

000
001

TASKCRAFT: AUTOMATED GENERATION OF 002 AGENTIC TASKS

003
004
005

006 **Anonymous authors**
007
008
009

009 Paper under double-blind review
010
011
012

013

ABSTRACT

014
015
016
017
018
019
020
021
022
023
024
025
026

027 Agentic tasks, which require multistep problem solving with tool use and adaptive reasoning, are becoming increasingly central to the advancement of NLP and AI. Although benchmarks such as GAIA and BrowseComp have advanced agent evaluation, their scalability remains limited by the high cost of human annotation. We introduce TASKCRAFT, the first automated workflow for generating scalable, multitool, and verifiable agentic tasks of difficulty. TaskCraft progressively complexifies atomic tasks through depth-based and width-based extensions, with incremental validation via rejection sampling and LLM-based linguistic analysis, ensuring both scalability and efficiency. The generated tasks enable trajectory sampling within state-of-the-art workflows, supporting end-to-end SFT and RL training. Experimental results on multiple LLMs show that TaskCraft data substantially improves multi-hop reasoning and agentic capabilities. Further scaling with TaskCraft tasks and applying RL training yields additional gains, achieving state-of-the-art performance on four agentic benchmarks. The resulting dataset comprises 41k tool-intensive tasks across varied difficulty levels, including 12.6k tool-interaction trajectories and 5k multihop decompositions.
028
029

030

1 INTRODUCTION

031
032
033
034
035

036 Agentic tasks, defined as autonomous multi-step problem solving that requires tool use and adaptive reasoning, are becoming increasingly central to AI and NLP. Recent progress in language agents Significant-Gravitas (2023); Wu et al. (2023); Li et al. (2023); Zhou et al. (2023a;b; 2024) empowered agentic workflows to address increasingly complex tasks. For example, ReAct Yao et al. (2023) adopts the Thought–Action–Observation (TAO) paradigm, enabling workflows to solve problems through iterative reasoning and repeated interaction with the environment.
037
038

039 To assess advanced agent capabilities, benchmarks such as GAIA Mialon et al. (2023), BrowseC-
040 comp Wei et al. (2025), and Humanity’s Last Exam (HLE) Phan et al. (2025) have been introduced.
041 GAIA evaluates reasoning, tool use, and web browsing through 466 real-world questions. BrowseC-
042 comp comprises 1,266 tasks that test an agent’s ability to retrieve and integrate complex online in-
043 formation. HLE includes 2,500 multimodal questions across more than 100 disciplines to measure
044 advanced reasoning and domain knowledge. Although these datasets have advanced agent evalua-
045 tion, their scalability is constrained by the high cost of manual annotation. For instance, constructing
046 HLE required 1,000 experts to label only 2,500 examples, making large-scale expansion impractical.
047
048

049 Previous work has explored the use of large language models to automatically generate queries,
050 addressing the scarcity and annotation cost of human-labeled data. These queries can then support
051 reasoning trajectory sampling for supervised fine-tuning (SFT) and Reinforcement Learning (RL). A
052 representative example is the Self-Instruct framework Wang et al. (2022), which demonstrated that
053 LLMs can generate high-quality, diverse instruction data for multturn dialogues. However, these
054 methods are primarily designed for static instruction-following scenarios and fall short in modeling
055 agentic tasks that require interaction with external tools and environments. Consequently, such data
056 are insufficient for training or evaluating agents that operate in dynamic, real-world settings.
057
058

059 In this work, we introduce TASKCRAFT, the first agentic workflow for the automated generation of
060 agentic tasks (queries), with a particular focus on tasks that require chain-of-tool execution. Our
061 approach provides the following advantages:
062
063

- **Scalability.** The workflow supports adaptive difficulty, multi-tool integration, and the generation of tasks beyond the capabilities of the task-generation agent, along with their corresponding trajectories.
- **Efficient Verification.** During each task extension, only incremental components undergo agentic validation, eliminating the need for full verification of the extended task.

Our approach begins by generating atomic tasks solvable with single-tool invocations, then progressively increases their complexity through depth-based and width-based extensions. To ensure task quality, we apply rejection sampling to retain cases where agents with external tools succeed but LLMs fail, validating genuine tool necessity. LLM-based linguistic analysis accelerates validation by rapidly examining the incremental modifications introduced during task complexification, without requiring full execution of the entire task.

Based on this method, we constructed a dataset of about 41k candidate tasks spanning different difficulty levels. It further contains roughly 12.6k tool-interaction trajectories and around 5k instances of multi-hop sub-task decomposition.

To evaluate the effectiveness of our generated tasks, we build on the training data used in Tool-Integrated Reasoning (TIR) models Schick et al. (2023); Shen et al. (2023); Wu et al. (2025a) and augment it with TaskCraft-generated tasks for SFT and RL trajectory sampling. Incorporating these tasks consistently improves TIR model performance across multiple benchmarks. On GAIA, MHQA data yields 38.8%, which rises to 60.2% (+21.4) with 2.5k TaskCraft tasks and further to 60.8% (+22.0) with 8k TaskCraft tasks for RL, achieving state-of-the-art (SOTA) results among TIR models and demonstrating the effectiveness of our approach.

2 NOTATIONS AND PRELIMINARY

To design tasks for agentic reasoning, we abstract the execution process of an agentic task. As shown in figure 1, given a task q , tool execution involves two stages: locating the input index i_T (e.g., a stock data website) and operating the tool T on it (e.g., a browser accessing the website). Executing T with i_T yields the context C (e.g., stock price data), from which the LLM applies the relation R specified in the task (e.g., identifying the highest stock price) to derive the final answer a .

An agentic task can thus be minimally defined by an input index i_T and a relation R over the tool-execution context. Since R depends on the retrieved context C , the tool must be executed before the answer can be derived.

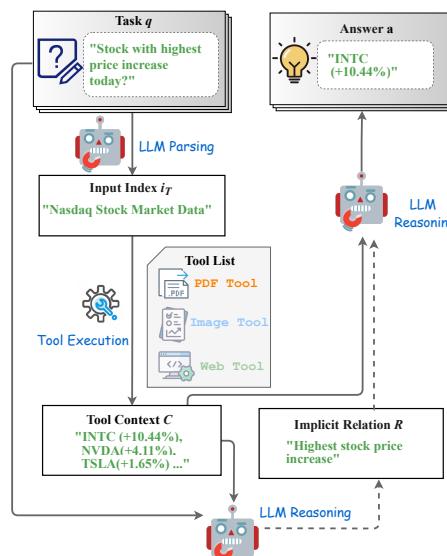


Figure 1: Execution flow of a single tool invocation.

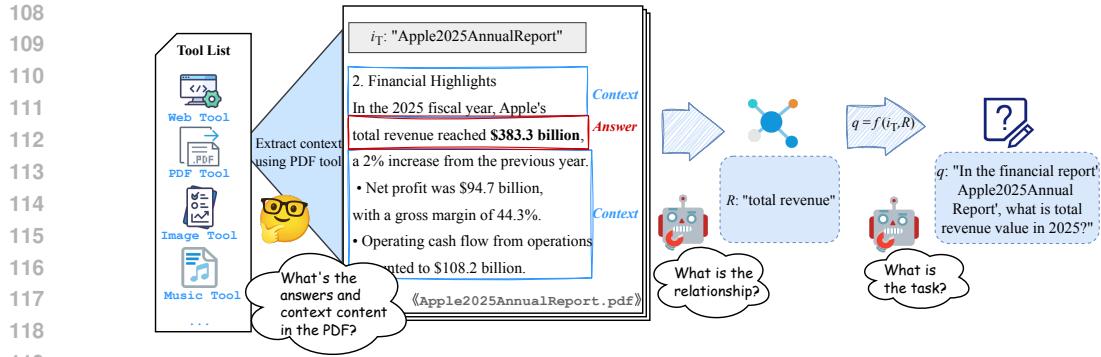


Figure 2: Atomic task generation. From an unlabeled corpus, we extract i_T and derive textual content C via tool execution. LLM identifies candidate answers a from C , infers their relationship R , and constructs question q conditioned on i_T and R .

Atomic Task

An atomic task is resolved with a single target tool invocation. To simplify, we disregard search and file system operations, assuming a detailed input index i_T enables retrieval through finite navigation.

Given an answer a , the most direct approach to construct an atomic task involves prompting an LLM to generate the corresponding question. However, questions produced in this manner often suffer from low tool invocation rates, unpredictable difficulty levels, unregulated tool requirements, and inconsistent verification complexity (see section 4.4 for more details).

