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Abstract

Federated Learning (FL) relies on two key strategies to overcome communication
bottlenecks, which prevent training under low bandwidths and a large number
of workers. The first strategy is infrequent communication, a core feature of the
FedAVG algorithm, controlled by the number of local steps τ . The second is
gradient compression, a widely-used technique to reduce data volume, governed
by a compression ratio δ. However, finding the optimal (τ, δ) pair is a major
challenge in realistic settings with device heterogeneity and network fluctuations.
Existing work assumes that the effects of δ and τ on the model convergence
are orthogonal, optimizing them separately. In this work, we challenge this
orthogonality assumption. We are the first to propose two virtual queues at distinct
temporal granularities, helping derive the bounds of the noise introduced by the two
lossy strategies, respectively. We demonstrate that the convergence rate of FedAVG
with gradient compression is critically affected by a key term 2τ/δ2. This finding
proves that τ and δ are intrinsically coupled and must be co-designed for efficient
training. Furthermore, we propose WingsFL, which fixes the key convergence
rate term and minimizes the end-to-end training time under device heterogeneity
by solving a one-variable Min-Max problem. WingsFL achieves up to 2.24×
and 2.18× speed-ups over FedAVG and SOTA adaptive strategies, respectively,
considering device heterogeneity and network fluctuations.

1 Introduction

Federated Learning (FL) has become a popular framework in modern Distributed Machine Learning
(DML), but there are communication bottlenecks during the training process. FL enables collaborative
model training across distributed nodes while preserving data privacy Ye et al. (2023); Dong et al.
(2025). As the model parameters grow explosively, particularly large-scale models Achiam et al.
(2023), the volume of gradients exchanged during FL training has become a significant communication
bottleneck Lu et al. (2025b). The bottlenecks severely prevent the training process when encountering
low bandwidth or a larger number of nodes Lin et al. (2018). To mitigate this, infrequent communication
and gradient compression are employed. Infrequent communication is intrinsic to the classic FedAVG
algorithm McMahan et al. (2017), which reduces the total number of communication rounds by
performing τ local training steps before each aggregation. Sparsification gradient compression
Wang et al. (2023); Lu et al. (2024) is widely adopted to reduce the communication volume of each
individual communication round through transferring gradient elements with compression ratio δ
Lu et al. (2025b). We denote FedAVG with sparsification gradient compression as FedAVG-GC,
involving: 1) workers perform τ local iterations to compute updates; 2) workers compress the updates
by a ratio δ and upload them; 3) the server aggregates the compressed updates in the same way as
FedAVG to have the updated global model and broadcast the new model to workers.

The compression ratio δ and local iterations τ are critical communication hyperparameters, but the
selection of them is difficult. The selection of δ and τ both face a critical trade-off. The overly
aggressive strategy (large τ or small δ) will cause accuracy degradation, especially in non-IID
scenarios, while the conservative strategy will face expensive communication cost Hsieh et al. (2020);
Li et al. (2022). Also, δ tends to adaptively change with the dynamic bandwidth, can speed up to 4.1×
over the static strategy Abdelmoniem & Canini (2021b). The selection of τ should take into account
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the heterogeneity of the device, to avoid a severe straggler effect Li et al. (2020). The selection of δ
and τ is somewhat similar (although not totally the same), while previous works neglect this similarity,
assuming the gradient compression is orthogonal to the infrequent communication Cui et al. (2021);
Liu et al. (2022). We have two problems: 1) Is the effect of δ orthogonal to τ on the convergence rate
of FedAVG-GC? 2) If not, can we use the nature to speed up FedAVG-GC training end-to-end?

In response to the first question, our theoretical analysis shows that they are not orthogonal. Inspired
by the Nested Virtual Sequence (NVS) proposed in previous work Lu et al. (2025a), we propose
a framework called NVS-FL, which introduces two virtual sequences at two distinct scales: local
computation and global aggregation, resolving the issue that NVS could only introduce multiple
virtual sequences within the same time scale according to its framework. The virtual sequence from
the local computation decouples the error bound introduced by infrequent communication, while the
other one decouples the impact of gradient compression. Based on this, we derive the convergence
rate of FedAVG-GC, where our analysis is the first to identify a critical term 2τ

δ2 , which governs
the number of local iterations required to reach a target accuracy. This result reveals a theoretical
equivalence between the impact of local iterations, through the term 2τ , and gradient compression,
through the term δ−2 on model convergence.

To address the second question, we establish a mathematical model for the end-to-end training time
that accounts for device heterogeneity and dynamic network bandwidth. Using this model, we
formulate the task of minimizing training time as a dual-variable Min-Max problem. Leveraging our
theoretical equivalence, this problem is simplified to finding the minimum of a one-variable piecewise
function. We propose WingsFL, which uses a standard binary search algorithm per several iterations
to choose an optimal (δ, τ ) pair in challenging dynamic network conditions and device heterogeneity.
In WingsFL, we accelerate FL training end-to-end by co-optimizing δ and τ , like two wings of the
bird.

Our main contributions are as follows:
• We propose NVS-FL, a novel theoretical framework for analyzing FedAVG-GC, by setting two

virtual sequences under different timescales. Our analysis is the first to theoretically establish that
the gradient compression and infrequent communication are not orthogonal strategies in FedAVG.
The results theoretically reveal that 2τ

δ2 governs the convergence bound in non-IID scenarios.
• We mathematically model the end-to-end training time under device heterogeneity and dynamic

bandwidth. Building on this model and our theoretical insights, we propose WingsFL, which
jointly optimizes δ and τ to accelerate FL training.

• We conduct extensive experiments under device heterogeneity (different computing speeds and
network conditions) and dynamic network environments across diverse model architectures,
including CNN, VGG, GPT, and ViT. Our results demonstrate that WingsFL achieves up to 2.24×
and 2.18× speed-ups over static and SOTA adaptive strategies, respectively.

2 Preliminaries

2.1 Federated Learning

The primary goal of FL is to collaboratively train a global model by minimizing a global objective
function f(x), which is typically defined as a weighted average of the local objective functions fi(x)
from n participating workers:

min
x∈Rd

f(x) =

n∑
i=1

pifi(x),

where x ∈ Rd represents the model parameters, d is the model dimension, and pi is the weight of the
i-th worker, usually proportional to its local dataset volume, such that pi > 0 and

∑n
i=1 pi = 1. Each

local objective function fi(x) is the expected loss over the worker’s local data distribution.

2.2 Challenges in Real-World Federated Learning

Non-IID datasets, device heterogeneity, and constrained network scenarios are three challenges in
real-world FL training.
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• Non-IID datasets: In FL, worker data is typically not independent and identically distributed
(Non-IID). This introduces a discrepancy between the local worker objectives and the global objective,
which can slow down or even prevent model convergence.

• Device heterogeneity: workers in an FL network often possess vastly different computational
capabilities (e.g., CPU/GPU types, power state). This means that the time required to perform the
same computational task varies significantly across devices. We model this by defining tilatency as the
wall-clock time for worker i to complete a single local training step (i.e., one forward and backward
pass). A system with a high variance in {tilatency}ni=1 is considered highly heterogeneous from a
computational standpoint.

• Constrained network scenarios: In this scenario, device connectivity is often unstable and
heterogeneous. Factors such as the connection type (Wi-Fi vs. cellular), network congestion, and
physical distance to the server cause communication speeds to fluctuate widely. We assume that each
worker has a different and time-varying upload bandwidth. In contrast to stable, high-speed datacenter
interconnects, these network environments are characterized by high-latency and low-bandwidth.
Training across WAN is a typical case, which has an average bandwidth often below 1Gbs.

