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Abstract

Ensuring fairness is a crucial aspect of Federated Learning (FL), which
enables the model to perform consistently across all clients. However,
designing an FL algorithm that simultaneously improves global model
performance and promotes fairness remains a formidable challenge, as
achieving the latter often necessitates a trade-off with the former. To
address this challenge, we propose a new FL algorithm, FedEBA+, which
enhances fairness while simultaneously improving global model performance.
FedEBA+ incorporates a fair aggregation scheme that assigns higher weights
to underperforming clients and an alignment update method. In addition, we
provide theoretical convergence analysis and show the fairness of FedEBA+.
Extensive experiments demonstrate that FedEBA+ outperforms other SOTA
fairness FL methods in terms of both fairness and global model performance.

1 Introduction
Federated Learning (FL) is a distributed learning paradigm that allows clients to collaborate
with a central server to train a model (McMahan et al., 2017). To learn models without
transferring data, clients process data locally and only periodically transmit model updates
to the server, aggregating these updates into a global model. A major challenge for FL is
to treat each client fairly to achieve performance fairness (Shi et al., 2021), where the global
model’s performance is uniformly distributed among all clients. Achieving fairness is vital
to prevent problems like performance discrimination, client disengagement, and legal and
ethical concerns (Caton & Haas, 2020). However, due to data heterogeneity, intermittent
client participation, and system heterogeneity, the model is prone to be unfair (Mohri et al.,
2019; Papadaki et al., 2022), which decreases FL’s generalization ability and hurts clients’
willingness to participate (Nishio & Yonetani, 2019).

While there are some encouraging results of addressing fairness challenges in FL, such as
objective-based approaches (Mohri et al., 2019; Li et al., 2019a; 2021) and gradient-based
methods (Wang et al., 2021; Hu et al., 2022), these methods typically result in a compromise
of the performance of global model. However, training an effective global model is the
fundamental goal of FL (Kairouz et al., 2019). This raises the question:

Can we design an algorithm for FL that promotes fairness while improving the performance
of the global model?

To this end, we propose the FedEBA+ algorithm, which uses Entropy-Based Aggregation
plus alignment update to improve Federated learning. FedEBA+ introduces a new objective
function for FL via a maximum entropy model and comprises a fair aggregation method and
an alignment update strategy. Specifically, FedEBA+ algorithm:

1. Implement an entropy-based aggregation strategy called EBA, which gives underperforming
clients with relatively high aggregation probability, thus making the performance of all
clients more consistent.

2. Introduce a novel update process, comprising model alignment and gradient alignment, to
enhance the overall accuracy and fairness of the global model.

Maximum entropy models have been successfully adopted to promote fairness in data prepro-
cessing (Singh & Vishnoi, 2014) and resource allocation (Johansson & Sternad, 2005). The
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Figure 1: Illustration of fairness improvement of
FedEBA+ over q-FFL and FedAvg. A smaller perfor-
mance gap implies a smaller variance, resulting in a fairer
method. For clients F1(x) = 2(x−2)2 and F2(x) =

1
2
(x+4)2

with global model xt = 0 at round t, q-FFL, FedEBA+, and
FedAvg produce xt+1 of −0.4, −0.1, and 0.5, respectively.
The yellow, blue, and green double-arrow lines indicate the
performance gap between the clients using different methods.
FedEBA+ is the fairest method with the smallest loss gap,
thus the smallest performance variance. Computational
details are outlined in Appendix 12.1.

principle of constrained maximum entropy ensures a fair selection of probability distribution
by being maximally noncommittal to unobserved information, eliminating inherent bias,
thereby promoting fairness (Hubbard et al., 1990; Sampat & Zavala, 2019).

However, introducing entropy for fairness in FL is challenging due to its departure from
traditional fairness objectives like resource allocation. Fair FL aims to ensure equitable
model performance across diverse clients, addressing data heterogeneity and performance
bias mitigation with specialized techniques such as model sharing (Donahue & Kleinberg,
2021) and fairness metrics like accuracy variance (Shi et al., 2021). In contrast, traditional
fairness in resource allocation focuses on efficiently distributing homogeneous resources based
on predefined criteria (Lan et al., 2010). The challenge lies in modeling FL aggregation
as entropy and incorporating that using the aggregation method to make the performance
distribution more uniform.

To address this challenge, FedEBA+ formulates the FL aggregation as a problem of maxi-
mizing entropy with the proposed FL constraints to achieve fair aggregation (Section 4.1).
To the best of our knowledge, we are the first to analyze FL aggregation for fairness using
entropy. Compared to existing methods such as uniform aggregation in FedAvg (McMahan
et al., 2017) and reweight aggregation in q-FFL (Li et al., 2019a), FedEBA+ provides a
more uniform performance among clients, as shown in Figure 1. Furthermore, we propose
a new objective function that incorporates maximum entropy as a Lagrange constraint in
the standard FL objective, resulting in a bi-variable objective (Section 4.2). This enables
optimization of the objective over both aggregation probability for a fair aggregation strategy
and model parameters for a novel FL model alignment update process, improving both global
model accuracy (Section 4.2.1) and enhancing fairness (Section 4.2.2).

Our major contributions can be summarized as below:

• We propose FedEBA+, a novel FL algorithm for advocating fairness while improving
the global model performance, compromising a fair aggregation method EBA and an
innovative model update strategy.

• We provide the convergence analysis for FedEBA+, which is provable to converge to the
nearby of the optimal solution in rate O

(
1√

nKT
+ 1

T

)
. In addition, we show the fairness

of FedEBA+ via variance using the generalized linear regression model.
• Empirical results on Fashion-MNIST, CIFAR-10, CIFAR-100, and Tiny-ImageNet

demonstrate that FedEBA+ outperforms existing fairness FL algorithms, excelling in
both fairness and global model performance. In addition, we conduct extensive ablation
experiments to assess the impact of hyperparameters on FedEBA+.

2 Related Work
In the realm of fairness-aware Federated Learning, various approaches have been explored,
addressing concepts such as performance fairness (Li et al., 2019a), group fairness (Du et al.,
2021), selection fairness (Zhou et al., 2021), and contribution fairness (Cong et al., 2020),
among others (Shi et al., 2021); however, this paper uniquely focuses on performance fairness,
aiming to serve client interests and enhance model performance. A more comprehensive
discussion of the related work can be found in Appendix 8.
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3 Preliminaries and Metrics
Notations: Let m be the number of clients and |St| = n be the number of selected clients
for round t. We denote K as the number of local steps and T as the total number of
communication rounds. We use Fi(x) and f(x) to represent the local and global loss of
client i with model x, respectively. Specifically, xi

t,k and git,k = ∇Fi(x
i
t,k, ξ

i
t,k) represents

the parameter and local gradient of the k-th local step in the i-th worker after the t-th
communication, respectively. The global model update is denoted as ∆t = 1/η(xt+1 − xt),
while the local model update is represented as ∆i

t = xi
t,k − xi

t,0. Here, η and ηL correspond
to the global and local learning rates, respectively.

Problem formulation. In this work, we consider the following optimization model:

min
x

f(x) =

m∑
i=1

piFi(x) , (1)

where x ∈ Rd represents the parameters of a statistical model we aim to find, m is the total
number of clients, and pi denotes the aggregation weight of i-th client such that pi ≥ 0 and∑m

i=1 pi = 1. Suppose the i-th client holds the training data distribution Di, then the local
loss function is calculated by Fi(x) ≜ Eξi∼Di

[Fi (x, ξi)].

Metrics. This article aims to 1) promote fairness in federated learning while 2) enhance
the global model’s performance. Regarding the fairness metric, we adhere to the definition
proposed by (Li et al., 2019a), which employs the variance of clients’ performance as the
fairness metric:
Definition 3.1 (Fairness via variance). A model x1 is more fair than x2 if the test perfor-
mance distribution of x1 across the network with m clients is more uniform than that of x2,
i.e. var {Fi (x1)}i∈[m] < var {Fi (x2)}i∈[m], where Fi(·) denotes the test loss of client i ∈ [m]

and var {Fi (x)} = 1
m

∑m
i=1

[
Fi(x)− 1

m

∑m
i=1 Fi(x)

]2 denotes the variance.

Ensuring the global model’s performance is the fundamental goal of FL. However, fairness-
targeted algorithms may compromise high-performing clients to mitigate variance (Shi et al.,
2021). In addition to global accuracy, we evaluate fairness algorithms by analyzing the
accuracy of the best 5% and worst 5% clients to assess potential compromises.

4 FedEBA+: Aggregation and Alignment Update Method
In this section, we introduce a fair aggregation strategy using maximum entropy to ensure
FL’s fairness constraints and derive a unique aggregation expression (Sec 4.1). We define a
novel FL optimization objective in Eq.(5) by treating maximum entropy as the Lagrangian
constraint. This dual-objective framework enhances the global model’s performance through
model alignment when using f̃(x) as the ideal global objective (Sec 4.2.1) and promotes
fairness through gradient alignment when f̃(x) is considered as the fair objective (Sec 4.2.2).
The complete algorithm, encompassing entropy-based aggregation, model alignment, and
gradient alignment is presented in Algorithm 1.

4.1 Fair Aggregation: EBA

Inspired by the Shannon entropy approach to fairness (Jaynes, 1957), an optimization
problem with unique constraints on the fair aggregation for FL is formulated as:

max
p

H(p) := −
m∑
i=1

pi log(pi) s.t.

m∑
i=1

pi = 1, pi ≥ 0,

m∑
i=1

piFi(x) = f̃(x) , (2)

where H(p) denotes the aggregation probability’s entropy, employed to ensure fair aggregation,
and f̃(x) represents the ideal loss. The ideal loss f̃(x) serves as the target or objective for
the aggregated losses. Its specific expression depends on the goal of the FL system. It acts
as a robust constraint for ensuring that the aggregated clients’ losses are as close to the
desired target loss as possible. For example, when the ideal loss acts as ideal fair loss, the
gradient of ideal loss should be a reweight aggregation of clients’ unbiased local update as
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Algorithm 1 FedEBA+

Require: initial weights x0, global learning rate η, local learning rate ηl, number of rounds T .
Ensure: trained weights xT

1: for round t = 1, . . . , T do
2: Server selects a set of clients |St| and send them model xt.
3: if # Do fairness alignment: then ▷ Consider communication ability
4: Server collects selected clients’ loss L = [F1(xt), . . . , F|St|(xt)]. ▷ Upload scaler with

negligible communication overheads
5: if arccos( L,r

∥L∥·∥r∥ ) > θ then ▷ Assess the need for fairness alignment by computing the
arccosine between the loss vector L = [F1(xt), . . . , F|St|(xt)] and r = [1, · · · , 1]

6: Sever collects ∇Fi(xt), calculates gradient g̃b,t by (9) and sends g̃b,t to selected clients
7: for each worker i ∈ St,in parallel do
8: for k = 0, · · ·,K − 1 do
9: hi

t,k ← (1− α)git,k + αg̃t

10: ∆i
t = xi

t,K − xi
t,0 = −ηL

∑K−1
k=0 hi

t,k

11: Aggregation: ∆t =
∑

i∈St
pi∆

i
t, where pi follows (3) by substituting x = xi

t,K

12: else
13: for each worker i ∈ St,in parallel do
14: for k = 0, · · ·,K − 1 do
15: xi

t,k+1 = xi
t,k − ηLg

i
t,k.

16: Let ∆i
t = xi

t,K − xi
t,0 = −ηL

∑K−1
k=0 git,k and ∆̃i

t = xi
t,1 − xi

t,0

17: Server aggregates model update by (7)
18: Server update: xt+1 = xt + η∆t

shown in Section 4.2.2. Introducing f̃(x) as a constraint reduces bias in model updating
and aggregation, benefiting global accuracy and fairness. The toy case in Appendix 12.1,
comparing the fairness behavior between FedAvg, q-FedAvg, and FedEBA+, illustrates
that higher entropy with constraints equates to greater fairness. Notably, the constrained
entropy model (2) can be applied to other tasks by replacing the ideal loss constraint with
task-specific constraints. Furthermore, by integrating the maximum entropy model (2) into
the original FL objective function (1) as a Lagrangian constraint, we develop a new FL
objective function (5), detailed in Section 4.2.
Proposition 4.1 (EBA: entropy-based aggregation method). Solving problem (2), we
propose an aggregation strategy for prompting fairness performance in FL:

pi =
exp[Fi(x)/τ)]∑N
i=1 exp[Fi(x)/τ ]

, (3)

where τ > 0 is the temperature.

Proof for Proposition 4.1 is in Appendix 9.1, and the uniqueness of the solution (3) to
optimization problem (2) is in Appendix 11.
Remark 4.2 (The effectiveness of τ on fairness). τ controls the fairness level as it decides
the spreading of weights assigned to each client. A higher τ results in uniform weights
for aggregation, while a lower τ yields concentrated weights. This aggregation algorithm
degenerates to FedAvg(McMahan et al., 2017) or AFL (Mohri et al., 2019) when τ is
extremely large or small.
Remark 4.3 (The annealing manner for τ). The linear annealing schedule is defined below:

τT = τ0/(1 + κ(T − 1)), (4)

where T is the total communication rounds and hyperparameter κ controls the decay rate.
There are also concave schedule τk = τ0/(1 + β(k − 1))

1
2 and convex schedule τk = τ0/(1 +

κ(k − 1))3. We show the performance of annealing manners for τ in Figure 8 of Section 6.

Proposition 4.1 shows that assigning higher aggregation weights to underperforming clients
directs the aggregated global model’s focus toward these users, enhancing their performance
and reducing the gap with top performers, ultimately promoting fairness.
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When taking into account the prior distribution of aggregation probability, which is typically
expressed as the relative data ratio qi = ni/

∑
i∈St

ni, the expression of EBA becomes pi =
qi exp[Fi(x)/τ)]/

∑N
j=1 qj exp[Fj(x)/τ ]. The derivation is given in Appendix 9.1.

4.2 Alignment Update

Proposition 4.1 presents a fair aggregation strategy utilizing the maximum entropy model in
FL. Building upon this, we enhance FL optimization by incorporating (2) as a Lagrangian
constraint in the original FL objective (1), resulting in a bi-variable optimization objective.
This objective improves fairness by exploiting the model update process in addition to
satisfying aggregation fairness. The new objective function is defined as follows:

L (x, pi;λ0, λ1) :=

N∑
i=1

piFi(x) + β

[
N∑
i=1

pi log pi + λ0

(
N∑
i=1

pi − 1

)
+ λ1

(
f̃(x)−

N∑
i=1

piFi(x)

)]
,

(5)
where β > 0 is the penalty coefficient of the entropy constraint for the new objective.

The new optimization function (5) is bi-variate, and its optimal solution w.r.t pi remains
the same (equation (3)). By optimizing the function (5) with respect to the variable x, we
introduce the following model update formula:

∂L (x, pi, λ0, λ1)

∂x
= (1− α)

m∑
i=1

pi∇Fi(x) + α∇f̃(x) , (6)

where α = λ1β ≥ 0 is a constant. The above new update formulation combines the traditional
FL update with the ideal gradient ∇f̃(x) to align model updates. ∇f̃(x) represents the
ideal global gradient ∇f̃a(xt) for improved global model performance (Section 4.2.1) and
represents the ideal fair gradient ∇f̃ b(xt) for fairness (Section 4.2.2). The global model is
updated by ∆t = −∂L(x,pi,λ0,λ1)

∂x = −(1− α)
∑m

i=1 pi∇Fi(x)− α∇f̃(x).

