let 7 € [0, 1] denote the safety threshold.
A state is called safe if ¢(s) < 7, and called unsafe if c¢(s) > 7. Similar to Efroni et al. (2020b);
Amani et al. (2021), when the agent arrives in a state s, she will receive a cost signal z(s) = ¢(s) + ¢,
where ( is an independent, zero-mean and 1-sub-Gaussian noise. Denote (z) = max{xz,0}. The
violation in state s is defined as (¢(s) — 7)., and the cumulative step-wise violation till episode K is

C(K) = (c(sy) = 7)+- (1

Eq. (1) represents the accumulated step-wise violation during training. When the agent arrives in state
sk at step h in episode k, she will suffer violation (c¢(s) — 7). This violation setting is significantly
different from the previous CMDP setting (Qiu et al., 2020; Ding et al., 2020; Efroni et al., 2020b;
Ding et al., 2021; Wachi & Sui, 2020; Liu et al., 2021a; Kalagarla et al., 2021). They study the
episode-wise expected violation C'(K) = ZkK:l (IE [Zthl c(sk, aﬁ)} - u) . There are also some
papers (Efroni et al., 2020a; Simao et al., 2021) considering a stricter constraint named episode-
wise clipped expected violation: C" (K) = Zle (E [Zthl c(sy, GZ)} - u) . Compared to the
' +

episode-wise violation (including expected violation and clipped expected violation), our step-wise
violation has two main differences: (i) First, the episode-wise violation constraints allow the agent
to get into unsafe states occasionally. Instead, the step-wise violation constraint forces the agent to
stay in safe regions at all times. (ii) Second, in the episode-wise constraints, the average violation



Elc(sp,an)] — 11/ H at step h is allowed to be positive or negative, and they can cancel out in one

episode to achieve E[Zle (s, af)] < p. Instead, we consider a nonnegative function (c(s) — )4
at each step in our step-wise violation, which imposes a stricter constraint.

Define U := {s € S | ¢(s) > 7} as the set of all unsafe states. Let . = {s1,a1,--- , sy, ay} denote
a trajectory. Since a feasible policy needs to satisfy the constraint at each step, we define the set
of feasible policies as Il = {w | Pr{ 3 h € [H],s;, € U | ¢+ ~ 7} = 0}. The feasible policy set II
consists of all policies under which one never reaches any unsafe state in an episode.

Learning Objective. In this paper, we consider the regret minimization objective. Specifically, define
7 = argmax, . Vi, V* = V7 and Q* = Q™ . The regret till K episodes is then defined as

K

R(K) =Y (Vi (s1) = V™ (s1)),

t=1

where 7¥ is the policy taken in episode k. Our objective is to minimize R(K) to achieve a good
performance, and minimize the violation C'(K) to guarantee the safety at the same time.

4 Safe RL with Step-wise Violation Constraints

4.1 Assumptions and Problem Features

Before introducing our algorithms, we first state the important assumptions and problem features for
Safe-RL-SW.

Suppose 7 is a feasible policy. Then, if we arrive at sy7_1 at step H — 1, 7 needs to select an action
that guarantees sy ¢ U. Define the transition set Ap(s,a) = {s' | Pp(s' | s,a) > 0} for any
Y(s,a,h) € S x A x [H], which represents the set of possible next states after taking action a in
state s at step h. Then, at the former step H — 1, the state s is potentially unsafe if it satisfies that
Apg_1(s,a) NU # P for all a € A. (i.e., no matter taking what action, there is a positive probability
of transitioning to an unsafe next state). Therefore, we can recursively define the set of potentially
unsafe states at step h as

Uy =Up1U{s | Yae A Ap(s,a) NUpy1 # 0}, ()

where Uy = U. Intuitively, if we are in a state s, € U}, at step h, no action can be taken to completely
avoid reaching potentially unsafe states sp41 € Up41 at step h + 1. Thus, in order to completely
prevent from getting into unsafe states I/ throughout all steps, one needs to avoid potentially unsafe
states in U, at step h. From the above argument, we have that s; ¢ U; is equivalent to the existence
of feasible policies. The detailed proof is provided in Appendix D. Thus, we make the following
necessary assumption.

Assumption 4.1 (Existence of feasible policies). The initial state s satisfies s1 ¢ U;.

