

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 WINGSFL: SPEED-UP FEDERATED LEARNING VIA CO- OPTIMIZATION OF COMMUNICATION FREQUENCY AND GRA- DIENT COMPRESSION RATIO

006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors

Paper under double-blind review

ABSTRACT

Federated Learning (FL) relies on two key strategies to overcome communication bottlenecks, which prevent training under low bandwidths and a large number of workers. The first strategy is infrequent communication, a core feature of the FedAVG algorithm, controlled by the number of local steps τ . The second is gradient compression, a widely-used technique to reduce data volume, governed by a compression ratio δ . However, finding the optimal (τ, δ) pair is a major challenge in realistic settings with device heterogeneity and network fluctuations. Existing work assumes that the effects of δ and τ on the model convergence are orthogonal, optimizing them separately. In this work, we challenge this orthogonality assumption. We are the first to propose two virtual queues at distinct temporal granularities, helping derive the bounds of the noise introduced by the two lossy strategies, respectively. We demonstrate that the convergence rate of FedAVG with gradient compression is critically affected by a key term $2^\tau / \delta^2$. This finding proves that τ and δ are intrinsically coupled and must be co-designed for efficient training. Furthermore, we propose WingsFL, which fixes the key convergence rate term and minimizes the end-to-end training time under device heterogeneity by solving a one-variable Min-Max problem. WingsFL achieves up to $2.24 \times$ and $2.18 \times$ speed-ups over FedAVG and SOTA adaptive strategies, respectively, considering device heterogeneity and network fluctuations.

1 INTRODUCTION

Federated Learning (FL) has become a popular framework in modern Distributed Machine Learning (DML), but there are communication bottlenecks during the training process. FL enables collaborative model training across distributed nodes while preserving data privacy Ye et al. (2023); Dong et al. (2025). As the model parameters grow explosively, particularly large-scale models Achiam et al. (2023), the volume of gradients exchanged during FL training has become a significant communication bottleneck Lu et al. (2025b). The bottlenecks severely prevent the training process when encountering low bandwidth or a larger number of nodes Lin et al. (2018). To mitigate this, infrequent communication and gradient compression are employed. Infrequent communication is intrinsic to the classic FedAVG algorithm McMahan et al. (2017), which reduces the total number of communication rounds by performing τ local training steps before each aggregation. Sparsification gradient compression Wang et al. (2023); Lu et al. (2024) is widely adopted to reduce the communication volume of each individual communication round through transferring gradient elements with compression ratio δ Lu et al. (2025b). We denote FedAVG with sparsification gradient compression as FedAVG-GC, involving: 1) workers perform τ local iterations to compute updates; 2) workers compress the updates by a ratio δ and upload them; 3) the server aggregates the compressed updates in the same way as FedAVG to have the updated global model and broadcast the new model to workers.

The compression ratio δ and local iterations τ are critical communication hyperparameters, but the selection of them is difficult. The selection of δ and τ both face a critical trade-off. The overly aggressive strategy (large τ or small δ) will cause accuracy degradation, especially in non-IID scenarios, while the conservative strategy will face expensive communication cost Hsieh et al. (2020); Li et al. (2022). Also, δ tends to adaptively change with the dynamic bandwidth, can speed up to $4.1 \times$ over the static strategy Abdelmoniem & Canini (2021b). The selection of τ should take into account

054 the heterogeneity of the device, to avoid a severe straggler effect Li et al. (2020). The selection of δ
 055 and τ is somewhat similar (although not totally the same), while previous works neglect this similarity,
 056 assuming the gradient compression is orthogonal to the infrequent communication Cui et al. (2021);
 057 Liu et al. (2022). We have two problems: 1) Is the effect of δ orthogonal to τ on the convergence rate
 058 of FedAVG-GC? 2) If not, can we use the nature to speed up FedAVG-GC training end-to-end?

059 In response to the first question, our theoretical analysis shows that they are not orthogonal. Inspired
 060 by the Nested Virtual Sequence (NVS) proposed in previous work Lu et al. (2025a), we propose
 061 a framework called NVS-FL, which introduces two virtual sequences at two distinct scales: local
 062 computation and global aggregation, resolving the issue that NVS could only introduce multiple
 063 virtual sequences within the same time scale according to its framework. The virtual sequence from
 064 the local computation decouples the error bound introduced by infrequent communication, while the
 065 other one decouples the impact of gradient compression. Based on this, we derive the convergence
 066 rate of FedAVG-GC, where our analysis is the first to identify a critical term $\frac{2^\tau}{\delta^2}$, which governs
 067 the number of local iterations required to reach a target accuracy. This result reveals a theoretical
 068 equivalence between the impact of local iterations, through the term 2^τ , and gradient compression,
 069 through the term δ^{-2} on model convergence.

070 To address the second question, we establish a mathematical model for the end-to-end training time
 071 that accounts for device heterogeneity and dynamic network bandwidth. Using this model, we
 072 formulate the task of minimizing training time as a dual-variable Min-Max problem. Leveraging our
 073 theoretical equivalence, this problem is simplified to finding the minimum of a one-variable piecewise
 074 function. We propose WingsFL, which uses a standard binary search algorithm per several iterations
 075 to choose an optimal (δ, τ) pair in challenging dynamic network conditions and device heterogeneity.
 076 In WingsFL, we accelerate FL training end-to-end by co-optimizing δ and τ , like two wings of the
 077 bird.

078 Our main contributions are as follows:

- 079 • We propose NVS-FL, a novel theoretical framework for analyzing FedAVG-GC, by setting two
 080 virtual sequences under different timescales. Our analysis is the first to theoretically establish that
 081 the gradient compression and infrequent communication are not orthogonal strategies in FedAVG.
 082 The results theoretically reveal that $\frac{2^\tau}{\delta^2}$ governs the convergence bound in non-IID scenarios.
- 083 • We mathematically model the end-to-end training time under device heterogeneity and dynamic
 084 bandwidth. Building on this model and our theoretical insights, we propose WingsFL, which
 085 jointly optimizes δ and τ to accelerate FL training.
- 086 • We conduct extensive experiments under device heterogeneity (different computing speeds and
 087 network conditions) and dynamic network environments across diverse model architectures,
 088 including CNN, VGG, GPT, and ViT. Our results demonstrate that WingsFL achieves up to $2.24\times$
 089 and $2.18\times$ speed-ups over static and SOTA adaptive strategies, respectively.

091 2 PRELIMINARIES

093 2.1 FEDERATED LEARNING

095 The primary goal of FL is to collaboratively train a global model by minimizing a global objective
 096 function $f(\mathbf{x})$, which is typically defined as a weighted average of the local objective functions $f_i(\mathbf{x})$
 097 from n participating workers:

$$098 \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) = \sum_{i=1}^n p_i f_i(\mathbf{x}),$$

101 where $\mathbf{x} \in \mathbb{R}^d$ represents the model parameters, d is the model dimension, and p_i is the weight of the
 102 i -th worker, usually proportional to its local dataset volume, such that $p_i > 0$ and $\sum_{i=1}^n p_i = 1$. Each
 103 local objective function $f_i(\mathbf{x})$ is the expected loss over the worker's local data distribution.

105 2.2 CHALLENGES IN REAL-WORLD FEDERATED LEARNING

106 Non-IID datasets, device heterogeneity, and constrained network scenarios are three challenges in
 107 real-world FL training.

- *Non-IID datasets*: In FL, worker data is typically not independent and identically distributed (Non-IID). This introduces a discrepancy between the local worker objectives and the global objective, which can slow down or even prevent model convergence.
- *Device heterogeneity*: workers in an FL network often possess vastly different computational capabilities (e.g., CPU/GPU types, power state). This means that the time required to perform the same computational task varies significantly across devices. We model this by defining t_{latency}^i as the wall-clock time for worker i to complete a single local training step (i.e., one forward and backward pass). A system with a high variance in $\{t_{\text{latency}}^i\}_{i=1}^n$ is considered highly heterogeneous from a computational standpoint.
- *Constrained network scenarios*: In this scenario, device connectivity is often unstable and heterogeneous. Factors such as the connection type (Wi-Fi vs. cellular), network congestion, and physical distance to the server cause communication speeds to fluctuate widely. We assume that each worker has a different and time-varying upload bandwidth. In contrast to stable, high-speed datacenter interconnects, these network environments are characterized by high-latency and low-bandwidth. Training across WAN is a typical case, which has an average bandwidth often below 1Gbs.

2.3 COMMUNICATION OPTIMIZATION METHODS IN FL

2.3.1 INFREQUENT COMMUNICATION

The FedAVG algorithm McMahan et al. (2017) introduces the concept of infrequent communication, where workers perform $\tau > 1$ local steps of SGD before communicating with the server. This means that each worker computes τ forward and backward passes every global iteration. This reduces the total number of communication rounds by τ times during the same local iterations.

2.3.2 GRADIENT COMPRESSION

Gradient compression techniques Xu et al. (2021) are generally grouped into three main types: (1) sparsification, which involves sending only a subset of gradient entries; (2) quantization, where high-precision values are transformed into lower-precision representations; and (3) low-rank approximation, which expresses the gradient as the product of two low-rank matrices. Among these, sparsification is often favored for its effectiveness in eliminating redundant gradient components and achieving higher communication efficiency. Additionally, compared to other compressors, sparsification compressors offer a continuous range of compression ratios, facilitating adaptive optimization. Sparsification compressors include the relative compressor, like Top- k and Random- k Abdelmoniem & Canini (2021b), and the absolute compressor, like the hard-threshold compressor Sahu et al. (2021). Due to that, the absolute compressor does not perform well in FL Lu et al. (2025b), so we don't take it into consideration. The sparsification compression usually comes with Error-Feedback (EF) Dorfman et al. (2023); Stich & Karimireddy (2020a), a popular mechanism that collects and reuses the errors from the gradient compression to mitigate the compression bias and guarantee convergence. For the update algorithm, at the global iteration T , each worker i maintains an error term \mathbf{e}_T^i and has the update Δ_T^i (accumulated in τ local iterations), then the worker i gets the compressed update $\hat{\Delta}_T^i = \mathbf{C}_\delta(\Delta_T^i + \mathbf{e}_T^i)$, which will be sent to the server, and updates its error term $\mathbf{e}_{T+1}^i = \mathbf{e}_T^i + \Delta_T^i - \hat{\Delta}_T^i$.

3 THEORETICAL ANALYSIS OF FEDAVG-GC

We derive the convergence rate of FedAVG-GC and list the analysis in remarks below the theorem. Notation list and detailed proof are in the Appendix. The pseudocode of FedAVG-GC is shown in Algo. 3 in the Appendix.

3.1 REGULAR ASSUMPTIONS

Theorem 2 and **Theorem 3** is established under the assumption that the objective functions are μ -strongly convex. A detailed list of assumptions is outlined below.

