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ABSTRACT

Agentic tasks, which require multistep problem solving with tool use and adap-
tive reasoning, are becoming increasingly central to the advancement of NLP and
AI. Although benchmarks such as GAIA and BrowseComp have advanced agent
evaluation, their scalability remains limited by the high cost of human annotation.
We introduce TASKCRAFT, the first automated workflow for generating scalable,
multitool, and verifiable agentic tasks of difficulty. TaskCraft progressively com-
plexifies atomic tasks through depth-based and width-based extensions, with in-
cremental validation via rejection sampling and LLM-based linguistic analysis,
ensuring both scalability and efficiency. The generated tasks enable trajectory
sampling within state-of-the-art workflows, supporting end-to-end SFT and RL
training. Experimental results on multiple LLMs show that TaskCraft data sub-
stantially improves multi-hop reasoning and agentic capabilities. Further scaling
with TaskCraft tasks and applying RL training yields additional gains, achieving
state-of-the-art performance on four agentic benchmarks. The resulting dataset
comprises 41k tool-intensive tasks across varied difficulty levels, including 12.6k
tool-interaction trajectories and 5k multihop decompositions.

1 INTRODUCTION

Agentic tasks, defined as autonomous multi-step problem solving that requires tool use and adap-
tive reasoning, are becoming increasingly central to AI and NLP. Recent progress in language
agents Significant-Gravitas (2023); Wu et al. (2023); Li et al. (2023); Zhou et al. (2023a;b; 2024)
empowered agentic workflows to address increasingly complex tasks. For example, ReAct Yao
et al. (2023) adopts the Thought–Action–Observation (TAO) paradigm, enabling workflows to solve
problems through iterative reasoning and repeated interaction with the environment.

To assess advanced agent capabilities, benchmarks such as GAIA Mialon et al. (2023), BrowseC-
omp Wei et al. (2025), and Humanity’s Last Exam (HLE) Phan et al. (2025) have been introduced.
GAIA evaluates reasoning, tool use, and web browsing through 466 real-world questions. BrowseC-
omp comprises 1,266 tasks that test an agent’s ability to retrieve and integrate complex online in-
formation. HLE includes 2,500 multimodal questions across more than 100 disciplines to measure
advanced reasoning and domain knowledge. Although these datasets have advanced agent evalua-
tion, their scalability is constrained by the high cost of manual annotation. For instance, constructing
HLE required 1,000 experts to label only 2,500 examples, making large-scale expansion impractical.

Previous work has explored the use of large language models to automatically generate queries,
addressing the scarcity and annotation cost of human-labeled data. These queries can then support
reasoning trajectory sampling for supervised fine-tuning (SFT) and Reinforcement Learning (RL). A
representative example is the Self-Instruct framework Wang et al. (2022), which demonstrated that
LLMs can generate high-quality, diverse instruction data for multiturn dialogues. However, these
methods are primarily designed for static instruction-following scenarios and fall short in modeling
agentic tasks that require interaction with external tools and environments. Consequently, such data
are insufficient for training or evaluating agents that operate in dynamic, real-world settings.

In this work, we introduce TASKCRAFT, the first agentic workflow for the automated generation of
agentic tasks (queries), with a particular focus on tasks that require chain-of-tool execution. Our
approach provides the following advantages:
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• Scalability. The workflow supports adaptive difficulty, multi-tool integration, and the gen-
eration of tasks beyond the capabilities of the task-generation agent, along with their cor-
responding trajectories.

• Efficient Verification. During each task extension, only incremental components undergo
agentic validation, eliminating the need for full verification of the extended task.

Our approach begins by generating atomic tasks solvable with single-tool invocations, then pro-
gressively increases their complexity through depth-based and width-based extensions. To ensure
task quality, we apply rejection sampling to retain cases where agents with external tools succeed
but LLMs fail, validating genuine tool necessity. LLM-based linguistic analysis accelerates valida-
tion by rapidly examining the incremental modifications introduced during task complexification,
without requiring full execution of the entire task.

Based on this method, we constructed a dataset of about 41k candidate tasks spanning different dif-
ficulty levels. It further contains roughly 12.6k tool-interaction trajectories and around 5k instances
of multi-hop sub-task decomposition.

To evaluate the effectiveness of our generated tasks, we build on the training data used in Tool-
Integrated Reasoning (TIR) models Schick et al. (2023); Shen et al. (2023); Wu et al. (2025a)
and augment it with TaskCraft-generated tasks for SFT and RL trajectory sampling. Incorporating
these tasks consistently improves TIR model performance across multiple benchmarks. On GAIA,
MHQA data yields 38.8%, which rises to 60.2% (+21.4) with 2.5k TaskCraft tasks and further to
60.8% (+22.0) with 8k TaskCraft tasks for RL, achieving state-of-the-art (SOTA) results among TIR
models and demonstrating the effectiveness of our approach.

2 NOTATIONS AND PRELIMINARY

To design tasks for agentic reasoning, we abstract the execution process of an agentic task. As shown
in figure 1, given a task q, tool execution involves two stages: locating the input index iT (e.g., a
stock data website) and operating the tool T on it (e.g., a browser accessing the website). Executing
T with iT yields the context C (e.g., stock price data), from which the LLM applies the relation R
specified in the task (e.g., identifying the highest stock price) to derive the final answer a.

An agentic task can thus be minimally defined by an input index iT and a relation R over the tool-
execution context. Since R depends on the retrieved context C, the tool must be executed before the
answer can be derived.

Task q Answer a
"Stock with highest
price increase
today?"

Input Index iT

Tool Execution

LLM Parsing

"Nasdaq Stock Market Data"​

"INTC (+10.44%), 
  NVDA(+4.11%), 
  TSLA(+1.65%) ..."