For any s € S and h € [H — 1], we define the set of safe actions for state s at step h as
A‘Z“fe(s) ={a € A| Ap(s,a) NUpy1 = 0}, 3)

and let A5/7¢(s) = A. A;*/¢(s) stands for the set of all actions at step i which will not lead to
potentially unsafe states in Uy, 1. Here, {Up }e() and {4z (5)} ne(m) are defined by dynamic
programming: If we know sets of all possible next state { Ay (s, @) } c[] and unsafe state sett = Up,

we can calculate all potentially unsafe state sets {Up, } ,e[z] and safe action sets {Aflaf “(8) Y nerm)»
and choose feasible policies to completely avoid unsafe states.

4.2 Algorithm SUCBVI

Now we present our main algorithm Safe UCBVI (SUCBVI), which is based on previous classic RL
algorithm UCBVI (Azar et al., 2017), and equipped with a novel dynamic programming to identify
potentially unsafe states and safe actions. The pseudo-code is shown in Algorithm 1. First, we
provide some intuitions about how SUCBVI works. At each episode, we first estimate all the unsafe
states based on the historical data. Then, we perform a dynamic programming procedure introduced



Algorithm 1 SUCBVI

1: Initialize: A} (s,a) =0, N} (s,a) = Nl(s,a,s’) =0foralls € S,a € A, s’ € Sand h € [H].

2: fork=1,2,--- , K do

3:  Update the optimistic estimates of cost.

4:  Update the empirical cost ¢(s) and calculate &(s) = &(s) — B(N¥(s),d) forall s € S. >

5. Definetdf; = {s|c(s) > tyandUf =U},  U{s |Va € A, Af(s,a) NUF,, # 0} forall
h € [H] recursively. Calculate {AZ’Safe(s)}he[H] by Eq. (3) with {U} } e m-
> Perform value iteration with previous estimates.

6: forh=HH—-1,---,1do

7 for s € S do

8: fora € Ado . )

9: Compute I@’z(s’ | s,a) = 7N;\’,’(,;(:a"))

10: Qli(s,a) = min{H, r4(s,a) + Y, Ph(' | 5,a) Vo (s') + a(NE (s,0)}-
11: end for

12: if s ¢ U} then

13: Vik(s) = MAX o yk.safe () QF(s,a), 7 (s) = arg MAX, ¢ ykosase (g QF(s,a).
14: else

15: ViE(s) = maxaea QF(s,a), 7F(s) = arg max,e 4 Q5 (s, a).

16: end if

17: end for

18:  end for

19: forh=1,2,---,Hdo
20 Take action af = 7 (s) and observe state s ;.

> Update the estimates of A(s, a).

21: AFt(sk ak) = AF(sk,ak) U {sk,  }. Increase N; P! (sF, al), Ni 1 (sk, al, sk ;) by L.
22:  end for
23: end for

in Section 4.1 and calculate the safe action set Azaf “(s) for each state s. Then, we perform value
iteration in the estimated safe action set. As the estimation becomes more accurate, SUCBVI will
eventually avoid potentially unsafe states and achieve both sublinear regrets and violations.

Now we begin to introduce our algorithm. In the beginning, we initialize Ay, (s,a) = @ for all
(h,s,a) € [H] x S x A. It implies that the agent considers all actions to be safe at first, because
no action will lead to unsafe states from the agent’s perspective. In each episode, we first estimate
the empirical cost ¢(s) based on historical cost feedback z(s), and regard state s as safe if &(s) =
é(s) — B > 7 for some bonus term /3, which aims to guarantee ¢(s) < c(s) (Line 4). Then, we
calculate the estimated unsafe state set U I";, which is a subset of the true unsafe state set i/ = Uy
with a high probability by optimism. With ¢/% and A’g (s,a), we can estimate potentially unsafe state
sets UF for all h € [H] by Eq. (2) recursively.

Then, we perform value iteration to compute the optimistically estimated optimal policy. Specifically,
for any hypothesized safe state s ¢ U}, we update the greedy policy on the estimated safe actions,
ie., T (s) = MAX,, ¢ 4 .cafe () Q¥ (s,a) (Line 13). On the other hand, for any hypothesized unsafe
state s, € Up, since there is no action that can completely avoid unsafe states, we ignore safety costs
and simply update the policy by 7¥(s) = max,e 4 Q(s,a) (Line 15). After that, we calculate the
estimated optimal policy 7" for episode k, and the agent follows 7% and collects a trajectory. Then,
we update A} (s, a) by incorporating the observed state s 41 into the set Af (¥, af). Under this

updating rule, it holds that A¥ (s, a) C Ap(s,a) forall (s,a) € S x A.
The performance of Algorithm 1 is summarized below in Theorem 4.2.