Assumption 1 (L -smoothness). We assume L -smoothness of f_i , $i \in [n]$, that is for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$:

$$\|\nabla f_i(\mathbf{y}) - \nabla f_i(\mathbf{x})\| \leq L\|\mathbf{y} - \mathbf{x}\|. \quad (1)$$

162 **Assumption 2** (Bounded gradient noise). We assume the availability of stochastic gradient oracles
 163 $\mathbf{g}_i^i : \mathbb{R}^d \rightarrow \mathbb{R}^d$ corresponding to each local objective f_i for $i \in [n]$. Let ξ^i denote the stochastic
 164 gradient noise introduced by the i -th worker. For simplicity, we focus on the representative scenario
 165 where ξ^i is uniformly bounded across all $\mathbf{x} \in \mathbb{R}^d$ and all clients $i \in [n]$:

$$166 \quad \mathbf{g}_t^i = \nabla f_i(\mathbf{x}_t) + \xi^i, \quad \mathbb{E}_{\xi^i} \xi^i = \mathbf{0}_d, \quad \mathbb{E}_{\xi^i} \|\xi^i\|^2 \leq \sigma^2. \quad (2)$$

168 **Assumption 3** (Measurement of data heterogeneity). We quantify the level of data heterogeneity
 169 using a non-negative constant $\zeta^2 \geq 0$, which serves as an upper bound on the variance among the n
 170 nodes. Specifically, we assume:

$$171 \quad n \sum_{i \in [n]} p_i^2 \|\nabla f_i(\mathbf{x})\|^2 \leq \zeta^2 + Z^2 \|\nabla f(\mathbf{x})\|^2, \quad \forall \mathbf{x} \in \mathbb{R}^d, i \in [n]. \quad (3)$$

173 **Assumption 4** (μ -strongly convexity). We assume μ -strong convexity of $f_i, i \in [n]$, that is for all
 174 $\mathbf{x}, \mathbf{y} \in \mathbb{R}^d$:

$$175 \quad f_i(\mathbf{x}) - f_i(\mathbf{y}) \geq \langle \nabla f_i(\mathbf{y}), \mathbf{x} - \mathbf{y} \rangle + \frac{\mu}{2} \|\nabla f_i(\mathbf{x}) - \nabla f_i(\mathbf{y})\|^2. \quad (4)$$

177 3.2 THEORETICAL FRAMEWORK IN FL

179 NVS framework Lu et al. (2025a) is proposed to convert the convergence of complex SGD variants
 180 into a standard SGD process and several analyzable noise terms, which can be derived from the
 181 bound of the term. However, it assumes homogeneous iteration intervals, which is unsuitable for
 182 FL scenarios. In FL, the update process is typically heterogeneous: local models undergo frequent
 183 updates (e.g., every iteration), while the global model aggregates these updates infrequently (e.g.,
 184 every τ iterations). To address this challenge, we introduce a novel theoretical framework for FL
 185 called NVS-FL, which defines two distinct virtual sequences to handle the different timescales of
 186 local training and global aggregation.

187 In detail, we define $\mathbf{x}_0 = \tilde{\mathbf{x}}_0 = \hat{\mathbf{x}}_0$ and define the first virtual sequence in the global aggregation
 188 timescale:

$$189 \quad \mathbf{x}_{T+1} = \mathbf{x}_T - \mathbf{v}_T, \quad B_{T+1} = B_T + \gamma \sum_{i \in [n]} p_i \Delta_T - \mathbf{v}_T, \quad \tilde{\mathbf{x}}_T = \mathbf{x}_T - B_T. \quad (5)$$

192 In this way, we can derive that $\tilde{\mathbf{x}}_{T+1} = \mathbf{x}_{T+1} - B_{T+1} = \mathbf{x}_T - \mathbf{v}_T - B_T - \gamma \sum_{i \in [n]} p_i \Delta_T^i + \mathbf{v}_T =$
 193 $\tilde{\mathbf{x}}_T - \gamma \sum_{i \in [n]} p_i \Delta_T^i$. Then we define the second virtual sequence in the local iteration timescale.
 194 We define $\hat{\mathbf{x}}_{T,\tau} = \hat{\mathbf{x}}_{T+1,0} = \tilde{\mathbf{x}}_{T+1}$ and have:

$$196 \quad \hat{\mathbf{x}}_{T,j+1} = \hat{\mathbf{x}}_{T,j} - \gamma \sum_{i \in [n]} p_i \mathbf{g}_{T,j}^i. \quad (6)$$

199 In FedAVG-GC, $\mathbf{v}_T = \gamma \sum_{i \in [n]} p_i \tilde{\Delta}_T^i$, so we have $B_T = \gamma \sum_{i \in [n]} p_i \mathbf{e}_T^i$.

201 3.3 CONVERGENCE RATE OF FEDAVG-GC

203 **Theorem 1** (Non-convex convergence rate of FedAVG-GC). *Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be L -smooth. There
 204 exists a stepsize $\gamma \leq \min\{\frac{1}{2\sqrt{2\tau}L}, \frac{1}{\sqrt{32\phi\tau LZ}}\}$, where $\phi = \frac{2^\tau}{\delta^2}$, such that at most*

$$206 \quad \mathcal{O}\left(\frac{\sum_{i \in [n]} p_i^2 \sigma^2}{\epsilon^2} + \frac{\sqrt{\phi\zeta^2 + (1 + n\phi\delta) \sum_{i \in [n]} p_i^2 \sigma^2}}{\epsilon^{3/2}} + \frac{1}{\epsilon} + \frac{Z\sqrt{\phi}}{\epsilon}\right) \cdot L(f(\mathbf{x}_0) - f^*) \quad (7)$$

208 local iterations of FedAVG-GC, it holds $\mathbb{E}\|\nabla f(\mathbf{x}_{out})\|^2 \leq \epsilon$, and $\mathbf{x}_{out} = \mathbf{x}_t$ denotes an iterate
 209 $\mathbf{x}_t \in \{\mathbf{x}_0, \dots, \mathbf{x}_{(\tau \cdot T_{end}-1)}\}$, where $\tau \cdot T_{end}$ denotes the total number of local iterations, chosen at
 210 random uniformly.

211 **Theorem 2** (Convex convergence rate of FedAVG-GC, i.e., $\mu = 0$). *Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be L -smooth
 212 and μ -convex. Then there exists a stepsize $\gamma \leq \min\{\frac{1}{4L}, \frac{1}{4\sqrt{3}L\tau}, \frac{1}{\sqrt{384 \cdot \phi\tau LZ}}\}$, where $\phi = \frac{2^\tau}{\delta^2}$, such
 213 that at most*

$$215 \quad \mathcal{O}\left(\frac{\sum_{i \in [n]} p_i^2 \sigma^2}{\epsilon^2} + \frac{\sqrt{L\phi\zeta^2 + L(1 + n\phi\delta) \sum_{i \in [n]} p_i^2 \sigma^2}}{\epsilon^{3/2}} + \frac{L}{\epsilon} + \frac{ZL\sqrt{\phi}}{\epsilon}\right) \cdot \|\mathbf{x}_0 - \mathbf{x}_*\|^2 \quad (8)$$

local iterations of FedAVG-GC, it holds $\mathbb{E}f(\mathbf{x}_{out}) - f^* \leq \epsilon$, and $\mathbf{x}_{out} = \mathbf{x}_t$ denotes an iterate $\mathbf{x}_t \in \{\mathbf{x}_0, \dots, \mathbf{x}_{(\tau \cdot T_{end}-1)}\}$, where $\tau \cdot T_{end}$ denotes the total number of local iterations, chosen at random uniformly.

Theorem 3 (μ -strongly convex convergence rate of FedAVG-GC, i.e., $\mu > 0$). *Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be L -smooth and μ -convex. Then there exists a stepsize $\gamma \leq \min\{\frac{1}{4L}, \frac{1}{4\sqrt{3}L\tau}, \frac{1}{\sqrt{384 \cdot \phi \tau L Z}}\}$, where $\phi = \frac{2\tau}{\delta^2}$, such that at most*

$$\mathcal{O}\left(\frac{\sum_{i \in [n]} p_i^2 \sigma^2}{\mu \epsilon} + \frac{\sqrt{L\phi\zeta^2 + L(1+n\phi\delta)\sum_{i \in [n]} p_i^2 \sigma^2}}{\mu \epsilon^{1/2}} + \frac{L}{\mu} + \frac{ZL\sqrt{\phi}}{\mu}\right) \cdot \|\mathbf{x}_0 - \mathbf{x}_*\|^2 \quad (9)$$

local iterations of FedAVG-GC, it holds $\mathbb{E}f(\mathbf{x}_{out}) - f^* \leq \epsilon$, and $\mathbf{x}_{out} = \mathbf{x}_t$ denotes an iterate $\mathbf{x}_t \in \{\mathbf{x}_0, \dots, \mathbf{x}_{(\tau \cdot T_{end}-1)}\}$, where $\tau \cdot T_{end}$ denotes the total number of local iterations, selected probabilistically based on $(1 - \min\{\frac{\mu\gamma}{2}, \frac{\delta}{2 \cdot 2\tau}\})^{-t}$.

3.4 ANALYSIS OF CONVERGENCE RATE IN FL

Given that the convergence rate exhibits similar expressions under convex and non-convex cases, we refer to prior work Lu et al. (2024) and take **Theorem 1** as an example for analysis.

Remark 1. (ϕ determining the convergence in non-IID scenarios) Due to the The fisrt term $\frac{\sum_{i \in [n]} p_i^2 \sigma^2}{\epsilon^2}$ is determined by the task, independent to δ and τ . The magnitude of the second term $\frac{\sqrt{\phi\zeta^2 + (1+\phi\delta)\sum_{i \in [n]} p_i^2 \sigma^2}}{\epsilon^{3/2}}$ is greater than that of the third term, since ϵ is often set less than 10^{-4} . Then we focus on the second term. FL is a typical non-IID sceanrio, where ζ is usually larger than the gradient noise σ , and the convergence rate can be written as $\mathcal{O}\left(\frac{\sum_{i \in [n]} p_i^2 \sigma^2}{\epsilon^2} + \frac{\sqrt{\phi\zeta^2}}{\epsilon^{3/2}}\right)$, similar to the previous work Lu et al. (2023b). In this case, $\phi = \frac{2\tau}{\delta^2}$ determines the convergence rate bound. For the analysis in IID scenarios, such as LLM pre-training inside a datacenter Xu et al. (2021), $\zeta^2 \ll \sigma^2$ and the convergence rate is bounded by $\phi' = \frac{2\tau}{\delta}$. In this case, we can use ϕ' to design the following algorithm, but we do not discuss this in this paper.

Remark 2. (Degradation condition) When $\tau = 1$, FedAVG-GC degrades to Distributed SGD with gradient compression. In this case, $\phi = \frac{2}{\delta^2}$ and the convergence rate is equal to $\mathcal{O}\left(\frac{\sum_{i \in [n]} p_i^2 \sigma^2}{\epsilon^2} + \frac{\sqrt{2\zeta^2/\delta^2 + (1+2/\delta)\sum_{i \in [n]} p_i^2 \sigma^2}}{\epsilon^{3/2}} + \frac{\tau L Z}{\delta \epsilon}\right)$, the same as the convergence rate of the previous work Stich (2020); Lu et al. (2023b).

4 WINGSFL: JOINT OPTIMIZATION OF LOCAL STEPS AND COMPRESSION

For worker i , we define the time for a single computation pass as t_{compute}^i , including one forward pass and backward pass. The end-to-end communication latency for long-distance transmission is represented as t_{latency}^i . We introduce a coefficient a^i to characterize the time associated with gradient compression, and b_T^i represents the network bandwidth at the global communication iteration T . The notation list is shown in the Appendix.

In each global communication round, which occurs after τ local iterations, the total computation time is given by $\tau t_{\text{compute}}^i$. The communication time for each worker i in this round is formulated as $t_{\text{latency}}^i + q(\delta) + S_g \delta / b_T^i$, where S_g is the size of the gradient (bits) and $q(\delta)$ is the compression cost, related to the property of the compressor. In this way, the average time for local computation and communication per iteration $T_{\text{avg}} = \frac{\tau t_{\text{compute}}^i + (t_{\text{latency}}^i + q(\delta) + S_g \delta / b_T^i)}{\tau}$. Our primary objective is to minimize end-to-end time for the entire training process. Considering the device heterogeneity, our objective can be formulated as $\min_{\tau \in [R_\tau], \delta \in (0, 1]} \max_{i \in [n]} \frac{\tau t_{\text{compute}}^i + (t_{\text{latency}}^i + q(\delta) + S_g \delta / b_i^i)}{\tau}$. $\phi = \frac{2\tau}{\delta^2}$ governing the convergence rate, we fix this term as one hyper-parameter ϕ_c and have $\tau = 2 \log_2 \delta + \log_2 \phi$. With this, we can write the objective problem from a dual-variable Min-Max problem into a one-variable Min-Max problem at the given iteration T , as $\min_{\tau \in [R_\tau], \delta \in (0, 1]} \max_{i \in [n]} Q_T^i(\tau)$.