4.2.1 Model Alignment for Improving Global Accuracy

Based on equation (6), we propose a new approach to update the server-side model to improve
the global model performance. The ideal global gradient ∇f̃a(xt) aligns the aggregated
model with better representing the model update under global data. Although directly
obtaining it is unfeasible, we estimate it by averaging local one-step gradients. Utilizing local
SGD with xt+1 = xt − η ∂L(x)

∂x and xt+1 = xt − η∆t, we have

∆t = (1− α)
∑
i∈St

pi∆
i
t + α∆̃a

t , (7)

where pi follows the aggregation probability (3) by substituting x = xi
t,K . Here,∆̃a

t denotes
the aggregation of one-step local updates, defined as follows:

∆̃a
t =

1

|St|
∑
i∈St

∆̃a,i
t =

1

|St|
∑
i∈St

(xi
t,1 − xi

t,0) . (8)

We can estimate the ideal global model update using (8) because: 1) A single local update
corresponds to an unshifted update on local data, whereas multiple local updates introduce
model bias in heterogeneous FL (Karimireddy et al., 2020b). 2) The expectation of sampled
clients’ data over rounds represents the global data due to unbiased random sampling (Wang
et al., 2022). The model alignment update is presented in Algorithm 1 (Steps 11-15). Utilizing
∆̃a

t as the ideal global gradient, the global model update derived from (6) is expressed as
(7), as depicted in Algorithm 1.

4.2.2 Gradient Alignment for Fairness

To enhance fairness, we define f̃(xt) as the ideal fair gradient to align the local model updates.
We use an arccos-based fairness assessment to determine if gradient alignment should be
performed to reduce the communication burden. If the arccos value of clients’ performance
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Figure 2: Gradient Alignment improves
fairness. Gradient alignment ensures that
each local step’s gradient stays on track and
does not deviate too far from the fair direction.
It achieves this by constraining the aligned
gradient, denoted by hi

k,t, to fall within the
tolerable fair area. The gradient git represents
the gradient of model for each client in round
t, while g̃t denotes the ideal fair gradient for
model xt. The gradient gik,t is the gradient of
client i at round t and local epoch k.

L = [F1(xt), . . . , F|St|(xt)] and guidance vector r = [1]m exceeds the threshold fair angle θ,
it is considered unfair; otherwise it is within the tolerable fair area, as shown in Figure 2.

To align gradients, the server receives gti = ∇Fi(xt) and Fi(xt) from clients, employing (3)
to assess client importance. Subsequently, the ideal fair gradient ∇f̃ b(xt) is estimated by

∇f̃b(xt) = g̃b,t =
∑

i∈St

p̃ig
t
i , (9)

where p̃i = exp[Fi(xt)/τ)]/
∑

i∈St
exp[Fi(xt)/τ ]. g̃b,t represents the fair gradient of the selected

clients, obtained using the global model’s performance on these clients without local shift
(i.e., one local update). Therefore, the aligned gradient of model xi

t,k can be expressed as:

hi
t,k ← (1− α)git,k + αg̃b,t . (10)

Utilizing hi
t,k for the local update, the global model update, derived from (6), transforms

into ∆t = −(1− α)
∑

i∈St
piηL

∑K−1
k=0 git,k − αKηL

∑
i∈St

p̃ig
t
i , as depicted in Algorithm 1.

5 Analysis of Convergence and Fairness
In this section, we analyze the convergence and fairness of FedEBA+.

5.1 Convergence Analysis of FedEBA+

In this subsection, we provide the convergence rate of FedEBA+ with two-side learning rates.
To ease the theoretical analysis of our work, we use the following widely used assumptions:
Assumption 1 (L-Smooth). There exists a constant L > 0, such that ∥∇Fi(x)−∇Fi(y)∥ ≤
L ∥x− y∥ ,∀x, y ∈ Rd, and i = 1, 2, . . . ,m.
Assumption 2 (Unbiased Local Gradient Estimator and Local Variance). Let ξit be a
random local data sample in the round t at client i: E

[
∇Fi(xt, ξ

i
t)
]
= ∇Fi(xt),∀i ∈ [m].

There exists a constant bound σL > 0, satisfying E
[∥∥∇Fi(xt, ξ

i
t)−∇Fi(xt)

∥∥2] ≤ σ2
L.

Assumption 3 (Bound Gradient Dissimilarity). For any set of weights {wi ≥ 0}mi=1 with∑m
i=1 wi = 1, there exist constants σ2

G ≥ 0 and A ≥ 0 such that
∑m

i=1 wi ∥∇Fi(x)∥2 ≤
(A2 + 1) ∥

∑m
i=1 wi∇Fi(x)∥

2
+ σ2

G.

The above assumptions are commonly used in both non-convex optimization and FL
literature, see e.g. (Karimireddy et al., 2020b; Yang et al., 2021; Wang et al., 2020). For
Assumption 3, if all local loss functions are identical, then we have A = 0 and σG = 0.
Theorem 5.1. Under Assumption 1–3 and the aggregation strategy (3), and let constant
local and global learning rate ηL and η be chosen such that ηL < min (1/(8LK), C), where
C is obtained from the condition that 1

2 − 10L2 1
m

∑m
i−1 K

2η2L(A
2 + 1)(χ2

p∥wA
2 + 1) > C > 0,

and η ≤ 1/(ηLL). In particular, let ηL = O
(

1√
TKL

)
and η = O

(√
Km

)
, the convergence

rate of FedEBA+ is:

min
t∈[T ]

∥∇f (xt)∥2 ≤ O

(
2(f0 − f∗) +mσ2

L

2
√
mKT

+
5(σ2

L + 4Kσ2
G)

2KT
+

20(A2 + 1)χ2
w∥pσ

2
G

T

)
+ 2χ2

w∥pσ
2
G .

(11)
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where χ2
w∥p =

∑m
i=1 (wi − pi)

2
/pi represents the chi-square divergence between vectors

w =
[
1
m , . . . , 1

m

]
and p = [p1, . . . , pm]. Observe that when all clients have uniform loss

distribution, we have p = w such that χ2 = 0.

From Theorem 5.1, we note FedEBA+ will converge to a nearby of the optimality in a rate
of O

(
1
T + 1

nKT

)
, the same order as that of the SOTA FedAvg (Yang et al., 2021; Li et al.,

2022). The proof of Theorem 5.1 in two cases of α = 0 and α ̸= 0 is given in Appendix 10.
Remark 5.2 (Effect of χ2

w∥pσ
2
G). The non-vanishing term χ2

w∥pσ
2
G in equation (11) means

the aggregation error from unbiased aggregation distribution. That is, an error term always
exists in the convergence rate as long as the aggregation algorithm is biased. This conclusion
is consistent with previous works of FL (Wang et al., 2020; Cho et al., 2022).

5.2 Fairness Analysis

In this section, we analyze fairness via variance and Pareto-optimality for FedEBA+.
Variance analysis. In this section, we analyze the variance of clients of FedEBA+ using
the generalized linear regression model (Wainwright et al., 2008), following the setting
in Li et al. (2020a) , which is formulated by f(x; ξ) = T (ξ)⊤x − A(ξ), where T (ξ) is the
generalized regression coefficient, and A(ξ) is the noise term follows gaussian distribution.
Details are shown in Appendix 12.2. Notably, this regression model is a more general version
of yk,i = ξ̃⊤k,ixk + zk,i, which was employed in (Lin et al., 2022) for fairness analysis.

Theorem 5.3 (Fairness via variance). According to Algorithm 1, the variance of test losses
of FedEBA+ can be derived as:

V EBA+ = var
(
F test
i (xEBA+)

)
=

b̃2

4
var
(
∥w̃ −wi∥22

)
, (12)

where w̃ =
∑m

i=1 piwi, wi represents the true parameter on client i, , and b̃ is a constant that
approximates bi in Ξ⊤

i Ξi = mbiId, where Ξi = [T (ξi,1), . . . , T (ξi,n)]. The data heterogeneity
lies in wi, details shown in Appendix 12.2. By using the aggregation probability (3), we
demonstrate that under the same non-iid degree, var{Fi(xEBA+)}i∈m ≤ var{Fi(xAvg)}i∈m,
i.e., FedEBA+ achieves a smaller variance than FedAvg with uniform aggregation. The proof
details are shown in Appendix 12.2.

Extending the convergence analysis to a broader scenario with smooth and strongly convex
loss functions, we demonstrate that V arEBA+ ≤ V arAVG. Refer to the settings, assumptions,
and proof details in Appendix 12.3.

Pareto-optimality analysis. In addition to variance, Pareto-optimality can serve as
another metric to assess fairness, as suggested by several studies (Wei & Niethammer,
2022; Hu et al., 2022). This metric achieves equilibrium by reaching each client’s optimal
performance without hindering others (Guardieiro et al., 2023). We prove that FedEBA+
achieves Pareto optimality through the entropy-based aggregation strategy.
Definition 5.4 (Pareto optimality). Suppose we have a group of m clients in FL, and each
client i has a performance score fi. Pareto optimality happens when we can’t improve one
client’s performance without making someone else’s worse: ∀i ∈ [1,m],∃j ∈ [1,m], j ̸=
i such that fi ≤ f ′

i and fj > f ′
j, where f ′

i and f ′
j represent the improved performance

measures of participants i and j, respectively.

In the following proposition, we show that FedEBA+ satisfies Pareto optimality.
Proposition 5.5 (Pareto optimality.). The proposed maximum entropy model H(p) (2)
is proven to be monotonically increasing under the given constraints, ensuring that the
aggregation strategy φ(p) = argmaxp∈P h(p(f)) is Pareto optimal. Here, p(f) is the
aggregation weights p = [p1, p2, . . . , pm] of the loss function f = [f1, f2, . . . , fm], and h(·)
represents the entropy function. The proof can be found in Appendix 13.

6 Numerical Results
In this section, we demonstrate FedEBA+’s superior performance over other baselines.
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Table 1: Performance of algorithms on FashionMNIST and CIFAR-10. We report the
accuracy of global model, variance fairness, worst 5%, and best 5% accuracy. The data is divided
into 100 clients, with 10 clients sampled in each round. All experiments are running over 2000
rounds for a single local epoch (K = 10) with local batch size = 50, and learning rate η = 0.1. The
reported results are averaged over 5 runs with different random seeds. We highlight the best and
the second-best results by using bold font and blue text.

Algorithm
FashionMNIST (MLP) CIFAR-10 (CNN)

Global Acc. ↑ Var. ↓ Worst 5% ↑ Best 5% ↑ Global Acc. ↑ Var. ↓ Worst 5% ↑ Best 5% ↑

FedAvg 86.49 ± 0.09 62.44±4.55 71.27±1.14 95.84± 0.35 67.79±0.35 103.83±10.46 45.00±2.83 85.13±0.82
FedSGD 83.79 ±0.28 81.72 ±0.26 61.19 ±±0.30 96.60 ± ±0.20 67.48 ±0.37 95.79 ±4.03 48.70 ±±0.9 84.20 ±±0.40
q-FFL|q=0.001 87.05± 0.25 66.67± 1.39 72.11± 0.03 95.09± 0.71 68.53± 0.18 97.42± 0.79 48.40± 0.60 84.70± 1.31
q-FFL|q=15.0 75.77±0.42 46.58±0.75 61.63±0.46 89.60±0.42 36.89±0.14 79.65±5.17 19.30±0.70 51.30±0.09
FedMGDA+|ϵ=0.0 86.01±0.31 58.87±3.23 71.49±0.16 95.45±0.43 67.16±0.33 97.33±1.68 46.00±0.79 83.30±0.10
FedMGDA+|ϵ=0.03 84.64±0.25 57.89±6.21 73.49±1.17 93.22±0.20 65.19±0.87 89.78±5.87 48.84±1.12 81.94±0.67
AFL|λ=0.7 85.14±0.18 57.39±6.13 70.09±0.69 95.94±0.09 66.21±1.21 79.75±1.25 47.54±0.61 82.08±0.77
AFL|λ=0.5 84.14±0.18 90.76±3.33 60.11±0.58 96.00±0.09 65.11±2.44 86.19±9.46 44.73±3.90 82.10±0.62
PropFair|M=0.2,thres=0.2 85.51±0.28 75.27±5.38 63.60±0.53 97.60±0.19 65.79±0.53 79.67±5.71 49.88±0.93 82.40±0.40
PropFair|M=5.0,thres=0.2 84.59±1.01 85.31±8.62 61.40±0.55 96.40±0.29 66.91±1.43 78.90±6.48 50.16±0.56 85.40±0.34
TERM|T=0.1 84.31±0.38 73.46±2.06 68.23±0.10 94.16±0.16 65.41±0.37 91.99±2.69 49.08±0.66 81.98±0.19
TERM|T=0.5 82.19±1.41 87.82±2.62 62.11±0.71 93.25±0.39 61.04±1.96 96.78±7.67 42.45±1.73 80.06±0.62
FedFV|α=0.1,τfv=1 86.51±0.28 49.73±2.26 71.33±1.16 95.89±0.23 68.94±0.27 90.84±2.67 50.53±4.33 86.00±1.23
FedFV|α=0.1,τfv=10 86.98±0.45 56.63±1.85 66.40±0.57 98.80±0.12 71.10±0.44 86.50±7.36 49.80±0.72 88.42±0.25

FedEBA+|α=0,τ=0.1 86.70±0.11 50.27±5.60 71.13±0.69 95.47±0.27 69.38±0.52 89.49±10.95 50.40±1.72 86.07±0.90
FedEBA+|α=0.5,τ=0.1 87.21±0.06 40.02±1.58 73.07±1.03 95.81±0.14 72.39±0.47 70.60±3.19 55.27±1.18 86.27±1.16
FedEBA+|α=0.9,τ=0.1 87.50±0.19 43.41±4.34 72.07±1.47 95.91±0.19 72.75±0.25 68.71±4.39 55.80±1.28 86.93±0.52

Evaluation and datasets. We conduct two metrics (1) fairness, including variance of
accuracy, worst 5% accuracy and best 5% accuracy, and (2) gloabl accuracy, the test accuracy
of the global model. We split MNIST, FashionMNIST, CIFAR-10, CIFAR-100, and Tiny-
ImageNet into non-iid datasets following the setting of (Wang et al., 2021) and Latent
Dirichlet Allocation (LDA), details shown in Appendix 14.

Baseline algorithms. We compare FedEBA+ with classical method FedAvg (McMahan
et al., 2017) and FedSGD (McMahan et al., 2016), and fairness FL algorithms,including
AFL (Mohri et al., 2019),q-FFL (Li et al., 2019a),FedMGDA+(Hu et al., 2022),Prop-
Fair (Zhang et al., 2022), TERM (Li et al., 2020a) and FedFV (Wang et al., 2021). All
algorithms are evaluated under the same settings, such as batch size and learning rate.
Hyperparameters for baselines are listed in Table 3 in Appendix 14. We report results for the
baselines using their best parameters, while complete results with various hyperparameter
choices can be found in Table 4 in Appendix 14. More details about hyperparameters and
experiment settings are available in Appendix 14.

Table 1 and Table 2 illustrate FedEBA+ outperforms other baselines in terms of
both fairness and global accuracy. In detail,
• Variance of FedBEA+ is much smaller than others: FedEBA+ consistently

achieves lower variance than others, indicating greater fairness. The fairness improvement
is 3× on FashionMNIST and 1.5× on CIFAR-10 compared to the best-performing baseline.