Theorem 4.2. Let a(n,8) = TH RESAHKL) g 5(n, §) = |/ 2 log(SK/8). With probability
at least 1 — 6, the regret and step-wise violation of Algorithm I are bounded by

R(K)=ONWH?SAT), C(K)=OST + S*AH?).



Moreover; if Cgap = mingey(c(s) — 7)4 > 0, we have C(K) = (A’j(S'/Cgap + S2AH?).

Theorem 4.2 shows that SUCB VI achieves both sublinear regret and violation. Moreover, when all the
unsafe states have a large cost compared to the safety threshold 7, i.e., Cgap = mingeys(c(s)—7)4+ > 0
is a constant, we can distinguish the unsafe states easily and get a constant violation. In particular,
when 7 = 1, Safe-RL-SW degenerates to the unconstrained MDP and Theorem 4.2 maintains the

same regret 1) (VH?SAT) as UCBVI-CH (Azar et al., 2017), while CMDP algorithms (Efroni et al.,
2020b; Liu et al., 2021a) suffer a larger O(v H3S3 AT) regret.

We provide the analysis idea of Theorem 4.2 here. First, by the updating rule of A’,ﬁ (s,a), we show
that U} and A}**/*(s) have the following crucial properties: Uff C Uy, A3*¢(s) C A7 (s).
Based on this property, we can prove that Q} (s, a) < QF(s,a) and V;*(s) < Vi¥(s) for all (s, a),
and then apply the regret decomposition techniques to derive the regret bound.

Recall that 7 is a feasible policy with respect to the estimated unsafe state set /¥, and transition
set {Af(s,a)}ne(m). If the agent takes policy 7* and the transition follows Af (s, a), i.e., sf ; €
Aﬁ(s, a), the agent never arrive any estimated unsafe state s € Z/{I’fl in this episode. Hence the
agent will suffer at most an O(v/ST) step-wise violation or an O(S/Cgap, + S? AH?) gap-dependent
bounded violation. Yet, the situation s,1 € AF(s,a) does not always hold for all h € [H]. In the
case when sf_, ¢ Af(s,a), we add the newly observed state s}, into AFTY(sk af) (Line 21).

We can show that this case appears at most S?AH times, and thus incurs O(S? AH?) additional
violation. Combining the above two cases, the total violation can be upper bounded.

5 Lower Bounds for Safe-RL-SW

In this section, we provide a matching lower bound for Safe-RL-SW in Section 4. The lower bound
shows that if an algorithm always achieves a sublinear regret in Safe-RL-SW, it must incur an

Q(+/ST) violation. This result matches our upper bound in Theorem 4.2, showing that SUCBVI
achieves the optimal violation performance.

Theorem 5.1. If an algorithm has an expected regret E.[R(K)] < % for all MDP instances, there
exists an MDP instance in which the algorithm suffers expected violation E.[C(K)] = Q(v/ST).

Now we validate the optimality in terms of regret. Note that if we do not consider safety constraints,
the lower bound for classic RL (Osband & Van Roy, 2016) can be applied to our setting. Thus, we

also have an Q(\/T) regret lower bound. To understand the essential hardness brought by safety
constraints, we further investigate whether safety constraints will lead to an Q(\/T) regret, given that
we can achieve an o(\/T) regret on some good instances without the safety constraints.

Theorem 5.2. For any o € (0, 1), there exists a parameter n. and n MDPs M, . .., M, satisfying
that:

1. If we do not consider any constraint, there is an algorithm that achieves an 6(T (1-a)/ 2) regret
compared to the unconstrained optimal policy on all MDPs.

2. If we consider the safety constraint, any algorithm with a O(T*~%) expected violation will achieve
an Q(v HST) regret compared to the constrained optimal policy on one of MDPs.

Intuitively, Theorem 5.2 shows that if one achieves sublinear violation, she must suffer at least an

Q(v/T) regret even if she can achieve an o(+/T) regret without considering constraints. This theorem
demonstrates the hardness particularly brought by the step-wise constraint, and corroborates the
optimality of our results. Combining with Theorem 5.1, the two lower bounds show an essential
trade-off between the violation and performance.



