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Abstract
Large language models (LLMs) enhanced with retrieval-augmented
generation (RAG) have introduced a new paradigm for web search.
However, the limited context awareness of LLMs degrades their
performance on RAG tasks. Existing methods to enhance context
awareness are often inefficient, incurring time or memory overhead
during inference, and many are tailored to specific position em-
beddings. In this paper, we propose Position-Embedding-Agnostic
attention Re-weighting (PEAR), which enhances the context aware-
ness of LLMs with zero inference overhead. Specifically, on a proxy
task focused on context copying, we first detect heads which sup-
press the models’ context awareness, thereby diminishing RAG
performance. To weaken the impact of these heads, we re-weight
their outputs with learnable coefficients. The LLM (with frozen pa-
rameters) is optimized by adjusting these coefficients to minimize
loss on the proxy task. During inference, the optimized coefficients
are fixed to re-weight these heads, regardless of the specific task at
hand. Our proposed PEAR offers two major advantages over previ-
ous approaches: (1) It introduces zero additional inference overhead
in terms of memory usage or inference time, while outperforming
competitive baselines in accuracy and efficiency across various
RAG tasks. (2) It is independent of position embedding algorithms,
ensuring broader applicability. We promise to open our code1.

CCS Concepts
• Computing methodologies → Natural language generation.
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1 Introduction
Retrieval-augmented generation (RAG, [11]) is widely utilized to
enhance large language models (LLMs) on tasks like question an-
swering. Typically, an RAG framework retrieves documents related
to users’ questions from external knowledge bases or web pages,
and then arranges them in the LLMs’ context as the references to
form answers. This LLM-based question-answering paradigm has
given rise to a promising web search paradigm [19, 22].

Recent research demonstrated LLMs’ limitations on context
awareness, especially when processing long context. These lim-
itations in LLMs’ context awareness challenge the effectiveness and
robustness of RAG frameworks. For instance, Liu et al. [13] found
that when performing in-context retrieval tasks, LLMs exhibit in-
sensitivity to information located in the middle of the context, a
phenomenon referred to as “lost in the middle.” Chen et al. [2]
identified a mathematical property in rotary position embedding
(RoPE, [27]) that results in LLMs assigning less attention to spe-
cific contextual positions, leading to varying context awareness
throughout the entire context.

Existing approaches to enhancing LLMs’ context awareness are
inefficient in terms of memory and time cost. Some works [23]
segment and re-arrange the input context, with the assumption
that placing important information in positions the model attends
well can improve RAG’s effectiveness. This method incurs addi-
tional inference time costs, negatively affecting user experience, as
it requires multiple forward passes to obtain attention weights for
guiding segment rearrangement. Another group of studies modi-
fies the model’s working mechanism, specifically by employing a
set of position embeddings to adjust the attention preferences of
attention heads. While these methods are input-agnostic, they also
lack efficiency due to “parallelable” forward passes [2] with slightly
increased time cost in additional aggregation operation, or disrupt
the parallelism of multi-head attention (resulting in increased time
cost) to achieve low memory cost [12], alternatively, still requiring
“non-parallelable” multiple forward passes [36] which is similar
to [23]. Moreover, these studies are mainly designed for RoPE and
face challenges in generalizing to other position embedding algo-
rithms, limiting their broader applications.

In this paper, we introduce Position-Embedding-Agnostic at-
tention head Re-weighting (PEAR), which unleashes the context
awareness of LLMs, thereby improving their RAG performance.
PEAR achieves zero additional overhead in memory usage and in-
ference time. Our motivation relies on the following facts:

(1) Prior research [15, 17] detected some attention heads de-
creasing the language model’s prediction confidence by
suppressing the flow of contextual information to the fi-
nal position within the context, where the output is to be
generated.

1
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Table 1: An example input for the proxy task, where unique
letters representing distinct tokens, with 𝑛 = 4. For example,
at position 𝑛 + 𝑖 = 5 (with 𝑖 = 1), when an LLM receives
“ABCDA” as input, it is likely to output “B.” This happens
because the last occurrence of “A” in the preceding context
is followed by “B.” If a head suppresses copying “B” from
position 𝑖 + 1 = 2 to position 𝑛 + 𝑖 = 5, it could negatively
impact RAG performance.

