Under review as a conference paper at ICLR 2026

WiNnGsFL: SpPeEeD-uP FEDERATED LEARNING VvIA Co-
OPTIMIZATION OF COMMUNICATION FREQUENCY AND GRA-
DIENT COMPRESSION RATIO

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) relies on two key strategies to overcome communication
bottlenecks, which prevent training under low bandwidths and a large number
of workers. The first strategy is infrequent communication, a core feature of the
FedAVG algorithm, controlled by the number of local steps 7. The second is
gradient compression, a widely-used technique to reduce data volume, governed
by a compression ratio . However, finding the optimal (7, J) pair is a major
challenge in realistic settings with device heterogeneity and network fluctuations.
Existing work assumes that the effects of § and 7 on the model convergence
are orthogonal, optimizing them separately. In this work, we challenge this
orthogonality assumption. We are the first to propose two virtual queues at distinct
temporal granularities, helping derive the bounds of the noise introduced by the two
lossy strategies, respectively. We demonstrate that the convergence rate of FedAVG
with gradient compression is critically affected by a key term 27 /§2. This finding
proves that 7 and § are intrinsically coupled and must be co-designed for efficient
training. Furthermore, we propose WingsFL, which fixes the key convergence
rate term and minimizes the end-to-end training time under device heterogeneity
by solving a one-variable Min-Max problem. WingsFL achieves up to 2.24 X
and 2.18 % speed-ups over FedAVG and SOTA adaptive strategies, respectively,
considering device heterogeneity and network fluctuations.

1 INTRODUCTION

Federated Learning (FL) has become a popular framework in modern Distributed Machine Learning
(DML), but there are communication bottlenecks during the training process. FL enables collaborative
model training across distributed nodes while preserving data privacy|Ye et al.|(2023)); Dong et al.
(2025). As the model parameters grow explosively, particularly large-scale models |Achiam et al.
(2023)), the volume of gradients exchanged during FL training has become a significant communication
bottleneck [Lu et al.|(2025b). The bottlenecks severely prevent the training process when encountering
low bandwidth or a larger number of nodes|Lin et al.|(2018)). To mitigate this, infrequent communication
and gradient compression are employed. Infrequent communication is intrinsic to the classic FedAVG
algorithm McMahan et al.| (2017, which reduces the total number of communication rounds by
performing 7 local training steps before each aggregation. Sparsification gradient compression
Wang et al.[(2023); |Lu et al.[(2024) is widely adopted to reduce the communication volume of each
individual communication round through transferring gradient elements with compression ratio §
Lu et al.[(2025b). We denote FedAVG with sparsification gradient compression as FedAVG-GC,
involving: 1) workers perform 7 local iterations to compute updates; 2) workers compress the updates
by a ratio § and upload them; 3) the server aggregates the compressed updates in the same way as
FedAVG to have the updated global model and broadcast the new model to workers.

The compression ratio § and local iterations 7 are critical communication hyperparameters, but the
selection of them is difficult. The selection of § and 7 both face a critical trade-off. The overly
aggressive strategy (large 7 or small §) will cause accuracy degradation, especially in non-IID
scenarios, while the conservative strategy will face expensive communication cost Hsieh et al.|(2020);
Li et al.| (2022). Also, § tends to adaptively change with the dynamic bandwidth, can speed up to 4.1 x
over the static strategy |/Abdelmoniem & Canini| (2021b)). The selection of 7 should take into account
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the heterogeneity of the device, to avoid a severe straggler effect |Li et al.|(2020). The selection of §
and 7 is somewhat similar (although not totally the same), while previous works neglect this similarity,
assuming the gradient compression is orthogonal to the infrequent communication Cui et al.| (2021);
Liu et al.[(2022). We have two problems: 1) Is the effect of § orthogonal to 7 on the convergence rate
of FedAVG-GC? 2) If not, can we use the nature to speed up FedAVG-GC training end-to-end?

In response to the first question, our theoretical analysis shows that they are not orthogonal. Inspired
by the Nested Virtual Sequence (NVS) proposed in previous work [Lu et al.| (2025a)), we propose
a framework called NVS-FL, which introduces two virtual sequences at two distinct scales: local
computation and global aggregation, resolving the issue that NVS could only introduce multiple
virtual sequences within the same time scale according to its framework. The virtual sequence from
the local computation decouples the error bound introduced by infrequent communication, while the
other one decouples the impact of gradient compression. Based on this, we derive the convergence
rate of FedAVG-GC, where our analysis is the first to identify a critical term %—; which governs
the number of local iterations required to reach a target accuracy. This result reveals a theoretical
equivalence between the impact of local iterations, through the term 27, and gradient compression,
through the term §~2 on model convergence.

To address the second question, we establish a mathematical model for the end-to-end training time
that accounts for device heterogeneity and dynamic network bandwidth. Using this model, we
formulate the task of minimizing training time as a dual-variable Min-Max problem. Leveraging our
theoretical equivalence, this problem is simplified to finding the minimum of a one-variable piecewise
function. We propose WingsFL, which uses a standard binary search algorithm per several iterations
to choose an optimal (4, 7) pair in challenging dynamic network conditions and device heterogeneity.
In WingsFL, we accelerate FL training end-to-end by co-optimizing ¢ and 7, like two wings of the
bird.

Our main contributions are as follows:

* We propose NVS-FL, a novel theoretical framework for analyzing FedAVG-GC, by setting two
virtual sequences under different timescales. Our analysis is the first to theoretically establish that
the gradient compression and infrequent communication are not orthogonal strategies in FedAVG.
The results theoretically reveal that (23—; governs the convergence bound in non-IID scenarios.

* We mathematically model the end-to-end training time under device heterogeneity and dynamic
bandwidth. Building on this model and our theoretical insights, we propose WingsFL, which
jointly optimizes ¢ and 7 to accelerate FL training.

* We conduct extensive experiments under device heterogeneity (different computing speeds and
network conditions) and dynamic network environments across diverse model architectures,
including CNN, VGG, GPT, and ViT. Our results demonstrate that WingsFL achieves up to 2.24 x
and 2.18x speed-ups over static and SOTA adaptive strategies, respectively.

2  PRELIMINARIES

2.1 FEDERATED LEARNING

The primary goal of FL is to collaboratively train a global model by minimizing a global objective
function f(x), which is typically defined as a weighted average of the local objective functions f;(x)
from n participating workers:

min f(x) = Zpifi(x),
i=1

xER4
where x € R¢ represents the model parameters, d is the model dimension, and p; is the weight of the

1-th worker, usually proportional to its local dataset volume, such that p; > 0 and Z?:l p; = 1. Each
local objective function f;(x) is the expected loss over the worker’s local data distribution.

2.2 CHALLENGES IN REAL-WORLD FEDERATED LEARNING

Non-IID datasets, device heterogeneity, and constrained network scenarios are three challenges in
real-world FL training.
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o Non-IID datasets: In FL, worker data is typically not independent and identically distributed
(Non-IID). This introduces a discrepancy between the local worker objectives and the global objective,
which can slow down or even prevent model convergence.

e Device heterogeneity: workers in an FL network often possess vastly different computational
capabilities (e.g., CPU/GPU types, power state). This means that the time required to perform the
same computational task varies significantly across devices. We model this by defining tfatency as the
wall-clock time for worker ¢ to complete a single local training step (i.e., one forward and backward
pass). A system with a high variance in {t{atency}?zl is considered highly heterogeneous from a
computational standpoint.

e Constrained network scenarios: In this scenario, device connectivity is often unstable and
heterogeneous. Factors such as the connection type (Wi-Fi vs. cellular), network congestion, and
physical distance to the server cause communication speeds to fluctuate widely. We assume that each
worker has a different and time-varying upload bandwidth. In contrast to stable, high-speed datacenter
interconnects, these network environments are characterized by high-latency and low-bandwidth.
Training across WAN is a typical case, which has an average bandwidth often below 1Gbs.