6 Safe Reward-Free Exploration with Step-wise Violation Constraints

6.1 Formulation of Safe-RFE-SW

In this section, we consider Safe RL in the reward-free exploration (RFE) setting (Jin et al., 2020;
Kaufmann et al., 2021; Ménard et al., 2021) called Safe-RFE-SW, to show the generality of our
proposed framework. In the RFE setting, the agent does not have access to reward signals and only
receives random safety cost feedback z(s) = ¢(s) + . To impose safety requirements, Safe-RFE-SW
requests the agent to keep small safety violations during exploration, and outputs a near-optimal safe
policy after receiving the reward function.

Definition 6.1 ((, §)-optimal safe algorithm for Safe-RFE-SW). An algorithm is (&, §)-optimal safe
for Safe-RFE-SW if it outputs the triple (P, A(s, a),Uy) such that for any reward function r, with
probability at least 1 — 6,

H

Ex | D (c(sn) = 7)+

h=1

Vl*(slﬂ')*vlﬁ*(sl;?") <e <e Vmell )

where 7* is the optimal feasible policy with respect to (]P’7 A(s, a),Z/IH, r), IT is the set of feasible
policies with respect to (A(s,a),Ur). and V(s;r) is the value function under reward function 7.
We say that a policy is e-optimal if it satisfies the left inequality in Eq. (4) and e-safe if it satisfies
the right inequality in Eq. (4). We measure the performance by the number of episodes used before
the algorithm terminates, i.e., sample complexlty Moreover, the cumulative step-wise violation till

episode K is defined as C(K) = Zk 1 Eh 1 (c(s¥) = 7)4. In Safe-RFE-SW, our goal is to design
an (g, d)-optimal safe algorithm, and minimize both sample complexity and violation.

6.2 Algorithm SRF-UCRL

The Safe-RFE-SW problem requires us to consider extra safety constraints for both the exploration
phase and final output policy, which needs new algorithm design and techniques compared to
previous RFE algorithms. Also, the techniques for Safe-RL-SW in Section 4.2 are not sufficient for
guaranteeing the safety of output policy, because SUCBVI only guarantees a step-wise violation
during exploration.

We design an efficient algorithm Safe RF-UCRL (SRF-UCRL), which builds upon previous RFE
algorithm RF-UCRL (Kaufmann et al., 2021). SRF-UCRL distinguishes potentially unsafe states and
safe actions by backward iteration, and establishes a new uncertainty function to guarantee the safety
of output policy. Algorithm 2 illustrates the procedure of SRF-UCRL. Specifically, in each episode £,
we first execute a policy Wﬁ computed from previous episodes, and then update the estimated next
state set {AF (s, a)} neqr] and unsafe state set U ¥ by optimistic estimation. Then, we use Eq. (2)
to calculate the unsafe state set U}, for all steps h € [H|. After that, we update the uncertainty

function Wk defined in Eq. (5) below and compute the policy 7#+1

to encourage more exploration in the next episode.

that maximizes the uncertainty

Now we provide the definition of the uncertainty function, which measures the estimation error

between the empirical MDP and true MDP. For any safe state-action pair s ¢ Uy, a € Alfb’saf “(s),
we define

WZ(s,a) _min{H M Nh (s,a) +ZIP>h (s | s,a) max Wﬁ+1(5,7b)}‘ (5)

beal sl (sh)

2y(Nf(s,a),6) | SHy(Nf(s,a),5)
Nfi(s,a) N (s,a)

that is formally defined in Theorem 6.2. For other state-action pairs (s, a), we relax the restriction

of b € Aifllfe(s’) to b € A in the max function. Our algorithm stops when Wf(sl, 75 (s1))

shrinks to within /2. Compared to previous RFE works (Kaufmann et al. (2021); Ménard et al.
(2021)), our uncertainty function has two distinctions. First, for any safe state-action pair (s, a) €

(S \ Uy, Al**7¢(s)), Eq. (5) considers only safe actions Alflﬁf “(s), which guarantees that the agent

focuses on safe policies. Second, Eq. (5) incorporates another term (SH~(Nf(s,a),0)/NFK(s,a))
to control the expected violation for feasible policies. Now we present our result for Safe-RFE-SW.

where M (N} (s,a),0) = 2H

+ , and y(n, §) is a logarithmic term



Algorithm 2 SRF-UCRL

I: Initialize: k = 1, Wy(s,a) = H, 7} (s) =ay foralls € S,a € Aand h € [H].