Input Sequence A B C D A B C D
Position Index 1 2 3 4 5 6 7 8

(2) This suppression negatively impacts LLMs’ context aware-
ness, particularly abilities in in-context retrieval and con-
text integration, which are crucial for effective RAG.

As a result, we contend that such suppression mechanism in
LLMs can be safely2 weakened in RAG scenarios, thereby improving
the RAG performance of LLMs. Our proposed PEAR includes two
stages:

In the first stage, we discover attention heads negatively affect
performance on a proxy task. The proxy task involves feeding the
model a random token sequence of length 2𝑛, which consists of a
duplicated sub-sequence of length 𝑛. Table 1 illustrates an example
input. At position 𝑛 + 𝑖 , the model typically predicts the token from
position 𝑖 + 1, as the natural continuation for a semantically mean-
ingless context is to copy the existing in-context token pattern [16].
The negatively impactful attention heads are discovered using the
path patching technique [31]. Since this proxy task is free from
semantic bias and requires both in-context retrieval and generation
based on the context—fundamental capacities for RAG, we refer to
discovered heads as RAG-suppression heads3.

In the second stage, we weaken detected RAG-suppression heads
by re-weighting their outputs using learnable coefficients. These
coefficients are optimized by minimizing the LLM’s loss on the
proxy task, with the objective of next-token prediction in a super-
vised fine-tuning process (loss is computed only for the second
half of the random-token sequence). During the optimization, the
original LLM parameters are frozen. Intuitively, most of the learned
coefficients are optimized to values less than one, reducing the
relative weight of these heads compared to others in the same
layer when multi-head outputs are aggregated. Consequently, their
influence during the forward pass is weakened. Once optimized,
the coefficients remain fixed and are agnostic to downstream RAG
tasks.

PEAR achieves two-fold contributions:
(1) PEAR introduces zero inference overhead in terms of both

memory usage and inference time—an advantage not achieved
by competitive baselines. Across a wide range of RAG tasks,
PEAR surpasses previous works in both efficiency and ac-
curacy.

2“Safely” means that the parametric knowledge and fundamental capabilities remain
unaffected. Detailed experimental results are presented in Section 5.4.
3We do not imply that these heads hinder RAG through the same mechanisms (dis-
cussed in Section 4.1).

(2) PEAR is independent of specific position embedding al-
gorithms, making it broadly applicable. We demonstrate
that PEAR enhances the RAG performance of various LLMs
using distinct position embeddings (e.g., learnable embed-
dings [35], RoPE [27], and Alibi [24]).

2 Related Works
In this section, we discuss two research areas closely related to this
paper: enhancements to LLMs’ context awareness and studies on
mechanistic interpretability.

2.1 Context awareness enhancement
Many studies highlighted limitations in LLMs’ context awareness.
For example, Lu et al. [14] found that the order of in-context learn-
ing (ICL) demonstrations significantly affects ICL accuracy. Liu
et al. [13] demonstrated that LLMs exhibit stronger awareness of
content at the beginning and end of context but weaker awareness
in the middle, a phenomenon termed “lost in the middle.” Chen et
al. [2] proposed that LLMs’ context awareness fluctuates across
token positions due to mathematical properties in rotary position
embedding. These challenges impact applications like RAG that
rely on robust context awareness.

Several approaches have been proposed to tackle these issues.
However, existing methods often come at the cost of increased
inference time or memory overhead. Attention Buckets (AB, [2])
enhances context awareness by integrating positional information
from a set of various RoPE angles, but it incurs significant infer-
ence overhead due to multiple parallel forward passes, leading to
increased memory usage. Ms-PoE [36] calculates distinct re-scaling
factors for each attention head, requiring multiple non-parallel
forward passes that introduce noticeable time delays. MoICE [12]
builds on Attention Buckets by employing a Mixture-of-Experts
(MoE, [26]) approach, treating each RoPE embedding as a unique
in-context expert, thereby limiting extra attention computations to
within each layer rather than across the entire forward pass.

Our proposed method, PEAR, enhances context awareness by
weakening the RAG-suppression heads during the forward pass. It
introduces no additional modules or extra forward passes, resulting
in zero additional overhead in memory usage and inference time.
Additionally, PEAR operates independently of position embedding
algorithms, making it applicable to more LLMs compared to existing
approaches.