270 In this work, we use the relative compressor Top- k , where $q(\delta) = a^i \log_2(\delta)$, and we have
 271

272

$$273 Q_i(\tau) = t_{\text{compute}}^i + \frac{a^i}{2} + \frac{t_{\text{latency}}^i - \frac{a^i}{2} \log_2 \phi_c}{\tau} + \frac{S_g}{b_T^i \sqrt{\phi_c}} \cdot \frac{2^{\tau/2}}{\tau}. \quad (10)$$

274

275

276 **Algorithm 1:** WingsFL

277 **Input:** $n, [p_i], [\gamma_T], T_{\text{end}}, S_g, R_\tau,$
 278 $[t_{\text{compute}}^i, t_{\text{latency}}^i, a^i, b_0^i], \phi_c, \text{search}$
 279 frequency E , the compressor $C(\cdot)$
 280

281 **Output:** $\mathbf{x}_{T_{\text{end}}}$
 282 Initialize $\mathbf{x}_0, \mathbf{e}_0^i = \mathbf{0}_d$;
 283 **for** $T \in [T_{\text{end}}]$ **do**
 284 /* Update δ and τ per E
 285 global iterations */
 286 **if** $T \bmod E == 1$ **then**
 287 $\delta, \tau = \text{SearchAlgo}(S_g, R_\tau, \phi_c,$
 288 $n, [t_{\text{compute}}^i, t_{\text{latency}}^i, a^i, b_{T-1}^i]);$
 289 **end**
 290 /* Worker side */
 291 **for** $i \in [n]$ **do**
 292 Monitor the network condition and
 293 update the bandwidth b_T^i ;
 294 $\mathbf{x}_{T,0}^i = \mathbf{x}_T$;
 295 **for** $j \in [\tau]$ **do**
 296 $\mathbf{x}_{T,j+1}^i = \mathbf{x}_{T,j}^i - \gamma_T \mathbf{g}_{T,j}^i$;
 297 **end**
 298 $\Delta_T^i = \sum_{j \in [\tau]} \mathbf{g}_{T,j}^i$;
 299 $\hat{\Delta}_T^i = \mathbf{C}_\delta(\Delta_T^i + \mathbf{e}_T^i)$;
 300 $\mathbf{e}_{T+1}^i = \mathbf{e}_T^i + \Delta_T^i - \hat{\Delta}_T^i$;
 301 Upload $\hat{\Delta}_T^i$ to the server;
 302 **end**
 303 /* Server side */
 304 $\mathbf{x}_{T+1} = \mathbf{x}_T - \gamma_T \sum_{i \in [n]} p_i \hat{\Delta}_T^i$;
 305 Broadcast \mathbf{x}_{T+1} ;
 306 **end**
 307 **Return** $\mathbf{x}_{T_{\text{end}}}$;

308

309

310 $Q_T^i(\cdot)$ can be written in the format: $Q_T^i(\tau) = c_1^i + \frac{c_2^i + c_{3,T}^i \cdot 2^{\tau/2}}{\tau}$. For each worker i , during the whole
 311 training, c_1^i and c_2^i are fixed under given ϕ_c , and $c_{3,T}^i$ is correlated with the dynamic bandwidth and
 312 we have the theorem.

313

314 **Theorem 4** (Global Minimum of Maximum Convex Functions). *Let $Q_T^1(\tau), Q_T^2(\tau), \dots, Q_T^n(\tau)$ has*
 315 *the form: $Q_i(\tau) = c_1^i + \frac{c_2^i + c_{3,T}^i \cdot 2^{\tau/2}}{\tau}$, with constants $c_1^i, c_2^i, c_{3,T}^i > 0$ and $\tau \geq 1$. We assume that τ is*
 316 *continuous and define $Q(\tau) = \max_{i \in [n]} Q_i(\tau)$. Then $Q(\tau)$ is a convex function and any local minimum*
 317 *of $Q(\tau)$ is a global minimum.*

318

319

320 Based on **Theorem 4**, we can use a binary search algorithm to find the local minimal value of
 321 $Q(\tau) = \max_{i \in [n]} Q_i(\tau)$, getting optimal δ_T, τ_T for each global communication iteration T , shown in

322

323 Algo. 2. This algorithm searches within the given interval $[1, R_\tau]$. At each global communication
 324 iteration, it evaluates the new compression ratio and communication infrequency if the bandwidth
 325 changes significantly, with the time complexity of $O(n \log R_\tau)$.

324 Table 1: Summary of experimental settings.
325

326 Task	327 Model	328 # Parameters	329 Dataset	330 Non-IID Setting	331 γ_0	332 Batch Size	333 n	334 Metric	335 Iteration
327 CV	CNN	235,690	CIFAR-10	$\#C = 3$	4×10^{-3}	8	10	Accuracy	20,000
	VGG-11	9,750,922	Flickr	Real-world	4×10^{-3}	8	10		20,000
	ViT	86,000,000	ImageNet	$\#C = 300$	4×10^{-5}	4	5		1,000
NLP	GPT-2	124,000,000	Wikitext	Dirichlet (0.5)	5×10^{-2}	3	5	Perplexity	2,000

331 Note: n denotes the number of workers; γ_0 is the initial learning rate.

333 5 EVALUATION EXPERIMENTS

335 5.1 EXPERIMENTAL ENVIRONMENT

337 All experiments are performed on a server running Ubuntu 24.04 LTS, equipped with an Intel Xeon
338 Gold 6230 processor and 8 Nvidia RTX 3090 GPUs, each featuring 24GB of VRAM. The software
339 environment is built upon Python 3.10.16, with all dependencies aligned accordingly. We adopt
340 PyTorch 2.5.1 as the core deep learning framework, utilizing CUDA 12.4 for GPU acceleration.
341 Communication across devices is facilitated using the Gloo backend.

343 5.2 EXPERIMENTAL SETTINGS

345 This part shows the basic experimental setting in this section. Detailed settings and hyper-parameters
346 are provided in the Appendix.

347 We validate our method across a range of computer vision and natural language processing tasks using
348 representative models such as CNN LeCun et al. (1998), VGG11 Simonyan & Zisserman (2014), ViT
349 Dosovitskiy (2020), and GPT Radford et al. (2019). The evaluation spans datasets including Flickr
350 Hsieh et al. (2020), CIFAR-10 Krizhevsky et al. (2009), ImageNet Deng et al. (2009), and WikiText
351 Merity et al. (2022). The experimental configurations are detailed in Table 1.

352 **Baselines:** Top- k is adopted as the standard compression technique. For the WingsFL framework
353 with integrated Top- k , we benchmark against several baseline approaches: FedAVG-GC, γ -FedHT Lu
354 et al. (2025b), PASGD, and the standard FedAVG algorithm. FedAVG-GC refers to the setting
355 where FedAVG incorporates Top- k with a fixed compression rate δ . γ -FedHT represents the current
356 SOTA adaptive gradient sparsification method in federated learning. PASGD serves as the leading
357 adaptive communication frequency algorithm; we compare it with WingsFL under a consistent Top- k
358 compression with fixed δ . All baseline methods are initialized with the same hyperparameters for
359 compression rate and communication interval, aligning with the initial values δ_1 and τ_1 employed by
360 WingsFL.

361 **Device Heterogeneity and non-IID settings:** To simulate device heterogeneity, we assign different
362 computation times t_{compute}^i to each client. Let t denote the baseline end-to-end computation time.
363 Under a heterogeneity level of $q\%$, the computation time for each node is uniformly sampled from the
364 interval $[t, (1 + q\%)t]$. For instance, with 10 nodes and a heterogeneity level of 100% ($q = 100$), the
365 computation times are selected as 10 equidistant values within $[t, 2t]$. The default heterogeneity level
366 is set to 100% for all tasks. For the non-IID data partitioning, we adopt the following configurations:
367 for VGG11@Flickr, we use the real-world non-IID settings, which is the inherent properties of the
368 dataset itself. For other tasks, we use artificially non-IID settings, referring to previous work Li et al.
369 (2022). The detailed non-IID settings is shown in Table 1.

370 5.3 COMPARISON OF TRAINING SPEED

372 As illustrated in Fig. 1, WingsFL demonstrates significant improvements in training speed compared
373 to FedAVG-GC, γ -FedHT, PASGD, and vanilla FedAVG across all tasks. Taking VGG@Flickr as an
374 example, when the accuracy reaches 60%, WingsFL achieves a $1.44 \times$ speedup over FedAVG, $1.47 \times$
375 speedup over FedAVG-GC, and $1.16 \times$ speedup over γ -FedHT. At 65% accuracy, the speedup values
376 change to $1.43 \times$, $1.36 \times$, and $1.06 \times$, respectively. The performance advantage of WingsFL stems
377 from its fundamental design principles. Unlike existing approaches that do not explicitly optimize
for end-to-end training speed, WingsFL is specifically designed to minimize the end-to-end training

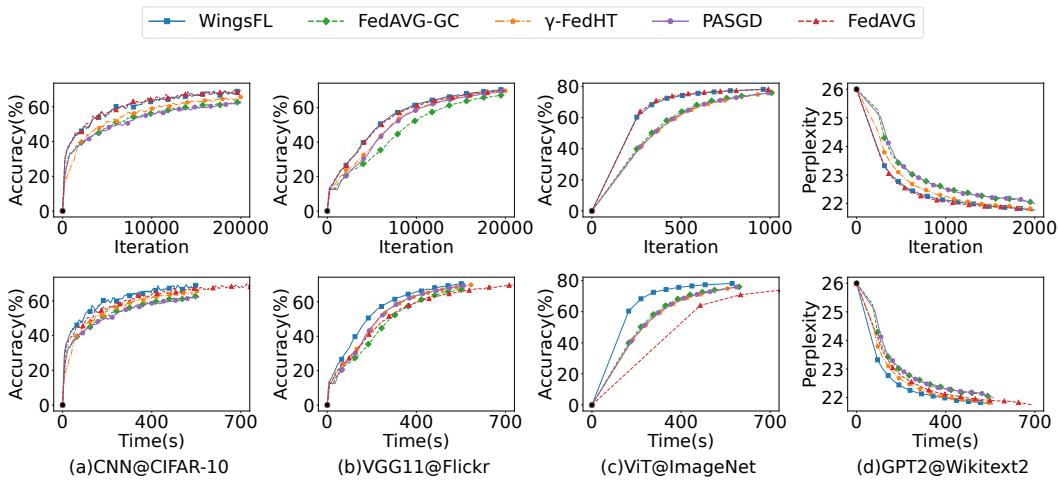


Figure 1: Training curves (Top: Accuracy vs. Iteration; Bottom: Accuracy vs. Time) across different tasks (from left to right). In all cases, WingsFL outperforms other baselines on end-to-end training.

time. Previous methods typically optimize compression ratio (δ) and communication frequency (τ) separately, which leads to suboptimal solutions. In contrast, our framework employs joint optimization of these parameters, guided by theoretical analysis. This coordinated approach ensures convergence while prioritizing end-to-end training efficiency, making WingsFL particularly suitable for scenarios with device heterogeneity, non-IID datasets, and dynamic network conditions.

5.4 SENSITIVITY ANALYSIS OF HYPERPARAMETER IN WINGSFL

Unlike most methods that heavily depend on carefully tuned hyperparameters, WingsFL exhibits low sensitivity to its key hyperparameter ϕ_c . In this section, we examine the impact of different ϕ values on the end-to-end training time. The corresponding results are reported in Table 2, and we find that our design outperforms all other algorithms under the given ϕ_c settings. WingsFL can achieve speedups up to $1.42 \times$ over FedAVG (at $\phi(30, 1\%)$, accuracy 55% in VGG@Flickr), $1.99 \times$ over γ -FedHT (at $\phi(30, 0.1\%)$, ppl 22.5 in GPT@Wiki), $1.92 \times$ over PASGD (at $\phi(30, 1\%)$, ppl 23.5 in GPT@Wiki).