2: while W} ' (s1,75(s1)) < £/2 do
3: forh=1,---,Hdo

4: Observe state sy. Take action af = 7 (s¥) and observe SZ_H.
> Update the optimistic estimate of cost.
5: Calculate empirical cost &(s) and &(s) = é&(s) — B(N*(s),d) forall s € S.

> Update the estimates of A, (s, a) and Up,.
Update Af (sf,af) = AF 7' (sf, af) U {sk, |} and {U} } ) by Eq. (2).
Calculate Aﬁ"mfe(s) for all s € S by Eq. (3).
end for )
Update N} (s,a,s’), Nf(s,a) and P} forall s € S,a € A,s' € Sand h € [H].
10:  Compute w" according to Eq. (5).
> Calculate the greedy policy.
11:  forh e [H|,s € Sdo

weI D

12: if A}*%/%(s) # () then

13: TRt (s) = arg Max, ¢ gk safe o) Wfb(s, a).
14: else '

15: it (s) = argmax,e 4 WZ (s,a).

16: end if

17:  end for

18: Setk=Fk+1.
19: end while A
20: return the tuple (PF =1, AN~ (s,a),Ul).

Theorem 6.2. Let y(n,d) = 2(log(2SAH/6) + (S — 1) log(e(1 +n/(S — 1))), Algorithm 2 is a
(¢,6)-PAC algorithm with sample complexity at most*

om0 (S5 1) (e () ).

The step-wise violation of Algorithm 2 during exploration is C(K) = (5(5’2AH2 +VST).

Compared to previous work (Kaufmann et al., 2021) with an O((H*SA/e2)(log(1/6) + S)) sample

complexity, our result has an additional term O((S2AH?2 /¢)(log(1/8) + S)). This term is due to
the additional safety requirement for the final output policy, which was not considered in previous
RFE algorithms (Kaufmann et al., 2021; Ménard et al., 2021). When ¢ and § are sufficiently small,

the leading term is O((H*SA/£%)log(1/6)), which implies that our algorithm satisfies the safety
constraint without suffering additional regret.’

6.3 Analysis for Algorithm SRF-UCRL

For the analysis of step-wise violation (Eq. (1)), similar to algorithm SUCBVI, algorithm SRF-UCRL

estimates the next state set Ay, (s, a) and potentially unsafe state set 4y, which guarantees a O(v/ST)
step-wise violation. Now we give a proof sketch for the e-safe property of output policy (Eq. (4)).

First, if 7 is a feasible policy for (P¥, A¥ (s, a), {Uf }nerr) and spy1 € AF (sp, ap) forall h € [H],
the agent who follows policy 7 will only visit the estimated safe states. Since each estimated safe state

Here O(-) ignores all log S, log A, log H,log(1/¢) and log(log(1/8)) terms.

*Ménard et al. (2021) improve the result by a factor H and replace log(1/8) + S by log(1/5) via the
Bernstein-type inequality. While they do not consider the safety constraints, we believe that similar improvement
can also be applied to our framework, without significant changes in our analysis. However, since our paper
mainly focuses on tackling the safety constraint for reward-free exploration, we use the Hoeffding-type inequality
to keep the succinctness of our statements.
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Figure 1: Experimental results for Safe-RL-SW and Safe-RFE-SW. The left two figures show
the average rewards and step-wise violations of algorithms SUCBVI, UCBVI (Azar et al., 2017),
OptCMDP-bonus (Efroni et al., 2020b), Triple-Q (Wei et al., 2022) and Optpess (Liu et al., 2021a).
The right two figures show the reward and expected violation of the policies outputted by algorithms
SRF-UCRL and RF-UCRL (Kaufmann et al., 2021).