2.3 Communication Optimization Methods in FL

2.3.1 Infrequent Communication

The FedAVG algorithm McMahan et al. (2017) introduces the concept of infrequent communication,
where workers perform τ > 1 local steps of SGD before communicating with the server. This means
that each worker computes τ forward and backward passes every global iteration. This reduces the
total number of communication rounds by τ times during the same local iterations.

2.3.2 Gradient Compression

Gradient compression techniques Xu et al. (2021) are generally grouped into three main types: (1)
sparsification, which involves sending only a subset of gradient entries; (2) quantization, where high-
precision values are transformed into lower-precision representations; and (3) low-rank approximation,
which expresses the gradient as the product of two low-rank matrices. Among these, sparsification is
often favored for its effectiveness in eliminating redundant gradient components and achieving higher
communication efficiency. Additionally, compared to other compressors, sparsification compressors
offer a continuous range of compression ratios, facilitating adaptive optimization. Sparsification
compressors include the relative compressor, like Top-k and Random-k Abdelmoniem & Canini
(2021b), and the absolute compressor, like the hard-threshold compressor Sahu et al. (2021). Due to
that, the absolute compressor does not perform well in FL Lu et al. (2025b), so we don’t take it into
consideration. The sprasification compression usually comes with Error-Feedback (EF) Dorfman et al.
(2023); Stich & Karimireddy (2020a), a popular mechanism that collects and reuses the errors from
the gradient compression to mitigate the compression bias and guarantee convergence. For the update
algorithm, at the global iteration T , each worker i maintains an error term eiT and has the update ∆i

T

(accumulated in τ local iterations), then the worker i gets the compressed update ∆̂i
T = Cδ(∆

i
T +eiT ),

which will be sent to the server, and updates its error term eiT+1 = eiT +∆i
T − ∆̂i

T .

3 Theoretical Analysis of FedAVG-GC

We derive the convergence rate of FedAVG-GC and list the analysis in remarks below the theorem.
Notation list and detailed proof are in the Appendix. The pseudocode of FedAVG-GC is shown in
Algo. 3 in the Appendix.

3.1 Regular Assumptions

Theorem 2 and Theorem 3 is established under the assumption that the objective functions are
µ-strongly convex. A detailed list of assumptions is outlined below.

Assumption 1 (L-smoothness). We assume L-smoothness of fi, i ∈ [n], that is for all x, y ∈ Rd:
∥∇fi(y)−∇fi(x)∥ ≤ L∥y − x∥. (1)
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Assumption 2 (Bounded gradient noise). We assume the availability of stochastic gradient oracles
gi
t : Rd → Rd corresponding to each local objective fi for i ∈ [n]. Let ξi denote the stochastic

gradient noise introduced by the i-th worker. For simplicity, we focus on the representative scenario
where ξi is uniformly bounded across all x ∈ Rd and all clients i ∈ [n]:

gi
t = ∇fi(xt) + ξi, Eξiξi = 0d, Eξi∥ξi∥2 ≤ σ2. (2)

Assumption 3 (Measurement of data heterogeneity). We quantify the level of data heterogeneity
using a non-negative constant ζ2 ≥ 0, which serves as an upper bound on the variance among the n
nodes. Specifically, we assume:

n
∑
i∈[n]

p2i ∥∇fi(x)∥2 ≤ ζ2 + Z2∥∇f(x)∥2, ∀x ∈ Rd, i ∈ [n]. (3)

Assumption 4 (µ-strongly convexity). We assume µ-strong convexity of fi, i ∈ [n], that is for all
x, y ∈ Rd:

fi(x)− fi(y) ≥ ⟨∇fi(y),x− y⟩+ µ

2
∥∇fi(x)−∇fi(y)∥2. (4)

3.2 Theoretical Framework in FL

NVS framework Lu et al. (2025a) is proposed to convert the convergence of complex SGD variants
into a standard SGD process and several analyzable noise terms, which can be derived from the
bound of the term. However, it assumes homogeneous iteration intervals, which is unsuitable for
FL scenarios. In FL, the update process is typically heterogeneous: local models undergo frequent
updates (e.g., every iteration), while the global model aggregates these updates infrequently (e.g.,
every τ iterations). To address this challenge, we introduce a novel theoretical framework for FL
called NVS-FL, which defines two distinct virtual sequences to handle the different timescales of
local training and global aggregation.

In detail, we define x0 = x̃0 = x̂0 and define the first virtual sequence in the global aggregation
timescale:

xT+1 = xT − vT , BT+1 = BT + γ
∑
i∈[n]

pi∆T − vT , x̃T = xT −BT . (5)

In this way, we can derive that x̃T+1 = xT+1 −BT+1 = xT − vT −BT − γ
∑

i∈[n] pi∆
i
T + vT =

x̃T − γ
∑

i∈[n] pi∆
i
T . Then we define the second virtual sequence in the local iteration timescale.

We define x̂T,τ = x̂T+1,0 = x̃T+1 and have:

x̂T,j+1 = x̂T,j − γ
∑
i∈[n]

pig
i
T,j . (6)

In FedAVG-GC, vT = γ
∑

i∈[n] pi∆̃
i
T , so we have BT = γ

∑
i∈[n] pie

i
T .

3.3 Convergence Rate of FedAVG-GC

Theorem 1 (Non-convex convergence rate of FedAVG-GC). Let f : Rd → R be L-smooth. There
exists a stepsize γ ≤ min{ 1

2
√
2τL

, 1√
32ϕτLZ

}, where ϕ = 2τ

δ2 , such that at most

O(

∑
i∈[n] p

2
iσ

2

ϵ2
+

√
ϕζ2 + (1 + nϕδ)

∑
i∈[n] p

2
iσ

2

ϵ3/2
+

1

ϵ
+

Z
√
ϕ

ϵ
) · L(f(x0)− f∗) (7)

local iterations of FedAVG-GC, it holds E∥∇f(xout)∥2 ≤ ϵ, and xout = xt denotes an iterate
xt ∈

{
x0, . . . ,x(τ ·Tend−1)

}
, where τ · Tend denotes the total number of local iterations, chosen at

random uniformly.
Theorem 2 (Convex convergence rate of FedAVG-GC, i.e., µ = 0 ). Let f : Rd → R be L-smooth
and µ-convex. Then there exists a stepsize γ ≤ min{ 1

4L ,
1

4
√
3Lτ

, 1√
384·ϕτLZ

}, where ϕ = 2τ

δ2 , such
that at most

O(

∑
i∈[n] p

2
iσ

2

ϵ2
+

√
Lϕζ2 + L(1 + nϕδ)

∑
i∈[n] p

2
iσ

2

ϵ3/2
+

L

ϵ
+

ZL
√
ϕ

ϵ
) · ∥x0 − x∗∥2 (8)
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local iterations of FedAVG-GC, it holds Ef(xout) − f∗ ≤ ϵ, and xout = xt denotes an iterate
xt ∈

{
x0, . . . ,x(τ ·Tend−1)

}
, where τ · Tend denotes the total number of local iterations, chosen at

random uniformly.
Theorem 3 (µ-strongly convex convergence rate of FedAVG-GC, i.e., µ > 0). Let f : Rd → R
be L-smooth and µ-convex. Then there exists a stepsize γ ≤ min{ 1

4L ,
1

4
√
3Lτ

, 1√
384·ϕτLZ

}, where
ϕ = 2τ

δ2 , such that at most

O(

∑
i∈[n] p

2
iσ

2

µϵ
+

√
Lϕζ2 + L(1 + nϕδ)

∑
i∈[n] p

2
iσ

2

µϵ1/2
+

L

µ
+

ZL
√
ϕ

µ
) · ∥x0 − x∗∥2 (9)

local iterations of FedAVG-GC, it holds Ef(xout) − f∗ ≤ ϵ, and xout = xt denotes an iterate
xt ∈

{
x0, . . . ,x(τ ·Tend−1)

}
, where τ · Tend denotes the total number of local iterations, selected

probabilistically based on (1−min
{

µγ
2 , δ

2·2τ
}
)−t.