2.2 Mechanistic interpretability
Investigating the role of a specific head during a forward pass is
one of key focuses in mechanistic interpretability research. Wang
et al. [31] reported that in GPT-2 small [25], the 7th head in the
10th layer, termed the “negative head,” significantly hinders answer
copying from context. McDougall et al. [17] comprehensively stud-
ied this head, suggesting it functions as a self-repair mechanism to
prevent overconfident outputs. Lv et al. [15] found that negative
heads exist across various LLMs, employing different mechanisms
to mitigate overconfidence, such as generating counteracting vec-
tors or introducing high-frequency tokens’ information. This paper
does not examine what specific mechanisms the heads employ

2
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Figure 1: An illustration of causal mediation methods for
circuit discovery.

to suppress RAG performance but instead aims to discover and
suppress heads negatively impactful across general RAG tasks.

Yu et al. [33] detected two types of heads in Transformer-based
language models during counter-factual task execution (where
counter-factual knowledge is provided in the context): memory
heads, which prefer to use stored knowledge, and in-context heads,
which prefer to use facts in the context. However, when re-weighting
these heads, only reducing the weight of memory heads successfully
enhances the model’s preference of using contextual knowledge,
while enhancing or mitigating in-context heads does not bring
much influence. Moreover, existing results only demonstrate effec-
tiveness of these heads in the “country-capital” task (i.e., prompting
the model to answer the capital city of the given country). Addi-
tionally, there is no evidence suggesting that re-weighting these
heads improves the comprehensive context awareness of LLMs. We
owe these failures to their head detection method, and the same
re-weighting value applied for all the heads of the same type. By
contrast, in our proposed PEAR, each individual head is re-weighted
by a specific learnable coefficient, which is optimized through a
proxy task independent of downstream tasks.

Wu et al. [32] also relates to head re-weighting. They reported
that diminishing induction heads [21], which are known for han-
dling context copying, can impair LLMs’ long-context performance.
However, they did not offer a solution to improve context aware-
ness.

3 Preliminaries: Discovery of influential
attention heads

For a particular task, research has shown that only a sparse sub-
network is activated during the forward pass in Transformer lan-
guage models [6, 18, 31]. Such a sub-network is referred to as a
circuit [20]. Discovering circuits provides interpretability into the
working mechanisms of language models and offers insights for
model enhancement.

The primary method for circuit discovery is based on causal me-
diation analysis. The core idea is to view the forward computation
graph as a causal graph, where the output of one module serves
as the input for the next. In such a case, if the output of a module
is changed, the computation of subsequent modules in the causal
graph is also affected, as their inputs change.

In this paper, we primarily focus on analyzing the working mech-
anism of attention heads in language models. We briefly introduce
a paradigm from a series of works [30, 31, 34] that discovers which
attention heads are crucial for processing an input sequence 𝑋 of
length 𝑛. Suppose the language model consists of 𝐿 layers, with 𝐻
attention heads per layer. Let 𝐴(𝑙,ℎ) denote the ℎ-th attention head
in the 𝑙-th layer, and let its outputs be denoted by a(𝑙,ℎ) ∈ R𝑛×𝑑 .
We use a(𝑙,ℎ)

𝑖
∈ R𝑑 , where 1 ≤ 𝑖 ≤ 𝑛, to represent the output at

position 𝑖 . The discovery paradigm typically includes three steps,
as illustrated in Figure 1:

(1) In the normal run, with an input sequence 𝑋 (e.g., 𝑋 =“The
capital of France is”), a(𝑙,ℎ) for every attention head are
recorded.

(2) In the perturbed run, the forward computation runs using
the same input sequence 𝑋 , but with some mediation. This
mediation either changes the discrete input tokens within
𝑋 by substituting specific keywords (e.g., replacing “France”
with “England”), or corrupts the hidden states by adding
noise. The modified ã(𝑙,ℎ) for each attention head are then
recorded.

(3) We conduct an intervention on a particular head 𝐴(𝑙,ℎ) at a
specific position 𝑖 (e.g., the country token position in above
examples) in the normal run by substituting its outputs with
ã(𝑙,ℎ)
𝑖

. The subsequent activations in the computational
graph are then recomputed (these reccomputed activations
are denoted as ā in the figure). If the language model’s
final output matches the intervention’s expectation (e.g.,
the predicted token changes from "Paris" to "London"), the
head 𝐴(𝑙,ℎ) is considered to have a positive influence on
the processing of sequence 𝑋 .