Tool Context C

"Highest stock price
increase"

Implicit Relation R

"INTC    
 (+10.44%)"

LLM 
Reasoning

Web Tool

Image Tool

PDF Tool

Tool List

LLM Reasoning

Figure 1: Execution flow of a single tool invocation.
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Tool List

Web Tool

Image Tool

PDF Tool

Music Tool

Extract context
using PDF tool

《Apple2025AnnualReport.pdf》

iT: "Apple2025AnnualReport"

What is the
relationship?

What is
the task?

q = f (iT,R)

...

2. Financial Highlights 

In the 2025 fiscal year, Apple's 

total revenue reached $383.3 billion, 

a 2% increase from the previous year. 

 • Net profit was $94.7 billion, 

with a gross margin of 44.3%. 

• Operating cash flow from operations 

amounted to $108.2 billion.  

Answer 

Context

Context

What's the
answers and
context content
in the PDF?

 R: "total revenue"

q: "In the financial report'
Apple2025Annual 

Report', what is total
revenue value in 2025?"

Figure 2: Atomic task generation. From an unlabeled corpus, we extract iT and derive textual
content C via tool execution. LLM identifies candidate answers a from C, infers their relationship
R, and constructs question q conditioned on iT and R.

Atomic Task

An atomic task is resolved with a single target tool invocation. To simplify, we disre-
gard search and file system operations, assuming a detailed input index iT enables retrieval
through finite navigation.

Given an answer a, the most direct approach to construct an atomic task involves prompting an LLM
to generate the corresponding question. However, questions produced in this manner often suffer
from low tool invocation rates, unpredictable difficulty levels, unregulated tool requirements, and
inconsistent verification complexity (see section 4.4 for more details).

To address these issues, we assume an ideal search engine that retrieves precise data based on iT
(e.g., paper titles, song titles). Under this assumption, we define a task as (q, a) = (fq(iT , R), a),
where fq is a sampling function guiding the LLM to generate q in natural language form by using
iT and R.

3 AUTOMATED TASK GENERATION WORKFLOW

In this section, we describe our task construction workflow, which proceeds in three stages: (1)
generating atomic tasks as the foundation, (2) progressively extending them to increase complexity,
and (3) verifying their validity through efficient checks.

3.1 ATOMIC TASK GENERATION

As figure 2 shown, we begin by compiling a corpus of unlabeled data aligned with the tool’s input
requirements. From this corpus, we extract iT and derive textual content C via tool execution.
For example, browsing, PDF, and image comprehension tools yield webpage titles, PDF names,
and image paths, from which we extract textual content C for answer sampling. We prompt an
LLM to identify key candidate answers a from C and infer their relationship R with C, ultimately
constructing question q conditioned on iT and R.

3.2 TASK EXTENSION

In order to increase task difficulty in a scalable way, we adopted two extended task strategies: the
depth-based extension and the width-based extension. (see Appendix E for prompts details)

Depth-based extension. We aim to construct tasks requiring multiple sequential tool executions,
where each step depends on the output of the previous one. To achieve this, a new sub-task must be
derived from a known task qn. The tool input index iT at each stage exhibits strong extensibility due
to (1) its frequent association with proper nouns, which are less likely to be memorized by LLMs,
and (2) its natural suitability for recursive definition. Specifically, a n-hop task (qn, a), consisting of
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a₂="Interstellar"

Atomic task (first hop) The second-hop task

    : What science fiction film
was released Nov 7, 2014?

i1T: Interstellar

 a1: Christopher
Nolan

i2T: science fiction film i2T: science fiction film 

a2: Interstellar

q1: Interstellar's
director?

Interstellar

 R1: The director of
Interstellar  R2: science fiction film

released Nov 7, 2014

q2: Who is the director of the
science fiction film, which

was released on Novermber 7,
2014?

The merged task

step3

step4

search agentstep1

step2

 R2: science fiction film
released Nov 7, 2014

(a) Depth-based extension

a1: $2.40

q1:What was Apple
Inc.'s Q1 2025 EPS?

q2: What's Apple Inc.'s P/E
ratio for the same period?

a2: 39.65

q1:What were Apple Inc.'s Q1
2025 EPS and P/E ratio for
the same period? 

LLM Merging 

a1:  $2.40, 39.65

Execute Tool Execute Tool

(b) Width-based extension

Figure 3: Strategy for task extension

a question qn and its corresponding answer a, is formulated as follows:
(qn, a) = (fq(i

n
T , R

n), a), (1)

To extend a n-hop task qn into a (n+1)-hop task qn+1, we first find a intermediate sub-task:
(q̂n+1, inT ) = (fq(i

n+1
T , Rn+1), inT ). (2)

Here, in+1
T (e.g., a song title) represents a new index derived from inT (e.g., a fragment of the song’s

lyrics) through reversible operations. To achieve this, a search agent identifies the title of superset
of inT on the web or within the file system and uses it as in+1

T . We instruct the agent to search for a
superset to reduce the risk of cyclic generation.

During the search, the agent retrieves the supersets text content C (e.g., the complete lyrics of the
song) with search tools. An LLM then analyzes C to infer its relationship Rn+1 to inT (e.g., that the
fragment corresponds to the third line of the lyrics).

Using this intermediate task, we can define the recursive formulation to obtain the (n+1)-hop task:
(qn+1, a) = (fm(qn, q̂n+1, inT ), a), (3)

where fm is a function that guides the LLM to generate qn+1 in natural language by substituting inT
in qn with q̂n+1.

Width-based extension. The goal of the width-based extension is to generate a new task that needs
to be decoupled into multiple sub-tasks to be completed. For simplicity, for two sub-tasks q1 −→ a1
and q2 −→ a2, the combined task qwidth can be represented as

(qwidth = q1 + q2) −→ a1 + a2, (4)
where the + indicates using LLM to merge and rephrase two question strings.