• FedEBA+ addresses the accuracy-variance trade-off issue faced by other
algorithms: FedEBA+ notably improves global accuracy, with a 4% improvement on
CIFAR-10 and 3% on CIFAR-100 and Tiny-Imagenet. Other baselines either have lower
global accuracy or show limited improvement compared to FedAvg. Additionally, the
performance improvement of best 5% demonstrates that FedEBA+ reduces variance
without compromising the performance of good-performing clients. To showcase the
advantage of FedEBA+ when considering fairness and accuracy simultaneously, we use
the coefficient of variation (CV = std

acc ) (Jain et al., 1984) to measure the relative fairness
level, the performance of algorithms on CV is shown in Table 13 in Appendix 15.

• Ablation study of FedEBA+: In Table 1, FedEBA+|α=0 differs solely in aggregation
from FedAvg, highlighting the proposed aggregation approach’s advantages. In contrast,
FedEBA+|α>0 incorporates the aligned update in addition to aggregation, showing its
effectiveness through improved performance compared to FedEBA+|α=0. Complete results
of ablation study for FedEBA+ on four datasets are provided in Table 11 Appendix 15

Figure 3 showcases the effectiveness of FedEBA+ in terms of accuracy, variance,
and convergence performance on MNIST and CIFAR-10. 1)Figure 3(a) illustrates
FedEBA+’s dual improvement in global model performance and fairness. The algorithm’s
positioning near the lower right corner of the figure signifies superior performance in both
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Table 2: Performance of algorithms on CIFAR-100 and Tiny-ImageNet. We exclude
incompatible algorithms (FedMGDA+, PropFair, and TERM) under our experimental settings on
these two datasets. Instead, we include SCAFFOLD (Karimireddy et al., 2020b) and FedProx (Li
et al., 2020b) to compare their performance.

Algorithm
CIFAR-100 (ResNet-18) Tiny-ImageNet (MobileNet-v2)

Global Acc. ↑ Var. ↓ Worst 5% ↑ Best 5% ↑ Global Acc.↑ Var. ↓ Worst 5% ↑ Best 5% ↑

FedAvg 30.94±0.04 17.24±0.08 0.20±0.00 65.90±1.48 61.99±0.17 19.62±1.12 53.60±0.06 71.18±0.13
q-FFL|q=0.01 24.97±0.46 14.54±0.21 0.00±0.00 45.04±0.53 62.42±0.46 15.44±1.89 54.13±0.11 70.01±0.09
AFL|λ=0.01 20.84±0.43 11.32±0.20 4.03±0.14 50.83±0.30 62.09±0.53 16.47±0.88 54.65±0.64 68.83±1.30
FedProx|µ=0.1 31.50±0.04 17.50±0.09 0.41±0.00 64.50±0.11 62.05±0.04 16.21±1.13 54.41±0.47 69.92±0.26
SCAFFOLD|η=1.0 31.81±0.02 17.52±0.20 1.59±0.01 68.36±0.23 63.62±0.02 15.52±1.49 54.76±0.71 70.47±0.12
FedFV|α=0.1,τfv=1 31.23±0.04 17.50±0.02 0.20±0.00 66.05±0.11 62.13±0.08 15.69±0.58 53.92±0.30 69.60±0.31

FedEBA+|α=0.1,τ=0.5 33.39±0.22 16.92±0.04 0.95±0.15 68.51±0.21 64.05±0.09 14.91±1.85 54.32±0.09 71.27±0.04
FedEBA+|α=0.9,τ=0.1 31.98±0.30 13.75±0.16 1.12±0.05 67.94±0.54 63.75±0.09 13.89±0.72 55.64±0.18 70.93±0.22

(a) Performance of variance and accuracy (b) Performance of convergence
Figure 3: Performance of algorithms on (a) left: variance and accuracy on MNIST, (a) right: variance
and accuracy on CIFAR-10, (b) left: convergence on MNIST, (b) right: convergence on CIFAR-10.

(a) Ablation for α (b) Ablation for τ
Figure 4: Ablation study for hyperparameters

global accuracy and fairness. 2) Figure 3(b) illustrates the superior convergence performance
of FedEBA+ compared to other fairness algorithms.

Figure 4 demonstrates the monotonic stability of our algorithm to hyperparame-
ters α, while highlighting how parameter τ controls the balance between fairness
and accuracy. 1) Figure 4(a) shows fairness consistently improves as α increases, while
accuracy steadily decreases. 2) Figure 4(b) shows the relationship between decreasing τ and
improved fairness, while indicating that τ > 1 generally leads to superior global accuracy.

Additional ablation studies. 1) Ablation study for communication cost (ablation for
θ) in Appendix 15 (Table 5 and Figures 9-12) demonstrates that FedEBA+ outperforms
baselines at θ = 90◦, with the same communication cost as vanilla FedAvg, and exhibiting
potential for further performance enhancement with θ < 90◦. 2) Ablation studies for Dirichlet
parameter and annealing strategies are provided in Table 9, Figure 8 in Appendix 15.

Additional results in Appendix 15 consistently demonstrate the superiority of
FedEBA+, including: 1) Performance table with full hyperparameter choices for algorithms
(Table 4 for baselines and Table 12 for FedEBA+). 2) Performance comparison of FedEBA+
and baselines under local noisy label scenario (Table 10). 3) Performance of fairness algorithms
integrated with advanced optimization methods like momentum (Table 7) and VARP
(Table 8). 4) Performance results under cosine similarity and entropy metrics(Table 14).

7 Conclusions and Future Works
This paper introduces FedEBA+, a fair FL algorithm that enhances fairness and global
model performance through innovative entropy-based aggregation and update alignment
approaches. Theoretical analysis and experiments validate its superiority over SOTA baselines.
Though experiments demonstrate that FedEBA+ outperforms baselines with the same
communication costs as FedAvg, further performance improvements can be obtained by
decreasing θ. Therefore, integrating communication compression into FedEBA+ represents a
valuable direction.
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8 An Expanded Version of The Related Work
Fairness-Aware Federated Learning. Various fairness concepts have been proposed
in FL, including performance fairness (Li et al., 2019a; 2021; Wang et al., 2021; Zhao
& Joshi, 2022; Kanaparthy et al., 2022; Huang et al., 2022), group fairness (Du et al.,
2021; Ray Chaudhury et al., 2022), selection fairness (Zhou et al., 2021), and contribution
fairness (Cong et al., 2020), among others (Shi et al., 2021; Wu et al., 2022; Chen et al., 2023).
These concepts address specific aspects and stakeholder interests, making direct comparisons
inappropriate. This paper specifically focuses on performance fairness, the most commonly
used metric in FL, which serves client interests while improving model performance. We list
and compare the commonly used fairness metrics of FL in Section 16.

To enhance performance fairness for FL, some works propose objective function-based
approaches. In (Li et al., 2019a), q-FFL uses α-fair allocation for balancing fairness and
efficiency, but specific α choices may introduce bias. In contrast, FedEBA+ employs
maximum entropy aggregation to accommodate diverse preferences. Additionally, FedEBA+
introduces a novel fair FL objective with dual-variable optimization, enhancing global model
performance and variance. Besides, Deng et al. (2020) achieves fairness by defining a min-max
optimization problem in FL. In the gradient-based approach, FedFV (Wang et al., 2021)
mitigates gradient conflicts among FL clients to promote fairness. Efforts have been made
to connect fairness and personalized FL to enhance robustness (Li et al., 2021; Lin et al.,
2022). Recently, reweighting methods encourage a uniform performance by up-reweighting
the importance of underperforming clients (Zhao & Joshi, 2022). However, these methods
enhance fairness at the expense of the performance of the global model (Kanaparthy et al.,
2022; Huang et al., 2022). In contrast, we propose FedEBA+ as a solution that significantly
promotes fairness while improving the global model performance. Notably, FedEBA+ is
orthogonal to existing optimization methods like momentum (Karimireddy et al., 2020a) and
VARP (Jhunjhunwala et al., 2022), allowing seamless integration.

Aggregation in Federated Optimization. FL employs aggregation algorithms to com-
bine decentralized data for training a global model (Kairouz et al., 2019). Approaches include
federated averaging (FedAvg) McMahan et al. (2017), robust federated weighted averaging
Pillutla et al. (2019); Laguel et al. (2021); Pillutla et al. (2023), importance aggregation Wang
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et al. (2022), and federated dropout Zheng et al. (2022). However, these algorithms can be
sensitive to the number and quality of participating clients, causing fairness issues (Li et al.,
2019b; Balakrishnan et al., 2021; Shi et al., 2021). To the best of our knowledge, we are
the first to analyze the aggregation from the view of entropy. Unlike heuristics that assign
weights proportional to client loss (Zhao & Joshi, 2022; Kanaparthy et al., 2022), our method
has physical meanings, i.e., the aggregation probability ensures that known constraints are
as certain as possible while retaining maximum uncertainty for unknowns. By selecting the
maximum entropy solution with constraints, we actually choose the solution that fits our
information with the least deviation (Jaynes, 1957), thus achieving fairness.

9 Entropy Analysis
9.1 Derivation of Proposition 4.1

In this section, we present the derivation of the maximum entropy distribution for the
aggregation strategy of FedEBA+.

One may wonder why we propose an exponential formula treatment of loss function pi ∝
eFi(x)/τ instead of formulating the aggregation probability as something else, say, pi ∝ Fi(x).
In one word, because our aggregation strategy is the maximum entropy distribution.

Being a maximum entropy means minimizing the amount of prior information built to the
distribution and guarantee that the selected probability distribution is devoid of subjective
influences, thereby eradicating any inherent bias (Bian et al., 2021; Sampat & Zavala, 2019).
Meanwhile, many physical systems tend to move towards maximal entropy configurations
over time (Jaynes, 1957).

In the following we will give a derivation to show that pi ∝ eFi(x)/τ is indeed the maximum
entropy distribution for FL. The derivation bellow is closely following (Jaynes, 1957) for
statistical mechanics. Suppose the loss function of the user corresponding to the aggregation
probability pi is Fi(x). We would like to maximize the entropy H(p) = −

∑m
i=1 pi log pi,

subject to FL constrains that
∑m

i=1 pi = 1,pi ≥ 0,
∑

i piFi(x) = f̃(x), which means we
constrain the average performance to be a constant, such as ideal global model performance
or the ideal most fair average performance, independent of pi.

Proof.

L (p, λ0, λ1) := −

[
N∑
i=1

pi log pi + λ0

(
N∑
i=1

pi − 1

)
+ λ1

(
µ−

N∑
i=1

piFi(x)

)]
,

where µ = f(x).

By setting

∂L (p, λ0, λ1)

∂pi
= − [log pi + 1 + λ0 − λ1Fi(x)] = 0 , (13)

we get:

pi = exp [− (λ0 + 1− λ1Fi(x))] . (14)

According to
∑

i pi = 1, we have:

λ0 + 1 = log

N∑
i=1

exp (λ1Fi(x)) =: logZ , (15)

which is the log-partition function.

Thus,

pi =
exp [λ1Fi(x))]

Z
. (16)
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Note that the maximum value of the entropy is

Hmax = −
N∑
i=1

pi log pi

= λ0 + 1− λ1

N∑
i=1

piFi(x)

= λ0 + 1− λ1µ .

(17)

So one can get,

λ1 = −∂Hmax

∂µ
=:

1

τ
, (18)

which defines the inverse temperature. So we reach the exponential form of pi as:

pi =
exp[Fi(x)/τ)]∑N
i=1 exp[Fi(x)/τ ]

. (19)

When taking into account the prior distribution of aggregation probability (Li et al., 2020b;
Balakrishnan et al., 2021), which is typically expressed as qi = ni/

∑
i∈St

ni, the original
entropy formula can be extended to include the prior distribution as follows:

H(p) =

m∑
i=1

pi log(
qi
pi
) . (20)

Thus, the solution of the original problem under this prior distribution becomes:

pi =
qi exp[Fi(x)/τ)]∑N
j=1 qj exp[Fj(x)/τ ]

. (21)

Proof.

L (p, λ0, λ1) := −
N∑
i=1

pi log
qi
pi

+ λ0

(
N∑
i=1

pi − 1

)
+ λ1

(
µ−

N∑
i=1

piFi(x)

)
. (22)

Following similar derivation steps, let
∂L (p, λ0, λ1)

∂pi
= − log(qi) + log(pi) + 1 + λ0 − λ1Fi(x) = 0 , (23)

we get:
pi = exp [− (λ0 + 1− log(qi)− λ1Fi(x))] . (24)

According to
∑

i pi = 1, we have:∑
i

pi =
∑
i

exp [− (λ0 + 1− log(qi)− λ1Fi(x))] = 1 . (25)

Therefore, we get:

λ0 + 1 = log

N∑
i=1

qi exp (λ1Fi(x)) =: log(Z) . (26)

Then substituting λ0 + 1 = log(Z) back to pi = exp [− (λ0 + 1− log(qi)− λ1Fi(x))], we get
pi =

qi exp[λ1Fi(x)]
Z .

By setting λ1 =: 1
τ , we obtain (21):

pi =
qi exp[Fi(x)/τ)]∑N
j=1 qj exp[Fj(x)/τ ]

. (27)
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10 Convergence Analysis of FedEBA+
In this section, we give the proof of Theorem 5.1.

Before going to the details of our convergence analysis, we first state the key lemmas used in
our proof, which helps us to obtain the advanced convergence result.
Lemma 10.1. To make this paper self-contained, we restate the Lemma 3 in (Wang et al.,
2020):

For any model parameter x, the difference between the gradients of f(x) and f̃(x) can be
bounded as follows:

∥∇f(x)−∇f̃(x)∥2 ≤ χ2
w∥p

[
A2∥∇f̃(x)∥2 + κ2

]
, (28)

where χ2
w∥p denotes the chi-square distance between w and p, i.e., χ2

w∥p =∑m
i=1 (wi − pi)

2
/pi. f(x) is the global objective with f(x) =

∑m
i=1 wifi(x) where w is

usually average of all clients, i.e., w = [ 1m , · · · , 1
m ]. f̃(x) =

∑m
i=1 pifi(x) is the surrogate

objective with the reweight aggregation probability p.

Proof.

∇f(x)−∇f̃(x) =

m∑
i=1

(wi − pi)∇fi(x)

=

m∑
i=1

(wi − pi)
(
∇fi(x)−∇f̃(x)

)
=

m∑
i=1

wi − pi√
p
i

· √pi

(
∇fi(x)−∇f̃(x)

)
.

(29)

Applying Cauchy-Schwarz inequality, it follows that

∥∇f(x)−∇f̃(x)∥2 ≤

[
m∑
i=1

(wi − pi)
2

pi

][
m∑
i=1

pi

∥∥∥∇fi(x)−∇f̃(x)
∥∥∥2]

≤ χ2
w∥p

[
A2∥∇f̃(x)∥2 + σ2

G

]
,

(30)

where the last inequality uses Assumption 3. Note that

∥∇f(x)∥2 ≤ 2∥∇f(x)−∇f̃(x)∥2 + 2∥∇f̃(x)∥2

≤ 2
[
χ2
w∥pA

2 + 1
]
∥∇f̃(x)∥2 + 2χ2

p∥w2σ2
G .