2.3 ComMMUNICATION OPTIMIZATION METHODS IN FL

2.3.1 INFREQUENT COMMUNICATION

The FedAVG algorithm [McMahan et al.| (2017) introduces the concept of infrequent communication,
where workers perform 7 > 1 local steps of SGD before communicating with the server. This means
that each worker computes 7 forward and backward passes every global iteration. This reduces the
total number of communication rounds by 7 times during the same local iterations.

2.3.2 GRADIENT COMPRESSION

Gradient compression techniques [Xu et al.|(2021) are generally grouped into three main types: (1)
sparsification, which involves sending only a subset of gradient entries; (2) quantization, where high-
precision values are transformed into lower-precision representations; and (3) low-rank approximation,
which expresses the gradient as the product of two low-rank matrices. Among these, sparsification is
often favored for its effectiveness in eliminating redundant gradient components and achieving higher
communication efficiency. Additionally, compared to other compressors, sparsification compressors
offer a continuous range of compression ratios, facilitating adaptive optimization. Sparsification
compressors include the relative compressor, like Top-£ and Random-k |Abdelmoniem & Canini
(2021b), and the absolute compressor, like the hard-threshold compressor Sahu et al.|(2021). Due to
that, the absolute compressor does not perform well in FL |Lu et al.[(2025b)), so we don’t take it into
consideration. The sprasification compression usually comes with Error-Feedback (EF)|Dorfman et al.
(2023)); |Stich & Karimireddy|(2020a), a popular mechanism that collects and reuses the errors from
the gradient compression to mitigate the compression bias and guarantee convergence. For the update
algorithm, at the global iteration 7', each worker i maintains an error term e’. and has the update A%,

(accumulated in 7 local iterations), then the worker ¢ gets the compressed update Al = Cs (AL +elb),
which will be sent to the server, and updates its error term €%, | = e%, + AL, — AL

3 THEORETICAL ANALYSIS OF FEDAVG-GC

We derive the convergence rate of FedAVG-GC and list the analysis in remarks below the theorem.
Notation list and detailed proof are in the Appendix. The pseudocode of FedAVG-GC is shown in
Algo. [3]in the Appendix.

3.1 REGULAR ASSUMPTIONS

Theorem [2] and Theorem [3]is established under the assumption that the objective functions are
p-strongly convex. A detailed list of assumptions is outlined below.

Assumption 1 (L-smoothness). We assume L-smoothness of f;, i € [n], that is for all x, y € R%:
IVfi(y) = V&) < Ly —x]|. ¢))
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Assumption 2 (Bounded gradient noise). We assume the availability of stochastic gradient oracles
gl : RY — R? corresponding to each local objective f; for i € [n]. Let & denote the stochastic
gradient noise introduced by the ¢-th worker. For simplicity, we focus on the representative scenario
where 7 is uniformly bounded across all x € R? and all clients i € [n]:

g = V/i(x:) + &, Eei&' =04, Eeil|€7])? < o®. )
Assumption 3 (Measurement of data heterogeneity). We quantify the level of data heterogeneity

using a non-negative constant (2 > 0, which serves as an upper bound on the variance among the n
nodes. Specifically, we assume:

anz IVfi(x)]? <+ Z2|VF(x)|% VxeR Qe [n] 3)
[n]

Assumption 4 (u—strongly convexity). We assume pu-strong convexity of f;,¢ € [n], that is for all
X,y € R%:

Ji() = £iy) 2 (V) x = y) + SV Ax) = VA )

3.2 THeorETICAL FRAMEWORK IN FL

NVS framework |Lu et al.|(2025a) is proposed to convert the convergence of complex SGD variants
into a standard SGD process and several analyzable noise terms, which can be derived from the
bound of the term. However, it assumes homogeneous iteration intervals, which is unsuitable for
FL scenarios. In FL, the update process is typically heterogeneous: local models undergo frequent
updates (e.g., every iteration), while the global model aggregates these updates infrequently (e.g.,
every T iterations). To address this challenge, we introduce a novel theoretical framework for FL
called NVS-FL, which defines two distinct virtual sequences to handle the different timescales of
local training and global aggregation.

In detail, we define xy = Xg = X( and define the first virtual sequence in the global aggregation
timescale:

X741 = X7 —Vp, DBrii=DBr+7y sz’AT_VT7 X7 = X7 — Br. (5)
i€[n]

In this way, we can derive that X741 = X741 — Bry1 =Xp —vp — Bp — v Zle[n] pzA%—* + vy =
XT =YY, i€[n] p;AL.. Then we define the second virtual sequence in the local iteration timescale.
We define X7 ; = X741,0 = X741 and have:

XT,j4+1 = X1,5 — 7 Z PigT ;- (6)
i€[n]

In FedAVG-GC, vy = v 3, p,y PiAY, s0 we have Br = 73,1, pi€h.

3.3 ConNVERGENCE RATE oF FEDAVG-GC

Theorem 1 (Non-convex convergence rate of FedAVG-GC). Let f : R? — R be L-smooth. There
exists a stepsize y < min{ﬁ, W} where ¢ = ?5—;, such that at most

7e[n]pz \/¢<2 (14 n¢8) Yiep PI0? 1 4o

O( €3/2 + c + T) ~L(f(x0) — f") (7N
local iterations of FedAVG-GC, it holds E||V f(Xout)||? < € and X,ut = X; denotes an iterate
X; € {Xo, ey X (7 Topg—1) }, where T - Ty,q denotes the total number of local iterations, chosen at

random uniformly.
Theorem 2 (Convex convergence rate of FedAVG-GC, i.e., u = 0). Let f : R? — R be L-smooth

. . . T
and p-convex. Then there exists a stepsize v < mm{ﬁ7 1 \/;;LT, \/384'1 517 }, where ¢ = %2, such

that at most

e PO ¢L¢<2 + L(1+ng8) Y e P20 L, 7LVB
€ €

62 63/2

o ®)

) llxo — x>
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local iterations of FedAVG-GC, it holds Ef (Xout) — [* < € and X,,+ = X¢ denotes an iterate
X; € {xo, ey X (7 Toa—1) }, where T - T,q denotes the total number of local iterations, chosen at
random uniformly.

Theorem 3 (u-strongly convex convergence rate of FedAVG-GC, l e, [ > 0). Let f : R - R

be L-smooth and ji-convex. Then there exists a stepsize v < min{ - irs 4fL'r 3841¢TLZ} where
o= 6—2, such that at most

Lic L0 \/ LoC + L +100) Yoiem Pi0° L ZLy3 2 ©)

o e + 2+ 20 g — x|
he K K

local iterations of FedAVG-GC, it holds Ef (Xout) — [* < € and X,u,s = X¢ denotes an iterate
X; € {XO, s X(r T, d—l)}’ where T - T,,q denotes the total number of local iterations, selected
probabilistically based on (1 — min {”—27, Q.gf })‘t.

3.4 AnNaLysis oF CONVERGENCE RATE IN FL

Given that the convergence rate exhibits similar expressions under convex and non-convex cases, we
refer to prior worklLu et al.| (2024) and take Theorem [1|as an example for analysis.