This overview outlines a simplified discovery paradigm; detailed
measurements of intervention impact are tailored to specific exper-
imental needs.

4 Methodology
In this section, we provide a detailed introduction to our proposed
method, PEAR, which is executed in two stages: (1) discovering
RAG-suppression heads and (2) re-weighting coefficient learning.
The first stage discovers attention heads that have a negative im-
pact on general RAG tasks based on circuit discovery for a proxy
task. In the second stage, we optimize learnable coefficients to re-
weight the outputs of the discovered heads, aiming to mitigate their
RAG-suppression effect. These coefficients remain fixed during in-
ference, irrespective of the specific input. Figure 2 demonstrates
the overview of PEAR.

3
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Figure 2: Suppose in layer 𝑙 , 𝐴(𝑙,ℎ) is discovered as a RAG-
suppression head. PEAR re-weights its output with a learn-
able scalar 𝜏 (𝑙,ℎ) .

4.1 Discovery of RAG-suppression heads
We set up a proxy task and use this task as input for circuit discov-
ery algorithms to discover influential attention heads that hamper
LLMs’ performance on general RAG tasks.

Task Input. For each input sample, we create a sequence of
length 𝑛, denoted as {𝑥1, . . . , 𝑥𝑛}, where each 𝑥𝑖 is a randomly
sampled token from the vocabulary. This sequence is repeated
to form an input sample 𝑋 = {𝑥1, . . . , 𝑥2𝑛}, with 𝑥𝑖 = 𝑥𝑖+𝑛 for
𝑖 ∈ [1, 𝑛]. Research has shown that, in semantically meaningless
contexts, models tend to check if the last few tokens in the sequence
appeared previously and copy the suffix of their last appearance as
the output [16, 21]. We consider an arbitrary LLM to successfully
perform the proxy task when, at position 𝑛 + 𝑖 , the token with the
highest output logits is 𝑥𝑖+1. Table 1 shows an example input.

This proxy task exhibits two key characteristics that facilitate
the effective discovery of RAG-related heads:

(1) Completing the proxy task requires LLM capabilities es-
sential for a robust RAG framework, such as in-context
retrieval and generation based on context, making it suit-
able for discovering RAG-related attention heads.

(2) The random token composition in 𝑋 ensures semantically
meaningless input, minimizing knowledge bias and thereby
ensuring the discovered attention heads to have general
RAG-related functions, independent of specific downstream
tasks.

Head discovery. We previously outlined the head discovery
algorithm in Section 3. Here, we provide additional practical details
for the first stage of PEAR.

(1) During the normal run, the input sequences 𝑋 are con-
structed as above described, with a length of 2𝑛.

(2) In the perturbed run, we do not modify the input or hidden
states; instead, we average the outputs of each attention
head along the sequence dimension and record the resulting
mean vectors.

(3) We focus on detecting changes in logits at position 2𝑛 − 1,
where themodel is expected to copy the token from position
𝑛. Consequently, we intervene at a(𝑙,ℎ)2𝑛−1 by replacing it with
the saved mean vectors.

(4) Our intervention measurements are based on the logits
difference, defined as:

Δ𝜋 (𝑙,ℎ) =
�̃�
(𝑙,ℎ)
2𝑛−1 [𝑥𝑛]
𝜋2𝑛−1 [𝑥𝑛]

− 1, (1)

where 𝜋2𝑛−1 represents the final logits at position 2𝑛 − 1
during the normal run, and [𝑥𝑛] denotes selecting the value
of the token 𝑥𝑛 from the logits. �̃� (𝑙,ℎ) indicates the logits
after intervention on𝐴(𝑙,ℎ) . We contend that a higher value
of this metric suggests a stronger suppression effect from
𝐴(𝑙,ℎ) .

(5) For an arbitrary LLM, we repeat the proxy task multiple
times with varying values of 𝑛 to mitigate bias in context
length. The final metric score for each head is the average
of the results from these repeated experiments. The detailed
setup is provided in Section 5.1.