only suffers a O(1/+/Ni(sp, mr(sp))) violation, the violation led by this situation is bounded by
W’f(s, 71(s1)). Next, we bound the probability that s,11 ¢ AK (s, ap,) for some step h € [H]. For
any state-action pair (s, a), if there is a probability P(s' | s,a) > O(log(S/8) /N[ (s,a)) that the
agent transitions to next state s’ from (s, a) at step h, the state s’ is put into AKX (s, a) with probability
at least 1 — §/.S. Then, we can expect that all such states are put into our estimated next state set
AK(s,a). Thus, the probability that s;, 11 & AKX sy, ay) is no larger than O(S log(S/6) /N (s, a))

by a union bound over all possible next states s’. Based on this argument, WZ (Sn,ap) is an upper
bound for the total probability that s;,.1 ¢ AK (s, ap) for some step h. This will lead to additional

Wf (s1,m1(s1)) expected violation. Hence the expected violation of output policy is upper bounded
by QWf(sl, 75 (s1)) < e. The complete proof is provided in Appendix A.

7 Experiments

In this section, we provide experiments for Safe-RL-SW and Safe-RFE-SW to validate our theoret-
ical results. For Safe-RL-SW, we compare our algorithm SUCBVI with a classical RL algorithm
UCBVI (Azar et al., 2017) and three state-of-the-art CMDP algorithms OptCMDP-bonus (Efroni
et al., 2020b) , Optpess (Liu et al., 2021a) and Triple-Q (Wei et al., 2022). For Safe-RFE-SW, we
report the average reward in each episode and cumulative step-wise violation. For Safe-RFE-SW,
we compare our algorithm SRF-UCRL with a state-of-the-art RFE algorithm RF-UCRL (Kaufmann
et al., 2021). We do not plot the regret because unconstrained MDP or CMDP algorithms do not
guarantee step-wise violation. Applying them to the step-wise constrained setting can lead to negative
or large regret and large violations, making the results meaningless. Detailed experiment setup is in
Appendix E.

As shown in Figure 1, the rewards of SUCBVI and SRF-UCRL converge to the optimal rewards
under safety constraints (denoted by "safe optimal reward"). In contrast, the rewards of UCBVI
and UCRL converge to the optimal rewards without safety constraints (denoted by "unconstrained
optimal reward"), and those of CMDP algorithms converge to a policy with low expected violation
(denoted by "constrained optimal reward"). For Safe-RFE-SW, the expected violation of output policy
of SRF-UCRL converges to zero while that of RF-UCRL does not. This corroborates the ability of
SRF-UCRL in finding policies that simultaneously achieve safety and high rewards.

8 Conclusion

In this paper, we investigate a novel safe reinforcement learning problem with step-wise safety
constraints. We first provide an algorithmic framework SUCBVI to achieve both an O(v H3SAT)

regret and an O(v/ST) step-wise or an O(S/Cyap + S>AH?) gap-dependent bounded violation that
is independent of T'. Then, we provide two lower bounds to validate the optimality of SUCBVI in
both violation and regret in terms of S and 7. Further, we extend our framework to the safe RFE
with a step-wise violation and provide an algorithm SRF-UCRL that identifies a near-optimal safe

policy given any reward function r and guarantees an o (v/ST) violation during exploration.

10



Acknowledgements

This work is supported by the Technology and Innovation Major Project of the Ministry of Science
and Technology of China under Grant 2020AAA0108400 and 2020AAA0108403 and the Tsinghua
Precision Medicine Foundation 10001020109.

References

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
International conference on machine learning, pp. 22-31. PMLR, 2017.

M Mehdi Afsar, Trafford Crump, and Behrouz Far. Reinforcement learning based recommender
systems: A survey. ACM Computing Surveys, 55(7):1-38, 2022.

Mohammed Alshiekh, Roderick Bloem, Riidiger Ehlers, Bettina Konighofer, Scott Niekum, and
Ufuk Topcu. Safe reinforcement learning via shielding. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2018.

Sanae Amani, Christos Thrampoulidis, and Lin Yang. Safe reinforcement learning with linear
function approximation. In International Conference on Machine Learning, pp. 243-253. PMLR,
2021.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for rein-
forcement learning. In International Conference on Machine Learning, pp. 263-272. PMLR,
2017.

Felix Berkenkamp, Matteo Turchetta, Angela Schoellig, and Andreas Krause. Safe model-based
reinforcement learning with stability guarantees. Advances in neural information processing
systems, 30, 2017.