(31)

As a result, we obtain

min
t∈[T ]

∥∇f (xt)∥2 ≤ 1

T

T−1∑
t=0

∥∇f (xt)∥2

≤ 2
[
χ2
w∥pA

2 + 1
] 1

T

T−1∑
t=0

∥∥∥∇f̃ (xt)
∥∥∥2 + 2χ2

w∥pσ
2
G

≤ 2
[
χ2
w∥pA

2 + 1
]
ϵopt + 2χ2

w∥pσ
2
G , (32)

where ϵopt =
1
T

∑T−1
t=0

∥∥∥∇f̃ (xt)
∥∥∥2 denotes the optimization error.
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10.1 Analysis with α = 0.

Lemma 10.2 (Local updates bound.). For any step-size satisfying ηL ≤ 1
8LK , we can have

the following results:

E∥xt
i,k − xt∥2 ≤ 5K(η2Lσ

2
L + 4Kη2Lσ

2
G) + 20K2(A2 + 1)η2L∥∇f(xt)∥2 . (33)

Proof.

Et∥xi
t,k − xt∥2

= Et∥xi
t,k−1 − xt − ηLg

t
t,k−1∥2

= Et∥xi
t,k−1 − xt − ηL(g

t
t,k−1 −∇Fi(x

i
t,k−1) +∇Fi(x

i
t,k−1)−∇Fi(xt) +∇Fi(xt))∥2

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + Et∥ηL(gtt,k−1 −∇Fi(x
i
t,k))∥2

+ 4KEt[∥ηL(∇Fi(x
i
t,K−1)−∇Fi(xt))∥2] + 4Kη2LEt∥∇Fi(xt)∥2

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + η2Lσ
2
L + 4Kη2LL

2Et∥xi
t,k−1 − xt∥2

+ 4Kη2Lσ
2
G + 4Kη2L(A

2 + 1)∥∇f̃(xt)∥2

≤ (1 +
1

K − 1
)E∥xi

t,k−1 − xt∥2 + η2Lσ
2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f̃(xt)∥2 . (34)

Unrolling the recursion, we obtain:

Et∥xi
t,k − xt∥2 ≤

k−1∑
p=0

(1 +
1

K − 1
)p
[
η2Lσ

2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f̃(xt)∥2

]
≤ (K − 1)

[
(1 +

1

K − 1
)K − 1

] [
η2Lσ

2
L + 4Kη2Lσ

2
G + 4K(A2 + 1)∥ηL∇f̃(xt)∥2

]
≤ 5K(η2Lσ

2
L + 4Kη2Lσ

2
G) + 20K2(A2 + 1)η2L∥∇f̃(xt)∥2 . (35)

Thus, we can have the following convergence rate of FedEBA+:

Theorem 10.3. Under Assumption 1–3, and let constant local and global learning rate ηL
and η be chosen such that ηL < min (1/(8LK), C), where C is obtained from the condition
that 1

2 − 10L2 1
m

∑m
i−1 K

2η2L(A
2 + 1)(χ2

w∥pA
2 + 1) > c > 0 ,and η ≤ 1/(ηLL), the expected

gradient norm of FedEBA+ with α = 0, i.e., only using aggregation strategy 3, is bounded as
follows:

min
t∈[T ]

E∥∇f(xt)∥2 ≤ 2
[
χ2
w∥pA

2 + 1
]
(
f0 − f∗
cηηLKT

+Φ) + 2χ2
w∥pσ

2
G , (36)

where

Φ =
1

c
[
5η2LKL2

2
(σ2

L + 4Kσ2
G) +

ηηLL

2
σ2
L + 20L2K2(A2 + 1)η2Lχ

2
w∥pσ

2
G] . (37)

where c is a constant, χ2
w∥p =

∑m
i=1 (wi − pi)

2
/pi represents the chi-square divergence

between vectors p = [p1, . . . , pm] and w = [w1, . . . , wm]. For common FL algorithms with
uniform aggregation or with data ratio as aggregation probability, wi =

1
m or wi =

ni

N .

Proof. Based on Lemma 10.1, we first focus on analyzing the optimization error ϵopt:
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Et[f̃(xt+1)]
(a1)

≤ f̃(xt) +
〈
∇f̃(xt),Et[xt+1 − xt]

〉
+

L

2
Et[∥xt+1 − xt∥2]

= f̃(xt) +
〈
∇f̃(xt),Et[η∆t + ηηLK∇f̃(xt)− ηηLK∇f̃(xt)]

〉
+

L

2
η2Et[∥∆t∥2]

= f̃(xt)− ηηLK
∥∥∥∇f̃(xt)

∥∥∥2 + η
〈
∇f̃(xt),Et[∆t + ηLK∇f̃(xt)]

〉
︸ ︷︷ ︸

A1

+
L

2
η2 Et∥∆t∥2︸ ︷︷ ︸

A2

,

(38)

where (a1) follows from the Lipschitz continuity condition. Here, the expectation is over the
local data SGD and the filtration of xt. However, in the next analysis, the expectation is
over all randomness, including client sampling. This is achieved by taking expectation on
both sides of the above equation over client sampling.

To begin with, we consider A1:

A1 =
〈
∇f̃(xt),Et[∆t + ηLK∇f̃(xt)]

〉
=

〈
∇f̃(xt),Et[−

m∑
i=1

wi

K−1∑
k=0

ηLg
i
t,k + ηLK∇f̃(xt)]

〉
(a2)
=

〈
∇f̃(xt),Et[−

m∑
i=1

wi

K−1∑
k=0

ηL∇Fi(x
i
t,k) + ηLK∇f̃(xt)]

〉

=

〈√
ηLK∇f̃(xt),−

√
ηL√
K

Et[

m∑
i=1

wi

K−1∑
k=0

(∇Fi(x
i
t,k)−∇Fi(xt))]

〉

(a3)
=

ηLK

2
∥∇f̃(xt)∥2 +

ηL
2K

Et

∥∥∥∥∥
m∑
i=1

wi

K−1∑
k=0

(∇Fi(x
i
t,k)−∇Fi(xt))

∥∥∥∥∥
2

− ηL
2K

Et∥
m∑
i=1

wi

K−1∑
k=0

∇Fi(x
i
t,k)∥2

(a4)

≤ ηLK

2
∥∇f̃(xt)∥2 +

ηL
2

K−1∑
k=0

m∑
i=1

wiEt

∥∥∇Fi(x
i
t,k)−∇Fi(xt)

∥∥2
− ηL

2K
Et∥

m∑
i=1

wi

K−1∑
k=0

∇Fi(x
i
t,k)∥2

(a5)

≤ ηLK

2
∥∇f̃(xt)∥2 +

ηLL
2

2m

m∑
i=1

K−1∑
k=0

Et

∥∥xi
t,k − xt

∥∥2 − ηL
2K

Et∥
m∑
i=1

wi

K−1∑
k=0

∇Fi(x
i
t,k)∥2

≤
(
ηLK

2
+ 10K3L2η3L(A

2 + 1)

)
∥∇f̃(xt)∥2 +

5L2η3L
2

K2σ2
L + 10η3LL

2K3σ2
G

− ηL
2K

Et∥
m∑
i=1

wi

K−1∑
k=0

∇Fi(x
i
t,k)∥2 , (39)

where (a2) follows from Assumption 2. (a3) is due to ⟨x, y⟩ = 1
2

[
∥x∥2 + ∥y∥2 − ∥x− y∥2

]
and

(a4) uses Jensen’s Inequality: ∥
∑m

i=1 wizi∥
2 ≤

∑m
i=1 wi ∥zi∥2, (a5) comes from Assumption 1.
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Then we consider A2:

A2 = Et∥∆t∥2

= Et

∥∥∥∥∥ηL
m∑
i=1

wi

K−1∑
k=0

git,k

∥∥∥∥∥
2

= η2LEt

∥∥∥∥∥
m∑
i=1

wi

K−1∑
k=0

git,k −
m∑
i=1

wi

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

+ η2LEt

∥∥∥∥∥
m∑
i=1

wi

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

≤ η2L

m∑
i=1

wi

K−1∑
k=0

E∥gi(xi
t,k)−∇Fi(x

i
t,k)∥2 + η2LEt∥

m∑
i=1

wi

K−1∑
k=0

∇Fi(x
i
t,k)∥2

(a6)

≤ η2LKσ2
L + η2LEt∥

m∑
i=1

wi

K−1∑
k=0

∇Fi(x
i
t,k)∥2 . (40)

where (a6) follows from Assumption 2.

Now we substitute the expressions for A1 and A2 and take the expectation over the client
aggregation distribution on both sides to make f̃(x) to f(x). It should be noted that the
derivation of A1 and A2 above is based on considering the expectation over the sampling
distribution:

f(xt+1) ≤ f(xt)− ηηLKEt

∥∥∥∇f̃(xt)
∥∥∥2 + ηEt

〈
∇f̃(xt),∆t + ηLK∇f̃(xt)

〉
+

L

2
η2Et∥∆t∥2

(a7)

≤ f(xt)− ηηLK

(
1

2
− 20L2K2η2L(A

2 + 1)(χ2
w∥pA

2 + 1)

)
Et

∥∥∥∇f̃(xt)
∥∥∥2

+
5ηη3LL

2K2

2
(σ2

L + 4Kσ2
G) +

η2η2LKL

2
σ2
L + 20L2K3(A2 + 1)ηη3Lχ

2
w∥pσ

2
G

−
(
ηηL
2K

− Lη2η2L
2

)
Et

∥∥∥∥∥ 1

m

m∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

(a8)

≤ f(xt)− cηηLKE
∥∥∥∇f̃(xt)

∥∥∥2 + 5ηη3LL
2K2

2
(σ2

L + 4Kσ2
G)

+
η2η2LKL

2
σ2
L + 20L2K3(A2 + 1)ηη3Lχ

2
w∥pσ

2
G −

(
ηηL
2K

− Lη2η2L
2

)
Et

∥∥∥∥∥ 1

m

m∑
i=1

K−1∑
k=0

∇Fi(x
i
t,k)

∥∥∥∥∥
2

(a9)

≤ f(xt)− cηηLKEt∥∇f̃(xt)∥2 +
5ηη3LL

2K2

2
(σ2

L + 4Kσ2
G)

+
η2η2LKL

2
σ2
L + 20L2K3(A2 + 1)ηη3Lχ

2
w∥pσ

2
G , (41)

where (a7) is due to Lemma 10.1, (a8) holds because there exists a constant c > 0 (for some
ηL) satisfying 1

2 − 10L2 1
m

∑m
i−1 K

2η2L(A
2 + 1)(χ2

w∥pA
2 + 1) > c > 0, and the (a9) follows

from
(

ηηL

2K − Lη2η2
L

2

)
≥ 0 if ηηl ≤ 1

KL .

Rearranging and summing from t = 0, . . . , T − 1, we have:
T−1∑
t=1

cηηLKE∥∇f̃(xt)∥2 ≤ f(x0)− f(xT ) + T (ηηLK)Φ . (42)

Which implies:

1

T

T−1∑
t=1

E∥∇f̃(xt)∥2 ≤ f0 − f∗
cηηLKT

+Φ , (43)
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where

Φ =
1

c
[
5η2LKL2

2
(σ2

L + 4Kσ2
G) +

ηηLL

2
σ2
L + 20L2K2(A2 + 1)η2Lχ

2
w∥pσ

2
G] . (44)

Then, given the result of ϵopt, we can derive the convergence rate of ∥∇f(xt)∥ by substitute
ϵopt back to (32):

min
t∈[T ]

∥∇f (xt)∥2 ≤ 2
[
χ2
w∥pA

2 + 1
]
ϵopt + 2χ2

w∥pσ
2
G (45)

≤ 2
[
χ2
w∥pA

2 + 1
]
(
f0 − f∗
cηηLKT

+Φ) + 2χ2
w∥pσ

2
G . (46)

Corollary 10.4. Suppose ηL and η are ηL = O
(

1√
TKL

)
and η = O

(√
Km

)
such that

the conditions mentioned above are satisfied. Then for sufficiently large T, the iterates of
FedEBA+ with α = 0 satisfy:

min
t∈[T ]

∥∇f (xt)∥2 ≤ O
(
(f0 − f∗)√

mKT

)
+O

(√
mσ2

L

2
√
KT

)
+O

(
5(σ2

L + 4Kσ2
G)

2KT

)
+O

(
20(A2 + 1)χ2

w∥pσ
2
G

T

)
+ 2χ2

w∥pσ
2
G . (47)

10.2 Analysis with α ̸= 0

To derivate the convergence rate of FedEBA+ with α ≠ 0, we need the following assumption:

Assumption 4 (Distance bound between practical aggregated gradient and ideal fair
gradient). In each round, we assume the aggregated gradient ∇f(xt) =

∑
i∈St

piFi(xt) and
the fair gradient ∇f̃(xt) is bounded: E∥∇f(xt)−∇f̃(xt)∥2 ≤ ρ2, ∀i, t.

To simplify the notation, we define hi
t,k = (1− α)∇Fi(x

i
t,k) + α∇f(xt).

Lemma 10.5. For any step-size satisfying ηL ≤ 1
8LK , we can have the following results:

E∥xt
i,k − xt∥2 ≤ 5K(1− α)2(η2Lσ

2
L + 6Kη2Lσ

2
G) + +30K2η2Lα

2ρ2

+ 30K2η2L(1 +A2(1− α)2)∥∇f̃(xt)∥2 . (48)

Proof.