To address these issues, we assume an ideal search engine that retrieves precise data based on i_T (e.g., paper titles, song titles). Under this assumption, we define a task as $(q, a) = (f_q(i_T, R), a)$, where f_q is a sampling function guiding the LLM to generate q in natural language form by using i_T and R .

3 AUTOMATED TASK GENERATION WORKFLOW

In this section, we describe our task construction workflow, which proceeds in three stages: (1) generating atomic tasks as the foundation, (2) progressively extending them to increase complexity, and (3) verifying their validity through efficient checks.

3.1 ATOMIC TASK GENERATION

As figure 2 shown, we begin by compiling a corpus of unlabeled data aligned with the tool’s input requirements. From this corpus, we extract i_T and derive textual content C via tool execution. For example, browsing, PDF, and image comprehension tools yield webpage titles, PDF names, and image paths, from which we extract textual content C for answer sampling. We prompt an LLM to identify key candidate answers a from C and infer their relationship R with C , ultimately constructing question q conditioned on i_T and R .

3.2 TASK EXTENSION

In order to increase task difficulty in a scalable way, we adopted two extended task strategies: the *depth-based extension* and the *width-based extension*. (see Appendix E for prompts details)

Depth-based extension. We aim to construct tasks requiring multiple sequential tool executions, where each step depends on the output of the previous one. To achieve this, a new sub-task must be derived from a known task q^n . The tool input index i_T at each stage exhibits strong extensibility due to (1) its frequent association with proper nouns, which are less likely to be memorized by LLMs, and (2) its natural suitability for recursive definition. Specifically, a n-hop task (q^n, a) , consisting of

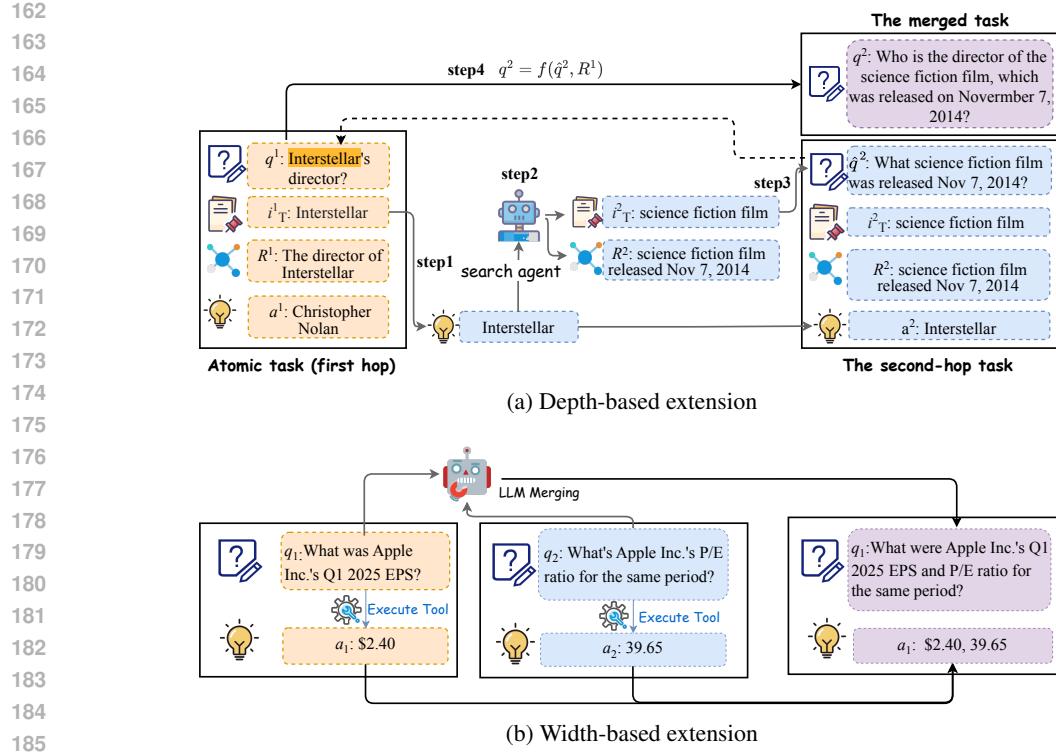


Figure 3: Strategy for task extension

a question q^n and its corresponding answer a , is formulated as follows:

$$(q^n, a) = (f_q(i_T^n, R^n), a), \quad (1)$$

To extend a n -hop task q^n into a $(n+1)$ -hop task q^{n+1} , we first find a intermediate sub-task:

$$(\hat{q}^{n+1}, i_T^n) = (f_q(i_T^{n+1}, R^{n+1}), i_T^n). \quad (2)$$

Here, i_T^{n+1} (e.g., a song title) represents a new index derived from i_T^n (e.g., a fragment of the song's lyrics) through reversible operations. To achieve this, a search agent identifies the *title of superset* of i_T^n on the web or within the file system and uses it as i_T^{n+1} . We instruct the agent to search for a superset to reduce the risk of cyclic generation.

During the search, the agent retrieves the *supersets* text content C (e.g., the complete lyrics of the song) with search tools. An LLM then analyzes C to infer its relationship R^{n+1} to i_T^n (e.g., that the fragment corresponds to the third line of the lyrics).

Using this intermediate task, we can define the recursive formulation to obtain the $(n+1)$ -hop task:

$$(q^{n+1}, a) = (f_m(q^n, \hat{q}^{n+1}, i_T^n), a), \quad (3)$$

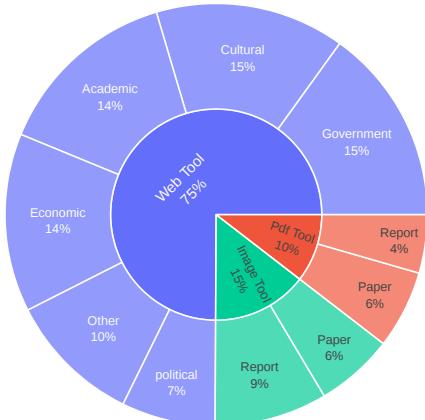
where f_m is a function that guides the LLM to generate q^{n+1} in natural language by substituting i_T^n in q^n with \hat{q}^{n+1} .

Width-based extension. The goal of the width-based extension is to generate a new task that needs to be decoupled into multiple sub-tasks to be completed. For simplicity, for two sub-tasks $q_1 \rightarrow a_1$ and $q_2 \rightarrow a_2$, the combined task q_{width} can be represented as

$$(q_{width} = q_1 + q_2) \rightarrow a_1 + a_2, \quad (4)$$

where the $+$ indicates using LLM to merge and rephrase two question strings.

Trajectory generation. Two strategies exist for generating execution trajectories in this task: (1) For simple tasks, such as atomic tasks, existing agents can directly infer and capture the trajectory, including tool selection, parameters, return results, and plans. (2) For complex tasks, such as depth-wise extension tasks, the sub-task trajectory is recorded while iteratively expanding and validating new atomic tasks.

216 3.3 TASK VERIFICATION
217218 To ensure that the generated tasks demand agentic reasoning and that each expansion is effective, a
219 verification is performed after every step. Within this workflow, task verification can be carried out
220 in two phases:221 **Atomic task verification:** An atomic task is defined as a simple agent task solvable via a single tool
222 call. During verification, we relax this definition slightly: for each candidate task, we evaluate the
223 task agent’s output within a limited number of tool-use steps (e.g., three) and compare it with an
224 infer-LLM separately. A judge-LLM verifies whether only the agent’s output contains the golden
225 answer, retaining only validated tasks. (see Appendix E for more details)226 **Task extension verification:** This process is conducted purely through linguistic analysis without
227 agent involvement. During depth-wise extension, we first employ a judge-LLM to validate: (1)
228 whether the obtained i_T^{n+1} and its relation R^{n+1} constitute a proper superset of i_T^n with logically
229 sound relationships, and (2) whether the final input index i_T^n in q^n is appropriately replaced by \hat{q}^{n+1}
230 in the expanded task q^{n+1} . Furthermore, an infer-LLM derives the merged task, while the judge-
231 LLM filters out tasks where the correct result is easily inferred, preventing information leakage that
232 could render the task trivially solvable after merging. (see Appendix D for more details).233 This framework ensures efficiency by applying agent reasoning only in atomic task verification at
234 creation, while relying on LLM-based verification elsewhere for faster execution. It also enables
235 complex task generation beyond agent capabilities, with reverse reasoning providing supervisory
236 signals to enhance agent learning or reinforcement learning.237 4 EXPERIMENTS
238239 4.1 CORPUS CONSTRUCTION
240257 Figure 4: Corpus source distribution.
258259 We collect seed documents across modalities to generate tool-specific atomic tasks, extracting key
260 insights for relevance. For instance, our PDF processor constructs atomic tasks by combining titles
261 with core findings, enhancing the need for agent-based PDF tool invocation. To support atomic task
262 generation, we constructed a dataset comprising webpages, PDF files, and images. Webpage data
263 constitutes the largest proportion (75%), sourced from up-to-date news across multiple domains.
264 Image data accounts for 15%, primarily derived from financial reports and research papers, with
265 filtering to retain images containing information beyond text. PDF data makes up 10%, originating
266 from English financial documents and academic publications.267 **Human Evaluation.** To verify the validity of the results, we randomly sampled 60 atomic tasks
268 and 48 depth-based extension tasks using human evaluation and scored them. As shown in Table 1,
269 these results highlight the overall effectiveness and controllability of task generation.270 Table 1: Human evaluation for the generated
271 tasks.