Trajectory generation. Two strategies exist for generating execution trajectories in this task: (1)
For simple tasks, such as atomic tasks, existing agents can directly infer and capture the trajectory,
including tool selection, parameters, return results, and plans. (2) For complex tasks, such as depth-
wise extension tasks, the sub-task trajectory is recorded while iteratively expanding and validating
new atomic tasks.
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3.3 TASK VERIFICATION

To ensure that the generated tasks demand agentic reasoning and that each expansion is effective, a
verification is performed after every step. Within this workflow, task verification can be carried out
in two phases:

Atomic task verification: An atomic task is defined as a simple agent task solvable via a single tool
call. During verification, we relax this definition slightly: for each candidate task, we evaluate the
task agent’s output within a limited number of tool-use steps (e.g., three) and compare it with an
infer-LLM separately. A judge-LLM verifies whether only the agent’s output contains the golden
answer, retaining only validated tasks. (see Appendix E for more details)

Task extension verification: This process is conducted purely through linguistic analysis without
agent involvement. During depth-wise extension, we first employ a judge-LLM to validate: (1)
whether the obtained in+1

T and its relation Rn+1 constitute a proper superset of inT with logically
sound relationships, and (2) whether the final input index inT in qn is appropriately replaced by q̂n+1

in the expanded task qn+1. Furthermore, an infer-LLM derives the merged task, while the judge-
LLM filters out tasks where the correct result is easily inferred, preventing information leakage that
could render the task trivially solvable after merging. (see Appendix D for more details).

This framework ensures efficiency by applying agent reasoning only in atomic task verification at
creation, while relying on LLM-based verification elsewhere for faster execution. It also enables
complex task generation beyond agent capabilities, with reverse reasoning providing supervisory
signals to enhance agent learning or reinforcement learning.

4 EXPERIMENTS

4.1 CORPUS CONSTRUCTION

W
eb

 To
ol

75
%

Im
age Tool

15%

Pdf Tool10%

Government
15%

Cultural
15%

Academic
14%

Economic
14%

Other
10%

political
7%

Report
9%

Paper
6%

Paper
6%

Report
4%

Figure 4: Corpus source distribution.

Table 1: Human evaluation for the generated
tasks.

Atomic

Linguistic fluency 91.7%
Accuracy 95.0%
Single answer 83.3%
Information leakage 11.7%

Depth-based extension
Extended validity 82.3%
Non-superset 8.5%

We collect seed documents across modalities to generate tool-specific atomic tasks, extracting key
insights for relevance. For instance, our PDF processor constructs atomic tasks by combining titles
with core findings, enhancing the need for agent-based PDF tool invocation. To support atomic task
generation, we constructed a dataset comprising webpages, PDF files, and images. Webpage data
constitutes the largest proportion (75%), sourced from up-to-date news across multiple domains.
Image data accounts for 15%, primarily derived from financial reports and research papers, with
filtering to retain images containing information beyond text. PDF data makes up 10%, originating
from English financial documents and academic publications.

Human Evaluation. To verify the validity of the results, we randomly sampled 60 atomic tasks
and 48 depth-based extension tasks using human evaluation and scored them. As shown in Table 1,
these results highlight the overall effectiveness and controllability of task generation.
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Answer : 
The live - action 
'Lilo & Stitch' was 
set to premiere on 
Disney+ in 2024. 
But by June that 
year, Disney hadn't 
announced its 
release date.  

   
   Task 2: For the classic Disney animated series featuring an alien experiment character and set in Hawaii, centered around the 
                theme of alien creatures and family bonds, when will its live-action spin-off movie be officially released?   

   Step 1 : Q : What is the classic Disney animated series about an alien experiment set in Hawaii?                 
                 A : Lilo & Stitch 

   Step 2 : Q : When will the live - action spin - off movie of "Lilo & Stitch" be officially released? 
                 A : The live - action "Lilo & Stitch" movie is scheduled to be released on May 23, 2025.  
    
   Answer : The official release date for the Disney live-action adaptation of Lilo & Stitch is May 23, 2025.

Answer : 
In April 2025 
OpenAI security 
docs, for SWE - 
Lancer Diamond 
(SWE Manager 
task) eval, o1 
model's pass@1 
rate was just 
0.14/14%, much 
lower than 
expected. 

   
   Task 1: In OpenAI's 2025 release, there's a security doc for new - gen models. It mentions SWE - Lancer Diamond benchmark. 
                What's the  highest pass@1 value? Which model & config reach it? 
   
   Step 1 : Q : In OpenAI's April 2025 release, what's the evaluation doc for new - gen models? 
                 A : OpenAI o3 and o4-mini System Card 

   Step 2 : Q : What does the SWE-Lancer Diamond benchmark in the OpenAI o3 and o4-mini System Card include? 
                 A : PDF context and some images.  

   Step 3 : Q : In Fig. 21, what's the highest top - 1 (pass@1) accuracy? Which models & configs achieve it?  
                 A : Top pass@1 accuracy: 50% (achieved by o3, deep research, and o4-mini browsing launch candidates).
 
   Answer : In OpenAI's 2025 o3 & o4-mini System Card, the SWE-Lancer Diamond benchmark shows a highest 
                   Pass@1 of 50% by o3,  deep research, and o4-mini in Browsing launch configs.

Figure 5: Generated case examples requiring multiple tool calls for completion.

4.2 ENHANCING TASK GENERATION EFFICIENCY VIA PROMPT LEARNING

As noted in section 3.3, both atomic task generation and task extension require validation, with
any failure leading to rejection. Reducing rejections and improving efficiency requires refining four
prompt designs that substantially affect the rejection rate:

• How to extract candidate answers from the corpus for atomic task generation (section 3.1).

• In depth-wise extension:

– how the agent identifies the next input index in+1
T relevant to the current document

and avoid cyclic reference;

– how to prompt the LLM to generate a relation Rn+1 so that the answer can be uniquely
derived from the context;

– How to integrate extended tasks and increase the complexity of existing questions,
i.e., (qn+1, a) = (fm(qn, q̂n+1,inT ), a), while maintaining clarity and coherence.

We adopt bootstrap few-shot learning Khattab et al. (2024) to optimize the four prompts. For atomic
task generation, the prompt is augmented with 20 randomly sampled examples. Multiple candidate
prompts are evaluated, and the one yielding the highest pass rate is selected. For task extension, we
focus on depth-wise augmentation and apply the same strategy using 10 sampled examples, refining
the prompts to maximize the number of reasoning hops.