Et∥xi
t,k − xt∥2

= Et∥xi
t,k−1 − xt − ηLh

t
t,k−1∥2

= Et∥xi
t,k−1 − xt − ηL((1− α)gtt,k−1 + α∇f(xt)− (1− α)∇Fi(x

i
t,k−1)

+ (1− α)∇Fi(x
i
t,k−1)− (1− α)∇Fi(xt) + (1− α)∇Fi(xt) +∇f̃(xt)−∇f̃(xt))∥2

+ 4KEt[∥ηL(∇Fi(x
i
t,K−1)−∇Fi(xt))∥2] + 4Kη2LEt∥∇Fi(xt)∥2

≤ (1 +
1

2K − 1
)Et∥xi

t,k−1 − xt∥2 + (1− α)2η2Lσ
2
L + 6Kη2LL

2Et∥xi
t,k−1 − xt∥2

+ 6Kη2Lα
2E∥∇f(xt)−∇f̃(xt)∥2 + 6Kη2L(1− α)2(σ2

G +A2∥∇f̃(xt)∥2) + 6Kη2L∥∇f̃(xt)∥2

≤ (1 +
1

K − 1
)Et∥xi

t,k−1 − xt∥2 + (1− α)2η2Lσ
2
L

+ 6Kη2Lα
2ρ2 + 6Kη2L(1− α)2(σ2

G +A2∥∇f̃(xt)∥2) + 6Kη2L∥∇f̃(xt)∥2 , (49)
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Unrolling the recursion, we obtain:

Et∥xi
t,k − xt∥2

≤
k−1∑
p=0

(1 +
1

K − 1
)p
(
(1− α)2η2Lσ

2
L + 6K(1− α)2η2Lσ

2
G + 6Kα2η2Lρ

2

+6Kη2L(A
2(1− α)2 + 1)∥∇f̃(xt)∥2

)
≤ (K − 1)

[
(1 +

1

K − 1
)K − 1

] [
(1− α)2η2Lσ

2
L

+6K(1− α)2η2Lσ
2
G + 6Kα2η2Lρ

2 + 6Kη2L(A
2(1− α)2 + 1)∥∇f̃(xt)∥2

]
≤ 5Kη2L(1− α)2(σ2

L + 6Kσ2
G) + 30K2η2Lα

2ρ2 + 30K2η2L(A
2(1− α)2 + 1)∥∇f̃(xt)∥2 . (50)

Similarly, to get the convergence rate of objective f(xt), we first focus on f̃(xt):

Et[f̃(xt+1)]
(a1)

≤ f̃(xt) +
〈
∇f̃(xt),Et[xt+1 − xt]

〉
+

L

2
Et[∥xt+1 − xt∥2]

= f̃(xt) +
〈
∇f̃(xt),Et[η∆t + ηηLK∇f̃(xt)− ηηLK∇f̃(xt)]

〉
+

L

2
η2Et[∥∆t∥2]

= f̃(xt)− ηηLK
∥∥∥∇f̃(xt)

∥∥∥2 + η
〈
∇f̃(xt),Et[∆t + ηLK∇f̃(xt)]

〉
︸ ︷︷ ︸

A1

+
L

2
η2 Et∥∆t∥2︸ ︷︷ ︸

A2

, (51)

where (a1) follows from the Lipschitz continuity condition. Here, the expectation is over the
local data SGD and the filtration of xt. However, in the next analysis, the expectation is
over all randomness, including client sampling. This is achieved by taking expectation on
both sides of the above equation over client sampling.
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To begin with, we consider A1:

A1 =
〈
∇f̃(xt),Et[∆t + ηLK∇f̃(xt)]

〉
=

〈
∇f̃(xt),Et[−

m∑
i=1

wi

K−1∑
k=0

ηLh
i
t,k + ηLK∇f̃(xt)]

〉
(a2)
=

〈
∇f̃(xt),Et[−

m∑
i=1

wi

K−1∑
k=0

ηL[(1− α)∇Fi(x
i
t,k) + αf(xt)] + ηLK∇f̃(xt)]

〉
= ⟨
√

ηLK∇f̃(xt),

−
√
ηL√
K

Et

(
m∑
i=1

wi

K−1∑
k=0

(1− α)[∇Fi(x
i
t,k)−∇f̃(xt)] +

m∑
i=1

wi

K−1∑
k=0

α[∇f(xt)−∇f̃(xt)]

)
⟩

(a3)
=

ηLK

2
∥∇f̃(xt)∥2 −

ηL
2K

Et∥
m∑
i=1

wi

K−1∑
k=0

[(1− α)∇Fi(x
i
t,k) + α∇f(xt)]∥2

+
ηL
2K

Et

∥∥∥∥∥
m∑
i=1

wi

K−1∑
k=0

(
(1− α)[∇Fi(x

i
t,k)−∇f̃(xt)] + α[∇f(xt)−∇f̃(xt)]

)∥∥∥∥∥
2

(a4)

≤ ηLK

2
∥∇f̃(xt)∥2 +

ηL(1− α)2

2

K−1∑
k=0

m∑
i=1

wiEt

∥∥∥∇Fi(x
i
t,k)−∇Fi(xt)

∥∥∥2
+

ηLα
2

2

K−1∑
k=0

m∑
i=1

wiE∥∇f(xt)−∇f̃(xt)∥2 −
ηL
2K

Et∥
m∑
i=1

wi

K−1∑
k=0

[(1− α)∇Fi(x
i
t,k) + α∇f(xt)]∥2

(a5)

≤ ηLK

2
∥∇f̃(xt)∥2 +

ηL(1− α)2L2

2m

m∑
i=1

K−1∑
k=0

Et

∥∥∥xi
t,k − xt

∥∥∥2
+

ηLα
2

2m

m∑
i=1

K−1∑
k=0

E∥∇f(xt)−∇f̃(xt)∥2 −
ηL
2K

Et∥
m∑
i=1

wi

K−1∑
k=0

[(1− α)∇Fi(x
i
t,k) + α∇f(xt)]∥2

≤ ηLK

2
∥∇f̃(xt)∥2 +

ηL(1− α)2

2m

m∑
i=1

K−1∑
k=0

(
5KηL(1− α)2(σ2

L + 6Kσ2
G) + 30K2η2

L[α
2ρ2

+(1 +A2(1− α)2)∥∇f̃(xt∥2]
)
+

η2
Lα

2

2
Kρ2 − ηL

2K
E∥

m∑
i=1

wi

K−1∑
k=0

[(1− α)∇Fi(x
i
t,k) + α∇f(xt)]∥2 ,

(52)

where (a2) follows from Assumption 2. (a3) is due to ⟨x, y⟩ = 1
2

[
∥x∥2 + ∥y∥2 − ∥x− y∥2

]
and

(a4) uses Jensen’s Inequality: ∥
∑m

i=1 wizi∥
2 ≤

∑m
i=1 wi ∥zi∥2, (a5) comes from Assumption 1.

Then we consider A2:

A2 = Et∥∆t∥2

= Et

∥∥∥∥∥ηL
m∑
i=1

wi

K−1∑
k=0

hi
t,k

∥∥∥∥∥
2

= η2LEt

∥∥∥∥∥
m∑
i=1

wi

K−1∑
k=0

[
(1− α)∇Fi(x

i
t,k; ξ

i
t) + αf(xt)

]∥∥∥∥∥
2

≤ η2LE∥
m∑
i=1

wi

K−1∑
k=0

[
(1− α)∇Fi(x

i
t,k; ξ

i
t) + αf(xt)

]
− (1− α)∇Fi(x

i
t,k) + (1− α)∇Fi(x

i
t,k)∥2

(a6)

≤ η2LK(1− α)2σ2
L + η2LE∥

m∑
i=1

wi

K−1∑
k=0

[(1− α)∇Fi(x
i
t,k) + α∇f(xt)]∥2 (53)
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where (a6) follows from Assumption 2.

Now we substitute the expressions for A1 and A2 and take the expectation over the client
sampling distribution on both sides. It should be noted that the derivation of A1 and A2

above is based on considering the expectation over the sampling distribution:

f(xt+1) ≤ f(xt)− ηηLKEt

∥∥∥∇f̃(xt)
∥∥∥2 + ηEt

〈
∇f̃(xt),∆t + ηLK∇f̃(xt)

〉
+

L

2
η2Et∥∆t∥2

(a7)

≤ f(xt)− ηηLK

(
1

2
− 30α2L2K2η2L((1− α)2A2 + 1)

)
E
∥∥∥∇f̃(xt)

∥∥∥2
+

5(1− α)2ηη3LL
2K2

2

[
5(1− α)2(σ2

L + 6Kσ2
G) + 30Kα2ρ2

]
+

ηη2Lα
2

2
Kρ2

+
Lη2η2L

2
(1− α)2Kσ2

L − (
ηηL
2K

− η2η2LL

2
)E∥

m∑
i=1

wi

K−1∑
k=0

[(1− α)∇Fi(x
i
t,k) + α∇f(xt)]∥2

(54)

where 1
2 − 15α2L2K2η2L((1− α)2A2 + 1) > c > 0 and ηηL

2K − ηη2
LL
2 ≥ 0.

Rearranging and summing from t = 0, . . . , T − 1, we have:
T−1∑
t=1

cηηLKE∥∇f̃(xt)∥2 ≤ f(x0)− f(xT ) + T (ηηLK)Φ . (55)

Which implies:

1

T

T−1∑
t=1

E∥∇f̃(xt)∥2 ≤ f0 − f∗
cηηLKT

+ Φ̃ , (56)

where

Φ̃ =
1

c
[
5η2LKL2(1− α)4

2
(σ2

L + 6Kσ2
G) + 15K2η2L(1− α)2α2ρ2 +

ηηLL(1− α)2

2
σ2
L +

ηLα
2ρ2

2
] .

(57)

Then, given the result of ϵopt, we can derive the convergence rate of ∥∇f(xt)∥ by substitute
ϵopt back to (32):

min
t∈[T ]

∥∇f (xt)∥2 ≤ 2
[
χ2
w∥pA

2 + 1
]
ϵopt + 2χ2

w∥pσ
2
G (58)

≤ 2
[
χ2
w∥pA

2 + 1
]
(
f0 − f∗
cηηLKT

+ Φ̃) + 2χ2
w∥pσ

2
G . (59)

Corollary 10.6. Suppose ηL and η are ηL = O
(

1√
TKL

)
and η = O

(√
Km

)
such that

the conditions mentioned above are satisfied. Then for sufficiently large T, the iterates of
FedEBA+ with α ̸= 0 satisfy:

min
t∈[T ]

∥∇f (xt)∥2 ≤ O
(
(f0 − f∗)√

mKT

)
+O

(
(1− α)2

√
nσ2

L

2
√
KT

)
+O

(
5(1− α)2(σ2

L + 6Kσ2
G)

2KT

)
+O

(
15(1− α)2α2ρ2

T

)
+O

(
α2ρ2

2
√
TK

)
+ 2χ2

w∥pσ
2
G . (60)

11 Uniqueness of our Aggregation Strategy
In this section, we prove the proposed entropy-based aggregation strategy is unique.

Recall our optimization objective of constrained maximum entropy:

H(p(x)) = −
∑

(p(x) log(p(x))) , (61)
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subject to certain contains, which is
∑

i pi = 1, pi ≥ 0,
∑

i pifi = f̃ .

Based on equation 3, and writing the entropy in matrix form, we have:

Hi,j(p) =

{
pi(

fi
τ − log

∑
efi/τ ) = −api for i = j

0 otherwise
, (62)

where a is some positive constant.

For every non-zero vector v we have that:

vTH(p)v =
∑
j∈N

−apiv
2
j < 0. (63)

The Hessian is thus negative definite.

Furthermore, since the constraints are linear, both convex and concave, the constrained
maximum entropy function is strictly concave and thus has a unique global maximum.

12 Fairness Analysis via Variance
To demonstrate the ability of FedEBA+ to enhance fairness in federated learning, we first
employ a two-user toy example to demonstrate how FedEBA+ can achieve a more balanced
performance between users in comparison to FedAvg and q-FedAvg, thus ensuring fairness.
Additionally, we use a general class of regression models to show how FedEBA+ reduces
the variance among users and thus improves fairness.Similarly, to simplify the analysis, we
consider the degenerate scenario of FedEBA+ where the parameter α = 0.

12.1 Toy Case for Illustrating Fairness

In this section, we examine the performance fairness of our algorithm. In particular, we
consider two clients participating in training, each with a regression model: f1(xt) = 2(x−2)2,
f1(xt) =

1
2 (x+ 4)2. Corresponding,

∇f1(xt) = 4(x− 2) , (64)

∇f2(xt) = (x+ 4) . (65)

When the global model parameter xt = 0 is sent to each client, each client will update the
model by running gradient decent, here w.l.o.g, we consider one single-step gradient decent,
and stepsize λ = 1

4 :

xt+1
1 = xt − λ∇f1(xt) = 2 . (66)

xt+1
2 = xt − λ∇f2(xt) = −1 . (67)

Thus, for uniform aggregation:

xt+1
uniform =

1

2
(xt+1

1 + xt+1
2 ) =

1

2
. (68)

While for FedEBA+:

xt+1
EBA+ =

ef1(x
t+1
1 )

ef1(x
t+1
1 ) + ef2(x

t+1
2 )

xt+1
1 +

ef2(x
t+1
2 )

ef1(x
t+1
1 ) + ef2(x

t+1
2 )

xt+1
2 ≈ −0.1 . (69)

Therefore,

Varuniform =
1

2

2∑
i=1

(
fi(x

t+1
uniform)− 1

2

2∑
i=1

(fi(x
t+1
uniform)

)
= 2 ∗ (2.81)2 . (70)

VarEBA+ =
1

2

2∑
i=1

(
fi(x

t+1
EBA+)−

1

2

2∑
i=1

(fi(x
t+1
EBA+)

)
= 2 ∗ (0.6)2 . (71)
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Thus, we prove that FedEBA+ achieves a much smaller variance than uniform aggregation.

Furthermore, for q-FedAvg, we consider q = 2 that is also used in the proof of (Li et al.,
2019a):

∇xt
1 = L(xt − xt+1

1 ) = −2 . (72)

∇xt
2 = L(xt − xt+1

2 ) = 1 . (73)
Thus, we have:

∆t
1 = fq

1 (xt)∇xt
1 = 8 ∗ (−2) = −16 . (74)

ht
1 = qfq−1

1 (xt)∥∇xt
1∥2 + Lfq

1 (xt) = 1× 1× 22 + 8 = 12 . (75)

∆t
2 = fq

2 (xt)∇xt
2 = 8 ∗ (1) = 8 . (76)

ht
2 = qfq−1

2 (xt)∥∇xt
2∥2 + Lfq

2 (xt) = 1× 1× 12 + 8 = 9 . (77)

Finally, we can update the global parameter as:

xt+1
qfedavg = xt −

∑
i ∆

t
i∑

i h
t
i

≈ −0.4 . (78)

Then we can easily get:

Varqfedavg =
1

2

2∑
i=1

(
fi(x

t+1
qfedavg)−

1

2

m∑
i=1

(fi(x
t+1
qfedavg)

)
= 2 ∗ (2.52)2

In conclusion, we prove that
VarEBA+ ≤ Varqfedavg ≤ Varuniform . (79)

12.2 Analysis Fairness by Generalized Linear Regression Model

Our setting. In this section, we consider a generalized linear regression setting, which
follows from that in (Lin et al., 2022).

Suppose that the true parameter on client i is wi, and there are n samples on each
client. The observations are generated by ŷi,k(wi, ξi,k) = T (ξi,k)

⊤wi − A(ξi,k), where
the A(ξi,k) are i.i.d and distributed as N

(
0, σ2

1

)
. Then the loss on client i is Fi (xi) =

1
2n

∑n
k=1

(
T (ξi,k)

⊤xi −A(ξi,k)− ŷi,k
)2.

We compare the performance of fairness of different aggregation methods. Recall Defina-
tion 3.1. We measure performance fairness in terms of the variance of the test accuracy/losses.

Solutions of different methods First, we derive the solutions of different meth-
ods. Let Ξi = (T (ξi,1), T (ξi,2), . . . , T (ξi,n))

⊤ , Ai = (A(ξi,1), A(ξi,2), . . . , A(ξi,n))
⊤and

yi = (yi,1, yi,2, . . . , yi,n)
⊤. Then the loss on client i can be rewritten as Fi (xi) =

1
2n ∥Ξixi −Ai − yi∥22, where rank (Ξi) = d. The least-square estimator of wi is(

Ξ⊤
i Ξi

)−1

Ξ⊤
i (yi +Ai) . (80)

FedAvg: For FedAvg, the solution is defined as wAvg = argminw∈Rd
1
m

∑m
i=1 Fi(w). One can

check that wAvg =
(∑m

i=1 Ξ
⊤
i Ξi

)−1∑m
i=1 Ξ

⊤
i (yi+Ai) =

(∑m
i=1 Ξ

⊤
i Ξi

)−1∑m
i=1 Ξ

⊤
i Ξiŵi+

Λ, where Λ =
(∑m

i=1 Ξ
⊤
i Ξi

)−1∑m
i=1 Ξ

⊤
i Ai and ŵi = argminx∈Rd fi(xi) is the solution on

client i.

FedEBA+: For our method FedEBA+, the solution of the global model is wEBA+ =

argminw∈Rd

∑m
i=1 piFi(w) =

(∑m
i=1 piΞ

⊤
i Ξi

)−1∑m
i=1 piΞ

⊤
i Ξiŵi + Λ̂, where pi ∝ eFi(wi),

and Λ̂ =
(∑m

i=1 piΞ
⊤
i Ξi

)−1∑m
i=1 piΞ

⊤
i Ai
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Following the setting of (Lin et al., 2022), to make the calculations clean, we assume Ξ⊤
i Ξi =

nbiId. Then the solutions of different methods can be simplified as

• FedAvg: wAvg =
∑m

i=1 bi ˆ(wi+Ai)∑m
i=1 bi

.