	Linguistic fluency	91.7%
Atomic	Accuracy	95.0%
	Single answer	83.3%
	Information leakage	11.7%
Depth-based extension	Extended validity	82.3%
	Non-superset	8.5%

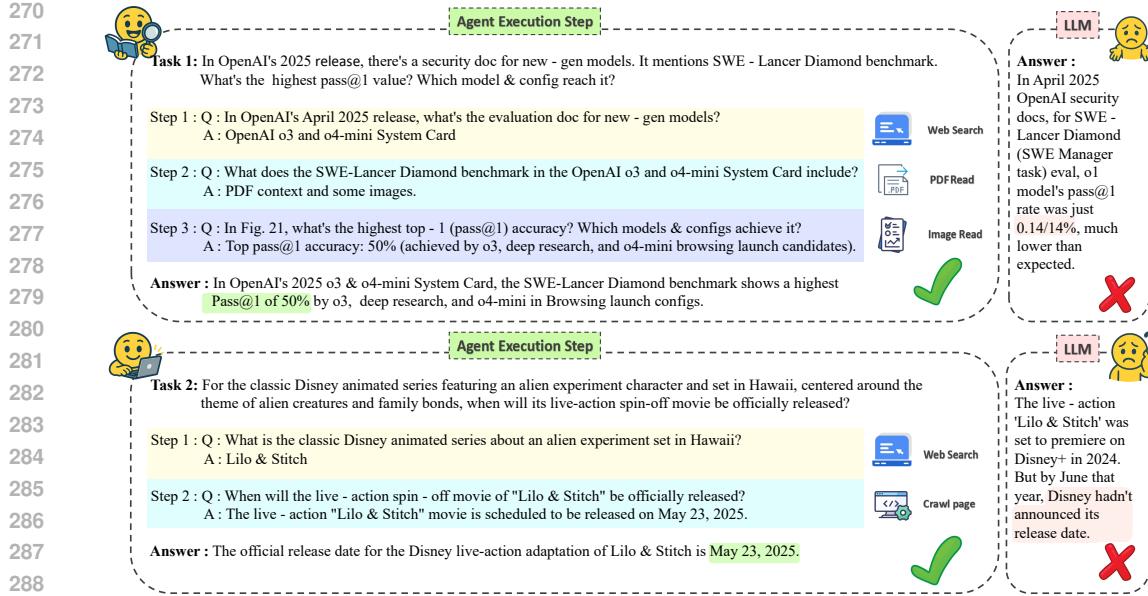


Figure 5: Generated case examples requiring multiple tool calls for completion.

4.2 ENHANCING TASK GENERATION EFFICIENCY VIA PROMPT LEARNING

As noted in section 3.3, both atomic task generation and task extension require validation, with any failure leading to rejection. Reducing rejections and improving efficiency requires refining four prompt designs that substantially affect the rejection rate:

- How to extract candidate answers from the corpus for atomic task generation (section 3.1).
- In depth-wise extension:
 - how the agent identifies the next input index i_T^{n+1} relevant to the current document and avoid cyclic reference;
 - how to prompt the LLM to generate a relation R^{n+1} so that the answer can be uniquely derived from the context;
 - How to integrate extended tasks and increase the complexity of existing questions, i.e., $(q^{n+1}, a) = (f_m(q^n, \hat{q}^{n+1}, i_T^n), a)$, while maintaining clarity and coherence.

We adopt bootstrap few-shot learning Khattab et al. (2024) to optimize the four prompts. For atomic task generation, the prompt is augmented with 20 randomly sampled examples. Multiple candidate prompts are evaluated, and the one yielding the highest pass rate is selected. For task extension, we focus on depth-wise augmentation and apply the same strategy using 10 sampled examples, refining the prompts to maximize the number of reasoning hops.

To enhance the LLM’s capability in identifying intermediate objectives, we employ bootstrap few-shot learning Khattab et al. (2024) to systematically optimize four prompts corresponding to key challenges. Each prompt for atomic task generation is enhanced by appending 20 randomly sampled examples. Various prompt configurations are evaluated iteratively based on pass rates to select optimal examples. For depth-based extension, we optimize prompts using 10 randomly sampled examples, refining them to maximize task complexity.

Table 2 examines atomic task generation and depth-wise task extension before and after prompt learning, highlighting the role of generated tasks in enabling self-evolution within the workflow. These results validate the effectiveness of generated task data in enhancing sampling efficiency and supporting workflow adaptation. The optimized prompts are presented in Appendix E.2.

324
 325 Table 2: Effectiveness of generated task data in prompt learning and depth-wise extension. The
 326 pass rate denotes the proportion of atomic tasks that successfully pass validation out of all generated
 327 candidates. For depth-wise extension, the pass rate is defined as the fraction of successful extensions
 328 out of six attempts.

Method	Pass rate	Time
Atomic Task	54.9%	29.1s
+ Optimization	68.1%	23.5s
Depth-wise@6	41.0%	31.5s
+ Optimization	51.2%	30.2s

Method	SFT	RL	GAIA (%)	WebWalker	BrowserComp	HLE
Qwen-2.5-7B-Instruct						
R1-Searcher Song et al. (2025)	✓	✓	20.4	-	-	-
WebSailor Li et al. (2025a)	✓	✓	37.9	-	6.7	-
5k MHQA	✓		18.6	20.2	4.5	3.6
7.5k MHQA	✓		20.4	23.4	3.6	4.2
7.5k TaskCraft	✓		36.3	55.0	12.4	16.4
5k MHQA + 2.5k TaskCraft	✓		34.0	52.6	6.4	13.2
5k MHQA + 2.5k TaskCraft (SFT) + 8k TaskCraft (RL)	✓	✓	40.8	-	13.4	16.0
DeepSeek-R1-Distill-Llama-8B						
7.5k MHQA	✓		21.6	28.6	3.6	9.6
5k MHQA + 2.5k TaskCraft	✓		33.0	59.4	7.6	12.8
QwQ-32B						
Search-o1 Li et al. (2025b)	✓	✓	39.8	34.1	-	-
SimpleDeepSearcher Sun et al. (2025)	✓	✓	50.5	-	-	-
WebSailor Li et al. (2025a)	✓	✓	50.5	-	-	-
WebThinker Li et al. (2025c)	✓	✓	48.5	46.5	-	15.8
WebDancer Wu et al. (2025a)	✓	✓	51.5	43.2	2.8	-
Qwen-2.5-32B-Instruct						
Search-o1 Li et al. (2025b)	✓	✓	28.2	-	-	-
SimpleDeepSearcher Sun et al. (2025)	✓	✓	40.8	-	-	-
WebSailor Li et al. (2025a)	✓	✓	53.2	-	10.5	-
5k MHQA	✓		38.8	36.8	5.6	10.8
7.5k MHQA	✓		42.7	41.6	5.8	12.6
7.5k TaskCraft	✓		60.2	-	22.4	20.2
5k MHQA + 2.5k TaskCraft	✓		60.2	-	21.0	20.0
5k MHQA + 2.5k TaskCraft (SFT) + 8k TaskCraft (RL)	✓	✓	60.8	-	24.8	20.6

353
 354 Table 3: Performance across agentic task benchmarks. Methods are grouped according to the base
 355 model adopted.