Remark 1. (¢ determining the convergence in non-IID scenarios) Due to the The fisrt term
2 2
Ze[:# is determined by the task, independent to § and 7. The magnitude of the second term
2+(1+66 pio?
VAISEN R /)ZLE m P g greater than that of the third term, since e is often set less than 10~
Then we focus on the second term. FL is a typical non-I1ID sceanrlo where C is usually larger than

ze [n] pz + V ¢C

the gradient noise o, and the convergence rate can be ertten as O( = L5 ), similar to

the previous work |[Lu et al.|(2023b)). In this case, ¢ = 5—2 determines the convergence rate bound. For
the analysis in IID scenarios, such as LLM pre-training inside a datacenter Xu et al.| (2021]), ¢ 2k o?
and the convergence rate is bounded by ¢’ = %. In this case, we can use ¢’ to design the following
algorithm, but we do not discuss this in this paper.

Remark 2. (Degradation condition) When 7 = 1, FedAVG-GC degrades to Distributed SGD with
gradient compression. In this case, ¢ = 52 and the convergence rate is equal to O( E] vic +
27757+ (1+2/<>) Sicin Pi0’

(2020); Lu et al (2023b).

+ TL€Z ), the same as the convergence rate of the previous work [Stich

4  WinGSFL: JoinT OptiMizATION OF LocAL STEPS AND COMPRESSION

For worker ¢, we define the time for a single computation pass as tcompme, including one forward
pass and backward pass. The end-to-end communication latency for long-distance transmission is
represented as ¢j,.,.,. We introduce a coefficient a to characterize the time associated with gradient

compression, and b represents the network bandwidth at the global communication iteration 7". The
notation list is shown in the Appendix.

In each global communication round, which occurs after 7 local iterations, the total computation
time is given by thompule The communication time for each worker 7 in this round is formulated
a8 tyeney + q(8) + Sgd/blp, where S, is the size of the gradient (bits) and ¢(9) is the compression

cost, related to the property of the compressor. In this way, the average time for local computation
Ttu)mplllt+(tlalcnby+q(6)+s 6/bT)

and communication per iteration Ty, = . Our primary objective is to
minimize end-to-end time for the entire training process Cons1der1ng the device heterogenelty, our
objective can be formulated as min max tsompus + (ney +0(9)+593/:)
T7€[R,],6€(0,1] i€[n] T
convergence rate, we fix this term as one hyper-parameter ¢. and have 7 = 2log, J + log, ¢. With
this, we can write the objective problem from a dual-variable Min-Max problem into a one-variable

Min-Max problem at the given iteration 7, as min max Q4. (7).
T7€[R,],0€(0,1] i€[n]

.= 6—2 governing the
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In this work, we use the relative compressor Top-k, where ¢(§) = a‘log, (), and we have

ti

o
latency ~ 2 10g2 be

Sg 27’/2

Q; (7) = tzompute + ? +

T TR "

Algorithm 1: WingsFL

Algorithm 2: SearchAlgo

Input: n,{ [pi], [’}/T], Tend{ SH} RT,
[téompute’ tfalency’ a’l7 b%)]’ ¢C’ search
frequency FE, the compressor C'(-)
Output: x7, ,
Initialize %o, €}, = 04;
for T € [T,,4] do
/* Update § and 7 per FE
global iterations */
if T mod EE == 1 then
9,7 = SearchAlgo(Sy, R, ¢,
n, [téomputw t%atency’ al’ sz—l]);
end
/* Worker side */
for i € [n] do
Monitor the network condition and

update the bandwidth b%.;
X o = X713
for j € [7]do 4
X741 = X7, — VT84
end

Al = Zje[T] g%“,j;

Al = C(Af + e );
e :Aeép—l—Aif—Aép;
Upload A7 to the server;

end
/* Server side */

XT+1 =XT — T Zie[n] piﬁlﬁ
Broadcast x741;

end
Return x7,;

Input: Sy, R;, ¢c, n,
[tfz:ompute’ tfalency’

Olltpllt: T, 5T

left = 1,right = R;;

while left < right-1 do
Toid = |_left+2r1ghtJ;

Qmax = mé{D}( Qi(Tmia), Q; is computed
i€ln

based on Eq. if using Top-k;
Record i,y as the index of Qax;
/+ Determining the sign of
the derivative of
Qimax (Tmid) */
if Q) (7mia) <0 then
‘ left = T 5
end
elseif Q] (7.iq) > 0 then
| right = Tpia;
end
else

aivblﬁr—l]

. 2Tmid/2 |
‘ Return 7,4, min{1, \/'"QTC =

end

end
if mz[u]( Qi(left) < mz[uli Q. (right) then
€N €ln

| = left;
end
else

| 7p = right;
end

Return 77, 67 = min{1, 2\7/%2 h;

. . . i ; g cé+c’éyT-27/2 . .
Q% (+) can be written in the format: Q% (7) = ¢j + 2—2-I——. For each worker 4, during the whole

training, ¢{ and ¢4 are fixed under given ¢, and ¢ ;- is correlated with the dynamic bandwidth and
we have the theorem.

Theorem 4 (Global Minimum of Maximum Convex Functions). Let Q4(7), Q% (7), . ..
L diach o gT/?
the form: Q;(1) = ¢4 + %

continuous and define Q(7) = m?)]< Q% (7). Then Q(7) is a convex function and any local minimum
i€n

,Q(7) has

, with constants ¢t , c&, Cé o > 0and T > 1. We assume that T is

of Q(7) is a global minimum.

Based on Theorem [, we can use a binary search algorithm to find the local minimal value of
Q(r) = mfw]( Q- (1), getting optimal o, 7 for each global communication iteration 7', shown in
i€n

Algo. 2l This algorithm searches within the given interval [1, R,]|. At each global communication
iteration, it evaluates the new compression ratio and communication infrequency if the bandwidth
changes significantly, with the time complexity of O(n log R, ).
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Table 1: Summary of experimental settings.

Task  Model  # Parameters Dataset ~ Non-IID Setting Yo Batch Size n Metric Iteration
CNN 235,690 CIFAR-10 #C =3 4% 1073 8 10 20,000

CV  VGG-11 9,750,922 Flickr Real-world 4%x1073 8 10 Accuracy 20,000
ViT 86,000,000  ImageNet #C = 300 4x107° 4 5 1,000

NLP GPT-2 124,000,000  Wikitext Dirichlet (0.5) 5 x 1072 3 5 Perplexity 2,000

Note: n denotes the number of workers; o is the initial learning rate.

5 EvALUATION EXPERIMENTS

5.1 EXPERIMENTAL ENVIRONMENT

All experiments are performed on a server running Ubuntu 24.04 LTS, equipped with an Intel Xeon
Gold 6230 processor and 8 Nvidia RTX 3090 GPUs, each featuring 24GB of VRAM. The software
environment is built upon Python 3.10.16, with all dependencies aligned accordingly. We adopt
PyTorch 2.5.1 as the core deep learning framework, utilizing CUDA 12.4 for GPU acceleration.
Communication across devices is facilitated using the Gloo backend.

5.2 EXPERIMENTAL SETTINGS

This part shows the basic experimental setting in this section. Detailed settings and hyper-parameters
are provided in the Appendix.

We validate our method across a range of computer vision and natural language processing tasks using
representative models such as CNN |LeCun et al.| (1998)), VGG11 Simonyan & Zisserman| (2014), ViT
Dosovitskiy| (2020), and GPT Radford et al.|(2019). The evaluation spans datasets including Flickr
Hsieh et al.[(2020), CIFAR-10 |[Krizhevsky et al.|(2009), ImageNet Deng et al.|(2009), and Wikitext
Merity et al|(2022). The experimental configurations are detailed in Table|I]

Baselines: Top-k is adopted as the standard compression technique. For the WingsFL framework
with integrated Top-k, we benchmark against several baseline approaches: FedAVG-GC, ~-FedHT |Lu
et al.| (2025b), PASGD, and the standard FedAVG algorithm. FedAVG-GC refers to the setting
where FedAVG incorporates Top-k with a fixed compression rate §. y-FedHT represents the current
SOTA adaptive gradient sparsification method in federated learning. PASGD serves as the leading
adaptive communication frequency algorithm; we compare it with WingsFL under a consistent Top-k
compression with fixed §. All baseline methods are initialized with the same hyperparameters for
compression rate and communication interval, aligning with the initial values J; and 7; employed by
WingsFL.