To enhance the LLM’s capability in identifying intermediate objectives, we employ bootstrap few-
shot learning Khattab et al. (2024) to systematically optimize four prompts corresponding to key
challenges. Each prompt for atomic task generation is enhanced by appending 20 randomly sampled
examples. Various prompt configurations are evaluated iteratively based on pass rates to select
optimal examples. For depth-based extension, we optimize prompts using 10 randomly sampled
examples, refining them to maximize task complexity.

Table 2 examines atomic task generation and depth-wise task extension before and after prompt
learning, highlighting the role of generated tasks in enabling self-evolution within the workflow.
These results validate the effectiveness of generated task data in enhancing sampling efficiency and
supporting workflow adaptation. The optimized prompts are presented in Appendix E.2.
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Table 2: Effectiveness of generated task data in prompt learning and depth-wise extension. The
pass rate denotes the proportion of atomic tasks that successfully pass validation out of all generated
candidates. For depth-wise extension, the pass rate is defined as the fraction of successful extensions
out of six attempts.

Method Pass rate Time
Atomic Task 54.9% 29.1s
+ Optimization 68.1% 23.5s
Depth-wise@6 41.0% 31.5s
+ Optimization 51.2% 30.2s

Method SFT RL GAIA (%) WebWalker BrowserComp HLE
Qwen-2.5-7B-Instruct
R1-Searcher Song et al. (2025) ✓ ✓ 20.4 - - -
WebSailor Li et al. (2025a) ✓ ✓ 37.9 - 6.7 -
5k MHQA ✓ 18.6 20.2 4.5 3.6
7.5k MHQA ✓ 20.4 23.4 3.6 4.2
7.5k TaskCraft ✓ 36.3 55.0 12.4 16.4
5k MHQA + 2.5k TaskCraft ✓ 34.0 52.6 6.4 13.2
5k MHQA + 2.5k TaskCraft (SFT) + 8k TaskCraft (RL) ✓ ✓ 40.8 - 13.4 16.0
DeepSeek-R1-Distill-Llama-8B
7.5k MHQA ✓ 21.6 28.6 3.6 9.6
5k MHQA + 2.5k TaskCraft ✓ 33.0 59.4 7.6 12.8
QwQ-32B
Search-o1 Li et al. (2025b) ✓ ✓ 39.8 34.1 - -
SimpleDeepSearcher Sun et al. (2025) ✓ ✓ 50.5 - - -
WebSailor Li et al. (2025a) ✓ ✓ 50.5 - - -
WebThinker Li et al. (2025c) ✓ ✓ 48.5 46.5 - 15.8
WebDancer Wu et al. (2025a) ✓ ✓ 51.5 43.2 2.8 -
Qwen-2.5-32B-Instruct
Search-o1 Li et al. (2025b) ✓ ✓ 28.2 - - -
SimpleDeepSearcher Sun et al. (2025) ✓ ✓ 40.8 - - -
WebSailor Li et al. (2025a) ✓ ✓ 53.2 - 10.5 -
5k MHQA ✓ 38.8 36.8 5.6 10.8
7.5k MHQA ✓ 42.7 41.6 5.8 12.6
7.5k TaskCraft ✓ 60.2 - 22.4 20.2
5k MHQA + 2.5k TaskCraft ✓ 60.2 - 21.0 20.0
5k MHQA + 2.5k TaskCraft (SFT) + 8k TaskCraft (RL) ✓ ✓ 60.8 - 24.8 20.6

Table 3: Performance across agentic task benchmarks. Methods are grouped according to the base
model adopted.

4.3 AGENT FOUNDATION MODEL TRAINING

To validate the effectiveness of our synthetic tasks, we apply SFT and RL to refine a tool-integrated
reasoning (TIR) model in agentic scenarios. In TIR, the LLM output is trained with explicit tags
such as <tool>, <observation> or <think>, which structure the reasoning flow and trigger cor-
responding tool calls. We conduct experiments using models from different families and scales,
evaluating their performance on the GAIA Mialon et al. (2023) , WebWalker Wu et al. (2025b),
BrowserComp Wei et al. (2025), and HLE Phan et al. (2025).

For SFT learning, we sample solution trajectories for each task using Oagents Zhu et al. (2025),
and convert them into the TIR model format. To ensure the performance gains are not merely due
to learning the output format, we use two types of training data: 7.5k tasks sampled from existing
multi-hop QA datasets (denoted as MHQA, including HotpotQA and NQ), and 7.5k synthetic tasks
via our pipeline. To further enhance model performance, we incorporate additional generated data
and apply DAPO Yu et al. (2025) for continued RL training.

As shown in Table 3, pure 7.5k TaskCraft outperforms 7.5k MHQA across all benchmarks. Fur-
thermore, replacing 2.5k MHQA with 2.5k TaskCraft produces 5–16× larger gains, far exceeding
the improvements obtained by adding the same amount of MHQA. Even without RL, TaskCraft-
trained models already match SOTA systems that rely on both SFT and RL. When scaled with
more TaskCraft tasks and RL, performance further improves, reaching new SOTA. For example,
on WebWalker, our Qwen-2.5-7B-Instruct exceeds the previous best—including the much larger
QWQ-32B—by a substantial margin. These results confirm that TaskCraft is highly scalable and
substantially enhances agent model performance, enabling models to reach SOTA levels.
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4.4 EFFECTIVENESS OF TOOL CONTEXT IN CONSTRUCTING AGENTIC TASKS.

In atomic task generation, we incorporate the input index iT and the tool-answer relation R to
structure tasks. To evaluate its effectiveness, we conduct an ablation study where an LLM directly
generates single-tool tasks q without using iT or R. We assess performance via pass rate, resolution
time, average tool usage, and usage variance.

Table 4: The effectiveness of tool context.