3.4 Analysis of Convergence Rate in FL

Given that the convergence rate exhibits similar expressions under convex and non-convex cases, we
refer to prior workLu et al. (2024) and take Theorem 1 as an example for analysis.
Remark 1. (ϕ determining the convergence in non-IID scenarios) Due to the The fisrt term∑

i∈[n] p
2
iσ

2

ϵ2 is determined by the task, independent to δ and τ . The magnitude of the second term√
ϕζ2+(1+ϕδ)

∑
i∈[n] p

2
iσ

2

ϵ3/2
is greater than that of the third term, since ϵ is often set less than 10−4.

Then we focus on the second term. FL is a typical non-IID sceanrio, where ζ is usually larger than

the gradient noise σ, and the convergence rate can be written as O(
∑

i∈[n] p
2
iσ

2

ϵ2 +

√
ϕζ2

ϵ3/2
), similar to

the previous work Lu et al. (2023b). In this case, ϕ = 2τ

δ2 determines the convergence rate bound. For
the analysis in IID scenarios, such as LLM pre-training inside a datacenter Xu et al. (2021), ζ2 ≪ σ2

and the convergence rate is bounded by ϕ′ = 2τ

δ . In this case, we can use ϕ′ to design the following
algorithm, but we do not discuss this in this paper.
Remark 2. (Degradation condition) When τ = 1, FedAVG-GC degrades to Distributed SGD with
gradient compression. In this case, ϕ = 2

δ2 and the convergence rate is equal to O(
∑

i∈[n] p
2
iσ

2

ϵ2 +√
2ζ2/δ2+(1+2/δ)

∑
i∈[n] p

2
iσ

2

ϵ3/2
+ τLZ

δϵ ), the same as the convergence rate of the previous work Stich
(2020); Lu et al. (2023b).

4 WingsFL: Joint Optimization of Local Steps and Compression

For worker i, we define the time for a single computation pass as ticompute, including one forward
pass and backward pass. The end-to-end communication latency for long-distance transmission is
represented as tilatency. We introduce a coefficient ai to characterize the time associated with gradient
compression, and biT represents the network bandwidth at the global communication iteration T . The
notation list is shown in the Appendix.

In each global communication round, which occurs after τ local iterations, the total computation
time is given by τticompute. The communication time for each worker i in this round is formulated
as tilatency + q(δ) + Sgδ/b

i
T , where Sg is the size of the gradient (bits) and q(δ) is the compression

cost, related to the property of the compressor. In this way, the average time for local computation
and communication per iteration Tavg =

τticompute+(tilatency+q(δ)+Sgδ/b
i
T )

τ . Our primary objective is to
minimize end-to-end time for the entire training process. Considering the device heterogeneity, our
objective can be formulated as min

τ∈[Rτ ],δ∈(0,1]
max
i∈[n]

τticompute+(tilatency+q(δ)+Sgδ/bi)

τ . ϕ = 2τ

δ2 governing the

convergence rate, we fix this term as one hyper-parameter ϕc and have τ = 2 log2 δ + log2 ϕ. With
this, we can write the objective problem from a dual-variable Min-Max problem into a one-variable
Min-Max problem at the given iteration T , as min

τ∈[Rτ ],δ∈(0,1]
max
i∈[n]

Qi
T (τ).
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In this work, we use the relative compressor Top-k, where q(δ) = ai log2(δ), and we have

Qi(τ) = ticompute +
ai

2
+

tilatency − ai

2 log2 ϕc

τ
+

Sg

biT
√
ϕc

· 2
τ/2

τ
. (10)

Algorithm 1: WingsFL
Input: n, [pi], [γT ], Tend, Sg , Rτ ,

[ticompute, t
i
latency, a

i, bi0], ϕc, search
frequency E, the compressor C(·)

Output: xTend

Initialize x0, ei0 = 0d;
for T ∈ [Tend] do

/* Update δ and τ per E
global iterations */

if T mod E == 1 then
δ, τ = SearchAlgo(Sg, Rτ , ϕc,
n, [ticompute, t

i
latency, a

i, biT−1]);
end
/* Worker side */
for i ∈ [n] do

Monitor the network condition and
update the bandwidth biT ;

xi
T,0 = xT ;

for j ∈ [τ ] do
xi
T,j+1 = xi

T,j − γTg
i
T,j ;

end
∆i

T =
∑

j∈[τ ] g
i
T,j ;

∆̂i
T = Cδ(∆

i
T + eiT );

eiT+1 = eiT +∆i
T − ∆̂i

T ;
Upload ∆̂i

T to the server;
end
/* Server side */

xT+1 = xT − γT
∑

i∈[n] pi∆̂
i
T ;

Broadcast xT+1;
end
Return xTend ;

Algorithm 2: SearchAlgo
Input: Sg , Rτ , ϕc, n,

[ticompute, t
i
latency, a

i, biT−1]
Output: τT , δT
left = 1, right = Rτ ;
while left < right-1 do

τmid = ⌊ left+right
2 ⌋;

Qmax = max
i∈[n]

Qi(τmid), Qi is computed

based on Eq. 10 if using Top-k;
Record imax as the index of Qmax;
/* Determining the sign of

the derivative of
Qimax(τmid) */

if Q′
imax

(τmid) < 0 then
left = τmid ;

end
else if Q′

imax
(τmid) > 0 then

right = τmid;
end
else

Return τmid, min{1, 2τmid/2√
ϕc

};
end

end
if max

i∈[n]
Qi(left) < max

i∈[n]
Qi(right) then

τT = left;
end
else

τT = right;
end
Return τT , δT = min{1, 2τT /2

√
ϕc

};

Qi
T (·) can be written in the format: Qi

T (τ) = ci1 +
ci2+ci3,T ·2τ/2

τ . For each worker i, during the whole
training, ci1 and ci2 are fixed under given ϕc, and ci3,T is correlated with the dynamic bandwidth and
we have the theorem.

Theorem 4 (Global Minimum of Maximum Convex Functions). Let Q1
T (τ), Q

2
T (τ), . . . , Q

n
T (τ) has

the form: Qi(τ) = ci1 +
ci2+ci3,T ·2τ/2

τ , with constants ci1, ci2, ci3,T > 0 and τ ≥ 1. We assume that τ is
continuous and define Q(τ) = max

i∈[n]
Qi

T (τ). Then Q(τ) is a convex function and any local minimum

of Q(τ) is a global minimum.

Based on Theorem 4, we can use a binary search algorithm to find the local minimal value of
Q(τ) = max

i∈[n]
Qi

T (τ), getting optimal δT , τT for each global communication iteration T , shown in

Algo. 2. This algorithm searches within the given interval [1, Rτ ]. At each global communication
iteration, it evaluates the new compression ratio and communication infrequency if the bandwidth
changes significantly, with the time complexity of O(n logRτ ).

6
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Table 1: Summary of experimental settings.

Task Model # Parameters Dataset Non-IID Setting γ0 Batch Size n Metric Iteration

CV
CNN 235,690 CIFAR-10 #C = 3 4× 10−3 8 10

Accuracy
20, 000

VGG-11 9,750,922 Flickr Real-world 4× 10−3 8 10 20, 000
ViT 86,000,000 ImageNet #C = 300 4× 10−5 4 5 1, 000

NLP GPT-2 124,000,000 Wikitext Dirichlet (0.5) 5× 10−2 3 5 Perplexity 2, 000

Note: n denotes the number of workers; γ0 is the initial learning rate.