5.5 WINGSFL UNDER DIFFERENT DEVICE HETEROGENEITY

The performance of algorithms under different heterogeneity levels q is shown in Table 3, where the training time of baselines to converge to the target metrics is shown using the previous settings except heterogeneity levels. Our design performs better than other algorithms under different heterogeneity levels. In detail, WingsFL nearly achieves less speedups when facing higher heterogeneity levels (from $2.24 \times$ to $1.38 \times$ compared to FedAVG in GPT@Wiki). This is due to the fact that the higher heterogeneity will not change (δ, τ) selected from WingsFL, and the larger computation time will enlarge the partition ratio of computation time, and the gain of our design is from the reduction of communication time.

6 RELATED WORK

Adaptive Gradient Compression Strategy. Adaptive strategies address the convergence issues of static sparsity or quantization by dynamically adjusting compression based on training dynamics, device heterogeneity, or network conditions. DC2 Abdelmoniem & Canini (2021a) adapts communication frequency to bandwidth but does not co-optimize the compression ratio δ or consider convergence coupling. DAGC Lu et al. (2023a) optimizes δ based on client data volume but assumes a fixed local update frequency τ . L-GreCo Markov et al. (2024) solves layer-wise compression allocation as a constrained optimization problem, but ignores local update or network conditions. Shadowheart SGD Tyurin et al. (2024) introduces a time-equilibrium strategy that dynamically selects compression

432
 433 Table 2: Training time (in seconds) to reach
 434 target accuracy (VGG@Flickr) or perplexity
 435 (GPT@Wiki) under different ϕ_c values, where
 436 $\phi(\tau, \delta) = \frac{2\tau}{\delta^2}$. Results show that WingsFL
 437 achieves faster convergence and is robust to ϕ_c
 438 variations.

Task	ϕ_c	Target	FedAVG	γ -FedHT	PASGD	WingsFL
VGG@ Flickr	$\phi(25, 0.1\%)$	55%	310.69	302.82	284.22	195.94
		60%	396.20	356.50	339.02	246.13
		65%	553.26	449.89	428.94	336.93
	$\phi(25, 1\%)$	55%	354.97	229.42	274.52	192.36
		60%	453.00	281.89	330.64	244.30
		65%	632.77	362.98	418.98	327.89
	$\phi(30, 0.1\%)$	55%	323.01	312.79	306.07	206.27
		60%	403.50	370.00	365.38	259.17
		65%	548.47	455.17	459.11	353.92
	$\phi(30, 1\%)$	55%	278.59	236.62	299.31	195.94
		60%	358.92	289.46	355.79	249.05
		65%	495.60	367.37	448.49	345.57
GPT@ Wiki	$\phi(25, 0.1\%)$	23.5	82.89	123.11	100.37	67.35
		23.0	113.77	201.44	156.23	89.79
		22.5	217.79	301.94	230.63	157.88
	$\phi(25, 1\%)$	23.5	82.97	88.43	100.51	62.22
		23.0	113.80	123.80	146.91	92.87
		22.5	217.66	185.63	239.56	151.70
	$\phi(30, 0.1\%)$	23.5	74.18	127.34	118.30	63.86
		23.0	125.39	203.69	174.29	102.17
		22.5	190.36	305.48	263.88	153.76
	$\phi(30, 1\%)$	23.5	106.32	93.07	118.95	61.89
		23.0	177.18	124.76	164.17	103.16
		22.5	253.29	187.10	253.66	151.67

453
 454 parameters based on heterogeneous computation and communication delays, achieving optimal time
 455 complexity. Overall, most methods optimize either δ or τ independently, ignoring their joint impact
 456 on convergence.

457
Federated Learning with Heterogeneous Devices. To address device heterogeneity, HeteroFL Diao
 458 et al. (2021) enables clients to train subnetworks of varying sizes. FIARSE Wu et al. (2024) further
 459 extracts submodels based on parameter importance, allowing adaptive training across devices with
 460 weighted server aggregation. From a system perspective, asynchronous or hybrid aggregation schemes
 461 mitigate straggler effects. FedBuff Nguyen et al. (2022) combines synchronous and asynchronous
 462 buffering to boost efficiency. These approaches, however, typically decouple gradient compression
 463 and communication frequency. WingsFL addresses this gap by jointly optimizing both, enhancing
 464 end-to-end performance with minimal overhead.

465
Adaptive Infrequent Communication. Adaptive local update schemes reduce communication cost
 466 based on local-global model similarity. The work Shenaj et al. (2025) proposes continuing local
 467 updates when local and global representations are aligned, terminating early when divergence is high.
 468 AQUILA Zhao et al. (2022) adaptively adjusts quantization accuracy and communication frequency,
 469 combining lazy aggregation with theoretical guarantees to reduce transmission overhead while
 470 maintaining convergence. These strategies show that communication schedules can be effectively
 471 tailored based on model dynamics and feedback signals.

473 7 CONCLUSION

475
 FL usually uses infrequent communication and gradient compression to alleviate the communication
 476 bottlenecks, which severally prevents the training process facing low bandwidth. We demonstrate
 477 that the effect of these two strategies on the model convergence are not orthogonal but intrinsically
 478 coupled. We proposed WingsFL, a novel theoretical framework that reveals the term $\frac{2\tau}{\delta^2}$ as a key
 479 factor governing the convergence of FedAVG with gradient compression. Leveraging this insight, we
 480 propose WingsFL that jointly optimizes the compression ratio δ and the number of local steps τ to
 481 minimize end-to-end training time under device heterogeneity and dynamic bandwidth. Our design
 482 achieves up to $2.24\times$ and $2.18\times$ speed-ups over FedAVG and SOTA adaptive algorithms, showing
 483 that our approach significantly outperforms static and adaptive baselines by efficiently co-optimizing
 484 these hyperparameters.

485

Table 3: Training time (in seconds) to reach
 target accuracy (VGG@Flickr) or perplexity
 (GPT@Wiki) under different device heterogeneity
 levels $q\%$, where $t_{\text{compute}}^i \in [t, (1 + q\%)t]$
 and t_{compute}^i is task-specific. Results demonstrate
 WingsFL’s robustness to device heterogeneity.

Task	Heterogeneity	Target	FedAVG	γ -FedHT	PASGD	WingsFL
VGG@ Flickr	20%	55%	206.48	144.15	183.22	125.02
		60%	266.02	173.98	218.56	157.69
		65%	362.27	231.91	275.04	212.38
	50%	55%	233.40	179.44	228.35	149.36
		60%	300.71	219.49	269.58	189.73
		65%	415.20	278.55	341.29	263.50
	100%	55%	278.59	236.62	299.31	195.94
		60%	358.92	289.46	355.79	249.05
		65%	495.60	367.37	448.49	345.57
	200%	55%	368.97	350.97	441.22	289.10
		60%	475.34	429.40	528.20	367.70
		65%	656.39	545.00	662.88	509.71
GPT@ Wiki	20%	23.5	81.97	57.41	72.85	42.30
		23.0	129.60	76.55	100.26	63.91
		22.5	210.45	114.78	155.01	93.77
	50%	23.5	91.11	71.12	90.41	47.39
		23.0	151.83	94.83	124.38	78.97
		22.5	222.05	142.19	183.75	114.82
	100%	23.5	106.32	93.07	118.95	61.89
		23.0	177.18	124.76	164.17	103.16
		22.5	253.29	187.10	253.66	151.67
	200%	23.5	136.73	139.57	177.03	93.04
		23.0	227.87	186.09	243.76	155.05
		22.5	315.76	279.09	410.53	228.51

486 8 ETHICS STATEMENT
487488 This research adheres to the ICLR Code of Ethics . No human subjects, personal data, or sensitive
489 demographic attributes were involved in this study. All datasets used are publicly available and
490 do not contain personally identifiable information. The methodology proposed is not intended to
491 produce harmful outputs or be deployed in high-stakes decision-making contexts without further
492 safety evaluation. There are no known risks of discrimination, bias, or unfairness associated with
493 our approach. The authors declare no conflicts of interest or funding-related bias. All experimental
494 procedures comply with standard ethical research practices.495 9 REPRODUCIBILITY STATEMENT
496497 To support reproducibility, we provide detailed descriptions of model architectures, training protocols,
498 and hyperparameter settings in the main paper and Appendix. All theoretical results are accompanied
499 by complete proofs (in Appendix D). The source code used to run all experiments will be published if
500 accepted. Public datasets are used and provided in Section 5. These resources collectively enable
501 researchers to reproduce the main results presented in this work.502 503 REFERENCES
504505 Ahmed M Abdelmoniem and Marco Canini. Dc2: Delay-aware compression control for distributed
506 machine learning. In *IEEE INFOCOM 2021-IEEE Conference on Computer Communications*.
507 IEEE, 2021a.508 Ahmed M. Abdelmoniem and Marco Canini. Dc2: Delay-aware compression control for distributed
509 machine learning. In *IEEE Conference on Computer Communications 2021*, pp. 1–10, 2021b. doi:
510 10.1109/INFOCOM42981.2021.9488810.511 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
512 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
513 *arXiv preprint arXiv:2303.08774*, 2023.514 Laizhong Cui, Xiaoxin Su, Yipeng Zhou, and Yi Pan. Slashing communication traffic in fed-
515 erated learning by transmitting clustered model updates. *IEEE Journal on Selected Areas in*
516 *Communications*, 39(8):2572–2589, 2021.517 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
518 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
519 pp. 248–255. Ieee, 2009.520 Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient feder-
521 ated learning for heterogeneous clients. In *International Conference on Learning Representations*,
522 2021.523 Haotian Dong, Jingyan Jiang, Rongwei Lu, Jiajun Luo, Jiajun Song, Bowen Li, Ying Shen, and
524 Zhi Wang. Beyond a single ai cluster: A survey of decentralized llm training. *arXiv preprint*
525 *arXiv:2503.11023*, 2025.526 Ron Dorfman, Shay Vargaftik, Yaniv Ben-Itzhak, and Kfir Yehuda Levy. Docofl: Downlink
527 compression for cross-device federated learning. In *International Conference on Machine Learning*,
528 pp. 8356–8388. PMLR, 2023.529 Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
530 *arXiv preprint arXiv:2010.11929*, 2020.531 Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-iid data quagmire of
532 decentralized machine learning. In *International Conference on Machine Learning*, pp. 4387–4398.
533 PMLR, 2020.534 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
535 Technical report, University of Toronto, 2009.

540 Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
 541 document recognition. *Proceedings of the IEEE*, 86(11):2278–2324, 1998.

542

543 Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos: An
 544 experimental study. In *IEEE International Conference on Data Engineering*, 2022.

545

546 Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
 547 Federated optimization in heterogeneous networks. *Proceedings of Machine learning and systems*,
 548 2:429–450, 2020.

549

550 Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing
 551 the communication bandwidth for distributed training. In *ICLR*, 2018.

552

553 Lumin Liu, Jun Zhang, Shenghui Song, and Khaled B Letaief. Hierarchical federated learning
 554 with quantization: Convergence analysis and system design. *IEEE Transactions on Wireless
 555 Communications*, 22(1):2–18, 2022.

556

557 Rongwei Lu, Yutong Jiang, Yinan Mao, Chen Tang, Bin Chen, Laizhong Cui, and Zhi Wang. Dgc:
 558 Data-volume-aware adaptive sparsification gradient compression for distributed machine learning
 559 in mobile computing. *arXiv preprint arXiv:2311.07324*, 2023a.

560

561 Rongwei Lu, Jiajun Song, Bin Chen, Laizhong Cui, and Zhi Wang. Dgc: Data-aware adaptive
 562 gradient compression. In *INFOCOM*, 2023b.

563

564 Rongwei Lu, Yutong Jiang, Yinan Mao, Chen Tang, Bin Chen, Laizhong Cui, and Zhi Wang.
 565 Data-aware gradient compression for fl in communication-constrained mobile computing. *IEEE
 566 Transactions on Mobile Computing*, pp. 1–14, 2024. doi: 10.1109/TMC.2024.3504284.

567

568 Rongwei Lu, Jingyan Jiang, Chunyang Li, Haotian Dong, Xingguang Wei, Delin Cai, and Zhi Wang.
 569 Deco-sgd: Joint optimization of delay staleness and gradient compression ratio for distributed sgd.
 570 *arXiv preprint arXiv:2507.17346*, 2025a.