(6) Based on the final metric scores, we identify the heads with
the top-𝐾 most negative influence on the proxy task as a
set S, defined as:

S = {𝐴(𝑙,ℎ) |𝐴(𝑙,ℎ) has one of the top-𝐾 values of Δ𝜋 (𝑙,ℎ) }.
These heads are collectively referred to as RAG-suppression
heads.

Notably, we do not suggest that the heads we discovered sup-
pressing RAG tasks operate through the same mechanisms. In Sec-
tion 5.6, we demonstrate that these heads may serve various func-
tions, such as copy suppression [17], incorporating high-frequency
token information [15], or influencing the behavior of other heads
to indirectly affect outputs [31]. Analyzing the specific mechanism
for each head is not the focus of this paper and is left for future
works.

4.2 Re-weighting coefficient learning
Optimization. In standard multi-head attention mechanisms,

the outputs of all attention heads are aggregated with equal weight-
ing.We propose that re-weighting these relative aggregationweights
to values less than 1 can mitigate the RAG-suppression effect from
our discovered heads. To implement this, we modify the forward
computation by multiplying the output of each head, 𝐴(𝑙,ℎ) , in the
set S by a learnable scalar, 𝜏 (𝑙,ℎ) , referred to as the re-weighting
coefficient. The modified output for each head is:

a(𝑙,ℎ) = 𝜏 (𝑙,ℎ) ∗ a(𝑙,ℎ) , for each 𝐴(𝑙,ℎ) ∈ S. (2)
To optimize these re-weighting coefficients for RAG-suppression

heads, we freeze the original parameters of the LLM and train
only the re-weighting coefficients to minimize the loss on a proxy

4
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Table 2: Discovered RAG-suppression heads in Llama2-Chat-7B-4k, OPT-6.7B-2k and Baichuan-13B-chat-4k, respectively.

Model Name (𝑙, ℎ) for discovered 𝐴(𝑙,ℎ)

(26, 28), (11, 6), (14, 15), (30, 9), (18, 9), (15, 10), (13, 9), (12, 10), (15, 14), (10, 18),
Llama2-7B-chat-4k (15, 25), (19, 15), (29, 15), (14, 0), (10, 2), (31, 17), (8, 22), (17, 0), (20, 26), (9, 13),

(13, 14), (7, 9), (10, 1), (15, 12), (11, 9), (15, 7), (9, 16), (26, 9), (28, 22), (15, 2)

OPT-6.7B-2k (29, 19), (0, 22), (0, 6), (26, 16), (26, 15), (30, 19), (0, 18), (23, 30), (0, 10), (31, 31),
(28, 6), (30, 30), (21, 27), (0, 17), (31, 25), (12, 23), (22, 16), (0, 0), (23, 0), (0, 1), (24, 31), (23, 8)

Baichuan-13B-chat-4k (26, 22), (33, 25), (28, 26), (32, 13), (23, 20), (25, 24), (19, 20), (38, 16), (22, 21), (21, 12),
(3, 24), (39, 39), (20, 27), (37, 21), (0, 32), (24, 39), (39, 28), (39, 20), (27, 24), (2, 20), (36, 10)

Figure 3: Heatmaps of Δ𝜋 scores for each head across three LLMs (𝑛 = 10).

task. Importantly, the loss is calculated only over the latter half
of the sequence, optimizing the coefficients to enhance in-context
retrieval capacities rather than predicting the next token. Formally,
our adopted loss can be written as:

L = −
2𝑛−1∑︁
𝑖=𝑛

log 𝑝 (𝑥𝑖+1 |𝑥1:𝑖 ) (3)

Figure 2 illustrates a re-weighting process during optimization.
Notably, the re-weighting process shown in this figure adds extra
multiplication operations in a forward pass. In practice, when co-
efficient learning ends, we re-scale𝑊 (𝑙,ℎ)

𝑂
(the output projection

matrix in head 𝐴(𝑙,ℎ) ) by 𝜏 (𝑙,ℎ) , which is equivalent to Eq. 2 and
does not add any extra computation during inference.

Inference on Downstream Tasks. We highlight several points
regarding the inference process of our proposed PEAR on down-
stream RAG tasks:

(1) In downstream RAG tasks, the re-weighting coefficients are
task-independent and remain fixed.

(2) RAG-suppression heads are optimized once for each LLM
via the proxy task. For a new RAG task, head discovery and
coefficient learning do not need to be repeated.