357 4.3 AGENT FOUNDATION MODEL TRAINING

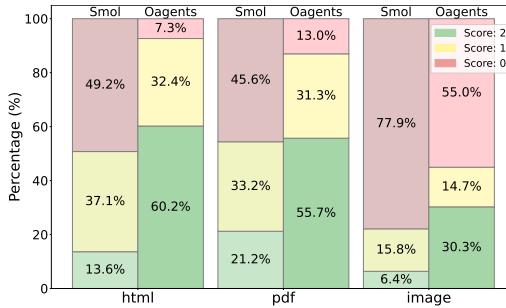
359 To validate the effectiveness of our synthetic tasks, we apply SFT and RL to refine a tool-integrated
 360 reasoning (TIR) model in agentic scenarios. In TIR, the LLM output is trained with explicit tags
 361 such as `<tool>`, `<observation>` or `<think>`, which structure the reasoning flow and trigger cor-
 362 responding tool calls. We conduct experiments using models from different families and scales,
 363 evaluating their performance on the GAIA Mialon et al. (2023) , WebWalker Wu et al. (2025b),
 364 BrowserComp Wei et al. (2025), and HLE Phan et al. (2025).

365 For SFT learning, we sample solution trajectories for each task using Oagents Zhu et al. (2025),
 366 and convert them into the TIR model format. To ensure the performance gains are not merely due
 367 to learning the output format, we use two types of training data: 7.5k tasks sampled from existing
 368 multi-hop QA datasets (denoted as MHQA, including HotpotQA and NQ), and 7.5k synthetic tasks
 369 via our pipeline. To further enhance model performance, we incorporate additional generated data
 370 and apply DAPO Yu et al. (2025) for continued RL training.

371 As shown in Table 3, pure 7.5k TaskCraft outperforms 7.5k MHQA across all benchmarks. Fur-
 372 thermore, replacing 2.5k MHQA with 2.5k TaskCraft produces 5–16x larger gains, far exceeding
 373 the improvements obtained by adding the same amount of MHQA. Even without RL, TaskCraft-
 374 trained models already match SOTA systems that rely on both SFT and RL. When scaled with
 375 more TaskCraft tasks and RL, performance further improves, reaching new SOTA. For example,
 376 on WebWalker, our Qwen-2.5-7B-Instruct exceeds the previous best—including the much larger
 377 QWQ-32B—by a substantial margin. These results confirm that TaskCraft is highly scalable and
 substantially enhances agent model performance, enabling models to reach SOTA levels.

378 4.4 EFFECTIVENESS OF TOOL CONTEXT IN CONSTRUCTING AGENTIC TASKS.
379380 In atomic task generation, we incorporate the input index i_T and the tool-answer relation R to
381 structure tasks. To evaluate its effectiveness, we conduct an ablation study where an LLM directly
382 generates single-tool tasks q without using i_T or R . We assess performance via pass rate, resolution
383 time, average tool usage, and usage variance.384
385 Table 4: The effectiveness of tool context.
386387
388
389

Method	Pass rate	Time	#Tool-use	σ^2
LLM only	18.5%	119.7s	2.8	1.2
Ours	43.0%	86.7s	2.1	0.4

390 Compared to direct GPT-4.1 prompting, our method significantly improves atomic task generation,
391 achieving higher success rates and faster task construction. It produces more atomic and consistent
392 tasks, with fewer and more stable tool invocations, highlighting the limitations of vanilla LLMs in
393 agentic task design and the robustness of our structured workflow.
394395 4.5 SYNTHETIC TASKS ANALYSIS
396397 **Agent reasoning analysis.** To practically assess task difficulty, we sample 1,000 tasks and deploy
398 both Smolagents Roucher et al. (2025) and Oagents Zhu et al. (2025), for execution and validation.
399 While both agents performed identical tasks, Oagents incorporated advanced tool capabilities for
400 refined analysis.411
412 Figure 6: score distribution comparison
413414 Responses were evaluated by comparing the agents’ outputs to the golden answer, following a three-
415 point scoring scheme: 2 for fully correct responses, 1 for answers that included the golden answer
416 but contained additional information, and 0 for incorrect responses.417 In figure 6, task failure rates increase from web pages to PDFs and then to images within PDFs,
418 indicating that multi-hop web search tasks are more manageable for agents, while complex compre-
419 hension challenges, such as PDF extraction and image interpretation, remain difficult. Additionally,
420 these results demonstrate that our generated tasks span varying difficulty levels, including those that
421 pose significant challenges for current agent capabilities.422 **Scalability of TaskCraft data.** To evaluate TaskCraft’s scalability, we trained Qwen2.5-7B-instruct
423 models on 1k, 3k, and 5k randomly sampled tasks, using consistent settings and tested them on
424 GAIA-103. As shown in Table 5, the results exhibit a clear upward trend, suggesting that larger
425 TaskCraft training sets yield progressively better performance.
426427 Table 5: GAIA performance by data size.
428429

Data Size	Pass@3 on GAIA-103
1,000	17.5%
3,000	31.1%
5,000	39.8%

430 Table 6: Accuracy comparison of Smolagents on
431 GAIA and synthetic tasks.
432

GAIA	Level1	Level2	Level3	Avg.
	54.71	43.02	26.92	44.20
Synthetic Task	PDF	html	Image	Avg.
	54.4	50.7	22.1	42.4

432 **Comparison with the GAIA Dataset.** Table 6 compares Smolagent’s accuracy on the GAIA benchmark
 433 and our generated dataset. The results show that tasks derived from diverse tool corpora reflect
 434 GAIA’s stratified difficulty levels, with image understanding tasks presenting the greatest challenge
 435 and yielding accuracy comparable to Level 3. Unlike GAIA, which relies heavily on manual anno-
 436 tation, our framework automates task generation—eliminating the need for labor-intensive labeling
 437 while preserving scalability and adaptability for agent self-evolution and optimization.

438 5 RELATED WORK

439 5.1 INSTRUCTION DATA GENERATION

440 Synthetic data has emerged as a promising solution for enhancing performance and enabling new
 441 capabilities. STaR Zelikman et al. (2024) augments learning with chain-of-thought (CoT) ra-
 442 tionales but often requires a substantial number of task queries beforehand. Methods such as
 443 Self-Instruct Wang et al. (2022), Self-Chat Xu et al. (2023b), NuminaMath Li et al. (2024), and
 444 OpenMathInstruct-2 Toshniwal et al. (2024) generate data from minimal seed examples using LLMs,
 445 yet they struggle to extend task generation for multiple tool invocations. WizardLM Xu et al. (2023a)
 446 employs Evol-Instruct to incrementally enhance instruction complexity. However, it relies primarily
 447 on rule-based modifications, making its generated instructions unsuitable for agentic task scenarios.
 448 MetaMath Yu et al. (2023) generates mathematical data by rewriting questions, but adapting agent
 449 tasks to environmental feedback presents challenges beyond simple rephrasing. WebInstruct Yue
 450 et al. (2024) extracts question-answer pairs from a pre-training corpus across multiple domains;
 451 however, the generated questions often fail to incorporate tool utilization. AutoAct Qiao et al. (2024)
 452 uses a self-planning mechanism to generate planning trajectories for QA tasks.
 453

454 5.2 LANGUAGE AGENT

455 Existing research on agentic task execution advances along two main axes: role specialization and
 456 functional partitioning. Role-based approaches, such as AutoGPT Significant-Gravitas (2023), Au-
 457 toGen Wu et al. (2023), and Camel Li et al. (2023), organize collaborative agents by dynamically
 458 assigning tools. In contrast, frameworks like Barcelona2, Omne, and AgentIM¹ adopt functional
 459 partitioning to optimize modular efficiency. SmolAgents Roucher et al. (2025) integrates ReAct Yao
 460 et al. (2023) and CodeAct Wang et al. (2024b) into a hierarchical agent system for iterative code-
 461 based task execution. Magnetic-One Fourney et al. (2024) enhances multimodal performance by
 462 decoupling perception Yang et al. (2023a;b), planning Song et al. (2023); Tordesillas & How (2021),
 463 and execution Qin et al. (2024); Wang et al. (2024b) modules. Dynamic orchestration mechanisms
 464 address real-time adaptation and robustness. Trase-Agent Trase (2024) adapts strategies based on
 465 feedback, while TapeAgents Bahdanau et al. (2024) uses asynchronous communication to improve
 466 coordination. Studies show that stable sub-agent interactions outperform complex centralized or-
 467 chestration. To advance autonomy, AutoAgent Tang et al. (2025) supports no-code agent customiza-
 468 tion via natural language coordination, modular workflows, and self-managing file systems. Hybrid
 469 systems like h2oGPTe-Agent H2O.ai (2024) explore multi-agent optimization, achieving strong re-
 470 sults in code generation, though cross-modal bottlenecks remain a challenge.
 471

472 6 CONCLUSION

473 We introduced TASKCRAFT, an automated workflow for scalable, multi-tool, and verifiable agentic
 474 task generation. By applying depth-based and width-based extensions to atomic tasks, the frame-
 475 work constructs hierarchically complex challenges with incremental validation. To enhance sam-
 476 pling efficiency, we incorporated a self-evolving prompt optimization strategy inspired by boot-
 477 strapping few-shot learning. Experiments across multiple LLMs demonstrate that TaskCraft-generated
 478 data significantly improves multi-hop reasoning and agentic capabilities, achieving performance
 479 comparable to state-of-the-art RL models using only SFT. Further scaling and RL fine-tuning with
 480 TaskCraft tasks yield additional gains, culminating in state-of-the-art results on four agentic bench-
 481 marks. The final dataset comprises 41,000 tool-intensive tasks spanning diverse difficulty levels,
 482 including 12,600 tool-interaction trajectories and 5,000 multi-hop decompositions.
 483

484 ¹These are closed-source frameworks.
 485

486 **7 ETHICS STATEMENT**
 487

488 This research adheres to the ethical guidelines outlined by the ICLR conference. The proposed
 489 methods do not involve human subjects, personally identifiable information, or sensitive data. All
 490 datasets used are publicly available and widely adopted in the research community. No data was
 491 collected from vulnerable populations, and no deceptive practices were employed.