571

572 Rongwei Lu, Yutong Jiang, Jinrui Zhang, Chunyang Li, Yifei Zhu, Bin Chen, and Zhi Wang.
 573 gamma-fedht: Stepsize-aware hard-threshold gradient compression in federated learning. In *IEEE
 574 INFOCOM* 2025, 2025b.

575

576 Ilia Markov, Kaveh Alim, Elias Frantar, and Dan Alistarh. L-greco: Layerwise-adaptive gradient
 577 compression for efficient data-parallel deep learning. *Proceedings of Machine Learning and
 578 Systems*, 6:312–324, 2024.

579

580 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 581 Communication-efficient learning of deep networks from decentralized data. In *Artificial Intelligence
 582 and Statistics*, pp. 1273–1282. PMLR, 2017.

583

584 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 585 models. In *International Conference on Learning Representations*, 2022.

586

587 John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and
 588 Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In *International
 589 conference on artificial intelligence and statistics*, pp. 3581–3607. PMLR, 2022.

590

591 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
 592 models are unsupervised multitask learners. 2019.

593

594 Atal Sahu, Aritra Dutta, Ahmed M Abdelmoniem, Trambak Banerjee, Marco Canini, and Panos Kalnis.
 595 Rethinking gradient sparsification as total error minimization. *Advances in Neural Information
 596 Processing Systems*, 34, 2021.

597

598 Donald Shenaj, Eugene Belilovsky, and Pietro Zanuttigh. Adaptive local training in federated learning.
 599 In *ICLR 2025 Workshop on Modularity for Collaborative, Decentralized, and Continual Deep
 600 Learning*, 2025.

601

602 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 603 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

594 Sebastian U Stich. On communication compression for distributed optimization on heterogeneous
 595 data. *arXiv preprint arXiv:2009.02388*, 2020.

596

597 Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for sgd
 598 with delayed gradients and compressed updates. *Journal of Machine Learning Research*, 21:1–36,
 599 2020a.

600 Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: Sgd with delayed
 601 gradients. *Journal of Machine Learning Research*, 21(237):1–36, 2020b.

602

603 Alexander Tyurin, Marta Pozzi, Ivan Ilin, and Peter Richtárik. Shadowheart sgd: Distributed
 604 asynchronous sgd with optimal time complexity under arbitrary computation and communication
 605 heterogeneity. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*,
 606 2024.

607 Jue Wang, Yucheng Lu, Binhang Yuan, Beidi Chen, Percy Liang, Christopher De Sa, Christopher Re,
 608 and Ce Zhang. CocktailSGD: Fine-tuning foundation models over 500Mbps networks. In Andreas
 609 Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
 610 (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of
 611 *Proceedings of Machine Learning Research*, pp. 36058–36076. PMLR, 23–29 Jul 2023. URL
 612 <https://proceedings.mlr.press/v202/wang23t.html>.

613 Feijie Wu, Xingchen Wang, Yaqing Wang, Tianci Liu, Lu Su, and Jing Gao. Fiarse: Model-
 614 heterogeneous federated learning via importance-aware submodel extraction. *Advances in Neural
 615 Information Processing Systems*, 37:115615–115651, 2024.

616

617 Hang Xu, Chen-Yu Ho, Ahmed M. Abdelmoniem, Aritra Dutta, EH Bergou, Konstantinos Karatsenidis,
 618 Marco Canini, and Panos Kalnis. Grace: A compressed communication framework for distributed
 619 machine learning. In *IEEE International Conference on Distributed Computing Systems*, 2021.

620 Mang Ye, Xiuwen Fang, Bo Du, Pong C Yuen, and Dacheng Tao. Heterogeneous federated learning:
 621 State-of-the-art and research challenges. *ACM Computing Surveys*, 56(3):1–44, 2023.

622

623 Zihao Zhao, Yuzhu Mao, Zhenpeng Shi, Muhammad Zeeshan, Yang Liu, Tian Lan, and Wenbo Ding.
 624 Aquila: Communication efficient federated learning with adaptive quantization of lazily-aggregated
 625 gradients. In *Proceedings of the International Conference on Learning Representations (ICLR)*,
 626 2022.

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648	CONTENTS	
649		
650		
651	1 Introduction	1
652		
653	2 Preliminaries	2
654	2.1 Federated Learning	2
655	2.2 Challenges in Real-World Federated Learning	2
656	2.3 Communication Optimization Methods in FL	3
657	2.3.1 Infrequent Communication	3
658	2.3.2 Gradient Compression	3
659		
660		
661		
662	3 Theoretical Analysis of FedAVG-GC	3
663	3.1 Regular Assumptions	3
664	3.2 Theoretical Framework in FL	4
665	3.3 Convergence Rate of FedAVG-GC	4
666	3.4 Analysis of Convergence Rate in FL	5
667		
668		
669		
670	4 WingsFL: Joint Optimization of Local Steps and Compression	5
671		
672	5 Evaluation Experiments	7
673	5.1 Experimental Environment	7
674	5.2 Experimental Settings	7
675	5.3 Comparison of Training Speed	7
676	5.4 Sensitivity Analysis of Hyperparameter in WingsFL	8
677	5.5 WingsFL under Different Device Heterogeneity	8
678		
679		
680		
681	6 Related Work	8
682		
683		
684	7 Conclusion	9
685		
686	8 Ethics Statement	10
687		
688	9 Reproducibility Statement	10
689		
690	A The Use of Large Language Models(LLMs)	14
691		
692		
693	B Notation List	14
694		
695	C FedAVG-GC	15
696		
697	D Detailed proof	15
698		
699	D.1 Technical Results	15
700	D.2 Key Lemmas to Prove Theorem 1	16
701	D.3 Key Lemmas to Prove Theorem 2	18

702	D.4 Proof of Theorem 4	20
703		
704		
705	E Addendum to Evaluation Experiments	20
706	E.1 Experimental Environment	20
707		
708	E.2 Detailed Experimental hyper-parameters	20
709		
710	E.3 Detailed curves of Section 5.4	21
711		
712	E.4 Detailed curves of Section 5.5	21
713		

A THE USE OF LARGE LANGUAGE MODELS(LLMs)

In this work, LLMs are used to polish the lareadability and find the related works. LLMs are not used for the generation of ideas, experimental design, data analysis, or any other part of the research process.

B NOTATION LIST

Table 4: Notation list.

Notation	Description
n	number of workers
T_{end}	total number of global iterations
$f_i(\cdot)$	the local loss function of worker i
p_i	the training weight of worker i , typically proportional to its local dataset volume
$f(\cdot)$	the global loss function, <i>i.e.</i> , $f(\mathbf{x}) = \sum_{i=1}^n p_i f_i(\mathbf{x})$
δ	compression ratio ($0 < \delta \leq 1$)
τ	communication infrequency
$\mathbf{C}_\delta(\cdot)$	the sparsification compressor with compression ratio δ
$\mathbf{x}_{T,j}^i$	the local model parameter in the T -th global iteration, j -th local iteration of the i -th worker
\mathbf{x}_T	the global model parameter in the T -th global iteration
$\mathbf{g}_{T,j}^i$	the stochastic gradient of $\mathbf{x}_{T,j}^i$
Δ_T^i	the sum of the gradients within τ local iterations in the T -th global iteration of worker i
γ_T	the stepsize at global iteration T
\mathbf{e}_T^i	the local error term of the i -th worker at the T -th global iteration
L	L-smoothness
μ	μ -strongly convexity if f_i is strongly convex
ζ	the global data heterogeneity
ξ^i	the stochastic gradient noise of worker i
σ^2	the upper variance bound of the stochastic gradient noise
a^i	the coefficient parameter of the communication cost (s)
b_T^i	the bandwidth of the link between worker i and server at the global iteration T (bits/s)
S_g	the size of the gradient (bits)
t_{latency}^i	the network end-to-end latency of worker i (s)
t_{compute}^i	the time for a single computation pass of worker i (s)
T_{avg}	average end-to-end training time per iteration (s)

756 C FEDAVG-GC
757758 **Algorithm 3:** FedAVG-GC
759

760 **Input:** number of clients n , traing weight p_i , step-size γ , initial parameters \mathbf{x}_0 , initial local error
761 $\mathbf{e}_0^i = \mathbf{0}_d$, the communication frequency τ , the compressor $\mathbf{C}_\delta(\cdot)$ with the compression
762 ratio δ

763 **Output:** $\mathbf{x}_{T_{\text{end}}}$

764 **for** $T \in [T_{\text{end}}]$ **do** */

765 /* Worker side

766 **for** $i \in [n]$ **do**

767 $\mathbf{x}_{T,0}^i = \mathbf{x}_T$;

768 **for** $j \in [\tau]$ **do**

769 $\mathbf{x}_{T,j+1}^i = \mathbf{x}_{T,j}^i - \gamma \mathbf{g}_{T,j}^i$;

770 **end**

771 $\Delta_T^i = \sum_{j \in [\tau]} \mathbf{g}_{T,j}^i$;

772 $\hat{\Delta}_T^i = \mathbf{C}_\delta(\Delta_T^i + \mathbf{e}_T^i)$;

773 $\mathbf{e}_{T+1}^i = \mathbf{e}_T^i + \Delta_T^i - \hat{\Delta}_T^i$;

774 Upload $\hat{\Delta}_T^i$ to the server;

775 **end** */

776 /* Server side

777 $\mathbf{x}_{T+1} = \mathbf{x}_T - \gamma \sum_{i \in [n]} p_i \hat{\Delta}_T^i$;

778 Broadcast \mathbf{x}_{T+1} ;

779 **end**

780 **Return** $\mathbf{x}_{T_{\text{end}}}$;

782 D DETAILED PROOF
783

784 D.1 TECHNICAL RESULTS

786 We list lemmas derived from other works here to help us complete the whole proof. Detailed proof of
787 these lemmas can be found from the reference and we do not write here.

788 **Lemma 1.** If $c_1, c_2 \in \mathbb{R}^d$ then the Jensen's inequality is: For all $\rho > 0$, we have

790
$$\|c_1 + c_2\|^2 \leq (1 + \rho)\|c_1\|^2 + (1 + \rho^{-1})\|c_2\|^2. \quad (11)$$

791 This can be written as:

793
$$2\langle c_1, c_2 \rangle \leq \rho\|c_1\|^2 + \rho^{-1}\|c_2\|^2. \quad (12)$$

794 **Lemma 2** (The nature of Top- k). By definition, the Top- k compressor \mathbf{C}_δ is a mapping that has the
795 property $\mathbb{R}^d \rightarrow \mathbb{R}^d$:

796
$$\mathbb{E}_{\mathbf{C}_\delta} \|\mathbf{C}_\delta(\mathbf{x}) - \mathbf{x}\|^2 \leq (1 - \delta)\|\mathbf{x}\|^2. \quad (13)$$

797 **Lemma 3** (Lemma 27 of the work Stich (2020)). Let $(r_t)_{t \geq 0}$ and $(s_t)_{t \geq 0}$ be sequences of positive
798 numbers satisfying

799
$$r_{t+1} \leq r_t - B\gamma s_t + C\gamma^2 + D\gamma^3,$$

800 for some positive constants $B > 0$, $C, D \geq 0$ and step-sizes $0 < \gamma \leq \frac{1}{E}$, for $E \geq 0$. Then there
801 exists a constant stepsize $\gamma \leq \frac{1}{E}$ such that

802
$$\frac{B}{T+1} \sum_{t=0}^T s_t \leq \frac{Er_0}{T+1} + 2D^{1/3} \left(\frac{r_0}{T+1} \right)^{2/3} + 2 \left(\frac{Cr_0}{T+1} \right)^{1/2}. \quad (14)$$

805 **Remark 3.** To ensure that the right hand side in Eq. 14 is less than $\epsilon > 0$,

807
$$T = \mathcal{O} \left(\frac{C}{\epsilon^2} + \frac{\sqrt{D}}{\epsilon^{3/2}} + \frac{E}{\epsilon} \right) \cdot r_0$$

808 steps are sufficient.