Device Heterogeneity and non-IID settings: To simulate device heterogeneity, we assign different

computation times I¢y,nye t0 ach client. Let ¢ denote the baseline end-to-end computation time.

Under a heterogeneity level of ¢%, the computation time for each node is uniformly sampled from the
interval [t, (1 4+ ¢%)t]. For instance, with 10 nodes and a heterogeneity level of 100% (¢ = 100), the
computation times are selected as 10 equidistant values within [¢, 2¢]. The default heterogeneity level
is set to 100% for all tasks. For the non-IID data partitioning, we adopt the following configurations:
for VGG11 @Flickr, we use the real-world non-IID settings, which is the inherent properties of the
dataset itself. For other tasks, we use artificially non-IID settings, refering to previous work |Li et al.
(2022). The detailed non-IID settings is shown in Tablem

5.3 CoMPARISON OF TRAINING SPEED

As illustrated in Fig. |1} WingsFL demonstrates significant improvements in training speed compared
to FedAVG-GC, ~-FedHT, PASGD, and vanilla FedAVG across all tasks. Taking VGG@Flickr as an
example, when the accuracy reaches 60%, WingsFL achieves a 1.44x speedup over FedAVG, 1.47x
speedup over FedAVG-GC, and 1.16x speedup over v-FedHT. At 65% accuracy, the speedup values
change to 1.43%, 1.36x, and 1.06 x, respectively. The performance advantage of WingsFL stems
from its fundamental design principles. Unlike existing approaches that do not explicitly optimize
for end-to-end training speed, WingsFL is specifically designed to minimize the end-to-end training
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Figure 1: Training curves (Top: Accuracy vs. Iteration; Bottom: Accuracy vs. Time) across different
tasks (from left to right). In all cases, WingsFL outperforms other baselines on end-to-end training.

time. Previous methods typically optimize compression ratio (J) and communication frequency (7)
separately, which leads to suboptimal solutions. In contrast, our framework employs joint optimization
of these parameters, guided by theoretical analysis. This coordinated approach ensures convergence
while prioritizing end-to-end training efficiency, making WingsFL particularly suitable for scenarios
with device heterogeneity, non-IID datasets, and dynamic network conditions.

5.4  SENSITIVITY ANALYSIS OF HYPERPARAMETER IN WINGSFL

Unlike most methods that heavily depend on carefully tuned hyperparameters, WingsFL exhibits
low sensitivity to its key hyperparameter ¢.. In this section, we examine the impact of different
¢ values on the end-to-end training time. The corresponding results are reported in Table 2, and
we find that our design outperforms all other algorithms under the given ¢, settings. WingsFL can
achieve speedups up to 1.42x over FedAVG (at ¢(30, 1%), accuracy 55% in VGG @Flickr), 1.99x
over v-FedHT (at ¢(30,0.1%), ppl 22.5 in GPT@Wiki), 1.92x over PASGD (at ¢(30, 1%), ppl 23.5
in GPT@Wiki).

5.5 WinGsFL unDER DiFrERENT DEVICE HETEROGENEITY

The performance of algorithms under different heterogeneity levels ¢ is shown in Table[3] where the
training time of baselines to converge to the target matrics is shown using the previous settings except
heterogeneity levels. Our design performs better than other algorithms under different heterogeneity
levels. In detail, WingsFL nearly achieves less speedups when facing higher heterogeneity levels
(from 2.24x to 1.38x compared to FedAVG in GPT@Wiki). This is due to the fact that the higher
heterogenity will not change (0, 7) selected from WingsFL, and the larger computation time will
enlarge the partition ratio of computation time, and the gain of our design is from the reduction of
communication time.

6 REeLATED WORK

Adaptive Gradient Compression Strategy. Adaptive strategies address the convergence issues of
static sparsity or quantization by dynamically adjusting compression based on training dynamics, device
heterogeneity, or network conditions. DC2|Abdelmoniem & Canini| (2021a) adapts communication
frequency to bandwidth but does not co-optimize the compression ratio § or consider convergence
coupling. DAGC [Lu et al.|(2023a) optimizes § based on client data volume but assumes a fixed local
update frequency 7. L-GreCo |[Markov et al.| (2024) solves layer-wise compression allocation as a
constrained optimization problem, but ignores local update or network conditions. Shadowheart SGD
Tyurin et al.| (2024) introduces a time-equilibrium strategy that dynamically selects compression
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Table 2: Training time (in seconds) to reach Table 3: Training time (in seconds) to reach
target accuracy (VGG@Flickr) or perplexity target accuracy (VGG@Flickr) or perplexity
(GPT@Wiki) under different ¢. values, where (GPT@Wiki) under different device heterogene-

- )
¢(7,6) = 2. Results show that WingsFL ity levels q%, where teompue € [t, (1 + q%)1]
achieves faster convergence and is robust to ¢. and teompute 18 task-specific. Results demonstrate

variations. WingsFL’s robustness to device heterogeneity.

Task e Target FedAVG -FedHT PASGD WingsFL Task  Heterogeneity Target FedAVG ~-FedHT PASGD WingsFL

55% 31069  302.82  284.22  195.94 5% 206.48 18322 12502

$(25,0.1%) ~60% _ 396.20 __ 356.50 _ 339.02 __ 246.13 20% 60% 26602 31856 157.69

65%  553.26  449.89 42894 33693 5 36227 7501 21238

55% 354.97 229.42 274.52 192.36 55% 533.40 998.35 149.36

$(25,1%) ~60% 45300 28189  330.64  244.30 50% 60% 30071 36058 189.73

VGG@ 65% 63277 362.08 41898 32789 VGG@ 650% 115.20 20 26350

Flickr 55% 323.01 312.79 306.07 206.27 Flickr 55% 978.50 599.31 195.94

$(30,0.1%) _60% 40350  370.00 36538  259.17 100% 60% 35802 280.46 35579 _ 249.05

65% 54847 45517 459.11 353.92 65% _ 495.60 367.37 44849 34557

55% 27859 236.02 29931 195.94 55%  368.07 35007 44122 289.10

#(30,1%) —60% 35892 28946  355.79  249.05 200% 60% 47534 42940 52820 _ 367.70

65%  495.60  367.37 44849  345.57 65%  656.39  515.00  662.88  509.71

235 82.89 12311 10037 6735 235 8197 57.41 72.85 4230

$(25,0.1%) ~ 230 113.77 20144 156.23 __ 89.79 20% 230 12960 76,55 10026 6391

225 21779 30194 230.65 _ 157.88 225 21045 11478 155001 93.77

235 8207 8843 10051 62.22 235 LI TLI12 90.41 47.39

$(25,1%) ~ 230  113.80 12380 14691 92.87 50% 230 15183 0483 12438 7897

GPT@ 225 21766 185.63 _ 239.56 15170 GPT@ 225 22205 14219 183.75 11482

Wiki 235 7418 2731 11830 63.86 Wiki 235 10632 9307 11895 _ 6189

$(30,0.1%) ~ 230 12539 203.60 _ 174.29 10217 100% 230 17718 12476 164.17 __ 103.16

22.5 190.36 305.48 263.88 153.76 225 253.29 187.10 253.66 151.67

235 106.32 93.07 118.95 61.89 23.5 136.73 139.57 177.03 93.04

$(30,1%) ~— 230 177.18 12476 164.17 _ 103.16 200% 23.0 22787 186.09 24376 T155.05

225 253.29 18710 253.66  151.67 225 31576 279.09  410.53 22851

parameters based on heterogeneous computation and communication delays, achieving optimal time
complexity. Overall, most methods optimize either § or 7 independently, ignoring their joint impact
on convergence.