• FedEBA+: wAvg =
∑m

i=1 bipi(ŵi+Ai)∑m
i=1 bipi

.

Test Loss We compute the test losses of different methods. In this part, we assume bi = b
to make calculations clean. This is reasonable since we often normalize the data.

Recall that the dataset on client i is (Ξi,yi), where Ξi is fixed and yi follows Gaussian
distribution N

(
Ξiwi, σ

2
2In

)
. Then the data heterogeneity across clients only lies in the

heterogeneity of wi. Besides, since distribution of Λ also follows gaussian distribution
N
(
0, σ2

1In

)
, thus wi +Ai follows from N

(
Ξiwi, σ

2In

)
, where σ2 = σ2

1 + σ2
2 . Then, we can

obtain the distribution of the solutions of different methods. Let w =
∑N

i=1 wi

N . We have

• FedAvg: wAvg ∼ N
(
w, σ2

bNnId

)
.

• FedEBA+: wEBA+ ∼ N
(
w̃,
∑N

i=1 p
2
i
σ2

bnId

)
, where w̃ =

∑N
i=1 piwi.

Since Ξi is fixed, we assume the test data is (Ξi,y
′
i) where y′

i = Ξiwi + z′i with z′i ∼
N
(
0n, σ

2
zIn

)
independent of zi. Then the test loss on client k is defined as:

F te
i (xi) =

1

2n
E ∥Ξixi +Ai − y′

i∥
2
2

=
1

2n
E ∥Ξixi +Ai − (Ξiwi + z′i)∥

2
2

=
σ̃2

2
+

1

2n
E ∥Ξi (xi −wi)∥22

=
σ̃2

2
+

b

2
E ∥xi −wi∥22

=
σ̃2

2
+

b

2
tr (var (xi)) +

b

2
∥Exi −wi∥22 . (81)

where σ̃ is a Gaussian variance, which comes from the fact that both Ai and z′i follow
Gaussian distribution with mean 0.

Therefore, for different methods, we can compute that

f te
i

(
wAvg

)
=

σ̃2

2
+

σ̃2d

2Nn
+

b

2
∥w −wi∥22 (82)

f te
i

(
wEBA+

)
=

σ̃2

2
+

N∑
k=1

p2i
σ̃2d

2n
+

b

2
∥w̃ −wi∥22 . (83)

Define var as the variance operator. Then we give the formal version of Theorem 5.3.

The variance of test losses on different clients of different aggregation methods are as follows:

V Avg = var
(
f te
i

(
wAvg

))
=

b2

4
var
(
∥w −wi∥22

)
. (84)

V EBA+ = var
(
f te
i

(
wEBA+

))
=

b2

4
var
(
∥w̃ −wi∥22

)
. (85)

Based on a simple fact: assign larger weights to smaller values and smaller weights to larger
values, and give a detailed mathematical proof to show that the variance of such a distribution
is smaller than the variance of a uniform distribution. Which means V EBA+ ≤ V Avg.
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Formally, let ∥w̃ −wi∥2 = Ai. From equation (83), we know that f te
i (wEBA+) ∝ Ai, and

pi ∝ fi. Thus, we know pi ∝ Ai.

Then, we consider the expression of V EBA+ = b2

4 vari(Ai). Assume Ai = [A1 > A2 > · · · >
Am], then the corresponding aggregation probability distribution is [p1 > p2 > · · · > pm].

We show the analysis of variance with set size 2, while the analysis can be easily extended to
the number K. For FedEBA+, we have

vari(Ai) =

m∑
i=1

pi

(
Ai −

∑
i

piAi

)2

(86)

= p1(A1 − (p1A1 + p2A2))
2 + p2(A2 − (p1A1 + p2A2))

2 (87)

= p1(1− p1)
2A2

1 − 2(1− p1)p1p2A1A2 + p1p
2
2A

2
2

+ p2(1− p2)
2A2

2 − 2(1− p2)p1p2A1A2 + p21p2A
2
1 (88)

= (p1p
2
2 + p21p2)A

2
1 − 2p1p2(2− p1 − p2)A1A2 + (p1p

2
2 + p21p2)A

2
2 (89)

(a1)
= p1p2(A

2
1 +A2

2)− 2p1p2A1A2 (90)

= p1p2(A1 −A2)
2 , (91)

where (a1) follows from the fact
∑

i pi = 1.

According to our previous analysis, p1 > p2 while A1 > A2.According to Cauchy-Schwarz
inequality, one can easily prove that p1p2 ≤ 1

4 , where 1
4 comes from uniform aggregation.

Therefore, we prove that V EBA+ ≤ V Avg.

12.3 Fairness analysis by smooth and strongly convex Loss functions.

In this section, we define the test loss on client i as L(xi), to distinguish it from the training
loss Fi(xi).

To extend the analysis to a more general case, we first introduce the following assumptions:

Assumption 5 (Smooth and strongly convex loss functions). The loss function Li(x) for
each client is L-smooth,

∥∇Li(x)∥2 ≤ L , (92)

and µ-strongly convex:

L(y) ≥ L(x)+ < ∇L(x), y − x > +
1

2
µ∥y − x∥2 . (93)

The variance of FedAvg with N clients loss can be formulated as:

V Avg
N =

1

N

N∑
i=1

L2
i (x)− (

1

N

N∑
i=1

Li(x))
2. (94)

For FedEBA+, the variance can be formulated with a similar form, only different in client’s
loss Li(x̃), abbreviated as L̃i. Then, the variance of FedEBA+ with N clients can be
formulated as:

V EBA+
N =

1

N

N∑
i=1

L̃2
i − (

1

N

N∑
i=1

L̃i)
2. (95)
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When client number is N + 1, abbreviate FedAvg’s loss Li(x) as Li, we conclude

V Avg
N =

1

N + 1

N+1∑
i=1

L2
i −

(
1

N + 1

N+1∑
i=1

Li

)2

=
N

N + 1

1

N

(
L2
1 + L2

2 + · · ·+ L2
N+1

)
−
[

N

N + 1

1

N
(L1 + L2 + · · ·+ LN+1)

]2
=

N

N + 1

1

N

[(
L2
1 + L2

2 + · · ·+ L2
N

)
+ L2

N+1

]
−
[

N

N + 1

(
L1 + L2 + · · ·+ LN

N
+

LN+1

N

)]2
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We start proving V Avg
N ≥ V EBA+

N ,∀N by considering a special case with two clients: There
are two clients, Client 1 and Client 2, each with local model x1, x2 and training loss F1(x1)
and F2(x2).

In this analysis, we assume Client 2 to be the outlier, which means the client’s optimal
parameter and model parameter distribution is far away from Client 1. In particular,
µ2 >> L1

smooth.

The global model starts with x = 0, and after enough local training updates, the model x1, x2

will converge to their personal optimum x∗
1, x

∗
2. W.l.o.g, we let Client 1 with F1(x

∗
1) = 0,

Client 2 with F2(x
∗
2) = a > 0. Let x∗

1 < x∗
2 (relative position, which does not affect the

analysis).

Based on the proposed aggregation pi ∝ exp Fi(x)
τ , we can derive the aggregated global model

x̃ of FedEBA+ to be:

x̃ = p1x
∗
1 + p2x

∗
2 =

x∗
1 + eax∗

2

ea + 1
. (97)

While for FedAvg, the aggregated global model x is:

x =
x∗
1 + x∗

2

2
. (98)

For FedEBA+, the test loss of Client 1 and Client 2 are L̃1 = L1(x̃), L̃2 = L2(x̃) respectively.
The corresponding variance is V EBA+

2 = 1
2 (L̃1 − L̃2)

2.

For FedAvg, the test loss of Client 1 and Client 2 is L1 = L1(x), L2 = L2(x) respectively.
The corresponding variance is V AVG

2 = 1
2 (L1 − L2)

2.

Since Client 2 is a outlier with F2(x
∗
2) > 0 and x∗

1 < x∗
2, we can easily conclude F2(x) is

monotonically decreasing on (x∗
1, x

∗
2), F1(x) is monotonically increasing on (x∗

1, x
∗
2). Besides,

w.l.o.g, since ∇F1(x) ≤ Lsmooth << µ2, we can let µ = a
x∗
2−x∗

1
.
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Thus, we promise a
x∗
2−x∗

1
> ∇F1(x

∗
2). According to the property of calculus, we can easily

check that F2(x)− F1(x) > 0 is monotonically decreasing on (x∗
1, x

∗
2).

Since

x∗
2 − x̃ =

x∗
2 − x∗

1

ea + 1
≤ x∗

2 − x =
x∗
2 − x∗

1

2
, (99)

thus we have (F2(x̃)− F1(x̃))
2 ≤ (F2(x)− F1(x))

2 .

So far, we have prove V EBA+
2 ≤ V AVG

2 .

To extend the analysis to arbitrary N , we utilize the mathematical induction:

Assume V EBA+
N ≤ V AVG

N , we need to derive V EBA+
N+1 ≤ V AVG

N+1 .

Consider a similar scenario as we analyze with two clients. We assume Client N+1 to be
an outlier, which means the client’s optimal value and parameter distribution are far away
from other clients. In particular, µN+1>>Lothers

smooth
. W.l.o.g, let the optimal value F (x∗

N+1) for
Client N+1 be a, others to be zero.

Again, the global model starts with x = 0, and after enough local training updates, the
models will converge to their personal optimum x∗

1, x
∗
2, . . . , x

∗
N+1 and x∗

N+1 > x∗
others.

By (96), we have:

V Avg
N+1 =

N

N + 1
V AVG
N +

∑N
i=1(Li − LN+1)

2

(N + 1)2
, (100)

where Li is the test loss of client i after average and

V EBA+
N+1 =

N

N + 1
V EBA+
N +

∑N
i=1(L̃i − L̃N+1)

2

(N + 1)2
. (101)

Since we know V EBA+
N ≤ V AVG

N , thus as long as we promise
∑N

i=1(L̃i−L̃N+1)
2

(N+1)2 ≤∑N
i=1(Li−LN+1)

2

(N+1)2 , we can finish the proof.

Consider an arbitrary client i ∈ [1, N ], since we already know FN+1(x
∗
N+1) = a > Fi(x

∗
i ) = 0,

the expression for x̃ is

x̃ =

N+1∑
i=1

pix
∗
i =

1

N + ea

N∑
i=1

x∗
i +

ea

N + ea
x∗
N+1 , (102)

While for FedAvg,

x =

N+1∑
i=1

1

N + 1
x∗
i . (103)

Following the exact analysis on Client i and Client N + 1, we can conclude that FN+1(x)−
Fi(x) > 0 is monotonically decreasing on (x∗

i , x
∗
N+1).

Since

x∗
N+1 − x̃ =

Nx∗
N+1 −

∑N
i=1 x

∗
i

ea +N
≤ x∗

N+1 − x =
Nx∗

N+1 −
∑N

i=1 x
∗
i

ea + 1
, (104)

thus we have (FN+1(x̃)− Fi(x̃))
2 ≤ (FN+1(x)− Fi(x))

2 ∀i ∈ [1, . . . , N ].

Therefore, we promise
∑N

i=1(L̃i−L̃N+1)
2

(N+1)2 ≤
∑N

i=1(Li−LN+1)
2

(N+1)2 .

So far, we have prove V EBA+
N+1 ≤ V AVG

N+1 .

According to the mathematical induction, we prove V EBA+
N ≤ V AVG

N for arbitrary client
number N under smooth and strongly convex setting.
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13 Pareto-optimality Analysis
In this section, we demonstrate the Proposition 5.5. In particular, we consider the degenerate
setting of FedEBA+ where the parameter α = 0. We first provide the following lemma that
illustrates the correlation between Pareto optimality and monotonicity.
Lemma 13.1 (Property 1 in (Sampat & Zavala, 2019).). The allocation strategy φ(p) =
argmax

p∈P
h(p(f)) is Pareto optimal if h is a strictly monotonically increasing function.

In order for this paper to be self-contained, we restate the proof of Property 1 in (Sampat &
Zavala, 2019) here:

Proof Sketch: We prove the result by contradiction. Consider that p∗ = φ(P) is not Pareto
optimal; thus, there exists an alternative p ∈ P such that∑

i

pifi =

∑
i pi log pi
Z

≥
∑
i

p∗i fi =

∑
i p

∗
i log p

∗
i

Z
, (105)

where Z > 0 is a constant. Since h(p) is a strictly monotonically increasing function, we
have h(p) > h (p∗). This is a contradiction because h∗ maximizes h(·).
According to the above lemma, to show our algorithm achieves Pareto-optimal, we only need
to show it is monotonically increasing.

Recall the objective of maximum entropy:

H(p) = −
∑

p(x)log(p(x)) , (106)

subject to certain constraints on the probabilities p(x).

To show that the proposed aggregation strategy is monotonically increasing, we need to
prove that if the constraints on the probabilities p(x) are relaxed, then the maximum entropy
of the aggregation probability increases.

One way to do this is to use the properties of the logarithm function. The logarithm function
is strictly monotonically increasing. This means that for any positive real numbers a and b,
if a ≤ b, then log(a) ≤ log(b).

Now, suppose that we have two sets of constraints on the probabilities p(x), and that the
second set of constraints is a relaxation of the first set. This means that the second set of
constraints allows for a larger set of probability distributions than the first set of constraints.

If we maximize the entropy subject to the first set of constraints, we get some probability
distribution p(x). If we then maximize the entropy subject to the second set of constraints,
we get some probability distribution q(x) such that p(x) ≤ q(x) for all x.

Using the properties of the logarithm function and the definition of the entropy, we have:

H(p(x)) = −
∑

(p(x) log(p(x)))

≤ −
∑

(p(x) log(q(x)))

= −
∑

((p(x)/q(x))q(x) log(q(x)))

= H(q(x))−
∑

((
p(x)

q(x)
q(x) log(p(x)/q(x)))

≤ H(q(x)) . (107)

This means that the entropy H(q(x)) is greater or equal to H(p(x)) when the second set of
constraints is a relaxation of the first set of constraints. As the entropy increases when the
constraints are relaxed, the maximum entropy-based aggregation strategy is monotonically
increasing.

Up to this point, we proved that our proposed aggregation strategy is monotonically increasing.
Combined with the Lemma 13.1, we can prove that equation (3) is Pareto optimal.
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14 Experiment Details
14.1 Experimental Environment

For all experiments, we use NVIDIA GeForce RTX 3090 GPUs. Each simulation trail with
2000 communication rounds and three random seeds.

Federated datasets. We tested the performance of FedEBA+ on five public datasets:
MNIST, Fashion MNIST, CIFAR-10, CIFAR-100, and Tiny-ImageNet. We use two methods
to split the real datasets into non-iid datasets: (1) following the setting of (Wang et al.,
2021), where 100 clients participate in the federated system, and according to the labels, we
divide all the data of MNIST, FashionMNIST, CIFAR-10, CIFAR-100 and Tiny-ImageNet
into 200 shards separately, and each user randomly picks up 2 shards for local training. (2)
we leverage Latent Dirichlet Allocation (LDA) to control the distribution drift with the
Dirichlet parameter α = 0.1. As for the model, we use an MLP model with 2 hidden layers
on MNIST and Fashion-MNIST, and a CNN model with 2 convolution layers on CIFAR-10,
ResNet-18 on CIFAR-100, and MobileNet-v2 on TinyImageNet.