810
 811 **Lemma 4** (Lemma 25 of the work Stich (2020)). *Let $(r_t)_{t \geq 0}$ and $(s_t)_{t \geq 0}$ be sequences of positive
 812 numbers satisfying*

$$813 \quad r_{t+1} \leq (1 - \min\{\gamma A, F\})r_t - B\gamma s_t + C\gamma^2 + D\gamma^3,$$

814 *for some positive constants $A, B > 0$, $C, D \geq 0$, and for constant step-sizes $0 < \gamma \leq \frac{1}{E}$, for $E \geq 0$,
 815 and for parameter $0 < F \leq 1$. Then there exists a constant step-size $\gamma \leq \frac{1}{E}$ such that*

$$816 \quad \frac{B}{W_T} \sum_{t=0}^T w_t s_t + \min\left\{A, \frac{F}{\gamma}\right\} r_{T+1} \leq r_0 \left(E + \frac{A}{F}\right) \exp\left[-\min\left\{\frac{A}{E}, F\right\}(T+1)\right] \\ 817 \quad + \frac{2C \ln \tau}{A(T+1)} + \frac{D \ln^2 \tau}{A^2(T+1)^2}$$

818 *for $w_t := (1 - \min\{\gamma A, F\})^{-(t+1)}$, $W_T := \sum_{t=0}^T w_t$ and*

$$819 \quad \tau = \max \left\{ \exp[1], \min \left\{ \frac{A^2 r_0 (T+1)^2}{C}, \frac{A^3 r_0 (T+1)^3}{D} \right\} \right\}.$$

820 **Remark 4.** Lemma 4 establishes a bound of the order

$$821 \quad \tilde{\mathcal{O}} \left(r_0 \left(E + \frac{A}{F} \right) \exp \left[-\min \left\{ \frac{A}{E}, F \right\} T \right] + \frac{C}{AT} + \frac{D}{A^2 T^2} \right),$$

822 that decreases with T . To ensure that this expression is less than ϵ ,

$$823 \quad T = \tilde{\mathcal{O}} \left(\frac{C}{A\epsilon} + \frac{\sqrt{D}}{A\sqrt{\epsilon}} + \frac{1}{F} \log \frac{1}{\epsilon} + \frac{E}{A} \log \frac{1}{\epsilon} \right) = \tilde{\mathcal{O}} \left(\frac{C}{A\epsilon} + \frac{\sqrt{D}}{A\sqrt{\epsilon}} + \frac{1}{F} + \frac{E}{A} \right)$$

824 steps are sufficient.

825 D.2 KEY LEMMAS TO PROVE THEOREM 1

826 In this section, we prove Theorem 1. We follow the analysis of Section 3.2 and define two virtual
 827 sequences:

$$828 \quad \tilde{\mathbf{x}}_0 = \hat{\mathbf{x}}_{0,0} = \mathbf{x}_0, \quad \tilde{\mathbf{x}}_{T+1} = \tilde{\mathbf{x}}_T - \gamma \sum_{i \in [n]} p_i \Delta_T^i, \quad \hat{\mathbf{x}}_{T,j+1} = \hat{\mathbf{x}}_{T,j} - \gamma \sum_{i \in [n]} p_i \mathbf{g}_{T,j}^i. \quad (15)$$

829 In addition, we use the notation $\hat{F}_T = \sum_{j \in [\tau]} \hat{F}_{T,j}$, $\hat{F}_{T,j} = \mathbb{E}f(\hat{\mathbf{x}}_{T,j}) - f^*$, $G_T =$
 830 $\sum_{j \in [\tau]} \|\nabla f(\mathbf{x}_{T,j})\|^2$, $\tilde{B}_{T,j} = \|\hat{\mathbf{x}}_{T,j} - \tilde{\mathbf{x}}_{T,j}\|^2$, $B_{T,j} = \|\mathbf{x}_{T,j} - \tilde{\mathbf{x}}_{T,j}\|^2$, $\tilde{B}_T = \sum_{j \in [\tau]} \tilde{B}_{T,j}$,
 831 $B_T = \sum_{j \in [\tau]} B_{T,j}$, $E_T = n \sum_{i \in [n]} p_i^2 \|\mathbf{e}_T^i\|^2$, $\hat{\mathbf{x}}_{T,j} = \mathbb{E}\|\hat{\mathbf{x}}_{T,j} - \mathbf{x}^*\|^2$ and $\hat{\mathbf{x}}_T = \sum_{j \in [\tau]} \hat{\mathbf{x}}_{T,j}$. \mathbf{x}^x
 832 is the optimal model parameter, that is $f^* = \min_{\mathbf{x} \in \mathbb{R}^d} f(\mathbf{x}) = f(\mathbf{x}^*)$.

833 **Lemma 5.** *Let f be L -smooth. If $\gamma \leq \frac{1}{2L}$, then it holds for the iterates of FedAVG-GC:*

$$834 \quad \hat{F}_{T+1} \leq \hat{F}_T - \frac{\gamma}{4} G_T + \frac{\gamma^2 L \tau \sum_{i \in [n]} p_i^2 \sigma^2}{2} + \gamma L^2 (\tilde{B}_T + \gamma^2 \tau E_T). \quad (16)$$

835 *Proof.*

$$836 \quad \begin{aligned} \hat{F}_{T+1,j} &\leq \hat{F}_{T,j} - \langle \gamma \sum_i p_i \mathbf{g}_{T,j}^i, \nabla f(\hat{\mathbf{x}}_{T,j}) \rangle + \frac{\gamma^2 L}{2} \|\sum_i p_i \mathbf{g}_{T,j}^i\|^2 \\ 837 &\leq \hat{F}_{T,j} - \langle \gamma \nabla f(\mathbf{x}_{T,j}), \nabla f(\hat{\mathbf{x}}_{T,j}) \rangle + \frac{\gamma^2 L}{2} (\|\nabla f(\mathbf{x}_{T,j})\|^2 + \sum_i p_i^2 \sigma^2) \\ 838 &\leq \hat{F}_{T,j} - \frac{\gamma}{2} \|\nabla f(\mathbf{x}_{T,j})\|^2 + \frac{\gamma}{2} (\|\nabla f(\mathbf{x}_{T,j}) - \nabla f(\hat{\mathbf{x}}_{T,j})\|) \\ 839 &\quad + \frac{\gamma^2 L}{2} \|\nabla f(\mathbf{x}_{T,j})\|^2 + \frac{L \gamma^2 \sum_i p_i^2 \sigma^2}{2} \\ 840 &\leq \hat{F}_{T,j} - \frac{\gamma}{2} (1 - L\gamma) \|\nabla f(\mathbf{x}_{T,j})\|^2 + \gamma L^2 (\|\hat{\mathbf{x}}_{T,j} - \tilde{\mathbf{x}}_{T,j}\|^2 + \|\tilde{\mathbf{x}}_{T,j} - \mathbf{x}_{T,j}\|^2) \\ 841 &\quad + \frac{L \gamma^2 \sum_i p_i^2 \sigma^2}{2}, \end{aligned} \quad (17)$$

864 where the first inequality is due to L -smoothness (Assumption 1), and the second inequality is due to
865 the assumption on the gradient noise (Assumption 2). The third is due to Eq. 12 and the fourth is due
866 to Eq. 12 and L -smoothness.
867

868 We observe that $B_T = \tau \|\gamma \sum_i p_i \mathbf{e}_T^i\|^2 \leq n\tau\gamma^2 \sum_i p_i^2 \|\mathbf{e}_T^i\|^2 = \gamma^2 \tau E_T$. We sum Eq. 17 from $j = 1$
869 to $j = \tau$ and have

$$870 \hat{F}_{T+1} \stackrel{\gamma < \frac{1}{2L}}{\leq} \hat{F}_T - \frac{\gamma}{4} G_T + \frac{L\gamma^2 \tau \sum_i p_i^2 \sigma^2}{2} + \gamma L^2 (\tilde{B}_T + \gamma^2 \tau E_T).$$

872 **Lemma 6.** Let B_t be defined in NVS-FL, we have

$$874 \tilde{B}_T \leq \tau^2 \gamma^2 G_T + \frac{\tau^2 \gamma^2 \sum_i p_i^2 \sigma^2}{2}. \quad (18)$$

876 *Proof.* Similarly to the previous work Stich & Karimireddy (2020b), we have

$$878 \begin{aligned} \tilde{B}_{T,j} &= \|(\hat{\mathbf{x}}_{T,j} - \hat{\mathbf{x}}_{T,0}) - (\tilde{\mathbf{x}}_{T,j} - \hat{\mathbf{x}}_{T,0})\|^2 \\ 879 &\leq \|\tilde{\mathbf{x}}_{T,j} - \hat{\mathbf{x}}_{T,0}\|^2 \\ 880 &= \|\gamma \sum_{j' \in [j]} \sum_i p_i \mathbf{g}_{T,j'}^i\|^2 \\ 881 &\leq \gamma^2 j \sum_{j'} \|\nabla f(\mathbf{x}_{T,j})\|^2 + j \sum_i p_i^2 \sigma^2 \gamma^2. \end{aligned} \quad (19)$$

885 The second line is due to $\mathbb{E}\|x - \mathbb{E}x\|^2 \leq \mathbb{E}\|x\|^2$. In this way, we have

$$887 \begin{aligned} \tilde{B}_T &= \sum_{j \in [\tau]} \tilde{B}_{T,j} \leq \sum_{j \in [\tau]} \gamma^2 j \sum_{j'} \|\nabla f(\mathbf{x}_{T,j})\|^2 + \sum_i p_i^2 \sigma^2 \gamma^2 \sum_{j \in [\tau]} j \\ 888 &\leq \tau^2 \gamma^2 \sum_{j \in [\tau]} \|\nabla f(\mathbf{x}_{T,j})\|^2 + \frac{\tau^2 \gamma^2 \sum_i p_i^2 \sigma^2}{2}. \end{aligned} \quad (20)$$

892 **Lemma 7.** It holds for the update of error terms in FedAVG-GC

$$894 E_{T+1} \leq (1 - \frac{\delta}{2^\tau}) E_T + \frac{2\tau Z^2}{\delta} \cdot G_T + \tau \left(\frac{2\zeta^2}{\delta} + n \sum_i p_i^2 \sigma^2 \right). \quad (21)$$

896 *Proof.*

$$898 \begin{aligned} \|\mathbf{e}_{T+1}^i\|^2 &\leq (1 - \delta) \|\mathbf{e}_T^i + \Delta_T^i\|^2 \\ 899 &\leq (1 - \delta) \|\mathbf{e}_T^i + \sum_j \nabla f_i(\mathbf{x}_{T,j})\|^2 + (1 - \delta) \tau \sigma^2 \\ 900 &\leq (1 - \delta)(1 + \rho) \|\mathbf{e}_T^i\|^2 + (1 - \delta)(1 + \rho^{-1}) \|\sum_{j \in [\tau]} \nabla f_i(\mathbf{x}_{T,j})\|^2 + (1 - \delta) \tau \sigma^2 \\ 901 &\leq (1 - \delta) \|\mathbf{e}_T^i\|^2 + \frac{2\tau}{\delta} \sum_{j \in [\tau]} \|\nabla f_i(\mathbf{x}_{T,j})\|^2 + \tau \sigma^2. \end{aligned} \quad (22)$$

907 The first line is due to Eq. 13, the second line is due to Assumption 2, the forth line is due to Eq. 1
908 and in the forth line, we take $\rho = \frac{2^\tau - 1}{2^\tau} \cdot \frac{\delta}{1 - \delta}$. Then we have
909

$$910 E_{T+1} \leq (1 - \frac{\delta}{2^\tau}) E_T + \frac{2\tau}{\delta} (Z^2 \|\nabla f(\mathbf{x}_{T,j})\|^2 + \zeta^2) + n\tau \sum_i p_i^2 \sigma^2, \quad (23)$$

912 where the inequality is due to Assumption 3.