492 The model outputs were evaluated for fairness and robustness. We conducted thorough error analysis
 493 to ensure that the system does not propagate harmful biases or stereotypes. Where applicable,
 494 mitigation strategies were applied to reduce unintended consequences.
 495

496 Our work does not pose foreseeable risks to individuals or society. We acknowledge that any deployment
 497 of agentic systems should be accompanied by safeguards to prevent misuse. We encourage
 498 future researchers and practitioners to consider the broader societal impact of autonomous agents
 499 and to adopt responsible AI practices.

500 **8 REPRODUCIBILITY STATEMENT**
 501

502 To support faithful replication, we will release all artifacts referenced in this paper. Specifically:
 503 (i) the complete TASKCRAFT workflow code, encompassing atomic task generation, depth/width
 504 extensions, incremental validation, and rejection sampling, along with all associated prompts, tem-
 505 plates, and data pre-/post-processing scripts; (ii) the full synthetic dataset comprising 41,000 tool-
 506 intensive tasks, formatted in a standardized JSON schema; and (iii) 12,600 tool-interaction trajec-
 507 tories and 5,000 multi-hop decompositions, to be released subsequently.
 508

509 **REFERENCES**
 510

511 Dzmitry Bahdanau, Nicolas Gontier, Gabriel Huang, Ehsan Kamalloo, Rafael Pardinas, Alex Piché,
 512 Torsten Scholak, Oleh Shliazhko, Jordan Prince Tremblay, Karam Ghanem, Soham Parikh, Mitul
 513 Tiwari, and Quaizar Vohra. Tapeagents: a holistic framework for agent development and opti-
 514 mization, 2024. URL <https://arxiv.org/abs/2412.08445>.

515 Adam Fourney, Gagan Bansal, Hussein Mozannar, Cheng Tan, Eduardo Salinas, Friederike Niedt-
 516 ner, Grace Proebsting, Griffin Bassman, Jack Gerrits, Jacob Alber, et al. Magentic-one: A gener-
 517 alist multi-agent system for solving complex tasks. *arXiv preprint arXiv:2411.04468*, 2024.

518 H2O.ai. Autonomous agentic ai: execute multi-step workflows autonomously. [Online], 2024.
 519 <https://h2o.ai/platform/enterprise-h2ogpte/#AgenticAI>.

520 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 521 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforce-
 522 ment learning. *arXiv preprint arXiv:2503.09516*, 2025a.

523 Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani, and
 524 Jiawei Han. Search-r1: Training llms to reason and leverage search engines with reinforce-
 525 ment learning, 2025b. URL <https://arxiv.org/abs/2503.09516>.

526 L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey, 1996. URL
 527 <https://arxiv.org/abs/cs/9605103>.

528 Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
 529 hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller, Matei
 530 Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into self-
 531 improving pipelines. 2024.

532 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem. Camel: Com-
 533 municative agents for “mind” exploration of large language model society. *Advances in Neural*
 534 *Information Processing Systems*, 36:51991–52008, 2023.

535 Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
 536 Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in

540 ai4maths with 860k pairs of competition math problems and solutions. *Hugging Face repository*,
 541 13:9, 2024.

542

543 Kuan Li, Zhongwang Zhang, Hufeng Yin, Liwen Zhang, Litu Ou, Jialong Wu, Wenbiao Yin, Baix-
 544 uan Li, Zhengwei Tao, Xinyu Wang, et al. Websailor: Navigating super-human reasoning for web
 545 agent. *arXiv preprint arXiv:2507.02592*, 2025a.

546 Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, Yujia Zhou, Yutao Zhu, Peitian Zhang, and
 547 Zhicheng Dou. Search-o1: Agentic search-enhanced large reasoning models. *arXiv preprint*
 548 *arXiv:2501.05366*, 2025b.

549

550 Xiaoxi Li, Jiajie Jin, Guanting Dong, Hongjin Qian, Yutao Zhu, Yongkang Wu, Ji-Rong Wen, and
 551 Zhicheng Dou. Webthinker: Empowering large reasoning models with deep research capability.
 552 *arXiv preprint arXiv:2504.21776*, 2025c.

553

554 Grégoire Mialon, Clémentine Fourrier, Thomas Wolf, Yann LeCun, and Thomas Scialom. Gaia:
 555 a benchmark for general ai assistants. In *The Twelfth International Conference on Learning*
 556 *Representations*, 2023.

557 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
 558 Zhang, Mohamed Shaaban, John Ling, Sean Shi, Michael Choi, Anish Agrawal, Arnav Chopra,
 559 Adam Khoja, Ryan Kim, Richard Ren, Jason Hausenloy, Oliver Zhang, et al. Humanity’s last
 560 exam, 2025. URL <https://arxiv.org/abs/2501.14249>.

561

562 Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah A. Smith, and Mike Lewis. Measuring
 563 and narrowing the compositionality gap in language models. In Houda Bouamor, Juan Pino, and
 564 Kalika Bali (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2023,*
 565 *Singapore, December 6-10, 2023*, pp. 5687–5711. Association for Computational Linguistics,
 566 2023. doi: 10.18653/V1/2023.FINDINGS-EMNLP.378. URL <https://doi.org/10.18653/v1/2023.findings-emnlp.378>.

567

568 Shuofei Qiao, Ningyu Zhang, Runnan Fang, Yujie Luo, Wangchunshu Zhou, Yuchen Jiang,
 569 Chengfei Lv, and Huajun Chen. AutoAct: Automatic agent learning from scratch for QA via self-
 570 planning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd*
 571 *Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp.
 572 3003–3021, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
 573 10.18653/v1/2024.acl-long.165. URL <https://aclanthology.org/2024.acl-long.165/>.

574

575 Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen, Ning Ding, Ganqu Cui, Zheni Zeng, Xuanhe
 576 Zhou, Yufei Huang, Chaojun Xiao, et al. Tool learning with foundation models. *ACM Computing*
 577 *Surveys*, 57(4):1–40, 2024.

578

579 Aymeric Roucher, Albert Villanova del Moral, Thomas Wolf, Leandro von Werra, and Erik Kau-
 580 nismäki. ‘smolagents’: a smol library to build great agentic systems. <https://github.com/huggingface/smolagents>, 2025.

581

582 Timo Schick, Jane Dwivedi-Yu, Roberto Dessimoni, Roberta Raileanu, Maria Lomeli, Eric Hambro,
 583 Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
 584 teach themselves to use tools. *Advances in Neural Information Processing Systems*, 36:68539–
 68551, 2023.

585

586 Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
 587 gpt: Solving ai tasks with chatgpt and its friends in hugging face. *Advances in Neural Information*
 588 *Processing Systems*, 36:38154–38180, 2023.

589

590 Significant-Gravitas. Autogpt. [Online], 2023. <https://github.com/Significant-Gravitas/AutoGPT>.

591

592 Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
 593 Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
 594 *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 2998–3009, 2023.

594 Huatong Song, Jinhao Jiang, Yingqian Min, Jie Chen, Zhipeng Chen, Wayne Xin Zhao, Lei Fang,
 595 and Ji-Rong Wen. R1-searcher: Incentivizing the search capability in llms via reinforcement
 596 learning. *arXiv preprint arXiv:2503.05592*, 2025.

597

598 Shuang Sun, Huatong Song, Yuhao Wang, Ruiyang Ren, Jinhao Jiang, Junjie Zhang, Fei Bai, Jia
 599 Deng, Wayne Xin Zhao, Zheng Liu, et al. Simpledeepsearcher: Deep information seeking via
 600 web-powered reasoning trajectory synthesis. *arXiv preprint arXiv:2505.16834*, 2025.