Method Pass rate Time #Tool-use σ2

LLM only 18.5% 119.7s 2.8 1.2
Ours 43.0% 86.7s 2.1 0.4

Compared to direct GPT-4.1 prompting, our method significantly improves atomic task generation,
achieving higher success rates and faster task construction. It produces more atomic and consistent
tasks, with fewer and more stable tool invocations, highlighting the limitations of vanilla LLMs in
agentic task design and the robustness of our structured workflow.

4.5 SYNTHETIC TASKS ANALYSIS

Agent reasoning analysis. To practically assess task difficulty, we sample 1,000 tasks and deploy
both Smolagents Roucher et al. (2025) and Oagents Zhu et al. (2025), for execution and validation.
While both agents performed identical tasks, Oagents incorporated advanced tool capabilities for
refined analysis.
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Figure 6: score distribution comparison

Responses were evaluated by comparing the agents’ outputs to the golden answer, following a three-
point scoring scheme: 2 for fully correct responses, 1 for answers that included the golden answer
but contained additional information, and 0 for incorrect responses.

In figure 6, task failure rates increase from web pages to PDFs and then to images within PDFs,
indicating that multi-hop web search tasks are more manageable for agents, while complex compre-
hension challenges, such as PDF extraction and image interpretation, remain difficult. Additionally,
these results demonstrate that our generated tasks span varying difficulty levels, including those that
pose significant challenges for current agent capabilities.

Scalability of TaskCraft data. To evaluate TaskCraft’s scalability, we trained Qwen2.5-7B-instruct
models on 1k, 3k, and 5k randomly sampled tasks, using consistent settings and tested them on
GAIA-103. As shown in Table 5, the results exhibit a clear upward trend, suggesting that larger
TaskCraft training sets yield progressively better performance.

Table 5: GAIA performance by data size.

Data Size Pass@3 on GAIA-103
1,000 17.5%
3,000 31.1%
5,000 39.8%

Table 6: Accuracy comparison of Smolagents on
GAIA and synthetic tasks.

GAIA Level1 Level2 Level3 Avg.
54.71 43.02 26.92 44.20

Synthetic Task PDF html Image Avg.
54.4 50.7 22.1 42.4
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Comparison with the GAIA Dataset. Table 6 compares Smolagent’s accuracy on the GAIA bench-
mark and our generated dataset. The results show that tasks derived from diverse tool corpora reflect
GAIA’s stratified difficulty levels, with image understanding tasks presenting the greatest challenge
and yielding accuracy comparable to Level 3. Unlike GAIA, which relies heavily on manual anno-
tation, our framework automates task generation—eliminating the need for labor-intensive labeling
while preserving scalability and adaptability for agent self-evolution and optimization.

5 RELATED WORK

5.1 INSTRUCTION DATA GENERATION

Synthetic data has emerged as a promising solution for enhancing performance and enabling new
capabilities. STaR Zelikman et al. (2024) augments learning with chain-of-thought (CoT) ra-
tionales but often requires a substantial number of task queries beforehand. Methods such as
Self-Instruct Wang et al. (2022), Self-Chat Xu et al. (2023b), NuminaMath Li et al. (2024), and
OpenMathInstruct-2 Toshniwal et al. (2024) generate data from minimal seed examples using LLMs,
yet they struggle to extend task generation for multiple tool invocations. WizardLM Xu et al. (2023a)
employs Evol-Instruct to incrementally enhance instruction complexity. However, it relies primarily
on rule-based modifications, making its generated instructions unsuitable for agentic task scenarios.
MetaMath Yu et al. (2023) generates mathematical data by rewriting questions, but adapting agent
tasks to environmental feedback presents challenges beyond simple rephrasing. WebInstruct Yue
et al. (2024) extracts question-answer pairs from a pre-training corpus across multiple domains;
however, the generated questions often fail to incorporate tool utilization. AutoAct Qiao et al. (2024)
uses a self-planning mechanism to generate planning trajectories for QA tasks.

5.2 LANGUAGE AGENT

Existing research on agentic task execution advances along two main axes: role specialization and
functional partitioning. Role-based approaches, such as AutoGPT Significant-Gravitas (2023), Au-
toGen Wu et al. (2023), and Camel Li et al. (2023), organize collaborative agents by dynamically
assigning tools. In contrast, frameworks like Barcelona2, Omne, and AgentIM1 adopt functional
partitioning to optimize modular efficiency. SmolAgents Roucher et al. (2025) integrates ReAct Yao
et al. (2023) and CodeAct Wang et al. (2024b) into a hierarchical agent system for iterative code-
based task execution. Magnetic-One Fourney et al. (2024) enhances multimodal performance by
decoupling perception Yang et al. (2023a;b), planning Song et al. (2023); Tordesillas & How (2021),
and execution Qin et al. (2024); Wang et al. (2024b) modules. Dynamic orchestration mechanisms
address real-time adaptation and robustness. Trase-Agent Trase (2024) adapts strategies based on
feedback, while TapeAgents Bahdanau et al. (2024) uses asynchronous communication to improve
coordination. Studies show that stable sub-agent interactions outperform complex centralized or-
chestration. To advance autonomy, AutoAgent Tang et al. (2025) supports no-code agent customiza-
tion via natural language coordination, modular workflows, and self-managing file systems. Hybrid
systems like h2oGPTe-Agent H2O.ai (2024) explore multi-agent optimization, achieving strong re-
sults in code generation, though cross-modal bottlenecks remain a challenge.

6 CONCLUSION

We introduced TASKCRAFT, an automated workflow for scalable, multi-tool, and verifiable agentic
task generation. By applying depth-based and width-based extensions to atomic tasks, the frame-
work constructs hierarchically complex challenges with incremental validation. To enhance sam-
pling efficiency, we incorporated a self-evolving prompt optimization strategy inspired by boot-
strap few-shot learning. Experiments across multiple LLMs demonstrate that TaskCraft-generated
data significantly improves multi-hop reasoning and agentic capabilities, achieving performance
comparable to state-of-the-art RL models using only SFT. Further scaling and RL fine-tuning with
TaskCraft tasks yield additional gains, culminating in state-of-the-art results on four agentic bench-
marks. The final dataset comprises 41,000 tool-intensive tasks spanning diverse difficulty levels,
including 12,600 tool-interaction trajectories and 5,000 multi-hop decompositions.