5 Evaluation Experiments

5.1 Experimental Environment

All experiments are performed on a server running Ubuntu 24.04 LTS, equipped with an Intel Xeon
Gold 6230 processor and 8 Nvidia RTX 3090 GPUs, each featuring 24GB of VRAM. The software
environment is built upon Python 3.10.16, with all dependencies aligned accordingly. We adopt
PyTorch 2.5.1 as the core deep learning framework, utilizing CUDA 12.4 for GPU acceleration.
Communication across devices is facilitated using the Gloo backend.

5.2 Experimental Settings

This part shows the basic experimental setting in this section. Detailed settings and hyper-parameters
are provided in the Appendix.

We validate our method across a range of computer vision and natural language processing tasks using
representative models such as CNN LeCun et al. (1998), VGG11 Simonyan & Zisserman (2014), ViT
Dosovitskiy (2020), and GPT Radford et al. (2019). The evaluation spans datasets including Flickr
Hsieh et al. (2020), CIFAR-10 Krizhevsky et al. (2009), ImageNet Deng et al. (2009), and Wikitext
Merity et al. (2022). The experimental configurations are detailed in Table 1.

Baselines: Top-k is adopted as the standard compression technique. For the WingsFL framework
with integrated Top-k, we benchmark against several baseline approaches: FedAVG-GC, γ-FedHT Lu
et al. (2025b), PASGD, and the standard FedAVG algorithm. FedAVG-GC refers to the setting
where FedAVG incorporates Top-k with a fixed compression rate δ. γ-FedHT represents the current
SOTA adaptive gradient sparsification method in federated learning. PASGD serves as the leading
adaptive communication frequency algorithm; we compare it with WingsFL under a consistent Top-k
compression with fixed δ. All baseline methods are initialized with the same hyperparameters for
compression rate and communication interval, aligning with the initial values δ1 and τ1 employed by
WingsFL.

Device Heterogeneity and non-IID settings: To simulate device heterogeneity, we assign different
computation times ticompute to each client. Let t denote the baseline end-to-end computation time.
Under a heterogeneity level of q%, the computation time for each node is uniformly sampled from the
interval [t, (1 + q%)t]. For instance, with 10 nodes and a heterogeneity level of 100% (q = 100), the
computation times are selected as 10 equidistant values within [t, 2t]. The default heterogeneity level
is set to 100% for all tasks. For the non-IID data partitioning, we adopt the following configurations:
for VGG11@Flickr, we use the real-world non-IID settings, which is the inherent properties of the
dataset itself. For other tasks, we use artificially non-IID settings, refering to previous work Li et al.
(2022). The detailed non-IID settings is shown in Table 1.

5.3 Comparison of Training Speed

As illustrated in Fig. 1, WingsFL demonstrates significant improvements in training speed compared
to FedAVG-GC, γ-FedHT, PASGD, and vanilla FedAVG across all tasks. Taking VGG@Flickr as an
example, when the accuracy reaches 60%, WingsFL achieves a 1.44× speedup over FedAVG, 1.47×
speedup over FedAVG-GC, and 1.16× speedup over γ-FedHT. At 65% accuracy, the speedup values
change to 1.43×, 1.36×, and 1.06×, respectively. The performance advantage of WingsFL stems
from its fundamental design principles. Unlike existing approaches that do not explicitly optimize
for end-to-end training speed, WingsFL is specifically designed to minimize the end-to-end training
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Figure 1: Training curves (Top: Accuracy vs. Iteration; Bottom: Accuracy vs. Time) across different
tasks (from left to right). In all cases, WingsFL outperforms other baselines on end-to-end training.

time. Previous methods typically optimize compression ratio (δ) and communication frequency (τ )
separately, which leads to suboptimal solutions. In contrast, our framework employs joint optimization
of these parameters, guided by theoretical analysis. This coordinated approach ensures convergence
while prioritizing end-to-end training efficiency, making WingsFL particularly suitable for scenarios
with device heterogeneity, non-IID datasets, and dynamic network conditions.

5.4 Sensitivity Analysis of Hyperparameter in WingsFL

Unlike most methods that heavily depend on carefully tuned hyperparameters, WingsFL exhibits
low sensitivity to its key hyperparameter ϕc. In this section, we examine the impact of different
ϕ values on the end-to-end training time. The corresponding results are reported in Table 2, and
we find that our design outperforms all other algorithms under the given ϕc settings. WingsFL can
achieve speedups up to 1.42× over FedAVG (at ϕ(30, 1%), accuracy 55% in VGG@Flickr), 1.99×
over γ-FedHT (at ϕ(30, 0.1%), ppl 22.5 in GPT@Wiki), 1.92× over PASGD (at ϕ(30, 1%), ppl 23.5
in GPT@Wiki).

5.5 WingsFL under Different Device Heterogeneity

The performance of algorithms under different heterogeneity levels q is shown in Table 3, where the
training time of baselines to converge to the target matrics is shown using the previous settings except
heterogeneity levels. Our design performs better than other algorithms under different heterogeneity
levels. In detail, WingsFL nearly achieves less speedups when facing higher heterogeneity levels
(from 2.24× to 1.38× compared to FedAVG in GPT@Wiki). This is due to the fact that the higher
heterogenity will not change (δ, τ) selected from WingsFL, and the larger computation time will
enlarge the partition ratio of computation time, and the gain of our design is from the reduction of
communication time.

6 Related Work

Adaptive Gradient Compression Strategy. Adaptive strategies address the convergence issues of
static sparsity or quantization by dynamically adjusting compression based on training dynamics, device
heterogeneity, or network conditions. DC2 Abdelmoniem & Canini (2021a) adapts communication
frequency to bandwidth but does not co-optimize the compression ratio δ or consider convergence
coupling. DAGC Lu et al. (2023a) optimizes δ based on client data volume but assumes a fixed local
update frequency τ . L-GreCo Markov et al. (2024) solves layer-wise compression allocation as a
constrained optimization problem, but ignores local update or network conditions. Shadowheart SGD
Tyurin et al. (2024) introduces a time-equilibrium strategy that dynamically selects compression

8
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Table 2: Training time (in seconds) to reach
target accuracy (VGG@Flickr) or perplexity
(GPT@Wiki) under different ϕc values, where
ϕ(τ, δ) = 2τ

δ2 . Results show that WingsFL
achieves faster convergence and is robust to ϕc

variations.

Task ϕc Target FedAVG γ-FedHT PASGD WingsFL

VGG@
Flickr

ϕ(25, 0.1%)
55% 310.69 302.82 284.22 195.94
60% 396.20 356.50 339.02 246.13
65% 553.26 449.89 428.94 336.93

ϕ(25, 1%)
55% 354.97 229.42 274.52 192.36
60% 453.00 281.89 330.64 244.30
65% 632.77 362.98 418.98 327.89

ϕ(30, 0.1%)
55% 323.01 312.79 306.07 206.27
60% 403.50 370.00 365.38 259.17
65% 548.47 455.17 459.11 353.92

ϕ(30, 1%)
55% 278.59 236.62 299.31 195.94
60% 358.92 289.46 355.79 249.05
65% 495.60 367.37 448.49 345.57

GPT@
Wiki

ϕ(25, 0.1%)
23.5 82.89 123.11 100.37 67.35
23.0 113.77 201.44 156.23 89.79
22.5 217.79 301.94 230.65 157.88

ϕ(25, 1%)
23.5 82.97 88.43 100.51 62.22
23.0 113.80 123.80 146.91 92.87
22.5 217.66 185.63 239.56 151.70

ϕ(30, 0.1%)
23.5 74.18 127.34 118.30 63.86
23.0 125.39 203.69 174.29 102.17
22.5 190.36 305.48 263.88 153.76

ϕ(30, 1%)
23.5 106.32 93.07 118.95 61.89
23.0 177.18 124.76 164.17 103.16
22.5 253.29 187.10 253.66 151.67

Table 3: Training time (in seconds) to reach
target accuracy (VGG@Flickr) or perplexity
(GPT@Wiki) under different device heterogene-
ity levels q%, where ticompute ∈ [t, (1 + q%)t]

and ticompute is task-specific. Results demonstrate
WingsFL’s robustness to device heterogeneity.