601

602 Jiabin Tang, Tianyu Fan, and Chao Huang. Autoagent: A fully-automated and zero-code framework
 603 for llm agents. *arXiv e-prints*, pp. arXiv–2502, 2025.

604

605 Jesus Tordesillas and Jonathan P How. Mader: Trajectory planner in multiagent and dynamic envi-
 606 ronments. *IEEE Transactions on Robotics*, 38(1):463–476, 2021.

607

608 Shubham Toshniwal, Wei Du, Ivan Moshkov, Branislav Kisacanin, Alexan Ayrapetyan, and Igor
 609 Gitman. Openmathinstruct-2: Accelerating ai for math with massive open-source instruction
 610 data. *arXiv preprint arXiv:2410.01560*, 2024.

611

612 Trase. Meet trase systems. [Online], 2024. <https://www.trasesystems.com/>.

613

614 Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Interleaving re-
 615 trieval with chain-of-thought reasoning for knowledge-intensive multi-step questions. In Anna
 616 Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual
 617 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
 618 Toronto, Canada, July 9-14, 2023*, pp. 10014–10037. Association for Computational Linguistics,
 619 2023. doi: 10.18653/V1/2023.ACL-LONG.557. URL <https://doi.org/10.18653/v1/2023.acl-long.557>.

620

621 Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Dixin Jiang, Rangan Ma-
 622 jumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training, 2024a.
 623 URL <https://arxiv.org/abs/2212.03533>.

624

625 Xingyao Wang, Yangyi Chen, Lifan Yuan, Yizhe Zhang, Yunzhu Li, Hao Peng, and Heng Ji. Exe-
 626 cutable code actions elicit better llm agents. In *Forty-first International Conference on Machine
 627 Learning*, 2024b.

628

629 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and
 630 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
 631 *arXiv preprint arXiv:2212.10560*, 2022.

632

633 Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 634 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecmp: A simple yet
 635 challenging benchmark for browsing agents. *arXiv preprint arXiv:2504.12516*, 2025.

636

637 Jialong Wu, Baixuan Li, Runnan Fang, Wenbiao Yin, Liwen Zhang, Zhengwei Tao, Dingchu Zhang,
 638 Zekun Xi, Gang Fu, Yong Jiang, et al. Webdancer: Towards autonomous information seeking
 639 agency. *arXiv preprint arXiv:2505.22648*, 2025a.

640

641 Jialong Wu, Wenbiao Yin, Yong Jiang, Zhenglin Wang, Zekun Xi, Runnan Fang, Linhai Zhang,
 642 Yulan He, Deyu Zhou, Pengjun Xie, et al. Webwalker: Benchmarking llms in web traversals.
 643 *arXiv preprint arXiv:2501.07572*, 2025b.

644

645 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
 646 Zhang, Shaokun Zhang, Jiale Liu, et al. Autogen: Enabling next-gen llm applications via multi-
 647 agent conversation. *arXiv preprint arXiv:2308.08155*, 2023.

648

649 Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and
 650 Dixin Jiang. Wizardlm: Empowering large language models to follow complex instructions.
 651 *arXiv preprint arXiv:2304.12244*, 2023a.

652

653 Canwen Xu, Daya Guo, Nan Duan, and Julian McAuley. Baize: An open-source chat model with
 654 parameter-efficient tuning on self-chat data. *arXiv preprint arXiv:2304.01196*, 2023b.

648 Dingkang Yang, Kun Yang, Yuzheng Wang, Jing Liu, Zhi Xu, Rongbin Yin, Peng Zhai, and Lihua
 649 Zhang. How2comm: Communication-efficient and collaboration-pragmatic multi-agent percep-
 650 tion. *Advances in Neural Information Processing Systems*, 36:25151–25164, 2023a.
 651

652 Kun Yang, Dingkang Yang, Jingyu Zhang, Hanqi Wang, Peng Sun, and Liang Song. What2comm:
 653 Towards communication-efficient collaborative perception via feature decoupling. In *Proceedings
 654 of the 31st ACM international conference on multimedia*, pp. 7686–7695, 2023b.

655 Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W. Cohen, Ruslan Salakhutdinov,
 656 and Christopher D. Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question an-
 657 swering. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), *Pro-
 658 ceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels,
 659 Belgium, October 31 - November 4, 2018*, pp. 2369–2380. Association for Computational Lin-
 660 guistics, 2018. doi: 10.18653/V1/D18-1259. URL <https://doi.org/10.18653/v1/d18-1259>.

661 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 662 React: Synergizing reasoning and acting in language models. In *International Conference on
 663 Learning Representations (ICLR)*, 2023.

664 Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
 665 guo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions
 666 for large language models. *arXiv preprint arXiv:2309.12284*, 2023.

667 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 668 Fan, Gaodong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 669 at scale. *arXiv preprint arXiv:2503.14476*, 2025.

670 Xiang Yue, Tianyu Zheng, Ge Zhang, and Wenhui Chen. Mammoth2: Scaling instructions from the
 671 web. *Advances in Neural Information Processing Systems*, 37:90629–90660, 2024.

672 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D Goodman. Star: Self-taught reasoner bootstrap-
 673 ping reasoning with reasoning. In *Proc. the 36th International Conference on Neural Information
 674 Processing Systems*, volume 1126, 2024.

675 Wangchunshu Zhou, Yuchen Eleanor Jiang, Peng Cui, Tiannan Wang, Zhenxin Xiao, Yifan Hou,
 676 Ryan Cotterell, and Mrinmaya Sachan. Recurrentgpt: Interactive generation of (arbitrarily) long
 677 text, 2023a. URL <https://arxiv.org/abs/2305.13304>.

678 Wangchunshu Zhou, Yuchen Eleanor Jiang, Long Li, Jialong Wu, Tiannan Wang, Shi Qiu, Jintian
 679 Zhang, Jing Chen, Ruipei Wu, Shuai Wang, Shiding Zhu, Jiyu Chen, Wentao Zhang, Xiangru
 680 Tang, Ningyu Zhang, Huajun Chen, Peng Cui, and Mrinmaya Sachan. Agents: An open-source
 681 framework for autonomous language agents. 2023b. URL <https://arxiv.org/abs/2309.07870>.

682 Wangchunshu Zhou, Yixin Ou, Shengwei Ding, Long Li, Jialong Wu, Tiannan Wang, Jiamin Chen,
 683 Shuai Wang, Xiaohua Xu, Ningyu Zhang, Huajun Chen, and Yuchen Eleanor Jiang. Symbolic
 684 learning enables self-evolving agents. 2024. URL <https://arxiv.org/abs/2406.18532>.

685 He Zhu, Tianrui Qin, King Zhu, Heyuan Huang, Yeyi Guan, Jinxiang Xia, Yi Yao, Hanhao Li,
 686 Ningning Wang, Pai Liu, Tianhao Peng, Xin Gui, Xiaowan Li, Yuhui Liu, Yuchen Eleanor Jiang,
 687 Jun Wang, Changwang Zhang, Xiangru Tang, Ge Zhang, Jian Yang, Minghao Liu, Xitong Gao,
 688 Jiaheng Liu, and Wangchunshu Zhou. Oagents: An empirical study of building effective agents,
 689 2025. URL <https://arxiv.org/abs/2506.15741>.