1These are closed-source frameworks.
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7 ETHICS STATEMENT

This research adheres to the ethical guidelines outlined by the ICLR conference. The proposed
methods do not involve human subjects, personally identifiable information, or sensitive data. All
datasets used are publicly available and widely adopted in the research community. No data was
collected from vulnerable populations, and no deceptive practices were employed.

The model outputs were evaluated for fairness and robustness. We conducted thorough error anal-
ysis to ensure that the system does not propagate harmful biases or stereotypes. Where applicable,
mitigation strategies were applied to reduce unintended consequences.

Our work does not pose foreseeable risks to individuals or society. We acknowledge that any de-
ployment of agentic systems should be accompanied by safeguards to prevent misuse. We encourage
future researchers and practitioners to consider the broader societal impact of autonomous agents
and to adopt responsible AI practices.

8 REPRODUCIBILITY STATEMENT

To support faithful replication, we will release all artifacts referenced in this paper. Specifically:
(i) the complete TASKCRAFT workflow code, encompassing atomic task generation, depth/width
extensions, incremental validation, and rejection sampling, along with all associated prompts, tem-
plates, and data pre-/post-processing scripts; (ii) the full synthetic dataset comprising 41,000 tool-
intensive tasks, formatted in a standardized JSON schema; and (iii) 12,600 tool-interaction trajecto-
ries and 5,000 multi-hop decompositions, to be released subsequently.
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A USE OF LLMS

Large language models (LLMs) are used in this work exclusively for text polishing and language
refinement during the writing process. Specifically, LLMs assist in improving the fluency, clarity,
and conciseness of the writing.

LLMs are not used for any aspects of experimental design, methodological development or scientific
interpretation. All scientific contributions and innovations presented in this work are entirely human-
originated.

B DATA STATISTICS
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Figure 7: Analysis of all tasks.

As illustrated in figure 7, task generation exhibits a hierarchical decay pattern across all domains as
hop count increases, revealing distinct scalability trends:

• pdf tool domain: Shows gradual performance attenuation with hop depth, 1-hop tasks
accounting for 60.13% (8,115 tasks), decreasing to 13.49% (1,820 tasks) for 2-hop and
11.22% (1,514 tasks) for 3-hop. The sharp drop in 5-7 hop tasks (6.94% combined) indi-
cates limited deep-extension capability, yet surpasses other domains in depth scalability.

• image tool domain: Presents the most pronounced performance decay, with 1-3 hops com-
prising 87.10% (7,125/8,180 tasks) but only 5.71% (467 tasks) for 5-7 hops, highlighting
fundamental constraints in deep hierarchical task generation.

• web tool domain: In the web tool domain, 1-hop tasks dominate, constituting 70.01%
(13,467 tasks) of the total. However, this domain also has the highest absolute number of
deep extensions, with 5-7 hop tasks accounting for 5.66% (1,089 tasks).

Web Tool
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Figure 8: Distribution of atomic data.

Atomic task analysis. We collect data from webpages, PDF files, and images to support the gen-
eration of atomic tasks, which form the basis of the dataset, totaling 26,527 instances as shown in
figure 8.
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Among them, atomic conclusions from web-based tools account for the largest proportion, reaching
50.77%, with sources spanning multiple domains: academic (27.11%), cultural (6.42%), economic
(5.36%) and governmental (5.05%) resources. These derive from up-to-date news and curated online
materials for relevance.

Image-based tools contribute 18.64% of the data, extracting structured insights (e.g., key trends,
comparisons) from charts/tables in financial reports and research papers. Strict verification excludes
conclusions directly replicating source text to avoid redundancy.

PDF-based extraction accounts for 30.59%, supplementing the dataset with findings from financial
reports and academic publications. This multi-source approach enhances diversity while maintain-
ing consistency in atomic fact representation.

By systematically integrating these extraction methods, we ensure high-quality task generation, pro-
viding a robust foundation for downstream model training and optimization.

C EXPERIMENTS ON MULTI-HOP QA TASKS

We first evaluate our models across three established multi-hop question answering benchmarks:
HotpotQA Yang et al. (2018), Musique Trivedi et al. (2023), and Bamboogle Press et al. (2023).
These datasets present diverse challenges in reasoning and search, providing a robust evaluation
platform.

We compare the baseline workflow (Search-R1 Jin et al. (2025b), which leverages reinforcement
learning for LLM model optimization) with the agent workflow after applying SFT using the gener-
ated tasks.

Method HotpotQA Musique Bamboogle Avg.
Qwen2.5-3B-Base
Search-R1 0.284 0.049 0.088 0.140
+ SFT 0.344 0.111 0.280 0.245
Qwen2.5-3B-Instruct
Search-R1 0.324 0.103 0.264 0.230
+ SFT 0.340 0.104 0.264 0.236

Table 7: Performance across three datasets and two models. Avg. denotes average.

As shown in Table 7, our synthetic data proves valuable in SFT training, showing average per-
formance improvements of +14.0% (Qwen2.5-3B-Base) and +6.0% (Qwen2.5-3B-Instruct) com-
pared to their respective base workflows, validating our data generation approach. Compared to the
Search-R1 baseline, the trained model demonstrates substantial improvements. This suggests that
our synthetic data not only enhances immediate task execution but also optimizes RL initialization
effectively.