Archana Bura, Aria HasanzadeZonuzy, Dileep Kalathil, Srinivas Shakkottai, and Jean-Francois
Chamberland. Safe exploration for constrained reinforcement learning with provable guarantees.
arXiv preprint arXiv:2112.00885, 2021.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. Advances in neural information processing systems,
31, 2018.

Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester, Cosmin Paduraru, and Yuval
Tassa. Safe exploration in continuous action spaces. arXiv preprint arXiv:1801.08757,2018.

Dongsheng Ding, Kaiqing Zhang, Tamer Basar, and Mihailo Jovanovic. Natural policy gradient
primal-dual method for constrained markov decision processes. Advances in Neural Information
Processing Systems, 33:8378-8390, 2020.

Dongsheng Ding, Xiaohan Wei, Zhuoran Yang, Zhaoran Wang, and Mihailo Jovanovic. Provably
efficient safe exploration via primal-dual policy optimization. In International Conference on
Artificial Intelligence and Statistics, pp. 3304-3312. PMLR, 2021.

Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained mdps.
arXiv preprint arXiv:2003.02189, 2020a.

Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained mdps.
arXiv preprint arXiv:2003.02189, 2020b.

Ruiquan Huang, Jing Yang, and Yingbin Liang. Safe exploration incurs nearly no additional sample
complexity for reward-free rl. arXiv preprint arXiv:2206.14057, 2022.

Chi Jin, Akshay Krishnamurthy, Max Simchowitz, and Tiancheng Yu. Reward-free exploration for
reinforcement learning. In International Conference on Machine Learning, pp. 4870—4879. PMLR,
2020.

11



Krishna C Kalagarla, Rahul Jain, and Pierluigi Nuzzo. A sample-efficient algorithm for episodic finite-
horizon mdp with constraints. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 8030-8037, 2021.

Emilie Kaufmann, Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Edouard Leurent,
and Michal Valko. Adaptive reward-free exploration. In Algorithmic Learning Theory, pp. 865-891.
PMLR, 2021.

Marc Lanctot, Edward Lockhart, Jean-Baptiste Lespiau, Vinicius Zambaldi, Satyaki Upadhyay, Julien
Pérolat, Sriram Srinivasan, Finbarr Timbers, Karl Tuyls, Shayegan Omidshafiei, et al. Openspiel:
A framework for reinforcement learning in games. arXiv preprint arXiv:1908.09453, 2019.

Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In Interna-
tional Conference on Machine Learning, pp. 3703-3712. PMLR, 2019.

Tao Liu, Ruida Zhou, Dileep Kalathil, Panganamala Kumar, and Chao Tian. Learning policies
with zero or bounded constraint violation for constrained mdps. Advances in Neural Information
Processing Systems, 34:17183-17193, 2021a.

Tao Liu, Ruida Zhou, Dileep Kalathil, Panganamala Kumar, and Chao Tian. Learning policies
with zero or bounded constraint violation for constrained mdps. Advances in Neural Information
Processing Systems, 34:17183-17193, 2021b.

Yongshuai Liu, Jiaxin Ding, and Xin Liu. Ipo: Interior-point policy optimization under constraints.
In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp. 4940-4947, 2020.

Pierre Ménard, Omar Darwiche Domingues, Anders Jonsson, Emilie Kaufmann, Edouard Leurent,
and Michal Valko. Fast active learning for pure exploration in reinforcement learning. In Interna-
tional Conference on Machine Learning, pp. 7599-7608. PMLR, 2021.

Sobhan Miryoosefi and Chi Jin. A simple reward-free approach to constrained reinforcement learning.
In International Conference on Machine Learning, pp. 15666—15698. PMLR, 2022.

Ian Osband and Benjamin Van Roy. On lower bounds for regret in reinforcement learning. arXiv
preprint arXiv:1608.02732, 2016.

Shuang Qiu, Xiaohan Wei, Zhuoran Yang, Jieping Ye, and Zhaoran Wang. Upper confidence primal-
dual reinforcement learning for cmdp with adversarial loss. Advances in Neural Information
Processing Systems, 33:15277-15287, 2020.

Ming Shi, Yingbin Liang, and Ness Shroff. A near-optimal algorithm for safe reinforcement learning
under instantaneous hard constraints. arXiv preprint arXiv:2302.04375, 2023.

Thiago D Simao, Nils Jansen, and Matthijs TJ Spaan. Alwayssafe: Reinforcement learning without
safety constraint violations during training. 2021.