Federated Learning with Heterogeneous Devices. To address device heterogeneity, HeteroFL Diao
et al.| (2021)) enables clients to train subnetworks of varying sizes. FIARSE Wau et al.| (2024)) further
extracts submodels based on parameter importance, allowing adaptive training across devices with
weighted server aggregation. From a system perspective, asynchronous or hybrid aggregation schemes
mitigate straggler effects. FedBuff Nguyen et al.| (2022) combines synchronous and asynchronous
buffering to boost efficiency. These approaches, however, typically decouple gradient compression
and communication frequency. WingsFL addresses this gap by jointly optimizing both, enhancing
end-to-end performance with minimal overhead.

Adaptive Infrequent Communication. Adaptive local update schemes reduce communication cost
based on local-global model similarity. The work [Shenaj et al.| (2025) proposes continuing local
updates when local and global representations are aligned, terminating early when divergence is high.
AQUILA [Zhao et al.|(2022) adaptively adjusts quantization accuracy and communication frequency,
combining lazy aggregation with theoretical guarantees to reduce transmission overhead while
maintaining convergence. These strategies show that communication schedules can be effectively
tailored based on model dynamics and feedback signals.

7 CONCLUSION

FL usually uses infrequent communication and gradient compression to alleviate the communication
bottlenecks, which severally prevents the training process facing low bandwidth. We demonstrate
that the effect of these two strategies on the model convergence are not orthogonal but intrinsically
coupled. We proposed WingsFL, a novel theoretical framework that reveals the term (25—; as a key
factor governing the convergence of FedAVG with gradient compression. Leveraging this insight, we
propose WingsFLthat jointly optimizes the compression ratio § and the number of local steps 7 to
minimize end-to-end training time under device heterogeneity and dynamic bandwidth. Our design
achieves up to 2.24x and 2.18x speed-ups over FedAVG and SOTA adaptive algorithms, showing
that our approach significantly outperforms static and adaptive baselines by efficiently co-optimizing
these hyperparameters.
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researchers to reproduce the main results presented in this work.

REFERENCES

Ahmed M Abdelmoniem and Marco Canini. Dc2: Delay-aware compression control for distributed
machine learning. In IEEE INFOCOM 2021-IEEE Conference on Computer Communications.
IEEE, 2021a.

Ahmed M. Abdelmoniem and Marco Canini. Dc2: Delay-aware compression control for distributed
machine learning. In IEEE Conference on Computer Communications 2021, pp. 1-10, 2021b. doi:
10.1109/INFOCOM42981.2021.9488810.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Iige Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Laizhong Cui, Xiaoxin Su, Yipeng Zhou, and Yi Pan. Slashing communication traffic in fed-
erated learning by transmitting clustered model updates. IEEE Journal on Selected Areas in
Communications, 39(8):2572-2589, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation and communication efficient feder-
ated learning for heterogeneous clients. In International Conference on Learning Representations,
2021.

Haotian Dong, Jingyan Jiang, Rongwei Lu, Jiajun Luo, Jiajun Song, Bowen Li, Ying Shen, and
Zhi Wang. Beyond a single ai cluster: A survey of decentralized llm training. arXiv preprint
arXiv:2503.11023, 2025.

Ron Dorfman, Shay Vargaftik, Yaniv Ben-Itzhak, and Kfir Yehuda Levy. Docofl: Downlink
compression for cross-device federated learning. In International Conference on Machine Learning,
pp. 8356-8388. PMLR, 2023.

Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The non-iid data quagmire of
decentralized machine learning. In International Conference on Machine Learning, pp. 4387-4398.
PMLR, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

10



Under review as a conference paper at ICLR 2026

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on non-iid data silos: An
experimental study. In IEEE International Conference on Data Engineering, 2022.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems,
2:429-450, 2020.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and Bill Dally. Deep gradient compression: Reducing
the communication bandwidth for distributed training. In ICLR, 2018.

Lumin Liu, Jun Zhang, Shenghui Song, and Khaled B Letaief. Hierarchical federated learning
with quantization: Convergence analysis and system design. [EEE Transactions on Wireless
Communications, 22(1):2—-18, 2022.

Rongwei Lu, Yutong Jiang, Yinan Mao, Chen Tang, Bin Chen, Laizhong Cui, and Zhi Wang. Dagc:
Data-volume-aware adaptive sparsification gradient compression for distributed machine learning
in mobile computing. arXiv preprint arXiv:2311.07324, 2023a.

Rongwei Lu, Jiajun Song, Bin Chen, Laizhong Cui, and Zhi Wang. Dagc: Data-aware adaptive
gradient compression. In INFOCOM, 2023b.

Rongwei Lu, Yutong Jiang, Yinan Mao, Chen Tang, Bin Chen, Laizhong Cui, and Zhi Wang.
Data-aware gradient compression for fl in communication-constrained mobile computing. /[EEE
Transactions on Mobile Computing, pp. 1-14, 2024. doi: 10.1109/TMC.2024.3504284.

Rongwei Lu, Jingyan Jiang, Chunyang Li, Haotian Dong, Xingguang Wei, Delin Cai, and Zhi Wang.
Deco-sgd: Joint optimization of delay staleness and gradient compression ratio for distributed sgd.
arXiv preprint arXiv:2507.17346, 2025a.

Rongwei Lu, Yutong Jiang, Jinrui Zhang, Chunyang Li, Yifei Zhu, Bin Chen, and Zhi Wang.
gamma-fedht: Stepsize-aware hard-threshold gradient compression in federated learning. In /EEE
INFOCOM 2025, 2025b.

Ilia Markov, Kaveh Alim, Elias Frantar, and Dan Alistarh. L-greco: Layerwise-adaptive gradient
compression for efficient data-parallel deep learning. Proceedings of Machine Learning and
Systems, 6:312-324, 2024.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial Intelligence
and Statistics, pp. 1273-1282. PMLR, 2017.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In International Conference on Learning Representations, 2022.

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and
Dzmitry Huba. Federated learning with buffered asynchronous aggregation. In Infernational
conference on artificial intelligence and statistics, pp. 3581-3607. PMLR, 2022.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

Atal Sahu, Aritra Dutta, Ahmed M Abdelmoniem, Trambak Banerjee, Marco Canini, and Panos Kalnis.
Rethinking gradient sparsification as total error minimization. Advances in Neural Information
Processing Systems, 34, 2021.

Donald Shenaj, Eugene Belilovsky, and Pietro Zanuttigh. Adaptive local training in federated learning.
In ICLR 2025 Workshop on Modularity for Collaborative, Decentralized, and Continual Deep
Learning, 2025.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

11



Under review as a conference paper at ICLR 2026

Sebastian U Stich. On communication compression for distributed optimization on heterogeneous
data. arXiv preprint arXiv:2009.02388, 2020.

Sebastian U Stich and Sai Praneeth Karimireddy. The error-feedback framework: Better rates for sgd
with delayed gradients and compressed updates. Journal of Machine Learning Research, 21:1-36,
2020a.

Sebastian U. Stich and Sai Praneeth Karimireddy. The error-feedback framework: Sgd with delayed
gradients. Journal of Machine Learning Research, 21(237):1-36, 2020b.

Alexander Tyurin, Marta Pozzi, Ivan Ilin, and Peter Richtarik. Shadowheart sgd: Distributed
asynchronous sgd with optimal time complexity under arbitrary computation and communication
heterogeneity. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.