D VERIFICATION REQUIREMENTS FOR DEPTH-BASED EXTENSION

Effective n-hop task extension requires rigorous verification to ensure valid multi-hop reasoning.
The transformation must preserve superset validity:

q̂n+1 = f(in+1
T , Rn+1) → inT (5)

qn+1 = f(q̂n+1, Rn) −→ a (6)

Current depth-based extension methods often introduce two critical flaws when replacing tool inputs
iT without proper verification:

• Pseudo-Superset Task: Superficial substitutions that preserve semantic equivalence but
lack genuine superset relationships

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Information Leakage: Premature disclosure of information that should only emerge
through proper multi-step reasoning

These issues undermine the intended multi-hop reasoning process.

D.1 PSEUDO-SUPERSET TASK

A fundamental limitation arises when replacing iT with a semantically equivalent but non-superset
index in+1

T . Consider the following task extension example:

Original task

Input index (iT ): Travel Trends 2025 — Our Annual Report
Query (qn): How many travel trends for 2022 does ’Travel Trends 2025 — Our Annual
Report’ present?
Answer: 5

When the search agent retrieves the superset in+1
T of iT , it actually ends up retrieving the synonyms

of iT instead. Based on this, an intermediate task is derived:

Intermediate task

New input index (in+1
T ): 2025 Annual Travel Trends Report

Query (q̂n+1): What is the title of 2025 Annual Travel Trends Report?
Answer : Travel Trends 2025

Despite valid hop annotations, the intermediate question does not constitute an effective extension: it
does not represent a necessary tool-use step. The core issue lies in the absence of a genuine superset
relationship between inT and in+1

T , leading to superficial expansion.

Extended task

Query (qn+1): How many travel trends for 2022 does ’2025 Annual Travel Trends Report’
present?
Answer: 5

D.2 INFORMATION LEAKAGE

A second failure mode occurs when expanded tasks inadvertently expose original answers, enabling
large language models (LLMs) to bypass tool retrieval. For instance, consider the extended task:

Original task

Input index (iT ): Sports In Brief
Query (qn): What is the merger value of Charter and Cox in the Sports In Brief?
Answer: 34.5B USD

Intermediate task

New input index (in+1
T ): AP News

Query (q̂n+1): What is the section in AP News that updates sports news daily?
Answer : Sports In Brief

Extended task

Query (qn+1): In the AP Sports daily summary, Charter and Cox’s proposed merger is
valued at approximately $34.5 billion. What is the exact amount?
Answer : 34.5B USD
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While qn+1 appropriately conceals the previous inT (”Sports In Brief”), it directly reveals the answer
”34.5B USD”, allowing the LLM to bypass the intended retrieval process. This compromises the
essential tool dependency required for multi-hop task answering.

D.3 VERIFICATION FOR TASK EXTENSION

To address these challenges, we propose a rigorous verification framework to ensure the validity of
in+1
T , q̂n+1 and qn+1 in task extension.

D.3.1 STRICT SUPERSET VERIFICATION

in+1
T must be the index of a strict superset of inT , and the relationship can be formalized as:

q̂n+1 = f(in+1
T , Rn+1) → inT (7)

where Rn+1 denotes hierarchical relations (e.g., contains, part of ). Valid extensions must introduce
genuine depth, such as ”Sports In Brief” → ”AP News” (relation: the part that updates sports news
daily), while rejecting synonymous substitutions. Additionally, invalid extensions that allow the
LLM to derive inT directly should be excluded—ensuring the intermediate task q̂n+1 requires tool
use.

D.3.2 INFORMATION LEAKAGE VERIFICATION

qn+1 = f(q̂n+1, Rn) −→ a (8)

The extended query qn+1 must adhere to the information-sealing principle to ensure proper tool-use
reasoning. This requires that the query does not directly expose the original answer, and any query
from which the LLM can directly obtain the answer should be filtered out.

D.4 ADVANTAGES OF THE VERIFICATION FRAMEWORK

Our approach provides three key advantages:

• Superset Integrity: Guarantees valid hierarchical progression (e.g., column → page →
website) without logical gaps.

• Strict Tool Dependency: Enforces authentic multi-hop reasoning by eliminating solution
shortcuts, ensuring mandatory tool-use.

• Transparent Reasoning: Offers full explainability through explicit relation paths (Rn).

Below shows the intermediate extension process from 1-hop tasks to 4-hop tasks, so as to highlight
the increasing difficulty of the tasks:

Original Task (n=1)

Input index (i1T ): 2024’s Rising Content and Fastest Growing Skills for 2025
Query (q1): What percentage of non-job seekers see the value of AI upskilling according to
’2024’s Rising Content and Fastest Growing Skills for 2025’?
Answer : 49%

Extended Task (n=2)

New input index (i2T ): Coursera Blog
Intermediate Query (q̂2): Which Coursera Blog article covers 2024 content trends and
2025 growing skills, and is easily identifiable on the blog’s homepage?
Query (q2): Referring to the article on the Coursera Blog that discusses 2024 content trends
and 2025 growing skills, and can be uniquely identified from the blog homepage, what
percentage of non-job seekers recognize the value of AI upskilling according to its findings?
Answer : 49%
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Extended Task (n=3)

New input index (i3T ): Coursera
Intermediate Query (q̂3): What is the official information and content update section of
the Coursera online learning platform, which is a content subset and can be accessed as a
dedicated section on the main Coursera website?
Query (q3): Referring to the official information and content update section of the Coursera
online learning platform, which is a content subset available as a dedicated section on the
main Coursera website and features discussion of the 2024 content trends and 2025 growing
skills, and can be uniquely identified from the platform’s homepage, what percentage of
non-job seekers recognize the value of AI upskilling according to its findings?
Answer : 49%

Extended Task (n=4)

New input index (i4T ): Global online learning platform
Intermediate Query (q̂4): Which global online learning platform collaborates with over
275 leading universities and companies to offer MOOCs and degree programs, enabling
users to access and identify publicly available course content from authoritative educational
institutions in one place?
Query (q4): Referring to the official information and content update section of the global
online learning platform that collaborates with over 275 leading universities and companies
to provide MOOCs and degree programs, and which offers a dedicated content subset as a
section easily identifiable on its homepage—including discussion of the 2024 content trends
and 2025 growing skills—what percentage of non-job seekers recognize the value of AI
upskilling according to the findings available there?
Answer : 49%

E CORE PROMPTS

This section presents key prompts used in our framework.