Task Heterogeneity Target FedAVG γ-FedHT PASGD WingsFL

VGG@
Flickr

20%
55% 206.48 144.15 183.22 125.02
60% 266.02 173.98 218.56 157.69
65% 362.27 231.91 275.04 212.38

50%
55% 233.40 179.44 228.35 149.36
60% 300.71 219.49 269.58 189.73
65% 415.20 278.55 341.29 263.50

100%
55% 278.59 236.62 299.31 195.94
60% 358.92 289.46 355.79 249.05
65% 495.60 367.37 448.49 345.57

200%
55% 368.97 350.97 441.22 289.10
60% 475.34 429.40 528.20 367.70
65% 656.39 545.00 662.88 509.71

GPT@
Wiki

20%
23.5 81.97 57.41 72.85 42.30
23.0 129.60 76.55 100.26 63.91
22.5 210.45 114.78 155.01 93.77

50%
23.5 91.11 71.12 90.41 47.39
23.0 151.83 94.83 124.38 78.97
22.5 222.05 142.19 183.75 114.82

100%
23.5 106.32 93.07 118.95 61.89
23.0 177.18 124.76 164.17 103.16
22.5 253.29 187.10 253.66 151.67

200%
23.5 136.73 139.57 177.03 93.04
23.0 227.87 186.09 243.76 155.05
22.5 315.76 279.09 410.53 228.51

parameters based on heterogeneous computation and communication delays, achieving optimal time
complexity. Overall, most methods optimize either δ or τ independently, ignoring their joint impact
on convergence.

Federated Learning with Heterogeneous Devices. To address device heterogeneity, HeteroFL Diao
et al. (2021) enables clients to train subnetworks of varying sizes. FIARSE Wu et al. (2024) further
extracts submodels based on parameter importance, allowing adaptive training across devices with
weighted server aggregation. From a system perspective, asynchronous or hybrid aggregation schemes
mitigate straggler effects. FedBuff Nguyen et al. (2022) combines synchronous and asynchronous
buffering to boost efficiency. These approaches, however, typically decouple gradient compression
and communication frequency. WingsFL addresses this gap by jointly optimizing both, enhancing
end-to-end performance with minimal overhead.

Adaptive Infrequent Communication. Adaptive local update schemes reduce communication cost
based on local-global model similarity. The work Shenaj et al. (2025) proposes continuing local
updates when local and global representations are aligned, terminating early when divergence is high.
AQUILA Zhao et al. (2022) adaptively adjusts quantization accuracy and communication frequency,
combining lazy aggregation with theoretical guarantees to reduce transmission overhead while
maintaining convergence. These strategies show that communication schedules can be effectively
tailored based on model dynamics and feedback signals.

7 Conclusion

FL usually uses infrequent communication and gradient compression to alleviate the communication
bottlenecks, which severally prevents the training process facing low bandwidth. We demonstrate
that the effect of these two strategies on the model convergence are not orthogonal but intrinsically
coupled. We proposed WingsFL, a novel theoretical framework that reveals the term 2τ

δ2 as a key
factor governing the convergence of FedAVG with gradient compression. Leveraging this insight, we
propose WingsFLthat jointly optimizes the compression ratio δ and the number of local steps τ to
minimize end-to-end training time under device heterogeneity and dynamic bandwidth. Our design
achieves up to 2.24× and 2.18× speed-ups over FedAVG and SOTA adaptive algorithms, showing
that our approach significantly outperforms static and adaptive baselines by efficiently co-optimizing
these hyperparameters.
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8 Ethics Statement

This research adheres to the ICLR Code of Ethics . No human subjects, personal data, or sensitive
demographic attributes were involved in this study. All datasets used are publicly available and
do not contain personally identifiable information. The methodology proposed is not intended to
produce harmful outputs or be deployed in high-stakes decision-making contexts without further
safety evaluation. There are no known risks of discrimination, bias, or unfairness associated with
our approach. The authors declare no conflicts of interest or funding-related bias. All experimental
procedures comply with standard ethical research practices.

9 Reproducibility Statement

To support reproducibility, we provide detailed descriptions of model architectures, training protocols,
and hyperparameter settings in the main paper and Appendix. All theoretical results are accompanied
by complete proofs (in Appendix D). The source code used to run all experiments will be published if
accepted. Public datasets are used and provided in Section 5. These resources collectively enable
researchers to reproduce the main results presented in this work.
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A The Use of Large Language Models(LLMs)

In this work, LLMs are used to polish the lareadability and find the related works. LLMs are not
used for the generation of ideas, experimental design, data analysis, or any other part of the research
process.

B Notation List

Table 4: Notation list.

Notation Description
n number of workers

Tend total number of global iterations
fi(·) the local loss function of worker i
pi the training weight of worker i,

typically proportional to its local dataset volume
f(·) the global loss function, i.e., f(x) =

∑n
i=1 pifi(x)

δ compression ratio (0 < δ ≤ 1)
τ communication infrequency

Cδ(·) the sparsification compressor with compression ratio δ
xi
T,j the local model parameter in the T -th global iteration,

j-th local iteration of the i-th worker
xT the global model parameter in the T -th global iteration
gi
T,j the stochastic gradient of xiT,j

∆i
T the sum of the gradients within τ local iterations

in the T -th global iteration of worker i
γT the stepsize at global iteration T
eiT the local error term of the i-th worker at the T -th global iteration
L L-smoothness
µ µ-strongly convexity if fi is strongly convex
ζ the global data heterogenority
ξi the stochastic gradient noise of worker i
σ2 the upper variance bound of the stochastic gradient noise
ai the coeffcient parameter of the communication cost (s)
biT the bandwidth of the link between worker i

and server at the global iteration T (bits/s)
Sg the size of the gradient (bits)

tilatency the network end-to-end latency of worker i (s)
ticompute the time for a single computation pass of worker i (s)
Tavg average end-to-end training time per iteration (s)
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C FedAVG-GC

Algorithm 3: FedAVG-GC
Input: number of clinets n, traing weight pi, step-size γ, initial parameters x0, initial local error

ei0 = 0d, the communication frequency τ , the compressor Cδ(·) with the compression
ratio δ

Output: xTend

for T ∈ [Tend] do
/* Worker side */
for i ∈ [n] do

xi
T,0 = xT ;

for j ∈ [τ ] do
xi
T,j+1 = xi

T,j − γgi
T,j ;

end
∆i

T =
∑

j∈[τ ] g
i
T,j ;

∆̂i
T = Cδ(∆

i
T + eiT );

eiT+1 = eiT +∆i
T − ∆̂i

T ;
Upload ∆̂i

T to the server;
end
/* Server side */

xT+1 = xT − γ
∑

i∈[n] pi∆̂
i
T ;

Broadcast xT+1;
end
Return xTend ;