Jue Wang, Yucheng Lu, Binhang Yuan, Beidi Chen, Percy Liang, Christopher De Sa, Christopher Re,
and Ce Zhang. CocktailSGD: Fine-tuning foundation models over 500Mbps networks. In Andreas
Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett
(eds.), Proceedings of the 40th International Conference on Machine Learning, volume 202 of
Proceedings of Machine Learning Research, pp. 36058-36076. PMLR, 23-29 Jul 2023. URL
https://proceedings.mlr.press/v202/wang23t.html.

Feijie Wu, Xingchen Wang, Yaqing Wang, Tianci Liu, Lu Su, and Jing Gao. Fiarse: Model-
heterogeneous federated learning via importance-aware submodel extraction. Advances in Neural
Information Processing Systems, 37:115615-115651, 2024.

Hang Xu, Chen-Yu Ho, Ahmed M. Abdelmoniem, Aritra Dutta, EH Bergou, Konstantinos Karatsenidis,
Marco Canini, and Panos Kalnis. Grace: A compressed communication framework for distributed
machine learning. In IEEE International Conference on Distributed Computing Systems, 2021.

Mang Ye, Xiuwen Fang, Bo Du, Pong C Yuen, and Dacheng Tao. Heterogeneous federated learning:
State-of-the-art and research challenges. ACM Computing Surveys, 56(3):1-44, 2023.

Zihao Zhao, Yuzhu Mao, Zhenpeng Shi, Muhammad Zeeshan, Yang Liu, Tian Lan, and Wenbo Ding.
Aquila: Communication efficient federated learning with adaptive quantization of lazily-aggregated
gradients. In Proceedings of the International Conference on Learning Representations (ICLR),
2022.

12


https://proceedings.mlr.press/v202/wang23t.html

Under review as a conference paper at ICLR 2026

CONTENTS

I Tntreduction|

Z Preliminarics
2.1 Federated Learning| . . . . . . . . . . . . . ...
2.2 Challenges in Real-World Federated Learning| . . . . . . ... ... ... .....

2.3 Communication Optimization Methods in KLYy . . . . .. ... ... .. .. ...

2.3.1 Infrequent Communication|. . . . . . . . ... ... ... .........

[2.3.2  Gradient Compression| . . . . . . ... . ...

eoretical Analysis of ke -

3.1 Regular Assumptions| . . . . . . . ... ...

3.3 Convergence Rate of FedAVG-GC| . . . . .. ... ... ... ... .. .....

3.4 Analysis of Convergence Ratein FL) . . . . . ... ... ... ...........

4 WingsFL: Joint Optimization of Local Steps and Compression

|5 Evaluation Experiments|

5.1 Experimental Environment| . . . . . . .. ... ... ... ... .. ... ...,

5.2 Experimental Settings|. . . . . . . . ... . L

5.3  Comparison of Traimning Speed |. . . . . .. ... ... ... ... .........

5.4 Sensitivity Analysis of Hyperparameter in WingsFL|. . . . . . ... ... ... ..

[5.3 WingsFL under Different Device Heterogeneity| . . . . . . . . . . . oo v ...

6 Related Workl

[7__Conclusion|

(8 Kthics Statement]

[9  Reproducibility Statement]

A The Use of Large Language Models(LLMs)|

B Notation List
C_FedAVG-G(

[D Detailed proof]

ID.2  Key Lemmas to Prove Theorem|l| . . ... ... ... ... ... .......

ID.3  Key Lemmas to Prove Theorem|[2| . . ... ... ... ... ... ... ....

W W W N NN

(7 Y T )

(o e S e |

10

10

14

14

15



Under review as a conference paper at ICLR 2026

D4 Proofof Theorem 4l . . . . . . . . . . . . . e 20

[E Addendum to Evaluation Experiments| 20
[E.1  Experimental Environment| . . . . . . ... ... .. ... ... ... ... 20
[E.2  Detailed Experimental hyper-parameters| . . . . . . . . ... ... .. ... .... 20
Detail r f jonSd4l ... 21

E4 Detailed curvesof Section S5 . . . . . .. ..o oo oo 21

A THE Usk oF LARGE LANGUAGE MoDELS(LLMs)

In this work, LL.Ms are used to polish the lareadability and find the related works. LLMs are not
used for the generation of ideas, experimental design, data analysis, or any other part of the research
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B NortaTtIiON LisT

Table 4: Notation list.

Notation Description
n number of workers
Tend total number of global iterations
i) the local loss function of worker ¢
i the training weight of worker ¢,
typically proportional to its local dataset volume
) the global loss function, i.e., f(x) = > p;fi(x)
0 compression ratio (0 < § < 1)
T communication infrequency
Cs(") the sparsification compressor with compression ratio §
X the local model parameter in the T'-th global iteration,
j-th local iteration of the i-th worker
X7 the global model parameter in the 7'-th global iteration
g7, the stochastic gradient of X7 ;
A% the sum of the gradients within 7 local iterations
in the T'-th global iteration of worker ¢
s the stepsize at global iteration 7'
e the local error term of the i-th worker at the 7T-th global iteration
L L-smoothness
I u-strongly convexity if f; is strongly convex
¢ the global data heterogenority
& the stochastic gradient noise of worker ¢
o? the upper variance bound of the stochastic gradient noise
a the coeffcient parameter of the communication cost (s)
b the bandwidth of the link between worker ¢
and server at the global iteration T (bits/s)
Sy the size of the gradient (bits)
Ulatency the network end-to-end latency of worker i (s)
Tompute the time for a single computation pass of worker ¢ (s)
Tavg average end-to-end training time per iteration (s)
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C FepAVG-GC

Algorithm 3: FedAVG-GC

Input: number of clinets n, traing weight p;, step-size v, initial parameters xo, initial local error
e}, = 04, the communication frequency 7, the compressor Cj(-) with the compression
ratio §

Output: x7, ,

for T € [T,,4] do

/+ Worker side */

for i € [n] do

X0 = XT3

for j € [7] do

X711 = X7,; — 1875

end

Ar = Zje[r]_ 875

A’T = C(;(A2 +eb);

ey = eT + A — A

Upload Al to the server;

end

/* Server side x/
X741 = X7 — 7 Zie[n] DiAT;

Broadcast x4 1;

end
Return x7,_,;

nd >

D DETAILED PROOF

D.1 TecHnicaL REsULTS

We list lemmas derived from other works here to help us complete the whole proof. Detailed proof of
these lemmas can be found from the reference and we do not write here.

Lemma 1. Ifc1, co € R? then the Jensen’s inequality is: For all p > 0, we have

llex + e2l® < A+ p)lea® + (1 +p71) (11

This can be written as:
2(c1,¢2) < plleal® 4 p~Hlea|1. (12)

Lemma 2 (The nature of Top-k). By definition, the Top-k compressor Cs is a mapping that has the
property R — R9:

Ec,||Cs(x) — x||* < (1 - 8) x> (13)
Lemma 3 (Lemma 27 of the work Stich! (2020)). Let (1¢)¢>0 and (s¢)i>0 be sequences of positive
numbers satisfying

rep1 < 1y — Bysy + Oy + Dy3,
for some positive constants B > 0, C, D > 0 and step-sizes 0 < v < = for E > 0. Then there
exists a constant stepsize v < -+ % such that

Z pi/3(_To_ 2/3+2 Cro \"* (14)
T+1 t_T T+1 T+1 '

Remark 3. To ensure that the right hand side in Eq.|14|is less than € > 0,

T:(’)(C—&-\/»—i-E) 7o

/2 ¢

steps are sufficient.
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Lemma 4 (Lemma 25 of the work [Stich| (2020)). Lez (r:)¢>0 and (s¢)¢>0 be sequences of positive
numbers satisfying

rep1 < (1 —min{yA, F})r; — Bys; + Cy* + Dv?,
for some positive constants A, B > 0, C, D > 0, and for constant step-sizes 0 < vy < % for E >0,
and for parameter 0 < F' < 1. Then there exists a constant step-size 7 < % such that

T
B F A A
— i il < = —mind =
W ;:0 WSy —&-mm{A 5 }TTH <ry (E—|— F) exp { mm{E,F} (T + 1)}
2CInT n Dln’r
A(T+1)  A%2(T+1)2
for w; := (1 — min{yA, F})~D, Wp = ST w; and

2 2 3 3
7T = max {exp[l]vmin{A rO(g+ 1) ,A TO(;"’ 1) }} .