690

691

692

693

694

695

696

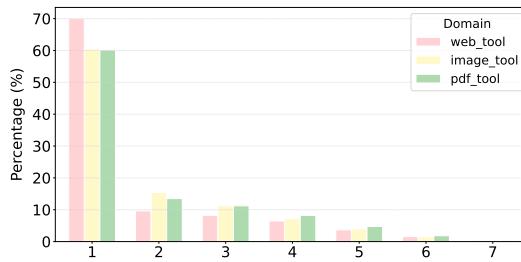
697

698

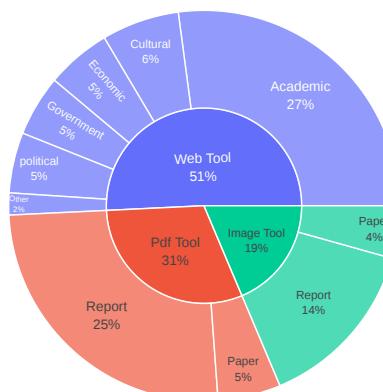
699

700

701

702 **A USE OF LLMs**
703704 Large language models (LLMs) are used in this work exclusively for text polishing and language
705 refinement during the writing process. Specifically, LLMs assist in improving the fluency, clarity,
706 and conciseness of the writing.707 LLMs are not used for any aspects of experimental design, methodological development or scientific
708 interpretation. All scientific contributions and innovations presented in this work are entirely human-
709 originated.711 **B DATA STATISTICS**
712723 Figure 7: Analysis of all tasks.
724725 As illustrated in figure 7, task generation exhibits a hierarchical decay pattern across all domains as
726 hop count increases, revealing distinct scalability trends:

- 728 • **pdf_tool domain:** Shows gradual performance attenuation with hop depth, 1-hop tasks
729 accounting for 60.13% (8,115 tasks), decreasing to 13.49% (1,820 tasks) for 2-hop and
730 11.22% (1,514 tasks) for 3-hop. The sharp drop in 5-7 hop tasks (6.94% combined) indi-
731 cates limited deep-extension capability, yet surpasses other domains in depth scalability.
- 732 • **image_tool domain:** Presents the most pronounced performance decay, with 1-3 hops com-
733 prising 87.10% (7,125/8,180 tasks) but only 5.71% (467 tasks) for 5-7 hops, highlighting
734 fundamental constraints in deep hierarchical task generation.
- 735 • **web_tool domain:** In the web_tool domain, 1-hop tasks dominate, constituting 70.01%
736 (13,467 tasks) of the total. However, this domain also has the highest absolute number of
737 deep extensions, with 5-7 hop tasks accounting for 5.66% (1,089 tasks).

752 Figure 8: Distribution of atomic data.
753754 **Atomic task analysis.** We collect data from webpages, PDF files, and images to support the gen-
755 eration of atomic tasks, which form the basis of the dataset, totaling 26,527 instances as shown in
756 figure 8.

756 Among them, atomic conclusions from web-based tools account for the largest proportion, reaching
 757 50.77%, with sources spanning multiple domains: academic (27.11%), cultural (6.42%), economic
 758 (5.36%) and governmental (5.05%) resources. These derive from up-to-date news and curated online
 759 materials for relevance.

760 Image-based tools contribute 18.64% of the data, extracting structured insights (e.g., key trends,
 761 comparisons) from charts/tables in financial reports and research papers. Strict verification excludes
 762 conclusions directly replicating source text to avoid redundancy.

763 PDF-based extraction accounts for 30.59%, supplementing the dataset with findings from financial
 764 reports and academic publications. This multi-source approach enhances diversity while maintain-
 765 ing consistency in atomic fact representation.

766 By systematically integrating these extraction methods, we ensure high-quality task generation, pro-
 767 viding a robust foundation for downstream model training and optimization.

770 C EXPERIMENTS ON MULTI-HOP QA TASKS

772 We first evaluate our models across three established multi-hop question answering benchmarks:
 773 HotpotQA Yang et al. (2018), Musique Trivedi et al. (2023), and Bamboogle Press et al. (2023).
 774 These datasets present diverse challenges in reasoning and search, providing a robust evaluation
 775 platform.

776 We compare the baseline workflow (Search-R1 Jin et al. (2025b), which leverages reinforcement
 777 learning for LLM model optimization) with the agent workflow after applying SFT using the gener-
 778 ated tasks.

Method	HotpotQA	Musique	Bamboogle	Avg.
Qwen2.5-3B-Base				
Search-R1	0.284	0.049	0.088	0.140
+ SFT	0.344	0.111	0.280	0.245
Qwen2.5-3B-Instruct				
Search-R1	0.324	0.103	0.264	0.230
+ SFT	0.340	0.104	0.264	0.236

786 Table 7: Performance across three datasets and two models. Avg. denotes average.

788 As shown in Table 7, our synthetic data proves valuable in SFT training, showing average per-
 789 formance improvements of +14.0% (Qwen2.5-3B-Base) and +6.0% (Qwen2.5-3B-Instruct) com-
 790 pared to their respective base workflows, validating our data generation approach. Compared to the
 791 Search-R1 baseline, the trained model demonstrates substantial improvements. This suggests that
 792 our synthetic data not only enhances immediate task execution but also optimizes RL initialization
 793 effectively.

795 D VERIFICATION REQUIREMENTS FOR DEPTH-BASED EXTENSION

797 Effective n-hop task extension requires rigorous verification to ensure valid multi-hop reasoning.
 798 The transformation must preserve superset validity:

$$801 \hat{q}^{n+1} = f(i_T^{n+1}, R^{n+1}) \rightarrow i_T^n \quad (5)$$

$$804 q^{n+1} = f(\hat{q}^{n+1}, R^n) \rightarrow a \quad (6)$$

806 Current depth-based extension methods often introduce two critical flaws when replacing tool inputs
 807 i_T without proper verification:

808

- 809 • **Pseudo-Superset Task:** Superficial substitutions that preserve semantic equivalence but
 lack genuine superset relationships

810 • **Information Leakage:** Premature disclosure of information that should only emerge
 811 through proper multi-step reasoning
 812

813 These issues undermine the intended multi-hop reasoning process.

814

815 D.1 PSEUDO-SUPERSET TASK

816

817 A fundamental limitation arises when replacing i_T with a semantically equivalent but non-superset
 818 index i_T^{n+1} . Consider the following task extension example:

819 Original task

820 **Input index (i_T):** Travel Trends 2025 — Our Annual Report

821 **Query (q^n):** How many travel trends for 2022 does 'Travel Trends 2025 — Our Annual
 822 Report' present?

823 **Answer:** 5

824

825 When the search agent retrieves the superset i_T^{n+1} of i_T , it actually ends up retrieving the synonyms
 826 of i_T instead. Based on this, an intermediate task is derived:

827 Intermediate task

828 **New input index (i_T^{n+1}):** 2025 Annual Travel Trends Report

829 **Query (\hat{q}^{n+1}):** What is the title of 2025 Annual Travel Trends Report?

830 **Answer :** Travel Trends 2025

831 Despite valid hop annotations, the intermediate question does not constitute an effective extension: it
 832 does not represent a necessary tool-use step. The core issue lies in the absence of a genuine superset
 833 relationship between i_T^n and i_T^{n+1} , leading to superficial expansion.

834 Extended task

835 **Query (q^{n+1}):** How many travel trends for 2022 does '2025 Annual Travel Trends Report'
 836 present?

837 **Answer:** 5

838

839 D.2 INFORMATION LEAKAGE

840

841 A second failure mode occurs when expanded tasks inadvertently expose original answers, enabling
 842 large language models (LLMs) to bypass tool retrieval. For instance, consider the extended task:

843 Original task

844 **Input index (i_T):** Sports In Brief

845 **Query (q^n):** What is the merger value of Charter and Cox in the Sports In Brief?

846 **Answer:** 34.5B USD

847 Intermediate task

848 **New input index (i_T^{n+1}):** AP News

849 **Query (\hat{q}^{n+1}):** What is the section in AP News that updates sports news daily?

850 **Answer :** Sports In Brief

851 Extended task

852 **Query (q^{n+1}):** In the AP Sports daily summary, Charter and Cox's proposed merger is
 853 valued at approximately \$34.5 billion. What is the exact amount?

854 **Answer :** 34.5B USD

864 While q^{n+1} appropriately conceals the previous i_T^n ("Sports In Brief"), it directly reveals the answer
 865 "34.5B USD", allowing the LLM to bypass the intended retrieval process. This compromises the
 866 essential tool dependency required for multi-hop task answering.
 867

868 D.3 VERIFICATION FOR TASK EXTENSION

870 To address these challenges, we propose a rigorous verification framework to ensure the validity of
 871 i_T^{n+1} , \hat{q}^{n+1} and q^{n+1} in task extension.

873 D.3.1 STRICT SUPERSET VERIFICATION

874 i_T^{n+1} must be the index of a strict superset of i_T^n , and the relationship can be formalized as:
 875

$$876 \hat{q}^{n+1} = f(i_T^{n+1}, R^{n+1}) \rightarrow i_T^n \quad (7)$$

878 where R^{n+1} denotes hierarchical relations (e.g., *contains*, *part_of*). Valid extensions must introduce
 879 genuine depth, such as "*Sports In Brief*" \rightarrow "*AP News*" (relation: *the part that updates sports news*
 880 *daily*), while rejecting synonymous substitutions. Additionally, invalid extensions that allow the
 881 LLM to derive i_T^n directly should be excluded—ensuring the intermediate task \hat{q}^{n+1} requires tool
 882 use.
 883

884 D.3.2 INFORMATION LEAKAGE VERIFICATION

$$885 q^{n+1} = f(\hat{q}^{n+1}, R^n) \rightarrow a \quad (8)$$

887 The extended query q^{n+1} must adhere to the information-sealing principle to ensure proper tool-use
 888 reasoning. This requires that the query does not directly expose the original answer, and any query
 889 from which the LLM can directly obtain the answer should be filtered out.
 890

891 D.4 ADVANTAGES OF THE VERIFICATION FRAMEWORK

893 Our approach provides three key advantages:

- 895 • **Superset Integrity:** Guarantees valid hierarchical progression (e.g., *column* \rightarrow *page* \rightarrow
 896 *website*) without logical gaps.
- 897 • **Strict Tool Dependency:** Enforces authentic multi-hop reasoning by eliminating solution
 898 shortcuts, ensuring mandatory tool-use.
- 899 • **Transparent Reasoning:** Offers full explainability through explicit relation paths (R^n).