In theory, our approach, PEAR, introduces zero additional over-
head during inference on downstream RAG tasks, as it does not
incorporate extra computational modules; instead, it only adjusts

the aggregation weights of specific heads. Additionally, the learning
of re-weighting coefficients is independent of the LLM architec-
ture, thus making our method compatible with various position
embedding algorithms.

5 Experiments
5.1 Setup
In this section, we introduce the LLMs we used for experiments,
the baseline methods for enhancing context awareness, the setups
for the proxy tasks, hyperparameters for learning re-weighting
coefficients.

Models and baselines. We conducted experiments with three
LLMs, each employing a different position embedding algorithm:
Llama2-7B-chat-4k [28] using RoPE [27], OPT-6.7B-2k [35] using
learnable position embeddings, and Baichuan-13B-4k [1] using Alibi
position embeddings [24].

We also compared several competitive baseline methods for en-
hancing LLMs’ context awareness, including Attention Buckets
(AB, [2]), Ms-PoE [36], and MoICE [12]. Details on these methods
can be found in Section 2.1.

Detailed setups of proxy task. For head discovery, we con-
structed 200 task samples. In the case of the Llama and OPT models,
we repeat the discovery process four times with varying values of 𝑛:
10, 15, 25, 50. For the Baichuan model, the 𝑛 values are 10, 20, 50, 80.
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Table 3: Performance comparison of Llama2-7B-chat-4k and its enhancements across three RAG tasks.

Method 2WikiMultiHopQA↑ MuSiQue↑ Qasper↑ Avg. ↑
Llama2-7B-chat-4k 29.50 6.50 17.00 17.67

+ Ms-PoE [36] 27.50 9.00 18.00 18.17
+ AB [2] 31.00 11.00 16.50 19.50
+ MoICE [12] 30.00 10.00 15.50 18.50
+ PEAR (Ours) 35.00 8.50 18.00 20.50

Table 4: Practical inference time (in seconds) and GPU memory cost (in GB) per test sample for different methods. For a fair
comparison, Flash-Attention [3] was not applied. The experiments were conducted on a single H800-80G GPU.

Method 2WikiMultiHopQA↓ MuSiQue↓ Qasper↓ Avg.↓
Llama2-7B-chat-4k 0.63/31.33 0.70/31.33 1.23/31.33 0.88/31.33

+ Ms-PoE [36] 0.95 (+0.32) / 39.21 (+7.88) 1.11(+0.41) / 39.21 (+7.88) 1.84 (+0.61) / 34.59 (+3.26) 1.30 (+0.42) /37.67 (+6.34)
+ AB [2] 2.50(+1.87) /66.19(+34.86) 2.70(+2.00) / 66.19 (+34.86) 5.67(+4.44) /66.34(+35.01) 3.62(+2.74)/66.24(+34.91)
+ MoICE [12] 2.91(+2.28) / 79.13(+47.80) 3.06(+2.36) / 79.12(+47.79) 5.86(+4.63) / 79.10(+47.77) 3.94(+3.06) / 79.12(+47.79)
+ PEAR (Ours) 0.63 (+0.00) /31.33 (+0.00) 0.70 (+0.00) / 31.33 (+0.00) 1.23 (+0.00) / 31.33 (+0.00) 0.88 (+0.00) / 31.33 (+0.00)

We found that each model has a group of heads with significantly
large Δ𝜋 values, leading us to select the 𝐾 values based on the
observed group sizes: 30, 22, and 21, respectively. Table 2 presents
the discovered RAG-suppression heads for the LLMs under study.
Figure 3 illustrates Δ𝜋 values when 𝑛 = 10 for each model. Further
detailed results can be found in Appendix A.

For the re-weighting coefficient learning stage, we constructed
500 task samples, setting 𝑛 to 50 for all models.

Hyperparameters for re-weighting coefficient learning. We
employed the AdamW optimizer with a learning rate of 0.005 and
parameters (𝛽1, 𝛽2) = (0.9, 0.999). 𝜏 are initialized at 1.0. Training
was performed for a single epoch using BF16 precision on an A100-
PCIE-40GB GPU.