Remark 4. Lemma [4]establishes a bound of the order

- A . [A c D
0(7’0 (E+F> exXp [—mln{E,F}T} +AT+A2Tz>,

that decreases with T". To ensure that this expression is less than e,

r-0(f e D duoel s Bud) 0 (L0 L k)

PRI WA A A A TFT A

steps are sufficient.

D.2 Kery LEmMas 1o PrOVE THEOREM(]

In this section, we prove Theorem [T} We follow the analysis of Section 3.2 and define two virtual
sequences:

Xo = %00 =X, Xri1=%r—7 Y pilNp, Xrjp=%r;—7 Y pigh;. (15)
i€[n] i€[n]

In addition, we use ~the notation Fr = > el Frj, Fr; = ]Ef(fc@j) - f GT~ =
YienIVIr )P, Bry = |%r; = %o;l% Br; = lxr; = %rl% Br = e Brys
Br =Y icin Br.j, Br = n e Pi €7 X7 = E||%r; — x*||> and %7 = 30, X5 X7
is the optimal model parameter, that is f* = min,cga f(x) = f(x*).

Lemma 5. Let f be L-smooth. If v < ﬁ, then it holds for the iterates of FedAVG-GC:

VLT Eiein Pi0”
2

FT+1 S F — %GT + + ’}/LQ(BT + ’)/QTET). (16)
Proof.

2
r ;- i s v L i
Fro; < Prj—(vY_pigh;, V(X)) + T”ZpigT,j 2

~ 2
< Frj = (Vf(xr;), VI(xr;)) + %(IIVJ”(XTJ)H2 + pr(f?)

< Pry — 2IVFGer)I? + S (IV fxr5) = Vi r)]) an
+ 29 ) 4 L

< Py = 2 (1= LIV FGer) I + 7 L2515 — |2 + %75 = x1,4]?)
L L?ypio”

2 )
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where the first inequality is due to L-smoothness (Assumption 1), and the second inequality is due to
the assumption on the gradient noise (Assumption 2). The third is due to Eq.[I2]and the fourth is due
to Eq.[12]and L-smoothness.

We observe that By = 7{|v Y, pieb||* < nry2 3, p?|lel||> = v*7Er. We sum Eq.[17]from j = 1
to 5 = 7 and have

. Y<3L . L2 Y. plo? ~
FT+1 <2L Fr— *G + 7 zz:lpl + ’VLQ(BT + ’YQTET).
Lemma 6. Let B, be defined in NVS—FL, we have
2.2 2 2
Br < 122Gy + % (18)
Proof. Similarly to the previous work Stich & Karimireddy|(2020b)), we have
Br; = ||(kr,; — %70) = (X7; — %7,0)||?
< %1, :
=y Y. pigh il (19)
J'elil @

<Y IVFxe )P+ pie*y .
T i

The second line is due to E||z — Ez||?< E||z||?. In this way, we have

BT—ZBTJSZ’YJZHVJCXTJ HQJFZP? QZj
Jjelr]

Jelr] 20)
T3 pio
<Pt YV S|4 T
JEIT]
Lemma 7. It holds for the update of error terms in FedAVG-GC
) 2777 2¢? 5 o
Eri1n < (1= o0)Br+ = Gr+7(= +n¥pm ) (21)

Proof.
e |I* < (1= 0)lleq + A%
<(L=d)er + Y Viilxr)I* + (1 - )70
J
<L =8) (1 +p)lerl®+ (1 =8)(1+p D Viilxry)lIP + (1= 6)70®  (22)
JElr]

<(1- )H b2+ 2 Z IV fi(er ) |I* + 0.

JE[T]

The first line is due to Eq. the second line is due to Assumption 2, the forth line is due to Eq.

and in the forth line, we take p = 2;:1 . 1‘%5. Then we have
) 27
Erg <(1- 27)ET + F(ZQHVJC(XT,J‘)H2 + §2) + 7172171202, (23)

where the inequality is due to Assumption 3.
Lemma 8. Let f be L-smooth and v < {

2er N 2T — }. then it holds

Hri1 <Er — TGGT +c17? + 2P, (24

~ 3_ 1257 2,2 27257 2
—_ L2 Lt  P; o 2
for Ep = Fr +bEr, where b = 175, c; = Zép’ ey =T1Ley + 52 (—g +n), pio?).
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Proof.

=Fri1 +bEr4

[1]
!

8b 2772
bEpr — —(1 — — -
T+ T 8( 5 5

Er— %GT +av’ + e,

)Gr + a1y? + coy? (25)

IN

s
V3227 7LZ"
Theorem 1 (Non-convex convergence rate of FedAVG-GC). Let f : R? — R be L-smooth. There
exists a stepsize 7 < min{ﬁ W} where ¢ = ?5—2, such that at most

ze[n]pl \/‘W (1+ned) Yiewm Pi0® 1 25

where the second line is due to Lemma @ and the last inequality is due to v <

o a7 + o+ ) L) ) 26)
iterations of FedAVG—GC, it holds E||V f(Xout)||? < € and Xout = X; denotes an iterate x; €
{X0,0,- -y XT,4,0}, where T - T,,q denotes the total number of local iterations, chosen at random
uniformly.

Proof. We take Lemma to Lemma |3| and let ?"t = Zp, 84 = Gr, B = 16, C = ¢,

D = ¢y, E = max{2v27L,\/32¢7LZ}. To ensure -2~ Zte o St is less than € > 0, Topq =
i 2+ a2 7(f(x
O(Ele[gpt V/#¢ (1+n€¢;22e ) Pi Ly Z[). Lr(f( TO) f )

the proof.

are enough, which completes

D.3 KEey LEmMMmas To PROVE THEOREM

Let FT’j = f(XT’j) — f>k and Fr = Zje[ﬂ'] FT’j.
Lemma9. Let f be L-smooth and p-convexity, if v < min{ﬁ,
of FedAVG-GC

1 . .
T }, then it holds for the iterates

fri1 < (1= ED%r = TFr + e7” + 2y +69° L7 By, @27)
where ¢y = 7% p?0? and co = 3LT2 Y pio?
Proof.

X715 = |[Xry —x*|? = 2(%r; — X", v8r) + llgr,l”

= |[%r; — x> = 29(V f(x1;), %1 — x*) + [lgr|I? + 29(V f (x13), x5 — &T’j(>2-8)

Then we analyze the term 2(V f(xr ;), x7; — X7 ;) and —2(V f(x7;),x7; — X*):
N 1 N
2V f(xr;), x5 = %15) < 52 IV ) ||* + 2Ll — %o

< flxry) = f*+2L|x7; — %75,
where the first line is due to Eq.[T2)and the second line is due to L-smoothness.