914 **Lemma 8.** Let f be L -smooth and $\gamma \leq \{\frac{1}{2\sqrt{2\tau}L}, \frac{\delta}{\sqrt{32 \cdot 2^\tau} \tau L Z}\}$, then it holds

$$916 \Xi_{T+1} \leq \Xi_T - \frac{\gamma}{16} G_T + c_1 \gamma^2 + c_2 \gamma^3, \quad (24)$$

917 for $\Xi_T = \hat{F}_T + bE_T$, where $b = \frac{\gamma^3 \tau L^2 2^\tau}{\delta}$, $c_1 = \frac{L\tau \sum_i p_i^2 \sigma^2}{2}$, $c_2 = \tau L c_1 + \frac{\tau^2 L^2 2^\tau}{\delta} (\frac{2\zeta^2}{\delta} + n \sum_i p_i^2 \sigma^2)$.

918 *Proof.*

$$\begin{aligned}
919 \quad \Xi_{T+1} &= \hat{F}_{T+1} + bE_{T+1} \\
920 \\
921 \quad &\leq \hat{F}_T + bE_T - \frac{\gamma}{8} \left(1 - \frac{8b}{\gamma} \cdot \frac{2\tau Z^2}{\delta}\right) G_T + c_1 \gamma^2 + c_2 \gamma^3 \\
922 \\
923 \quad &\leq \Xi_T - \frac{\gamma}{16} G_T + c_1 \gamma^2 + c_2 \gamma^3,
\end{aligned} \tag{25}$$

924 where the second line is due to Lemma 5, 6, 7 and the last inequality is due to $\gamma \leq \frac{\delta}{\sqrt{32 \cdot 2^\tau \tau L Z}}$.

925 **Theorem 1** (Non-convex convergence rate of FedAVG-GC). *Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be L -smooth. There
926 exists a stepsize $\gamma \leq \min\{\frac{1}{2\sqrt{2}\tau L}, \frac{1}{\sqrt{32\phi\tau LZ}}\}$, where $\phi = \frac{2^\tau}{\delta^2}$, such that at most
927*

$$928 \quad \mathcal{O}\left(\frac{\sum_{i \in [n]} p_i^2 \sigma^2}{\epsilon^2} + \frac{\sqrt{\phi\zeta^2 + (1+n\phi\delta)\sum_{i \in [n]} p_i^2 \sigma^2}}{\epsilon^{3/2}} + \frac{1}{\epsilon} + \frac{Z\sqrt{\phi}}{\epsilon}\right) \cdot L(f(\mathbf{x}_0) - f^*) \tag{26}$$

929 *iterations of FedAVG-GC, it holds $\mathbb{E}\|\nabla f(\mathbf{x}_{out})\|^2 \leq \epsilon$, and $\mathbf{x}_{out} = \mathbf{x}_t$ denotes an iterate $\mathbf{x}_t \in$
930 $\{\mathbf{x}_{0,0}, \dots, \mathbf{x}_{T_{end},0}\}$, where $\tau \cdot T_{end}$ denotes the total number of local iterations, chosen at random
931 uniformly.*

932 *Proof.* We take Lemma 8 to Lemma 3 and let $r_t = \Xi_t$, $s_t = G_t$, $B = \frac{1}{16}$, $C = c_1$,
933 $D = c_2$, $E = \max\{2\sqrt{2}\tau L, \sqrt{32\phi\tau LZ}\}$. To ensure $\frac{B}{T_{end}} \frac{1}{\tau} \sum_{t \in [T_{end}]} s_t$ is less than $\epsilon > 0$, $T_{end} =$
934 $\mathcal{O}\left(\frac{\sum_{i \in [n]} p_i^2 \sigma^2}{\epsilon^2} + \frac{\sqrt{\phi\zeta^2 + (1+n\phi\delta)\sum_{i \in [n]} p_i^2 \sigma^2}}{\epsilon^{3/2}} + \frac{1}{\epsilon} + \frac{Z\sqrt{\phi}}{\epsilon}\right) \cdot \frac{L\tau(f(\mathbf{x}_0) - f^*)}{\tau}$ are enough, which completes
935 the proof.

936 D.3 KEY LEMMAS TO PROVE THEOREM 2

937 Let $F_{T,j} = f(\mathbf{x}_{T,j}) - f^*$ and $F_T = \sum_{j \in [\tau]} F_{T,j}$.

938 **Lemma 9.** *Let f be L -smooth and μ -convex, if $\gamma \leq \min\{\frac{1}{4L}, \frac{1}{4\sqrt{3L\tau}}\}$, then it holds for the iterates
939 of FedAVG-GC*

$$940 \quad \hat{\mathbf{x}}_{T+1} \leq \left(1 - \frac{\mu\gamma}{2}\right) \hat{\mathbf{x}}_T - \frac{\gamma}{4} F_T + c_1 \gamma^2 + c_2 \gamma^3 + 6\gamma^3 L\tau E_T, \tag{27}$$

941 where $c_1 = \tau \sum p_i^2 \sigma^2$ and $c_2 = 3L\tau^2 \sum p_i^2 \sigma^2$.

942 *Proof.*

$$\begin{aligned}
943 \quad \hat{\mathbf{x}}_{T+1,j} &= \|\hat{\mathbf{x}}_{T,j} - \mathbf{x}^*\|^2 - 2\langle \hat{\mathbf{x}}_{T,j} - \mathbf{x}^*, \gamma \mathbf{g}_{T,j} \rangle + \|\mathbf{g}_{T,j}\|^2 \\
944 \\
945 \quad &= \|\hat{\mathbf{x}}_{T,j} - \mathbf{x}^*\|^2 - 2\gamma \langle \nabla f(\mathbf{x}_{T,j}), \mathbf{x}_{T,j} - \mathbf{x}^* \rangle + \|\mathbf{g}_{T,j}\|^2 + 2\gamma \langle \nabla f(\mathbf{x}_{T,j}), \mathbf{x}_{T,j} - \hat{\mathbf{x}}_{T,j} \rangle.
\end{aligned} \tag{28}$$

946 Then we analyze the term $2\langle \nabla f(\mathbf{x}_{T,j}), \mathbf{x}_{T,j} - \hat{\mathbf{x}}_{T,j} \rangle$ and $-2\langle \nabla f(\mathbf{x}_{T,j}), \mathbf{x}_{T,j} - \mathbf{x}^* \rangle$:

$$\begin{aligned}
947 \quad 2\langle \nabla f(\mathbf{x}_{T,j}), \mathbf{x}_{T,j} - \hat{\mathbf{x}}_{T,j} \rangle &\leq \frac{1}{2L} \|\nabla f(\mathbf{x}_{T,j})\|^2 + 2L \|\mathbf{x}_{T,j} - \hat{\mathbf{x}}_{T,j}\|^2 \\
948 \\
949 \quad &\leq f(\mathbf{x}_{T,j}) - f^* + 2L \|\mathbf{x}_{T,j} - \hat{\mathbf{x}}_{T,j}\|^2,
\end{aligned} \tag{29}$$

950 where the first line is due to Eq. 12 and the second line is due to L -smoothness.

$$\begin{aligned}
951 \quad -2\langle \nabla f(\mathbf{x}_{T,j}), \mathbf{x}_{T,j} - \mathbf{x}^* \rangle &\leq -2(f(\mathbf{x}_{T,j}) - f^*) - \mu \|\mathbf{x}_{T,j} - \mathbf{x}^*\|^2 \\
952 \\
953 \quad &\leq -2(f(\mathbf{x}_{T,j}) - f^*) - \frac{\mu}{2} \|\hat{\mathbf{x}}_{T,j} - \mathbf{x}^*\|^2 + \mu \|\hat{\mathbf{x}}_{T,j} - \mathbf{x}_{T,j}\|^2,
\end{aligned} \tag{30}$$

954 where the first line is due to Assumption 4 and the second line is due to Eq. 11.

955 Then we take Eq. 29 and 30 into Eq. 28, then we have

$$\begin{aligned}
956 \quad \hat{\mathbf{x}}_{T+1,j} &\leq \hat{\mathbf{x}}_{T,j} - \gamma(f(\mathbf{x}_{T,j}) - f^*) - \frac{\mu\gamma}{2} \hat{\mathbf{x}}_{T,j} + \gamma(2L + \mu) \|\hat{\mathbf{x}}_{T,j} - \mathbf{x}_{T,j}\|^2 \\
957 \\
958 \quad &\quad + \gamma^2 (\|\nabla f(\mathbf{x}_{T,j})\|^2 + \sum p_i^2 \sigma^2) \\
959 \\
960 \quad &\leq \left(1 - \frac{\mu\gamma}{2}\right) \hat{\mathbf{x}}_{T,j} - \gamma(1 - 2\gamma L) F_{T,j} + \gamma(2L + \mu) \|\hat{\mathbf{x}}_{T,j} - \mathbf{x}_{T,j}\|^2 + \gamma^2 \sum p_i^2 \sigma^2 \\
961 \\
962 \quad &\leq \left(1 - \frac{\mu\gamma}{2}\right) \hat{\mathbf{x}}_{T,j} - \frac{\gamma}{2} F_{T,j} + 6L\gamma(\tilde{B}_{T,j} + \|\tilde{\mathbf{x}}_{T,j} - \mathbf{x}_{T,j}\|^2) + \gamma^2 \sum p_i^2 \sigma^2,
\end{aligned} \tag{31}$$

972 where the second line is due to L -smooth and the last line is due to $\mu \leq L$ (combining Assumption 1
973 and 4). Then we substitute it and have

$$\begin{aligned} 974 \hat{\mathbf{x}}_{T+1} &\leq (1 - \frac{\mu\gamma}{2})\hat{\mathbf{x}}_T - \frac{\gamma}{2}F_T + 6L\gamma(\tilde{B}_T + B_T) + \gamma^2\tau\sum p_i^2\sigma^2 \\ 975 &\leq (1 - \frac{\mu\gamma}{2})\hat{\mathbf{x}}_T - \frac{\gamma}{2}F_T + 6L\gamma(\tilde{B}_T + \gamma^2\tau E_T) + \gamma^2\tau\sum p_i^2\sigma^2. \\ 976 \end{aligned} \quad (32)$$

978 We take Lemma 6 into Eq. 32 and use $G_T \leq 2LF_T$ based on the L -smoothness assumption, then we
979 have

$$\begin{aligned} 980 \hat{\mathbf{x}}_{T+1} &\leq (1 - \frac{\mu\gamma}{2})\hat{\mathbf{x}}_T - \frac{\gamma}{2}(1 - 24\gamma^2L^2\tau^2)F_T + c_1\gamma^2 + c_2\gamma^3 + 6\gamma^3L\tau E_T \\ 981 &\leq (1 - \frac{\mu\gamma}{2})\hat{\mathbf{x}}_T - \frac{\gamma}{4}F_T + c_1\gamma^2 + c_2\gamma^3 + 6\gamma^3L\tau E_T, \\ 982 \end{aligned} \quad (33)$$

983 where $c_1 = \tau \sum p_i^2\sigma^2$ and $c_2 = 3L\tau^2 \sum p_i^2\sigma^2$, completing the proof.

984 **Lemma 10.** Let $\Psi_T = \hat{\mathbf{x}}_T + aE_T$, where $a = \frac{12\gamma^3\tau L^2\tau}{\delta}$

$$\Psi_{T+1} \leq (1 - c)\Psi_T - \frac{\gamma}{8}F_T + c_1\gamma^2 + c_2'\gamma^3, \quad (34)$$

988 where $c = \min(\frac{\mu\gamma}{2}, \frac{\delta}{2\cdot 2^\tau})$, $c_1 = \tau \sum p_i^2\sigma^2$, $c_2' = 3L\tau c_1 + \frac{12L\tau^2 2^\tau}{\delta}(\frac{2c^2}{\delta} + n \sum p_i^2\sigma^2)$ with $\gamma \leq$
989 $\frac{\delta}{\sqrt{384\cdot 2^\tau\tau LZ}}$

990 *Proof.*

$$\begin{aligned} 992 \Psi_{T+1} &\leq (1 - \frac{\mu\gamma}{2})\hat{\mathbf{x}}_T + a(1 - \frac{\delta}{2^\tau} + \frac{6\gamma^3L\tau}{a})E_T + (\frac{4\tau LZ^2a}{\delta} - \frac{\gamma}{4})F_T \\ 993 &\quad + c_1\gamma^2 + c_2\gamma^3 + a\tau(\frac{2\zeta^2}{\delta} + n \sum_i p_i^2\sigma^2) \\ 994 &\leq (1 - c)\hat{\mathbf{x}}_T - \frac{\gamma}{8}F_T + c_1\gamma^2 + c_2'\gamma^3, \\ 995 \end{aligned} \quad (35)$$

996 where the first inequality is due to Lemma 7 and $G_T \leq 2LF_T$, and the second inequality is due to
997 $c = \min(\frac{\mu\gamma}{2}, \frac{\delta}{2\cdot 2^\tau})$ and $\gamma \leq \frac{\delta}{\sqrt{384\cdot 2^\tau\tau LZ}}$. In this way, we complete the proof.