Baselines We compared several advanced FL fairness algorithms with FedEBA+, including
FedAvg (McMahan et al., 2017), q-FFL (Li et al., 2019a), FedFV (Wang et al., 2021),
FedMGDA+ (Hu et al., 2022),PropFair (Zhang et al., 2022), TERM (Li et al., 2020a), and
AFL (Mohri et al., 2019). We compare these algorithms on all four datasets.

Hyper-parameters As shown in Table 3, we tuned some hyper-parameters of baselines
to ensure the performance in line with the previous studies and listed parameters used
in FedEBA+. All experiments are running over 2000 rounds for a single local epoch
(K = 10) with local batch size BMNIST = 200, BFashion−MNIST ∈ {50, full}, BCIFAR−10 ∈
{50, full} and BCIFAR−100 = 64. The learning rate remains the same for different methods,
that is η = 0.1 on MNIST, Fasion-MNIST, CIFAR-10, η = 0.05 on Tiny-ImageNet and
η = 0.01 on CIFAR-100 with decay rate d = 0.999.

Table 3: Hyperparameters of all experimental algorithms.

Algorithm Hyper Parameters

q − FFL q ∈ {0.001, 0.01, 0.1, 0.5, 10, 15}
PropFair M ∈ {0.2, 5.0}, ϵ = 0.2
AFL λ ∈ {0.01, 0.1, 0.5, 0.7}
TERM T ∈ {0.1, 0.5, 0.8}
FedMGDA+ ϵ ∈ {0, 0.03, 0.08}
FedFV α ∈ {0.1, 0.2, 0.5}, τ ∈ {0, 1, 10}
FedEBA+ τ ∈ {0.5, 0.1}, α ∈ {0.0, 0.5, 0.9}

15 Additional Experiment Results
Fairness of FedEBA+ In this section, we provide additional experimental results to
illustrate that FedEBA+ is superior over other baselines.

Figure 5 illustrates that, on the MNIST dataset, FedEBA+ demonstrates faster convergence,
increased stability, and superior results in comparison to baselines. As for the CIFAR-10
dataset, its complexity causes some instability for all methods, however, FedEBA+ still
concludes the training with the most favorable fairness results.

Table 6 shows FedEBA+ outperforms other baselines on CIFAR-10 using MLP
model. The results in Table 6 demonstrate that 1) FedEBA+ consistently achieves a smaller
variance of accuracy compared to other baselines, thus is fairer. 2) FedEBA+ significantly
improves the performance of the worst 5% clients and 3) FedEBA+ performances steady in
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Table 4: Performance of algorithms on FashionMNIST and CIFAR-10. We report the
accuracy of global model, variance fairness, worst 5%, and best 5% accuracy. The data is divided
into 100 clients, with 10 clients sampled in each round. All experiments are running over 2000
rounds for a single local epoch (K = 10) with local batch size = 50, and learning rate η = 0.1. The
reported results are averaged over 5 runs with different random seeds. We highlight the best and
the second-best results by using bold font and blue text.

Algorithm
FashionMNIST (MLP) CIFAR-10 (CNN)

Global Acc. Var. Worst 5% Best 5% Global Acc. Var. Worst 5% Best 5%

FedAvg 86.49 ± 0.09 62.44±4.55 71.27±1.14 95.84± 0.35 67.79±0.35 103.83±10.46 45.00±2.83 85.13±0.82

q − FFL|q=0.001 87.05± 0.25 66.67± 1.39 72.11± 0.03 95.09± 0.71 68.53± 0.18 97.42± 0.79 48.40± 0.60 84.70± 1.31
q − FFL|q=0.01 86.62± 0.03 58.11± 3.21 71.36± 1.98 95.29±0.27 68.85± 0.03 95.17± 1.85 48.20±0.80 84.10±0.10
q − FFL|q=0.5 86.57± 0.19 54.91± 2.82 70.88± 0.98 95.06±0.17 68.76± 0.22 97.81± 2.18 48.33±0.84 84.51±1.33
q − FFL|q=10.0 77.29± 0.20 47.20± 0.82 61.99± 0.48 92.25±0.57 40.78± 0.06 85.93± 1.48 22.70±0.10 56.40±0.21
q − FFL|q=15.0 75.77±0.42 46.58±0.75 61.63±0.46 89.60±0.42 36.89±0.14 79.65±5.17 19.30±0.70 51.30±0.09

FedMGDA+ |ϵ=0.0 86.01±0.31 58.87±3.23 71.49±0.16 95.45±0.43 67.16±0.33 97.33±1.68 46.00±0.79 83.30±0.10
FedMGDA+ |ϵ=0.03 84.64±0.25 57.89±6.21 73.49±1.17 93.22±0.20 65.19±0.87 89.78±5.87 48.84±1.12 81.94±0.67
FedMGDA+ |ϵ=0.08 84.90±0.34 61.55±5.87 73.64±0.85 92.78±0.12 65.06±0.69 93.70±14.10 48.23±0.82 82.01±0.09

AFL|λ=0.7 85.14±0.18 57.39±6.13 70.09±0.69 95.94±0.09 66.21±1.21 79.75±1.25 47.54±0.61 82.08±0.77
AFL|λ=0.5 84.14±0.18 90.76±3.33 60.11±0.58 96.00±0.09 65.11±2.44 86.19±9.46 44.73±3.90 82.10±0.62
AFL|λ=0.1 84.91±0.71 69.39±6.50 69.24±0.35 95.39±0.72 65.63±0.54 88.74±3.39 47.29±0.30 82.33±0.41

PropFair|M=0.2,thres=0.2 85.51±0.28 75.27±5.38 63.60±0.53 97.60±0.19 65.79±0.53 79.67±5.71 49.88±0.93 82.40±0.40
PropFair|M=5.0,thres=0.2 84.59±1.01 85.31±8.62 61.40±0.55 96.40±0.29 66.91±1.43 78.90±6.48 50.16±0.56 85.40±0.34

TERM |T=0.1 84.31±0.38 73.46±2.06 68.23±0.10 94.16±0.16 65.41±0.37 91.99±2.69 49.08±0.66 81.98±0.19
TERM |T=0.5 82.19±1.41 87.82±2.62 62.11±0.71 93.25±0.39 61.04±1.96 96.78±7.67 42.45±1.73 80.06±0.62
TERM |T=0.8 81.33±1.21 95.65±9.56 56.41±0.56 92.88±0.70 59.21±1.45 82.63±3.64 41.33±0.68 77.39±1.04

FedFV |α=0.1,τfv=1 86.51±0.28 49.73±2.26 71.33±1.16 95.89±0.23 68.94±0.27 90.84±2.67 50.53±4.33 86.00±1.23
FedFV |α=0.2,τfv=0 86.42±0.38 52.41±5.94 71.22±1.35 95.47±0.43 68.89±0.15 82.99±3.10 50.08±0.40 86.24±1.17
FedFV |α=0.5,τfv=10 86.88±0.26 47.63±1.79 71.49±0.39 95.62±0.29 69.42±0.60 78.10±3.62 52.80±0.34 85.76±0.80
FedFV |α=0.1,τfv=10 86.98±0.45 56.63±1.85 66.40±0.57 98.80±0.12 71.10±0.44 86.50±7.36 49.80±0.72 88.42±0.25

FedEBA+ |α=0,τ=0.1 86.70±0.11 50.27±5.60 71.13±0.69 95.47±0.27 69.38±0.52 89.49±10.95 50.40±1.72 86.07±0.90
FedEBA+ |α=0.5,τ=0.1 87.21±0.06 40.02±1.58 73.07±1.03 95.81±0.14 72.39±0.47 70.60±3.19 55.27±1.18 86.27±1.16
FedEBA+ |α=0.9,τ=0.1 87.50±0.19 43.41±4.34 72.07±1.47 95.91±0.19 72.75±0.25 68.71±4.39 55.80±1.28 86.93±0.52

(a) MNIST (b) CIFAR-10

Figure 5: Performance of all the methods in terms of Fairness (Var.).

terms of best 5% clients. A significant improvement in worst 5% is achieved with relatively
no compromise in best 5 %, thus is fairer.

Fairness in Different Non-i.i.d. Cases We adopt two kinds of data splitation strategies
to change the degree of non-i.i.d., which are data devided by labels mentioned in the main
text, and the data partitioning in deference to the Latent Dirichlet Allocation (LDA) with
the Dirichlet parameter . Based on FedAvg, we have experimented with various data
segmentation strategies for FedEBA+ to verify the performance of FedEBA+ for scenarios
with different kinds of data held by clients.

Global Accuracy of FedEBA+ We run all methods on the CNN model, regarding
the CIFAR-10 figure. Under different hyper-parameters, FedEBA+ can reach a stable
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Table 5: Ablation study for θ of FedEBA+. This table shows our schedule of using the fair
angle θ to control the gradient alignment times is effective, as it largely reduces the communication
rounds with larger angles. In addition, compared with the results of baseline in Table 1, the results
illustrate that our algorithm remains effective when we increase the fair angle. The additional
cost is computed by Additional communication/total communications, the communication cost of
communicating the MLP model is 7.8MB/round, the CNN model is 30.4MB/round.

Algorithm
FashionMNIST (MLP) CIFAR-10 (CNN)

Global Acc. Var. Additional cost Global Acc. Var. Additional cost

FedAvg 86.49± 0.09 62.44± 4.55 - 67.79± 0.35 103.83± 10.46 -
q-FFL 87.05± 0.25 66.67± 1.39 - 68.53± 0.18 97.42± 0.79 -
FedMGDA+ 84.64± 0.25 57.89± 6.21 - 67.16± 0.33 97.33± 1.68 -
AFL 85.14± 0.18 57.39± 6.13 - 66.21± 1.21 79.75± 1.25 -
PropFair 85.51± 0.28 75.27± 5.38 - 65.79± 0.53 79.67± 5.71 -
TERM 84.31± 0.38 73.46± 2.06 - 65.41± 0.37 91.99± 2.69 -
FedFV 86.98± 0.45 56.63± 1.85 - 71.10± 0.44 86.50± 7.36 -
FedEBA+
θ = 0◦ 87.50± 0.19 43.41± 4.34 50.0% 72.75± 0.25 68.71± 4.39 50.0%

θ = 15◦ 87.14± 0.12 43.95± 5.12 48.6% 71.92± 0.33 75.95± 4.72 26.2%

θ = 30◦ 86.96± 0.06 46.82± 1.21 37.7% 70.91± 0.46 70.97± 4.88 12.7%

θ = 45◦ 86.94± 0.26 46.63± 4.38 4.2% 70.24± 0.08 79.51± 2.88 0.2%

θ = 90◦ 86.78± 0.47 48.91± 3.62 0% 70.14± 0.27 79.43± 1.45 0%

Table 6: Performance of algorithms on CIFAR-10 using MLP. We report the global model’s accuracy,
fairness of accuracy, worst 5% and best 5% accuracy. All experiments are running over 2000 rounds
for a single local epoch (K = 10) with local batch size = 50, and learning rate η = 0.1. The
reported results are averaged over 5 runs with different random seeds. We highlight the best and
the second-best results by using bold font and blue text.

Method Global Acc. Std. Worst 5% Best 5%

FedAvg 46.85±0.65 12.57±1.50 19.84±6.55 69.28±1.17

q − FFL|q=0.1 47.02±0.89 13.16±1.84 18.72±6.94 70.16±2.06
q − FFL|q=0.2 46.91±0.90 13.09±1.84 18.88±7.00 70.16±2.10
q − FFL|q=1.0 46.79±0.73 11.72±1.00 22.80±3.39 68.00±1.60
q − FFL|q=2.0 46.36±0.38 10.85±0.76 24.64±2.17 66.80±2.02
q − FFL|q=5.0 45.25±0.42 9.59±0.36 26.56±1.03 63.60±1.13

Ditto|λ=0.0 52.78±1.23 10.17±0.24 31.80±2.27 71.47±1.20
Ditto|λ=0.5 53.77±1.02 8.89±0.32 36.27±2.81 71.27±0.52

AFL|λ=0.01 52.69±0.19 10.57±0.37 34.00±1.30 71.33±0.57
AFL|λ=0.1 52.68±0.46 10.64±0.14 33.27±1.75 71.53±0.52

TERM |T=1.0 45.14±2.25 9.12±0.35 27.07±3.49 62.73±1.37

FedMGDA+ |ϵ=0.01 45.65±0.21 10.94±0.87 25.12±2.34 67.44±1.20
FedMGDA+ |ϵ=0.05 45.58±0.21 10.98±0.81 25.12±1.87 67.76±2.27
FedMGDA+ |ϵ=0.1 45.52±0.17 11.32±0.86 24.32±2.24 68.48±2.68
FedMGDA+ |ϵ=0.5 45.34±0.21 11.63±0.69 24.00±1.93 68.64±3.11
FedMGDA+ |ϵ=1.0 45.34±0.22 11.64±0.66 24.00±1.93 68.64±3.11

FedFV |α=0.1,τfv=1 54.28±0.37 9.25±0.42 35.25±1.01 71.13±1.37

FedEBA|α=0.9,τ=0.1 53.94±0.13 9.25±0.95 35.87±1.80 69.93±1.00
FedEBA+ |α=0.5,τ=0.1 53.14±0.05 8.48±0.32 36.03±2.08 69.20±0.75
FedEBA+ |α=0.9,τ=0.1 54.43±0.24 8.10±0.17 40.07±0.57 69.80±0.16

high performance of worst 5% while guaranteeing best 5%, as shown in Figure 6. As for
FashionMNIST using MLP model, the worst 5% and best 5% performance of FedEBA+ are
similar to that of CIFAR-10. We can see that FedEBA+ has a more significant lead in worst
5% with almost no loss in best 5%, as shown in Figure 7.

Incorporating noisy label scenario The local noisy label follows the symmetric flipping
approach introduced in Jiang et al. (2022); Fang & Ye (2022), with a noise ratio of ϵ set to
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Table 7: Performance of algorithms+momentum on Fashion-MNIST to show that FedEBA+ is
orthogonal to advance optimization methods like momentum (Karimireddy et al., 2020a), allowing
seamless integration. All experiments are running over 2000 rounds on the MLP model for a single
local epoch (K = 10) with local batch size = 50, global momentum = 0.9 and learning rate η = 0.1.
The reported results are averaged over 5 runs with different random seeds. We highlight the best
and the second-best results by using bold font and blue text.

Method Global Acc. Var. Worst 5% Best 5%

FedAvg 86.68± 0.37 66.15± 3.23 72.18± 0.22 96.04±± 0.35
AFL|λ=0.05 79.68± 0.91 55.00± 3.34 66.67± 0.12 94.00± 0.08
AFL|λ=0.7 85.41± 0.30 63.42±± 1.55 73.83± 0.37 96.46± 0.12
q − FFL|q=0.01 86.82± 0.20 64.11± 2.17 71.08± 0.16 96.29± 0.08
q − FFL|q=15 79.59± 0.48 62.26± 2.88 66.33± 1.14 90.07± 0.98
FedMGDA+ |ϵ=0.0 82.69± 0.52 65.26± 3.81 69.63± 1.20 92.67± 0.54
PropFair|M=5,thres=0.2 85.67± 0.19 73.44± 2.44 64.59± 0.42 97.47± 0.11
FedProx|µ=0.1 86.76± 0.26 60.69± 3.07 72.67± 0.29 95.96± 0.14
TERM |T=0.1 84.58± 0.28 76.44± 2.50 69.52± 0.36 94.04± 0.50
FedFV |α=0.1,τ=10 87.46± 0.18 58.35± 1.89 67.71± 0.56 97.79± 0.18

FedEBA+ |α=0.9,T=0.1 87.67± 0.28 46.67± 1.09 71.90± 0.70 96.26± 0.03

Table 8: Performance of algorithms+VARP on Fashion-MNIST to show that FedEBA+ is orthog-
onal to advance optimization methods like VARP (Jhunjhunwala et al., 2022), allowing seamless
integration. All experiments are running over 2000 rounds on the MLP model for a single local
epoch (K = 10) with local batch size = 50, global learning rate = 1.0 and client learning rate = 0.1.
The reported results are averaged over 5 runs with different random seeds. We highlight the best
and the second-best results by using bold font and blue text.