E.1 ATOMIC TASK VERIFICATION

The following prompt is used in atomic task verification (Section 3.3):

Atomic task verification

Task: Evaluate the consistency between the golden answer (GA) and another answer (AA,
either agent or LLM-generated) as follows:

• 2 points (Fully Consistent): AA and GA are semantically equivalent, even if
phrased differently.
....(Example)....

• 1 point (Partially Consistent): AA includes all GA information but adds valid
extra details.
....(Example)....

• 0 points (Inconsistent): AA omits key GA information or contradicts it.
....(Example)....

The criteria prioritize semantic equivalence while accommodating informative expansions
or reductions.
......

A task is retained as an atomic task if and only if the AgentScore strictly exceeds the LLMScore.

E.2 OPTIMIZED PROMPTS

The following prompts is optimized prompt mentioned in (Section 4.2):
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Atomic Conclusion Extraction

Task: Extract standalone conclusions from document chunks meeting these criteria:

1. Atomicity: Extract only indivisible basic facts ....(Example)....

2. Verifiability: Include at least one definite identifier (numeric value, time, unique
name) and reject vague expressions ....(Example)....

3. Timeliness Handling: Explicitly mark time ranges for time-sensitive information
....(Example)....

4. Citation Integrity: Embed complete content of cited references ....(Example)....

....(Example)....

Depth-wise Extension with in+1
T and Rn+1

Task: Identify a minimal unique superset for an input element based on its attributes, ensur-
ing the superset+relationship uniquely points to the element.
....(Example)....
Relationship expression guidelines:

1. Clearly show hierarchical/ownership. Indicate position for series sub-items; clarify
ownership for parts of a superset

2. Specify input content’s positioning (e.g., time range, publication field, role in su-
perset)

3. Use research/industry standard wording
4. Provide only necessary associations

....(Example)....

Logical Substitution: qn+1 as f(q̂n+1,Rn)

Task: Substitute elements in core queries using auxiliary queries while preserving:

1. Complexity Balance: The new query should be slightly more complex than the
original core Query and require more steps to solve. But do not make too many
changes to the core query.

2. Answer Uniqueness: The new query should point to the unique answer: golden
answer, and should not point to other answers.

3. Answer Concealment: The new query must not reveal information about the
golden answer.

4. Natural Language Polish: After merging, polish the question to make it conform
to human expression habits without changing the original meaning. Do not modify
the proper nouns appearing in it.

....(Example)....

E.3 STRICT SUPERSET VERIFICATION

The following prompt is used in Appendix D.3.1:
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Strict Superset Verification

Task: Verify if index in+1
T uniquely determines subset inT under relation Rn in given queries.

Criteria:
1. SupersetSubset Relationship:

• in+1
T must be the index of a superset that properly contains inT

• in+1
T ̸≈ inT (excluding synonym pairs like CAR/AUTOMOBILE)

2. Relationship Validity:
• The relationship Rn must explicitly and uniquely link the superset to the sub-

set (no many-to-one mappings)
......

F TOOL DETAILS

Our main tools are implemented as follows:

Wiki Search Tool: We use the same local WiKi Search tool as Search-R1 Jin et al. (2025a), which
uses the 2018 Wikipedia dump Kaelbling et al. (1996) as the data source and E5 Wang et al. (2024a)
as the retriever.

Web Search Tool: We employ a mechanism to access the Google search engine for information
retrieval. Specifically, Serpapi (https://google.serper.dev/search) is utilized to execute web
search operations. The core parameters configured for Serpapi include the search query string and
the specified number of results to be returned. In practice, searches are conducted using queries
generated by the model, with the system set to retrieve the top 10 results for each query. Each result
contains a title, a snippet, and the corresponding URL. This setup furnishes substantial support for
subsequent analytical processes and decision-making actions.

Web Page Crawling Tool: We implement a web page crawling tool with content summarization
capabilities. The tool accepts three core parameters: target URLs, web search queries, and reasoning
context. Each URL is processed using Jina (https://jina.ai/) to extract information. We then use
the Qwen2.5-72B-instruct model to generate summaries for each crawled page. These summaries
are concatenated based on the reasoning context to form the tool’s output. Importantly, our summary
prompt instructs the model to preserve relevant URLs, enabling iterative use of the crawling tool for
deeper web exploration.

PDF Tool: We use pdfplumber with multiprocessing to read text from PDFs in parallel, and
PyMuPDF to extract images from PDFs.

G FURTHER TRAINING DETAIL

For SFT training, we synthesize 3,202 multi-hop tasks and their trajectories and apply content mask-
ing to search tool contexts in these trajectories.

For RL training, we follow the Search-R1 Jin et al. (2025b) and use the 2018 Wikipedia dump as a
knowledge source and the E5 embedding model as a retriever. For fair evaluation, we fix the retrieval
depth to 3 passages for all methods. We merge the training sets of NQ and HotpotQA to form a
unified dataset. Evaluation is conducted on the test or validation sets of three datasets to assess both
in-domain and out-of-domain performance. Exact Match is used as the evaluation metric. In the
PPO settings, we set the learning rate of the policy LLM to 1e-6 and that of the value LLM to 1e-5.
Training is conducted for 500 steps, with warm-up ratios of 0.285 and 0.015 for the policy and value
models, respectively. We use Generalized Advantage Estimation with parameters λ = 1 and γ = 1.
We employ vLLM for efficient LLM rollouts, configured with a tensor parallelism degree of 1 and
a GPU memory allocation ratio of 0.6. Our sampling strategy utilizes a temperature parameter of
1.0 and top-p threshold of 1.0. For policy optimization, we apply KL divergence regularization with
coefficient π=0.001 and implement a clip ratio ϵ=0.2. The action budget is constrained to 4, with a
default retrieval depth of 3 passages per query.
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