901 Below shows the intermediate extension process from 1-hop tasks to 4-hop tasks, so as to highlight
 902 the increasing difficulty of the tasks:

903 Original Task (n=1)

905 **Input index (i_T^1):** 2024's Rising Content and Fastest Growing Skills for 2025
 906 **Query (q^1):** What percentage of non-job seekers see the value of AI upskilling according to
 907 '2024's Rising Content and Fastest Growing Skills for 2025'?
 908 **Answer :** 49%

910 Extended Task (n=2)

911 **New input index (i_T^2):** Coursera Blog
 912 **Intermediate Query (\hat{q}^2):** Which Coursera Blog article covers 2024 content trends and
 913 2025 growing skills, and is easily identifiable on the blog's homepage?
 914 **Query (q^2):** Referring to the article on the Coursera Blog that discusses 2024 content trends
 915 and 2025 growing skills, and can be uniquely identified from the blog homepage, what
 916 percentage of non-job seekers recognize the value of AI upskilling according to its findings?
 917 **Answer :** 49%

918
919

Extended Task (n=3)

920
921
922
923**New input index (i_T^3):** Coursera**Intermediate Query (\hat{q}^3):** What is the official information and content update section of the Coursera online learning platform, which is a content subset and can be accessed as a dedicated section on the main Coursera website?**Query (q^3):** Referring to the official information and content update section of the Coursera online learning platform, which is a content subset available as a dedicated section on the main Coursera website and features discussion of the 2024 content trends and 2025 growing skills, and can be uniquely identified from the platform's homepage, what percentage of non-job seekers recognize the value of AI upskilling according to its findings?**Answer :** 49%924
925
926
927928
929
930
931

Extended Task (n=4)

932
933
934
935
936**New input index (i_T^4):** Global online learning platform**Intermediate Query (\hat{q}^4):** Which global online learning platform collaborates with over 275 leading universities and companies to offer MOOCs and degree programs, enabling users to access and identify publicly available course content from authoritative educational institutions in one place?**Query (q^4):** Referring to the official information and content update section of the global online learning platform that collaborates with over 275 leading universities and companies to provide MOOCs and degree programs, and which offers a dedicated content subset as a section easily identifiable on its homepage—including discussion of the 2024 content trends and 2025 growing skills—what percentage of non-job seekers recognize the value of AI upskilling according to the findings available there?**Answer :** 49%944
945
946

E CORE PROMPTS

947
948

This section presents key prompts used in our framework.

949

E.1 ATOMIC TASK VERIFICATION

950
951

The following prompt is used in atomic task verification (Section 3.3):

952
953
954
955

Atomic task verification

Task: Evaluate the *consistency* between the golden answer (GA) and another answer (AA, either agent or LLM-generated) as follows:956
957
958

- **2 points (Fully Consistent):** AA and GA are semantically equivalent, even if phrased differently.
....(Example)....
- **1 point (Partially Consistent):** AA includes all GA information but adds valid extra details.
....(Example)....
- **0 points (Inconsistent):** AA omits key GA information or contradicts it.
....(Example)....

959
960
961
962
963
964
965
966
967

The criteria prioritize semantic equivalence while accommodating informative expansions or reductions.

968
969
970
971A task is retained as an atomic task if and only if the *AgentScore* strictly exceeds the *LLMScore*.

E.2 OPTIMIZED PROMPTS

The following prompts is optimized prompt mentioned in (Section 4.2):

972

Atomic Conclusion Extraction

973

Task: Extract standalone conclusions from document chunks meeting these criteria:

974

1. **Atomicity:** Extract only indivisible basic facts(*Example*)....
2. **Verifiability:** Include at least one definite identifier (numeric value, time, unique name) and reject vague expressions(*Example*)....
3. **Timeliness Handling:** Explicitly mark time ranges for time-sensitive information(*Example*)....
4. **Citation Integrity:** Embed complete content of cited references(*Example*)....

....(*Example*)....

982

983

984

985

986

987

Depth-wise Extension with i_T^{n+1} and R^{n+1}

988

Task: Identify a minimal unique superset for an input element based on its attributes, ensuring the superset+relationship uniquely points to the element.

989

....(*Example*)....

990

Relationship expression guidelines:

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

Logical Substitution: q^{n+1} as $f(\hat{q}^{n+1}, R^n)$

1005

Task: Substitute elements in core queries using auxiliary queries while preserving:

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

E.3 STRICT SUPERSET VERIFICATION

1024

1025

The following prompt is used in Appendix D.3.1:

1026
1027

Strict Superset Verification

1028
1029**Task:** Verify if index i_T^{n+1} uniquely determines subset i_T^n under relation R^n in given queries.**Criteria:**

1030

1. SupersetSubset Relationship:

1031
1032
1033

- i_T^{n+1} must be the index of a superset that properly contains i_T^n
- $i_T^{n+1} \not\approx i_T^n$ (excluding synonym pairs like CAR/AUTOMOBILE)

1034

2. Relationship Validity:

1035
1036

- The relationship R^n must explicitly and uniquely link the superset to the subset (no many-to-one mappings)

1037
1038

1039

F TOOL DETAILS

1040

Our main tools are implemented as follows:

1041

Wiki Search Tool: We use the same local WiKi Search tool as Search-R1 Jin et al. (2025a), which uses the 2018 Wikipedia dump Kaelbling et al. (1996) as the data source and E5 Wang et al. (2024a) as the retriever.

1042

Web Search Tool: We employ a mechanism to access the Google search engine for information retrieval. Specifically, Serpapi (<https://google.serper.dev/search>) is utilized to execute web search operations. The core parameters configured for Serpapi include the search query string and the specified number of results to be returned. In practice, searches are conducted using queries generated by the model, with the system set to retrieve the top 10 results for each query. Each result contains a title, a snippet, and the corresponding URL. This setup furnishes substantial support for subsequent analytical processes and decision-making actions.

1043

Web Page Crawling Tool: We implement a web page crawling tool with content summarization capabilities. The tool accepts three core parameters: target URLs, web search queries, and reasoning context. Each URL is processed using Jina (<https://jina.ai/>) to extract information. We then use the Qwen2.5-72B-instruct model to generate summaries for each crawled page. These summaries are concatenated based on the reasoning context to form the tool's output. Importantly, our summary prompt instructs the model to preserve relevant URLs, enabling iterative use of the crawling tool for deeper web exploration.

1044

PDF Tool: We use pdfplumber with multiprocessing to read text from PDFs in parallel, and PyMuPDF to extract images from PDFs.

1045

G FURTHER TRAINING DETAIL

1046

1063
1064
1065

For SFT training, we synthesize 3,202 multi-hop tasks and their trajectories and apply content masking to search tool contexts in these trajectories.

1066

1067

For RL training, we follow the Search-R1 Jin et al. (2025b) and use the 2018 Wikipedia dump as a knowledge source and the E5 embedding model as a retriever. For fair evaluation, we fix the retrieval depth to 3 passages for all methods. We merge the training sets of NQ and HotpotQA to form a unified dataset. Evaluation is conducted on the test or validation sets of three datasets to assess both in-domain and out-of-domain performance. Exact Match is used as the evaluation metric. In the PPO settings, we set the learning rate of the policy LLM to 1e-6 and that of the value LLM to 1e-5. Training is conducted for 500 steps, with warm-up ratios of 0.285 and 0.015 for the policy and value models, respectively. We use Generalized Advantage Estimation with parameters $\lambda = 1$ and $\gamma = 1$. We employ vLLM for efficient LLM rollouts, configured with a tensor parallelism degree of 1 and a GPU memory allocation ratio of 0.6. Our sampling strategy utilizes a temperature parameter of 1.0 and top-p threshold of 1.0. For policy optimization, we apply KL divergence regularization with coefficient $\pi=0.001$ and implement a clip ratio $\epsilon=0.2$. The action budget is constrained to 4, with a default retrieval depth of 3 passages per query.