(29)

~2AV f(xr ), xr; —x") < =2(f(xr5) = [*) = plxr; — x|
* Ko * N
< =2(f(xrg) = f7) = Gll%r, = X7 |P + plkr — x50,
where the first line is due to Assumption 4 and the second line is due to Eq. [TT}
Then we take Eq.[29)and [30]into Eq. 28] then we have
- - * Y . -
xri1y < Xy = y(F(xry) = 1) = ke + 9L + )% — x4
+ IV xe )+ D pio®)
B &
< (1= 5%y = (L= 29L)Frj + Q2L + p)l|xr; —x1,]° +97 Y pio’

<@1- %)XT

(30)

3D

§FT,j +6Ly(Br + |[%r,; — x50 +7 ) pio®
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where the second line is due to L-smooth and the last line is due to ;x < L (combining Assumption 1
and 4). Then we substitute it and have

Krp1 < (1— ’ﬁ) - ZFT+6L7(BT+BT +9%r Y pio?

(32)
<(1- ?)XT - EFT + 6L7(BT + TET )+ v2r Zp?az

We take Lemma@]into Eq.[32]and use G < 2L Fr based on the L-smoothness assumption, then we
have

X1 < (1— %)XT — —(1 — 242127 Fr + e17? + coy® + 673 LT Er
wy (33)
<(1- 7) T — *FT +a7? + 27 +67°LrEr,
where ¢; = 75 p?0? and ¢y = 3L7'2 >" p?0?, completing the proof.
Lemma 10. Let V' = X7 + aEr, where a = 1273%27
Uri < (1—c)¥p — %FT + 1y + ey, (34)
where ¢ = min(4Y, 52-), ¢; = 7Y plo? ¢y = 3LTer + M(2< +nY, pio?) with v <
5
V38427 LZ
Proof.
. 1) 6~3 LT ATL7Z%a
Ui < (02 ta(1 - 2+ gy (TEEE T,
2 27 1) 4
2 2
+ v ey + aT(T +n zi:pfa2) (35)

<(l1-c)xp — %FT + C1’}/2 + 0'273,

where the first inequality is due to Lemmaland Gr < 2LFrp, and the second inequality is due to

¢ = min(£}, 2.‘; )and v < \/W 77 In this way, we complete the proof.
Theorem 2 (Convex convergence rate of FedAVG-GC, i.e., u = 0). Let f : R? — R be L-smooth

and p-convex. Then there exists a stepsize v < min{ﬁ7 where ¢ = (25—;, such

that at most

. ¢L¢<2 FLO+ 000 Siep® 1 215

62 €3/2 € € ) -l

1 1 }
43L7’ /384-¢TLZ I’

(36)

o(

xo - .

local iterations of FedAVG-GC, it holds Ef (Xout) — [* < € and X,u,s = X; denotes an iterate
X € {xo, e X (7 Tg—1) } where T - T,,q denotes the total number of local iterations, chosen at
random uniformly.

Proof When i = 0, ¢ = min(4, 5 ‘;T) = 0, then Lemma 8 can be written into

Vrp <Up — %FT + 1y + chys.

In this way, the proof is same with that of Theorem 1.

Theorem 3 (u-strongly convex convergence rate of FedAVG-GC, l e, [ > 0). Let f : R - R
be L- smooth and pi-convex. Then there exists a stepsize v < min{ - irs where

4fLT /384" ¢TLZ}
¢ = 57, such that at most

S \/L¢C2 FLAA O Y Pl L ZLVE (37)
w

o( ) - llxo — x|

i€ E

local iterations of FedAVG-GC, it holds Bf (Xout) — f* < € and Xout = Xt denotes an iterate
X € {xo7 s X (1T rl)}’ where T - T,,q denotes the total number of local iterations, selected
probabilistically based on (1 — min { £, - ‘;T hH

Proof. We take Lemma 10 to Lemma and letr;, = Vyp, s, = Fp, A= %, F = 252
C=c,D=c,, E=max{4L, 4y/37L, V/384¢7LZ}, then the proof completes.
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Table 5: Configs in Fig. 1.

Model@Dataset ¢!

Lompute (M) thyeney (mS) @’ (ms) bl (MBJs) be

CNN@CIFAR-10 12.8 ~ 25.6 0~ 20 7.85 1~10 #(30, 1%)
VGG11@Flickr  13.2 ~ 26.4 0~20 15.1 50 ~ 500  ¢(30, 1%)
ViT @ImageNet 282 ~ 584 0~ 20 164 50 ~ 500  ¢(30, 1%)

GPT2@Wikitext2 132 ~ 264 0~20 95.0 50 ~ 500  ¢(30, 1%)

D.4 Proor oF THEOREM 4

Proof. We first prove that each individual function Q% (7) is strictly convex. The second derivative
of Q¥(7) is given by:
272 ((In2-7/2—1)2 +1) 4 2d}

3

(Qr(r)" =

Since cg’T > 0, ¢b > 0, and 7 > 1, all terms in the numerator are positive. Therefore, Q7 (7) > 0

for all 7 > 1, proving that each Q%.(7) is strictly convex. Based on the convexity of Q. (7), for any
71,72 € [R;] and X € [0, 1], and for each ¢ € [n], we have:

QAL+ (1= N)72) < AQ7 (1) + (1= Q7
1)

Furthermore, by the definition of the maximum function, we have: Q' (7
Q) (72) and have

(72)-
S (7'1) and QZT(TQ)S

AQT(11) + (1= M@ (72) < AQ(11) + (1 = N)Q(72)
Combining these results, we obtain for each i:
Qr(Am + (1= N)72) < AQ(1) + (1 - X)Q(72)

Taking the maximum over 7 on the left-hand side gives:

QO+ (1—-Mr) = max QLA+ (1 = N7) <AQ(T1) + (1 — N)Q(2)

This proves that Q(7) is convex. Since Q(7) is convex, any local minimum of Q(7) is necessarily a
global minimum. This completes the proof. O

E ApbpbpENDUM TO EVALUATION EXPERIMENTS

E.1 EXPERIMENTAL ENVIRONMENT

All experiments are performed on a server running Ubuntu 24.04 LTS, equipped with an Intel Xeon
Gold 6230 processor and 8 Nvidia RTX 3090 GPUs, each featuring 24GB of VRAM. The software
environment is built upon Python 3.10.16, with all dependencies aligned accordingly. We adopt
PyTorch 2.5.1 as the core deep learning framework, utilizing CUDA 12.4 for GPU acceleration.
Communication across devices is facilitated using the Gloo backend.

E.2 DETAILED EXPERIMENTAL HYPER-PARAMETERS

The detailed configuration of our experiments in Fig.[I]is presented in Table[J l The computation time
tcompme for each node is uniformly sampled from the specified range and remains fixed throughout the

training process. Similarly, the latency tlmency is randomly determined and static. Both parameters

are static and do not change during training. The bandwidth b%. fluctuates within the given range
to simulate a dynamic network environment, where bandwidth varies randomly within this range
throughout the training process.

For CNN-based tasks, the model size is significantly smaller (approximately 1/50 to 1/500 of the
size of other models). To ensure that bandwidth has a noticeable impact on training performance for
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such small models, we scale down the bandwidth settings for CNN tasks by a factor of 1/50 compared
to other models.

All subsequent experiments follow this configuration unless otherwise specified. For instance, in

the device heterogeneity experiments, we vary the range of téompme while keeping other parameters

unchanged. Similarly, for the sensitivity analysis of ¢., we modify only the ¢. parameter while
maintaining the other settings.

E.3 DETAILED CURVES OF SECTION 5.4

The detail of Table 2 in the main text of the paper corresponds to Fig. [2]in the Appendix.

E.4 DETAILED CURVES OF SECTION 5.5

The detail of Table 3 in the main text of the paper corresponds to Fig. [3|in the Appendix.
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Figure 2: Training curves (Top: VGG11@Flickr; Bottom: GPT2@Wikitext2) across different ¢,
(from left to right).
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Figure 3: Training curves (Top: VGG11@Flickr; Bottom: GPT2@Wikitext2) across different
heterogeneity levels (from left to right).
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