Rahul Singh, Abhishek Gupta, and Ness B Shroff. Learning in markov decision processes under
constraints. arXiv preprint arXiv:2002.12435, 2020.

Aivar Sootla, Alexander Cowen-Rivers, Jun Wang, and Haitham Bou Ammar. Enhancing safe
exploration using safety state augmentation. Advances in Neural Information Processing Systems,
35:34464-34477, 2022.

Adam Stooke, Joshua Achiam, and Pieter Abbeel. Responsive safety in reinforcement learning by pid
lagrangian methods. In International Conference on Machine Learning, pp. 9133-9143. PMLR,
2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Chen Tessler, Daniel ] Mankowitz, and Shie Mannor. Reward constrained policy optimization. arXiv
preprint arXiv:1805.11074, 2018.

Garrett Thomas, Yuping Luo, and Tengyu Ma. Safe reinforcement learning by imagining the near
future. Advances in Neural Information Processing Systems, 34:13859-13869, 2021.

12



Matteo Turchetta, Felix Berkenkamp, and Andreas Krause. Safe exploration in finite markov decision
processes with gaussian processes. Advances in neural information processing systems, 29, 2016.

Matteo Turchetta, Andrey Kolobov, Shital Shah, Andreas Krause, and Alekh Agarwal. Safe rein-

forcement learning via curriculum induction. Advances in Neural Information Processing Systems,
33:12151-12162, 2020.

Eiji Uchibe and Kenji Doya. Constrained reinforcement learning from intrinsic and extrinsic rewards.
In 2007 IEEE 6th International Conference on Development and Learning, pp. 163—168. IEEE,
2007.

Akifumi Wachi and Yanan Sui. Safe reinforcement learning in constrained markov decision processes.
In International Conference on Machine Learning, pp. 9797-9806. PMLR, 2020.

Akifumi Wachi, Yanan Sui, Yisong Yue, and Masahiro Ono. Safe exploration and optimization of
constrained mdps using gaussian processes. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Akifumi Wachi, Yunyue Wei, and Yanan Sui. Safe policy optimization with local generalized linear
function approximations. Advances in Neural Information Processing Systems, 34:20759-20771,
2021.

Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu Wang, Wanxin Jin, Zhuoran Yang, Zhaoran
Wang, Chao Huang, and Qi Zhu. Enforcing hard constraints with soft barriers: Safe reinforcement
learning in unknown stochastic environments. arXiv preprint arXiv:2209.15090, 2022.

Yixuan Wang, Simon Sinong Zhan, Ruochen Jiao, Zhilu Wang, Wanxin Jin, Zhuoran Yang, Zhaoran
Wang, Chao Huang, and Qi Zhu. Enforcing hard constraints with soft barriers: Safe reinforcement
learning in unknown stochastic environments. In International Conference on Machine Learning,
pp. 36593-36604. PMLR, 2023.

Honghao Wei, Xin Liu, and Lei Ying. Triple-q: A model-free algorithm for constrained reinforcement
learning with sublinear regret and zero constraint violation. In International Conference on
Artificial Intelligence and Statistics, pp. 3274-3307. PMLR, 2022.

Dongjie Yu, Haitong Ma, Shengbo Li, and Jianyu Chen. Reachability constrained reinforcement
learning. In International Conference on Machine Learning, pp. 25636-25655. PMLR, 2022.

Ming Yu, Zhuoran Yang, Mladen Kolar, and Zhaoran Wang. Convergent policy optimization for safe
reinforcement learning. Advances in Neural Information Processing Systems, 32, 2019.

Wenshuai Zhao, Jorge Pefia Queralta, and Tomi Westerlund. Sim-to-real transfer in deep rein-
forcement learning for robotics: a survey. In 2020 IEEE Symposium Series on Computational
Intelligence (SSCI), pp. 737-744. IEEE, 2020.

13



	Introduction
	Related Work
	The Safe MDP Model
	Safe RL with Step-wise Violation Constraints
	Assumptions and Problem Features
	Algorithm SUCBVI

	Lower Bounds for Safe-RL-SW
	Safe Reward-Free Exploration with Step-wise Violation Constraints
	Formulation of Safe-RFE-SW
	Algorithm SRF-UCRL
	Analysis for Algorithm SRF-UCRL

	Experiments
	Conclusion