D Detailed proof

D.1 Technical Results

We list lemmas derived from other works here to help us complete the whole proof. Detailed proof of
these lemmas can be found from the reference and we do not write here.
Lemma 1. If c1, c2 ∈ Rd then the Jensen’s inequality is: For all ρ > 0, we have

∥c1 + c2∥2 ≤ (1 + ρ)∥c1∥2 + (1 + ρ−1)∥c2∥2. (11)

This can be written as:
2⟨c1, c2⟩ ≤ ρ∥c1∥2 + ρ−1∥c2∥2. (12)

Lemma 2 (The nature of Top-k). By definition, the Top-k compressor Cδ is a mapping that has the
property Rd → Rd:

ECδ
∥Cδ(x)− x∥2 ≤ (1− δ)∥x∥2. (13)

Lemma 3 (Lemma 27 of the work Stich (2020)). Let (rt)t≥0 and (st)t≥0 be sequences of positive
numbers satisfying

rt+1 ≤ rt −Bγst + Cγ2 +Dγ3,

for some positive constants B > 0, C,D ≥ 0 and step-sizes 0 < γ ≤ 1
E , for E ≥ 0. Then there

exists a constant stepsize γ ≤ 1
E such that

B

T + 1

T∑
t=0

st ≤
Er0
T + 1

+ 2D1/3

(
r0

T + 1

)2/3

+ 2

(
Cr0
T + 1

)1/2

. (14)

Remark 3. To ensure that the right hand side in Eq. 14 is less than ϵ > 0,

T = O

(
C

ϵ2
+

√
D

ϵ3/2
+

E

ϵ

)
· r0

steps are sufficient.
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Lemma 4 (Lemma 25 of the work Stich (2020)). Let (rt)t≥0 and (st)t≥0 be sequences of positive
numbers satisfying

rt+1 ≤ (1−min{γA, F})rt −Bγst + Cγ2 +Dγ3,

for some positive constants A,B > 0, C,D ≥ 0, and for constant step-sizes 0 < γ ≤ 1
E , for E ≥ 0,

and for parameter 0 < F ≤ 1. Then there exists a constant step-size γ ≤ 1
E such that

B

WT

T∑
t=0

wtst +min

{
A,

F

γ

}
rT+1 ≤ r0

(
E +

A

F

)
exp

[
−min

{
A

E
,F

}
(T + 1)

]
+

2C ln τ

A(T + 1)
+

D ln2 τ

A2(T + 1)2

for wt := (1−min{γA, F})−(t+1), WT :=
∑T

t=0 wt and

τ = max

{
exp[1],min

{
A2r0(T + 1)2

C
,
A3r0(T + 1)3

D

}}
.

Remark 4. Lemma 4 establishes a bound of the order

Õ
(
r0

(
E +

A

F

)
exp

[
−min

{
A

E
,F

}
T

]
+

C

AT
+

D

A2T 2

)
,

that decreases with T . To ensure that this expression is less than ϵ,

T = Õ

(
C

Aϵ
+

√
D

A
√
ϵ
+

1

F
log

1

ϵ
+

E

A
log

1

ϵ

)
= Õ

(
C

Aϵ
+

√
D

A
√
ϵ
+

1

F
+

E

A

)
steps are sufficient.

D.2 Key Lemmas to Prove Theorem 1

In this section, we prove Theorem 1. We follow the analysis of Section 3.2 and define two virtual
sequences:

x̃0 = x̂0,0 = x0, x̃T+1 = x̃T − γ
∑
i∈[n]

pi∆
i
T , x̂T,j+1 = x̂T,j − γ

∑
i∈[n]

pig
i
T,j . (15)

In addition, we use the notation F̂T =
∑

j∈[τ ] F̂T,j , F̂T,j = Ef(x̂T,j) − f∗, GT =∑
j∈[τ ]∥∇f(xT,j)∥2, B̃T,j = ∥x̂T,j − x̃T,j∥2, BT,j = ∥xT,j − x̃T,j∥2, B̃T =

∑
j∈[τ ] B̃T,j ,

BT =
∑

j∈[τ ] BT,j , ET = n
∑

i∈[n] p
2
i ∥eiT ∥2, x̂T,j = E∥x̂T,j − x∗∥2 and x̂T =

∑
j∈[τ ] x̂T,j . xx

is the optimal model parameter, that is f∗ = minx∈Rd f(x) = f(x∗).
Lemma 5. Let f be L-smooth. If γ ≤ 1

2L , then it holds for the iterates of FedAVG-GC:

F̂T+1 ≤ F̂T − γ

4
GT +

γ2Lτ
∑

i∈[n] p
2
iσ

2

2
+ γL2(B̃T + γ2τET ). (16)

Proof.

F̂T+1,j ≤ F̂T,j − ⟨γ
∑
i

pig
i
T,j ,∇f(x̂T,j)⟩+

γ2L

2
∥
∑
i

pig
i
T,j∥2

≤ F̂T,j − ⟨γ∇f(xT,j),∇f(x̂T,j)⟩+
γ2L

2
(∥∇f(xT,j)∥2 +

∑
i

p2iσ
2)

≤ F̂T,j −
γ

2
∥∇f(xT,j)∥2 +

γ

2
(∥∇f(xT,j)−∇f(x̂T,j)∥)

+
γ2L

2
∥∇f(xT,j)∥2 +

Lγ2
∑

i p
2
iσ

2

2

≤ F̂T,j −
γ

2
(1− Lγ)∥∇f(xT,j)∥2 + γL2(∥x̂T,j − x̃T,j∥2 + ∥x̃T,j − xT,j∥2)

+
Lγ2

∑
i p

2
iσ

2

2
,

(17)
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where the first inequality is due to L-smoothness (Assumption 1), and the second inequality is due to
the assumption on the gradient noise (Assumption 2). The third is due to Eq. 12 and the fourth is due
to Eq. 12 and L-smoothness.

We observe that BT = τ∥γ
∑

i pie
i
T ∥2 ≤ nτγ2

∑
i p

2
i ∥eiT ∥2 = γ2τET . We sum Eq. 17 from j = 1

to j = τ and have

F̂T+1

γ< 1
2L

≤ F̂T − γ

4
GT +

Lγ2τ
∑

i p
2
iσ

2

2
+ γL2(B̃T + γ2τET ).

Lemma 6. Let Bt be defined in NVS-FL, we have

B̃T ≤ τ2γ2GT +
τ2γ2

∑
i p

2
iσ

2

2
. (18)

Proof. Similarly to the previous work Stich & Karimireddy (2020b), we have

B̃T,j = ∥(x̂T,j − x̂T,0)− (x̃T,j − x̂T,0)∥2

≤ ∥x̃T,j − x̂T,0∥2

= ∥γ
∑
j′∈[j]

∑
i

pig
i
T,j′∥2

≤ γ2j
∑
j′

∥∇f(xT,j)∥2 + j
∑
i

p2iσ
2γ2.

(19)

The second line is due to E∥x− Ex∥2≤ E∥x∥2. In this way, we have

B̃T =
∑
j∈[τ ]

B̃T,j ≤
∑
j∈[τ ]

γ2j
∑
j′

∥∇f(xT,j)∥2 +
∑
i

p2iσ
2γ2

∑
j∈[τ ]

j

≤ τ2γ2
∑
j∈[τ ]

∥∇f(xT,j)∥2 +
τ2γ2

∑
i p

2
iσ

2

2
.

(20)

Lemma 7. It holds for the update of error terms in FedAVG-GC

ET+1 ≤ (1− δ

2τ
)ET +

2τZ2

δ
·GT + τ(

2ζ2

δ
+ n

∑
i

p2iσ
2). (21)

Proof.