Difference between learning and inference. We conducted
internal loading training on the re-weighting coefficients 𝜏 (𝑙,ℎ) dur-
ing the training process. However, during inference, we externally
re-weighting the output matrix weights of specific heads before
loading the model. Therefore, our method is simple to train and has
zero inference overhead.

5.2 Comparison with baselines on RAG tasks
We compare PEAR against various baselines on RAG tasks we con-
structed using three datasets: 2WikiMultihopQA [8], MuSiQue [29],
and Qasper [4]. The first two datasets require the model to answer
questions based on multiple documents, while the third focuses on
questions related to NLP research papers, formulated and answered
by NLP researchers. We truncate the context to 4,000 tokens for the
first two datasets; the third dataset has an average context length
of 3,619 tokens.

Our experiments are conducted with Llama2-7B-chat-4k, as the
baselines are tailored specifically for RoPE. We evaluate the models’
performance using exact match scores, with results reported in
Table 3. Notably, our method achieves the highest average improve-
ment across all three tasks. Although PEAR does not achieve the
top performance on the MuSiQue task, it outperforms the original
model by a large margin.

Additionally, we present inference time and memory costs for
these datasets in Table 4. PEAR does not increase GPU memory
usage and inference time costs. This makes it significantly more
efficient than other enhancement methods.

These experiments underscore the effectiveness and efficiency
of PEAR in enhancing LLMs for RAG tasks.

5.3 Applicability to LLMs using various position
embeddings

In this section, we demonstrate the applicability of PEAR to LLMs
utilizing different position embeddings.We conduct amulti-document
question-answering (MDQA) experiment based on data from [13],
which leverage a subset of NaturalQuestions-Open [9, 10], consist-
ing of 2,655 queries. Each query is paired with a context consisting
of 10 documents with an average of 1,722 tokens. Following [2, 13],
we position the gold document (i.e., the document contains the
ground truth answer) at various contextual positions to evaluate
the robustness of a context-awareness enhancement method. In our
experiments, we set the maximum document count to 10 and assess
the question-answering accuracy when the gold document is placed
as the 1st, 3rd, 5th, 7th, and 10th document, respectively. Since base-
line methods are not compatible with the OPT and Baichuanmodels,
we compare PEAR only with the original models. The results are
presented in Table 5.
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Table 5: Experimental results on the MDQA task show that PEAR achieves the highest accuracy in 14 out of 15 comparisons
across three LLMs, demonstrating its broad applicability to various position embeddings and its robustness in enhancing
awareness to different contextual positions.

Position Embedding Method Gold Document Position Avg.
1 3 5 7 10

RoPE

Llama2-7B-chat-4k 64.14 65.95 64.97 62.67 67.53 65.05
+ Ms-PoE [36] 66.06 64.29 63.99 62.22 64.75 64.34
+ AB [2] 66.36 66.14 65.25 63.20 64.93 65.18
+ MoICE [12] 65.50 66.33 65.61 64.11 65.84 65.48
+ PEAR (Ours) 62.71 67.01 68.32 66.44 69.57 66.81

Learnable Embeddings OPT-6.7B-2k 19.07 15.45 17.03 16.54 22.61 18.14
+ PEAR (Ours) 20.23 17.18 17.60 17.22 22.87 19.02

Alibi Baichuan-13B-chat-4k 12.28 13.45 11.98 11.04 12.96 12.34
+ PEAR (Ours) 14.16 14.84 13.67 12.77 13.94 13.88

Table 6: Results on the MMLU benchmark showing that PEAR does not enhance LLMs’ context capacities at the expense of
knowledge ability.

Model Humanities Social Science STEM Other Avg.

Llama2-7B-chat-4k 42.55 52.29 37.14 52.47 45.81
+ PEAR (Ours) 42.06 52.03 36.61 52.19 45.41

Table 7: The experiment results on the question answering task with ablation settings, which show that our control over the
number of suppression heads is effective.

Method 2WikiMultiHopQA MuSiQue Qasper Avg.

Llama2-7B-chat-4k 29.50 6.50 17.00 17.67

+ PEAR (𝐾=10) 33.00 8.00 16.00 19.00
+ PEAR (𝐾=20) 33.50 8.50 16.50 19.50
+ PEAR (𝐾=30) 35.00 8.50 18.00 20.50
+ PEAR (𝐾=40) 32.50 8.00 17.00 19.17

Table 8: The experiment results on the MDQA task with ablation settings, which show that our control over the number of
suppression heads is effective.