Method Global Acc. Var. Worst 5% Best 5%

FedAvg(FedVARP) 87.12± 0.08 59.96± 2.48 72.45± 0.26 96.09±± 0.27
q − FFL|q=0.01 86.73± 0.31 62.89± 2.67 73.55± 0.11 95.54± 0.14
q − FFL|q=15 78.98± 0.63 58.28± 1.95 67.12± 0.97 88.42± 0.67
FedFV |α=0.1,τ=10 87.28± 0.10 57.90± 1.77 67.41± 0.30 97.66± 0.06

FedEBA+ |α=0.9,T=0.1 87.45± 0.18 49.91± 2.38 71.44± 0.64 95.94± 0.09

Table 9: Ablation study for Dirichlet parameter α. Performance comparison between
FedAvg and FedEBA+ on CIFAR-100 using ResNet18 (devided by Dirichlet Distribution with
α ∈ {0.1, 0.5, 1.0}). We report the global model’s accuracy, fairness of accuracy, worst 5% and best
5% accuracy. All experiments are running over 2000 rounds for a single local epoch (K = 10) with
local batch size = 64, and learning rate η = 0.01. The reported results are averaged over 5 runs
with different random seeds.

Algorithm Global Acc. Var. Worst 5% Best 5%

α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0 α = 0.1 α = 0.5 α = 1.0

FedAvg 30.94±0.04 54.69±0.25 64.91±0.02 17.24±0.08 7.92±0.03 5.18±0.06 0.20±0.00 38.79±0.24 54.36±0.11 65.90±1.48 70.10±0.25 75.43±0.39
FedEBA+ 33.39±0.22 58.55±0.41 65.98±0.04 16.92±0.04 7.71±0.08 4.44±0.10 0.95±0.15 41.63±0.16 58.20±0.17 68.51±0.21 74.03±0.07 74.96±0.16
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Figure 6: The maximum and minimum 5% performance of all baselines and FedEBA+
on CIFAR-10.

Figure 7: The maximum and minimum 5% performance of all baselines and FedEBA+
on FashionMNSIT.
Table 10: Performance of algorithms on local noisy label scenario. We test the effectiveness
of FedEBA+ when incorporating the local noisy labels on both FashionMNIST and CIFAR-10
datasets, with noise ratio ϵ = 0.5.

Algorithm
FashionMNIST (MLP) CIFAR-10 (CNN)

Global Acc. ↑ Var. ↓ Worst 5% ↑ Best 5% ↑ Global Acc.↑ Var. ↓ Worst 5% ↑ Best 5% ↑

FedAvg 66.10±1.61 14.73±0.64 34.51±1.61 91.75±1.02 38.03±0.69 14.53±0.28 13.21±0.39 72.10±0.30
q − FFL 65.79±0.05 16.52±0.24 35.42±1.00 90.84±0.74 38.84±0.11 14.40±0.20 15.01±0.28 71.05±0.53
FedEBA+ 68.22±1.45 13.94±0.27 36.16±1.71 91.49±1.60 42.23±0.35 9.25±0.24 24.49±0.46 65.63±0.83

FedAvg +LSR 72.63±0.10 21.12±1.00 24.62±0.46 95.21±0.21 46.64±0.94 16.08±1.03 20.47±1.33 75.02±0.18
q − FFL+LSR 67.69±0.03 22.26±0.16 24.95±0.17 95.50±0.09 38.03±0.30 14.02±0.21 15.84±0.72 69.99±0.21
FedEBA+ + LSR 73.03±0.10 20.88±0.88 1.12±0.05 13.89±0.72 50.96±0.49 15.83±0.34 18.02±0.02 74.50±0.10

0.5. All the other settings like the learning rate keep the same. Specifically, we employ the
MLP model for Fashion-MNIST and the CNN model for CIFAR-10.

The results of Table 10 reveal that (1) FedEBA+ maintains its superiority in accuracy
and fairness even when there are local noisy labels; (2) FedEBA+ can be integrated with
established approaches for addressing local noisy labels, consistently outperforming other
algorithms combined with existing methods in terms of both fairness and accuracy.

Ablation study. For the annealing schedule of τ in Section 4.1, Figure 8 shows that
the annealing schedule has advantages in reducing the variance compared with constant τ .
Besides, the global accuracy is robust to the annealing strategy, and the annealing strategy
is robust to the initial temperature T0.

We provide the ablation studies for θ, the tolerable fair angle.
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(a) Fairness and Accuracy on Fashion-
MNIST

(b) Fairness and Accuracy on MNIST

Figure 8: Ablation study for Annealing schedule τ

(a) CIFAR-10 (b) FASHION-MNIST

Figure 9: Performance of FedEBA+ under different θ in terms of global accuracy.

(a) CIFAR-10 (b) FASHION-MNIST

Figure 10: Performance of FedEBA+ under different θ in terms of Max 5% test accuracy.

The results in Figure 9 10 11 show our algorithm is relatively robust to the tolerable fair
angle θ, though the choice of θ = 45 may slow the performance slightly on global accuracy
and min 5% accuracy over CIFAR-10.

16 Discussion of fairness metrics
In this section, we summarize the commonly used definitions of fairness metrics and comment
on their advantages and disadvantages.

Euclidean Distance and person correlation coefficient are usually used for contribution
fairness, and risk difference and Jain’s fairness Index are usually used for group fairness,
which is a different target from performance fairness in this paper. In particular, cosine
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(a) CIFAR-10 (b) FASHION-MNIST

Figure 11: Performance of FedEBA+ under different θ in terms of Min 5% test accuracy.

(a) CIFAR-10 (b) FASHION-MNIST

Figure 12: Performance of FedEBA+ under different θ in terms of Fairness (Std).

Table 11: Ablation study for FedEBA+ on four datasets. We test the effectiveness of
FedEBA+ when decomposing each proposed step, i.e., entropy-based aggregation and alignment
update, on different datasets. FedEBA differs from FedAvg only in the aggregation method, and
FedEBA+ incorporates the alignment into FedEBA. FedAvg serves as the backbone, FedAvg+① is
employed to demonstrate the individual effectiveness of our proposed aggregation step, FedAvg+②is
utilized to showcase the individual effectiveness of our proposed alignment step, and FedAvg + ① +
② is used to show the effectiveness of our proposed algorithm, FedEBA+.

Algorithm
CIFAR-10 (CNN) FashionMNIST (MLP)

Global Acc. ↑ Var. ↓ Worst 5% ↑ Best 5% ↑ Global Acc.↑ Var. ↓ Worst 5% ↑ Best 5% ↑

FedAvg 67.79±0.35 103.83±10.46 45.00±2.83 85.13±0.82 86.49±0.09 62.44±4.55 71.27±1.14 95.84±0.35
FedAvg+① 69.38±0.52 89.49±10.95 50.40±1.72 86.07±0.90 86.70±0.11 50.27±5.60 71.13±0.69 95.47±0.27
FedAvg+② 72.04±0.51 75.73±4.27 53.45±1.25 87.33±0.23 87.42± 0.09 60.08±7.30 69.12±1.23 97.8±0.19
FedAvg+①+② 72.75±0.25 68.71±4.39 55.80±1.28 86.93±0.52 87.50±0.19 43.41±4.34 72.07±1.47 95.91±0.19

Algorithm
CIFAR-100 (Resnet-18) Tiny-ImageNet (MobileNet-2)

Global Acc. ↑ Var. ↓ Worst 5% ↑ Best 5% ↑ Global Acc.↑ Var. ↓ Worst 5% ↑ Best 5% ↑

FedAvg 30.94±0.04 17.24±0.08 0.20±0.00 65.90±1.48 61.99±0.17 19.62±1.12 53.60±0.06 71.18±0.13
FedAvg+① 32.38±0.13 17.09±0.06 0.75±0.22 66.40±0.47 63.34±0.25 15.29±1.36 54.17±0.04 70.98±0.10
FedAvg+①+② 33.39±0.22 16.92±0.04 0.95±0.15 68.51±0.21 64.05±0.09 14.91±1.85 54.32±0.09 71.27±0.04

similarity and entropy have similar roles to variance, used to measure the performance
distribution among clients, the more uniform of the distribution, the smaller the variance,
more similar to vector 1, the larger entropy of the normalized performance. Thus, we only
need one of them for performance fairness, thus we use variance that is most widely used in
related works as metric.

The detailed discussion of each metric is shown below:
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Table 12: Performance of FedEBA+ with different τ and α choices. The performance of
different hyper-parameter choices of FedEBA+ shows better performance than baselines.

Algorithm
FashionMNIST (MLP) CIFAR-10 (CNN)

Global Acc. Var. Global Acc. Var.

FedAvg 86.49 ± 0.09 62.44 ± 4.55 67.79 ± 0.35 103.83 ± 10.46
q-FFL|q=0.001 87.05 ± 0.25 66.67 ± 1.39 68.53 ± 0.18 97.42 ± 0.79
q-FFL|q=0.5 86.57 ± 0.19 54.91 ± 2.82 68.76 ± 0.22 97.81 ± 2.18
q-FFL|q=10.0 77.29 ± 0.20 47.20 ± 0.82 40.78 ± 0.06 85.93 ± 1.48
PropFair|M=0.2,thres=0.2 85.51 ± 0.28 75.27 ± 5.38 65.79 ± 0.53 79.67 ± 5.71
PropFair|M=5.0,thres=0.2 84.59 ± 1.01 85.31 ± 8.62 66.91 ± 1.43 78.90 ± 6.48
FedFV|α=0.1,τfv=10 86.98 ± 0.45 56.63 ± 1.85 71.10 ± 0.44 86.50 ± 7.36
FedFV|α=0.2,τfv=0 86.42 ± 0.38 52.41 ± 5.94 68.89 ± 0.15 82.99 ± 3.10

FedEBA+|α=0.1,τ=0.1 86.98±0.10 53.26±1.00 71.82±0.54 83.18±3.44
FedEBA+|α=0.3,τ=0.1 87.01±0.06 51.878±1.56 71.79±0.35 77.74±6.54
FedEBA+|α=0.7,τ=0.1 87.23±0.07 40.456±1.45 72.36±0.15 77.61±6.31
FedEBA+|α=0.9,τ=0.05 87.42±0.10 50.46±2.37 72.19±0.16 71.79±6.37
FedEBA+|α=0.9,τ=0.5 87.26±0.06 52.65±4.03 71.89±0.39 75.29±9.01
FedEBA+|α=0.9,τ=1.0 87.14±0.07 52.71±1.45 72.30±0.26 73.79±9.11
FedEBA+|α=0.9,τ=5.0 87.10±0.14 55.52±2.15 72.43±0.11 82.08±8.31

Table 13: Comparison of Algorithms with metric coefficient of variation (CV ) The CV improvement
shows the improvement of algorithms over FedAvg. The result is calculated by global accuracy and
variance of Table 1.

Algorithm
FashionMNIST CIFAR-10

Cv = std
acc Cv improvement Cv = std

acc Cv improvement

FedAvg 0.09136199 0% 0.150312741 0%
q-FFL 0.112432356 -23% 0.144026806 4.2%
FedMGDA+ 0.089893051 1.3% 0.146896915 2.4%
AFL 0.088978374 2.6% 0.134878199 10.1%
PropFair 0.101459812 -11.3% 0.135671155 10.9%
TERM 0.101659126 -10.1% 0.146631123 2.7%
FedFV 0.086517483 4.8% 0.130809249 13.3%

FedEBA+ 0.072539115 21.8% 0.1139402 27.8%

• Variance, applied in accuracy parity and performance fairness scenarios, is valued
for its simplicity and straightforward implementation, focusing on a common per-
formance metric. However, it has a limitation as it only measures relative fairness,
making it sensitive to outliers (Zafar et al., 2017; Li et al., 2019a; 2021; Hu et al.,
2022; Shi et al., 2021).

• Cosine similarity, sharing applications with variance, is known for its similarity to
variance and the ease with which it captures linear relationships (Li et al., 2019a).
Nevertheless, it falls short when it comes to capturing magnitude differences and is
sensitive to zero vectors (Selbst et al., 2019; Hardt et al., 2016).

• Also utilized in scenarios akin to variance, entropy offers simplicity but has de-
pendencies on normalization and sensitivity to the number of clients involved in
the computation, making it less robust in certain situations (Li et al., 2019a; Selbst
et al., 2019; Hardt et al., 2016).
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Table 14: Performance of Algorithms with Various Metrics. We provide the results under
cosine similarity and entropy metrics, as used in (Li et al., 2019a), the geometric angle corresponds to
cosine similarity metric, and KL divergence between the normalized accuracy vector a and uniform
distribution u that can be directly translated to the entropy of a. We test the algorithms on the
FashionMNIST dataset, with fine-tuned hyperparameters.

Algorithm Global Acc. Var. Angle (◦) KL (a||u)

FedAvg 86.49 ± 0.09 62.44±4.55 8.70±1.71 0.0145±0.002
q-FFL 87.05± 0.25 66.67± 1.39 7.97±0.06 0.0127±0.001
FedMGDA+ 84.64±0.25 57.89±6.21 8.21±1.71 0.0132±0.0004
AFL 85.14±0.18 57.39±6.13 7.28±0.45 0.0124±0.0002
PropFair 85.51±0.28 75.27±5.38 8.61±2.29 0.0139±0.002
TERM 84.31±0.38 73.46±2.06 9.04±0.45 0.0137±0.004
FedFV 86.98±0.45 56.63±1.85 8.01±1.14 0.0111±0.0002

FedEBA+ 87.50±0.19 43.41±4.34 6.46±0.65 0.0063±0.0009

• Applied in contribution fairness, Euclidean distance provides a straightforward in-
terpretation and is sensitive to magnitude differences. However, it lacks consideration
for the direction of the differences, limiting its overall effectiveness.

• In contribution fairness scenarios, the Pearson correlation coefficient is appre-
ciated for its scale invariance and ability to capture linear relationships (Jia et al.,
2019). Yet, it may be sensitive to outliers and may not accurately capture magnitude
differences, assuming a linear relationship between the data variables (Wang et al.,
2019).

• Commonly used in group fairness contexts, risk difference is sensitive to group dis-
parities and offers interpretability (Du et al., 2021). However, it lacks normalization,
which can impact its effectiveness in certain scenarios (Dwork et al., 2012).

• Jain’s Fairness Index finds application in various fairness aspects, including group
fairness, selection fairness, performance fairness, and contribution fairness. It boasts
normalization across groups and flexibility in handling various metrics. Nevertheless,
it is sensitive to metric choice and introduces complexity in interpretability (Chiu,
1984; Liu et al., 2022).
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