∥eiT+1∥2 ≤ (1− δ)∥eiT +∆i
T ∥2

≤ (1− δ)∥eiT +
∑
j

∇fi(xT,j)∥2 + (1− δ)τσ2

≤ (1− δ)(1 + ρ)∥eiT ∥2 + (1− δ)(1 + ρ−1)∥
∑
j∈[τ ]

∇fi(xT,j)∥2 + (1− δ)τσ2

≤ (1− δ

2τ
)∥eiT ∥2 +

2τ

δ

∑
j∈[τ ]

∥∇fi(xT,j)∥2 + τσ2.

(22)

The first line is due to Eq. 13, the second line is due to Assumption 2, the forth line is due to Eq. 1
and in the forth line, we take ρ = 2τ−1

2τ · δ
1−δ . Then we have

ET+1 ≤ (1− δ

2τ
)ET +

2τ

δ
(Z2∥∇f(xT,j)∥2 + ζ2) + nτ

∑
i

p2iσ
2, (23)

where the inequality is due to Assumption 3.
Lemma 8. Let f be L-smooth and γ ≤ { 1

2
√
2τL

, δ√
32·2ττLZ

}, then it holds

ΞT+1 ≤ ΞT − γ

16
GT + c1γ

2 + c2γ
3, (24)

for ΞT = F̂T + bET , where b = γ3τL22τ

δ , c1 =
Lτ

∑
i p

2
iσ

2

2 , c2 = τLc1+
τ2L22τ

δ ( 2ζ
2

δ +n
∑

i p
2
iσ

2).
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Proof.
ΞT+1 = F̂T+1 + bET+1

≤ F̂T + bET − γ

8
(1− 8b

γ
· 2τZ

2

δ
)GT + c1γ

2 + c2γ
3

≤ ΞT − γ

16
GT + c1γ

2 + c2γ
3,

(25)

where the second line is due to Lemma 5, 6, 7 and the last inequality is due to γ ≤ δ√
32·2ττLZ

.

Theorem 1 (Non-convex convergence rate of FedAVG-GC). Let f : Rd → R be L-smooth. There
exists a stepsize γ ≤ min{ 1

2
√
2τL

, 1√
32ϕτLZ

}, where ϕ = 2τ

δ2 , such that at most

O(

∑
i∈[n] p

2
iσ

2

ϵ2
+

√
ϕζ2 + (1 + nϕδ)

∑
i∈[n] p

2
iσ

2

ϵ3/2
+

1

ϵ
+

Z
√
ϕ

ϵ
) · L(f(x0)− f∗) (26)

iterations of FedAVG-GC, it holds E∥∇f(xout)∥2 ≤ ϵ, and xout = xt denotes an iterate xt ∈
{x0,0, . . . ,xTend,0}, where τ · Tend denotes the total number of local iterations, chosen at random
uniformly.

Proof. We take Lemma 8 to Lemma 3 and let rt = ΞT , st = GT , B = 1
16 , C = c1,

D = c2, E = max{2
√
2τL,

√
32ϕτLZ}. To ensure B

Tend

1
τ

∑
t∈[Tend]

st is less than ϵ > 0, Tend =

O(
∑

i∈[n] p
2
iσ

2

ϵ2 +

√
ϕζ2+(1+nϕδ)

∑
i∈[n] p

2
iσ

2

ϵ3/2
+ 1

ϵ +
Z
√
ϕ

ϵ ) · Lτ(f(x0)−f∗)
τ are enough, which completes

the proof.

D.3 Key Lemmas to Prove Theorem 2

Let FT,j = f(xT,j)− f∗ and FT =
∑

j∈[τ ] FT,j .
Lemma 9. Let f be L-smooth and µ-convexity, if γ ≤ min{ 1

4L ,
1

4
√
3Lτ

}, then it holds for the iterates
of FedAVG-GC

x̂T+1 ≤ (1− µγ

2
)x̂T − γ

4
FT + c1γ

2 + c2γ
3 + 6γ3LτET , (27)

where c1 = τ
∑

p2iσ
2 and c2 = 3Lτ2

∑
p2iσ

2.

Proof.
x̂T+1,j = ∥x̂T,j − x∗∥2 − 2⟨x̂T,j − x∗, γgT,j⟩+ ∥gT,j∥2

= ∥x̂T,j − x∗∥2 − 2γ⟨∇f(xT,j),xT,j − x∗⟩+ ∥gT,j∥2 + 2γ⟨∇f(xT,j),xT,j − x̂T,j⟩.
(28)

Then we analyze the term 2⟨∇f(xT,j),xT,j − x̂T,j⟩ and −2⟨∇f(xT,j),xT,j − x∗⟩:

2⟨∇f(xT,j),xT,j − x̂T,j⟩ ≤
1

2L
∥∇f(xT,j)∥2 + 2L∥xT,j − x̂T,j∥2

≤ f(xT,j)− f∗ + 2L∥xT,j − x̂T,j∥2,
(29)

where the first line is due to Eq. 12 and the second line is due to L-smoothness.

−2⟨∇f(xT,j),xT,j − x∗⟩ ≤ −2(f(xT,j)− f∗)− µ∥xT,j − x∗∥2

≤ −2(f(xT,j)− f∗)− µ

2
∥x̂T,j − x∗∥2 + µ∥x̂T,j − xT,j∥2,

(30)

where the first line is due to Assumption 4 and the second line is due to Eq. 11.

Then we take Eq. 29 and 30 into Eq. 28, then we have
x̂T+1,j ≤ x̂T,j − γ(f(xT,j)− f∗)− µγ

2
x̂T,j + γ(2L+ µ)∥x̂T,j − xT,j∥2

+ γ2(∥∇f(xT,j)∥2 +
∑

p2iσ
2)

≤ (1− µγ

2
)x̂T,j − γ(1− 2γL)FT,j + γ(2L+ µ)∥x̂T,j − xT,j∥2 + γ2

∑
p2iσ

2

≤ (1− µγ

2
)x̂T,j −

γ

2
FT,j + 6Lγ(B̃T,j + ∥x̃T,j − xT,j∥2) + γ2

∑
p2iσ

2,

(31)
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where the second line is due to L-smooth and the last line is due to µ ≤ L (combining Assumption 1
and 4). Then we substitute it and have

x̂T+1 ≤ (1− µγ

2
)x̂T − γ

2
FT + 6Lγ(B̃T +BT ) + γ2τ

∑
p2iσ

2

≤ (1− µγ

2
)x̂T − γ

2
FT + 6Lγ(B̃T + γ2τET ) + γ2τ

∑
p2iσ

2.
(32)

We take Lemma 6 into Eq. 32 and use GT ≤ 2LFT based on the L-smoothness assumption, then we
have

x̂T+1 ≤ (1− µγ

2
)x̂T − γ

2
(1− 24γ2L2τ2)FT + c1γ

2 + c2γ
3 + 6γ3LτET

≤ (1− µγ

2
)x̂T − γ

4
FT + c1γ

2 + c2γ
3 + 6γ3LτET ,

(33)

where c1 = τ
∑

p2iσ
2 and c2 = 3Lτ2

∑
p2iσ

2, completing the proof.

Lemma 10. Let ΨT = x̂T + aET , where a = 12γ3τL2τ

δ

ΨT+1 ≤ (1− c)ΨT − γ

8
FT + c1γ

2 + c′2γ
3, (34)

where c = min(µγ2 , δ
2·2τ ), c1 = τ

∑
p2iσ

2, c′2 = 3Lτc1 + 12Lτ22τ

δ ( 2ζ
2

δ + n
∑

i p
2
iσ

2) with γ ≤
δ√

384·2ττLZ

Proof.