1000 **Theorem 2** (Convex convergence rate of FedAVG-GC, i.e., $\mu = 0$). Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$ be L -smooth
1001 and μ -convex. Then there exists a stepsize $\gamma \leq \min\{\frac{1}{4L}, \frac{1}{4\sqrt{3L\tau}}, \frac{1}{\sqrt{384\cdot\phi\tau LZ}}\}$, where $\phi = \frac{2^\tau}{\delta^2}$, such
1002 that at most

$$\mathcal{O}(\frac{\sum_{i \in [n]} p_i^2\sigma^2}{\epsilon^2} + \frac{\sqrt{L\phi\zeta^2 + L(1 + n\phi\delta)\sum_{i \in [n]} p_i^2\sigma^2}}{\epsilon^{3/2}} + \frac{L}{\epsilon} + \frac{ZL\sqrt{\phi}}{\epsilon}) \cdot \|\mathbf{x}_0 - \mathbf{x}_*\|^2 \quad (36)$$

1003 local iterations of FedAVG-GC, it holds $\mathbb{E}f(\mathbf{x}_{out}) - f^* \leq \epsilon$, and $\mathbf{x}_{out} = \mathbf{x}_t$ denotes an iterate
1004 $\mathbf{x}_t \in \{\mathbf{x}_0, \dots, \mathbf{x}_{(\tau \cdot T_{end}-1)}\}$, where $\tau \cdot T_{end}$ denotes the total number of local iterations, chosen at
1005 random uniformly.

1006 *Proof* When $\mu = 0$, $c = \min(\frac{\mu\gamma}{2}, \frac{\delta}{2\cdot 2^\tau}) = 0$, then Lemma 8 can be written into

$$\Psi_{T+1} \leq \Psi_T - \frac{\gamma}{8}F_T + c_1\gamma^2 + c_2'\gamma^3.$$

1007 In this way, the proof is same with that of Theorem 1.

1008 **Theorem 3** (μ -strongly convex convergence rate of FedAVG-GC, i.e., $\mu > 0$). Let $f : \mathbb{R}^d \rightarrow \mathbb{R}$
1009 be L -smooth and μ -convex. Then there exists a stepsize $\gamma \leq \min\{\frac{1}{4L}, \frac{1}{4\sqrt{3L\tau}}, \frac{1}{\sqrt{384\cdot\phi\tau LZ}}\}$, where
1010 $\phi = \frac{2^\tau}{\delta^2}$, such that at most

$$\mathcal{O}(\frac{\sum_{i \in [n]} p_i^2\sigma^2}{\mu\epsilon} + \frac{\sqrt{L\phi\zeta^2 + L(1 + n\phi\delta)\sum_{i \in [n]} p_i^2\sigma^2}}{\mu\epsilon^{1/2}} + \frac{L}{\mu} + \frac{ZL\sqrt{\phi}}{\mu}) \cdot \|\mathbf{x}_0 - \mathbf{x}_*\|^2 \quad (37)$$

1011 local iterations of FedAVG-GC, it holds $\mathbb{E}f(\mathbf{x}_{out}) - f^* \leq \epsilon$, and $\mathbf{x}_{out} = \mathbf{x}_t$ denotes an iterate
1012 $\mathbf{x}_t \in \{\mathbf{x}_0, \dots, \mathbf{x}_{(\tau \cdot T_{end}-1)}\}$, where $\tau \cdot T_{end}$ denotes the total number of local iterations, selected
1013 probabilistically based on $(1 - \min\{\frac{\mu\gamma}{2}, \frac{\delta}{2\cdot 2^\tau}\})^{-t}$.

1014 *Proof.* We take Lemma 10 to Lemma 4 and let $r_t = \Psi_T$, $s_t = F_T$, $A = \frac{\mu}{2}$, $F = \frac{\delta}{2\cdot 2^\tau}$, $B = \frac{1}{8}$,
1015 $C = c_1$, $D = c_2'$, $E = \max\{4L, 4\sqrt{3}\tau L, \sqrt{384\phi\tau LZ}\}$, then the proof completes.

Table 5: Configs in Fig. 1.

Model@Dataset	t_{compute}^i (ms)	t_{latency}^i (ms)	a^i (ms)	b_T^i (MB/s)	ϕ_c
CNN@CIFAR-10	12.8 ~ 25.6	0 ~ 20	7.85	1 ~ 10	$\phi(30, 1\%)$
VGG11@Flickr	13.2 ~ 26.4	0 ~ 20	15.1	50 ~ 500	$\phi(30, 1\%)$
ViT@ImageNet	282 ~ 584	0 ~ 20	164	50 ~ 500	$\phi(30, 1\%)$
GPT2@Wikitext2	132 ~ 264	0 ~ 20	95.0	50 ~ 500	$\phi(30, 1\%)$

D.4 PROOF OF THEOREM 4

Proof. We first prove that each individual function $Q_T^i(\tau)$ is strictly convex. The second derivative of $Q_T^i(\tau)$ is given by:

$$(Q_T^i(\tau))'' = \frac{c_{3,T}^i \cdot 2^{\tau/2} ((\ln 2 \cdot \tau/2 - 1)^2 + 1) + 2c_2^i}{\tau^3}$$

Since $c_{3,T}^i > 0$, $c_2^i > 0$, and $\tau \geq 1$, all terms in the numerator are positive. Therefore, $Q_T^i''(\tau) > 0$ for all $\tau \geq 1$, proving that each $Q_T^i(\tau)$ is strictly convex. Based on the convexity of $Q_T^i(\tau)$, for any $\tau_1, \tau_2 \in [R_\tau]$ and $\lambda \in [0, 1]$, and for each $i \in [n]$, we have:

$$Q_T^i(\lambda\tau_1 + (1 - \lambda)\tau_2) \leq \lambda Q_T^i(\tau_1) + (1 - \lambda)Q_T^i(\tau_2).$$

Furthermore, by the definition of the maximum function, we have: $Q_T^i(\tau_1) \leq Q(\tau_1)$ and $Q_T^i(\tau_2) \leq Q(\tau_2)$ and have

$$\lambda Q_T^i(\tau_1) + (1 - \lambda)Q_T^i(\tau_2) \leq \lambda Q(\tau_1) + (1 - \lambda)Q(\tau_2)$$

Combining these results, we obtain for each i :

$$Q_T^i(\lambda\tau_1 + (1 - \lambda)\tau_2) \leq \lambda Q(\tau_1) + (1 - \lambda)Q(\tau_2)$$

Taking the maximum over i on the left-hand side gives:

$$Q(\lambda\tau_1 + (1 - \lambda)\tau_2) = \max_{i \in [n]} Q_T^i(\lambda\tau_1 + (1 - \lambda)\tau_2) \leq \lambda Q(\tau_1) + (1 - \lambda)Q(\tau_2)$$

This proves that $Q(\tau)$ is convex. Since $Q(\tau)$ is convex, any local minimum of $Q(\tau)$ is necessarily a global minimum. This completes the proof. \square

E ADDENDUM TO EVALUATION EXPERIMENTS

E.1 EXPERIMENTAL ENVIRONMENT

All experiments are performed on a server running Ubuntu 24.04 LTS, equipped with an Intel Xeon Gold 6230 processor and 8 Nvidia RTX 3090 GPUs, each featuring 24GB of VRAM. The software environment is built upon Python 3.10.16, with all dependencies aligned accordingly. We adopt PyTorch 2.5.1 as the core deep learning framework, utilizing CUDA 12.4 for GPU acceleration. Communication across devices is facilitated using the Gloo backend.

E.2 DETAILED EXPERIMENTAL HYPER-PARAMETERS

The detailed configuration of our experiments in Fig. 1 is presented in Table 5. The computation time t_{compute}^i for each node is uniformly sampled from the specified range and remains fixed throughout the training process. Similarly, the latency t_{latency}^i is randomly determined and static. Both parameters are static and do not change during training. The bandwidth b_T^i fluctuates within the given range to simulate a dynamic network environment, where bandwidth varies randomly within this range throughout the training process.

For CNN-based tasks, the model size is significantly smaller (approximately 1/50 to 1/500 of the size of other models). To ensure that bandwidth has a noticeable impact on training performance for

1080 such small models, we scale down the bandwidth settings for CNN tasks by a factor of 1/50 compared
 1081 to other models.

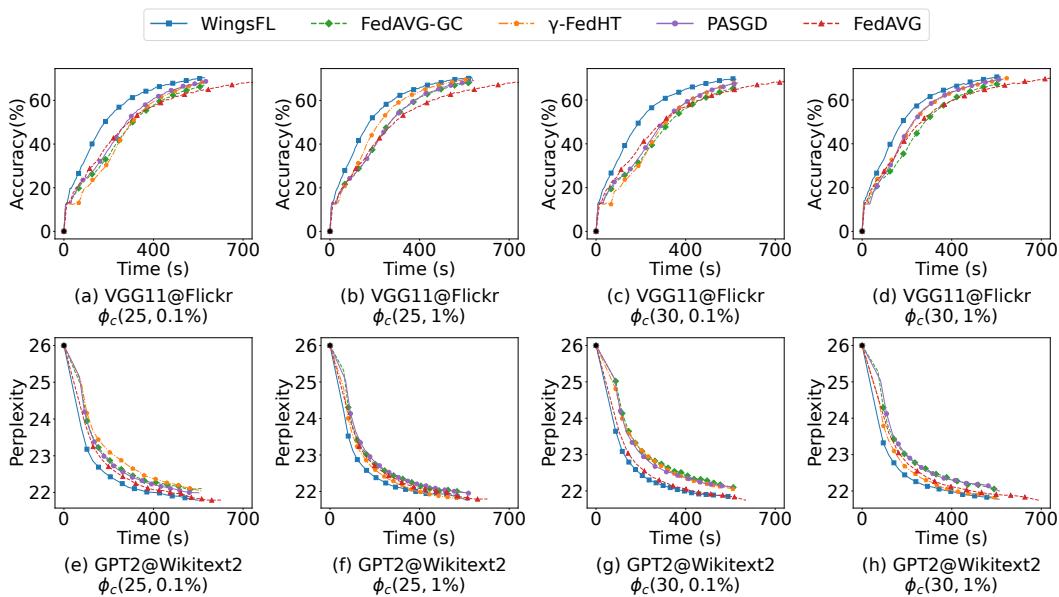
1082 All subsequent experiments follow this configuration unless otherwise specified. For instance, in
 1083 the device heterogeneity experiments, we vary the range of t_{compute}^i while keeping other parameters
 1084 unchanged. Similarly, for the sensitivity analysis of ϕ_c , we modify only the ϕ_c parameter while
 1085 maintaining the other settings.

1087 E.3 DETAILED CURVES OF SECTION 5.4

1089 The detail of Table 2 in the main text of the paper corresponds to Fig. 2 in the Appendix.

1091 E.4 DETAILED CURVES OF SECTION 5.5

1093 The detail of Table 3 in the main text of the paper corresponds to Fig. 3 in the Appendix.



1114 Figure 2: Training curves (Top: VGG11@Flickr; Bottom: GPT2@Wikitext2) across different ϕ_c
 1115 (from left to right).

1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