Method Gold Document Position Avg.
1 3 5 7 10

Llama2-7B-chat-4k 64.14 65.95 64.97 62.67 67.53 65.05

+ PEAR (𝐾=10) 63.43 66.26 66.82 64.67 67.76 65.79
+ PEAR (𝐾=20) 63.88 66.29 66.44 65.65 68.51 66.15
+ PEAR (𝐾=30) 62.71 67.01 68.32 66.44 69.57 66.81
+ PEAR (𝐾=40) 62.90 66.00 67.16 66.59 68.40 66.21
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Figure 4: The learned coefficients of PEAR (on Llama2-7B-chat and 𝐾 = 40).

5.4 PEAR does not diminish knowledge
capabilities in LLMs

Previous research [5, 15] has shown that certain attention heads
store or play a crucial role in eliciting parametric knowledge. This
raises the question of whether PEAR enhances context awareness
of LLMs at the expense of their ability to utilize this parametric
knowledge.

To investigate this, we evaluated a PEAR-enhanced Llama2-7B-
chat model using the MMLU benchmark [7], and the results are
presented in Table 6. The performance of the enhanced Llama2-7B-
chat and the original Llama2-7B-chat did not show a significant
difference. Consequently, we argue that PEAR, through its effective
head discovery and re-weighting learning approaches, does not
compromise the knowledge capabilities of LLMs.

5.5 Analysis: The effect of 𝐾
While we have demonstrated the effectiveness of PEAR from various
angles, a key point for discussion is the role of 𝐾 , representing the
number of heads to re-weight.

Using Llama2-7B-chat as a case study, we vary 𝐾 and observe
its impact on PEAR’s performance. Table 7 presents results on
RAG tasks, while Table 8 details analysis for MDQA tasks. The
findings indicate that PEAR performs optimally when 𝐾 matches
the inherent threshold of the model (i.e., 𝐾 = 30 for Llama2-7B-
chat), i.e., the number of heads with a significantly higher Δ𝜋 than
others.

Re-weighting fewer heads fails to fully alleviate the suppres-
sion from RAG-suppression heads, while exceeding this optimal
number can harm the performance of non-RAG-suppression heads,
ultimately diminishing overall effectiveness.

5.6 Analysis: The Value of 𝜏
Using Llama2-7B-chat as an example, we present the learned coef-
ficients of PEAR in Figure 4, with heads ranked by their Δ𝜋 scores.
Intuitively, most heads are optimized to values less than one, which
reduces their relative weight compared to other heads within the
same layer when multi-head outputs are aggregated. Due to BF16
training precision, many 𝜏s are optimized to the same value. How-
ever, using FP32 precision for training did not significantly impact
the results.

Notably, 𝜏 (𝑙,ℎ) s for 9 heads, which have relatively low Δ𝜋 , are
greater than one. We do not attribute this to the precision of the
discovery process, as constraining the re-weighting coefficients to
be less than one led to suboptimal performance. Thus, a plausible
explanation is that RAG suppression is a complex, cooperative effect
involving multiple heads, each with distinct working mechanisms,
as discussed in Section 4.1.

6 Conclusion
In this paper, we introduce PEAR, a position-embedding-agnostic
method designed to enhance the performance of LLMs on RAG tasks
with zero inference overhead. Our method is based on a certain
number of RAG-suppression heads, which not only outperforms
competitive baselines in both effectiveness and efficiency, but also
demonstrates broad applicability across various LLMs. We also
presented that PEAR improves context awareness in LLMs without
compromising their inherent knowledge capabilities. These benefits
make PEAR a promising approach for a wide range of applications
that require robust context abilities, such as in-context learning and
strict instruction following, which we leave for future research.
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Figure 5: Heatmaps of Δ𝜋 scores for each head of llama2-7B-chat (𝑛 = 15, 𝑛 = 25, 𝑛 = 50).

Figure 6: Heatmaps of Δ𝜋 scores for each head of OPT-6.7B (𝑛 = 15, 𝑛 = 25, 𝑛 = 50).

Figure 7: Heatmaps of Δ𝜋 scores for each head of Baichuan-13B-chat (𝑛 = 20, 𝑛 = 50, 𝑛 = 80).
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