ΨT+1 ≤ (1− µγ

2
)x̂T + a(1− δ

2τ
+

6γ3Lτ

a
)ET + (

4τLZ2a

δ
− γ

4
)FT

+ c1γ
2 + c2γ

3 + aτ(
2ζ2

δ
+ n

∑
i

p2iσ
2)

≤ (1− c)x̂T − γ

8
FT + c1γ

2 + c′2γ
3,

(35)

where the first inequality is due to Lemma 7 and GT ≤ 2LFT , and the second inequality is due to
c = min(µγ2 , δ

2·2τ ) and γ ≤ δ√
384·2ττLZ

. In this way, we complete the proof.

Theorem 2 (Convex convergence rate of FedAVG-GC, i.e., µ = 0 ). Let f : Rd → R be L-smooth
and µ-convex. Then there exists a stepsize γ ≤ min{ 1

4L ,
1

4
√
3Lτ

, 1√
384·ϕτLZ

}, where ϕ = 2τ

δ2 , such
that at most

O(

∑
i∈[n] p

2
iσ

2

ϵ2
+

√
Lϕζ2 + L(1 + nϕδ)

∑
i∈[n] p

2
iσ

2

ϵ3/2
+

L

ϵ
+

ZL
√
ϕ

ϵ
) · ∥x0 − x∗∥2 (36)

local iterations of FedAVG-GC, it holds Ef(xout) − f∗ ≤ ϵ, and xout = xt denotes an iterate
xt ∈

{
x0, . . . ,x(τ ·Tend−1)

}
, where τ · Tend denotes the total number of local iterations, chosen at

random uniformly.

Proof When µ = 0, c = min(µγ2 , δ
2·2τ ) = 0, then Lemma 8 can be written into

ΨT+1 ≤ ΨT − γ

8
FT + c1γ

2 + c′2γ
3.

In this way, the proof is same with that of Theorem 1.
Theorem 3 (µ-strongly convex convergence rate of FedAVG-GC, i.e., µ > 0). Let f : Rd → R
be L-smooth and µ-convex. Then there exists a stepsize γ ≤ min{ 1

4L ,
1

4
√
3Lτ

, 1√
384·ϕτLZ

}, where
ϕ = 2τ

δ2 , such that at most

O(

∑
i∈[n] p

2
iσ

2

µϵ
+

√
Lϕζ2 + L(1 + nϕδ)

∑
i∈[n] p

2
iσ

2

µϵ1/2
+

L

µ
+

ZL
√
ϕ

µ
) · ∥x0 − x∗∥2 (37)

local iterations of FedAVG-GC, it holds Ef(xout) − f∗ ≤ ϵ, and xout = xt denotes an iterate
xt ∈

{
x0, . . . ,x(τ ·Tend−1)

}
, where τ · Tend denotes the total number of local iterations, selected

probabilistically based on (1−min
{

µγ
2 , δ

2·2τ
}
)−t.

Proof. We take Lemma 10 to Lemma 4 and let rt = ΨT , st = FT , A = µ
2 , F = δ

2·2τ , B = 1
8 ,

C = c1, D = c′2, E = max{4L, 4
√
3τL,

√
384ϕτLZ}, then the proof completes.
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Table 5: Configs in Fig. 1.

Model@Dataset ticompute (ms) tilatency (ms) ai (ms) biT (MB/s) ϕc

CNN@CIFAR-10 12.8 ∼ 25.6 0 ∼ 20 7.85 1 ∼ 10 ϕ(30, 1%)
VGG11@Flickr 13.2 ∼ 26.4 0 ∼ 20 15.1 50 ∼ 500 ϕ(30, 1%)
ViT@ImageNet 282 ∼ 584 0 ∼ 20 164 50 ∼ 500 ϕ(30, 1%)

GPT2@Wikitext2 132 ∼ 264 0 ∼ 20 95.0 50 ∼ 500 ϕ(30, 1%)

D.4 Proof of Theorem 4

Proof. We first prove that each individual function Qi
T (τ) is strictly convex. The second derivative

of Qi
T (τ) is given by:

(Qi
T (τ))

′′ =
ci3,T · 2τ/2

(
(ln 2 · τ/2− 1)2 + 1

)
+ 2ci2

τ3

Since ci3,T > 0, ci2 > 0, and τ ≥ 1, all terms in the numerator are positive. Therefore, Q′′
i (τ) > 0

for all τ ≥ 1, proving that each Qi
T (τ) is strictly convex. Based on the convexity of Qi

T (τ), for any
τ1, τ2 ∈ [Rτ ] and λ ∈ [0, 1], and for each i ∈ [n], we have:

Qi
T (λτ1 + (1− λ)τ2) ≤ λQi

T (τ1) + (1− λ)Qi
T (τ2).

Furthermore, by the definition of the maximum function, we have:Qi
T (τ1) ≤ Q(τ1) and Qi

T (τ2) ≤
Q(τ2) and have

λQi
T (τ1) + (1− λ)Qi

T (τ2) ≤ λQ(τ1) + (1− λ)Q(τ2)

Combining these results, we obtain for each i:

Qi
T (λτ1 + (1− λ)τ2) ≤ λQ(τ1) + (1− λ)Q(τ2)

Taking the maximum over i on the left-hand side gives:

Q(λτ1 + (1− λ)τ2) = max
i∈[n]

Qi
T (λτ1 + (1− λ)τ2) ≤ λQ(τ1) + (1− λ)Q(τ2)

This proves that Q(τ) is convex. Since Q(τ) is convex, any local minimum of Q(τ) is necessarily a
global minimum. This completes the proof.

E Addendum to Evaluation Experiments

E.1 Experimental Environment

All experiments are performed on a server running Ubuntu 24.04 LTS, equipped with an Intel Xeon
Gold 6230 processor and 8 Nvidia RTX 3090 GPUs, each featuring 24GB of VRAM. The software
environment is built upon Python 3.10.16, with all dependencies aligned accordingly. We adopt
PyTorch 2.5.1 as the core deep learning framework, utilizing CUDA 12.4 for GPU acceleration.
Communication across devices is facilitated using the Gloo backend.

E.2 Detailed Experimental hyper-parameters

The detailed configuration of our experiments in Fig. 1 is presented in Table 5. The computation time
ticompute for each node is uniformly sampled from the specified range and remains fixed throughout the
training process. Similarly, the latency tilatency is randomly determined and static. Both parameters
are static and do not change during training. The bandwidth biT fluctuates within the given range
to simulate a dynamic network environment, where bandwidth varies randomly within this range
throughout the training process.

For CNN-based tasks, the model size is significantly smaller (approximately 1/50 to 1/500 of the
size of other models). To ensure that bandwidth has a noticeable impact on training performance for

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

such small models, we scale down the bandwidth settings for CNN tasks by a factor of 1/50 compared
to other models.

All subsequent experiments follow this configuration unless otherwise specified. For instance, in
the device heterogeneity experiments, we vary the range of ticompute while keeping other parameters
unchanged. Similarly, for the sensitivity analysis of ϕc, we modify only the ϕc parameter while
maintaining the other settings.

E.3 Detailed curves of Section 5.4

The detail of Table 2 in the main text of the paper corresponds to Fig. 2 in the Appendix.

E.4 Detailed curves of Section 5.5

The detail of Table 3 in the main text of the paper corresponds to Fig. 3 in the Appendix.
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Figure 2: Training curves (Top: VGG11@Flickr; Bottom: GPT2@Wikitext2) across different ϕc

(from left to right).
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Figure 3: Training curves (Top: VGG11@Flickr; Bottom: GPT2@Wikitext2) across different
heterogeneity levels (from left to right).
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