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ABSTRACT

Learning-based techniques to train control policies of autonomous agents often
assume that the agent experiences are sampled according to a certain dynamical
model for the environment. However, environmental dynamics can change (due to
intentional or unintended changes to the environment). While domain randomiza-
tion and robust learning can handle some distribution shifts, large environmental
shifts may necessitate re-training to learn policies optimal in the changed environ-
ment. We present an algorithm called ‘Evolutionary Robust Policy Optimization’
(ERPO) inspired by evolutionary game theory (EGT) to address the problem of
incrementally and efficiently adapting policies to an altered environment. We give
theoretical guarantees on the convergence of our algorithm to the optimal pol-
icy under the assumption of sparse rewards. We empirically demonstrate that our
algorithm outperforms several state-of-the-art deep RL algorithms in many gym
environments. Specifically, we are able to adapt policies using fewer training steps
while getting higher rewards and requiring lower overall computation time.

1 INTRODUCTION

Large-scale deployment of autonomous systems is fast becoming a reality with applications in au-
tonomous driving, automated warehouses, and multi-UAV missions (Paul & Deshmukh, 2022). One
of the main challenges for such systems is planning, i.e., for each state the agent may be in, deciding
which action it should take. There are several computationally efficient approaches for planning the
agent’s actions in deterministic and stochastic environments, especially when a model of the envi-
ronment is available (Luna et al., 2022; Elmaliach et al., 2009) (Varambally et al., 2022; Bellusci
et al., 2020) (Li et al., 2021b) (Li et al., 2021a; Morris et al., 2016). However, many autonomous
systems are now deployed in highly uncertain and dynamic environments, where such a model may
not be available. Some reinforcement learning (RL) algorithms (Sutton & Barto, 2018) (Bertsekas,
2019) have been highly effective at learning optimal policies even when the environment dynamics
are unknown. Deep RL algorithms (Lowe et al., 2017; Kuznetsov et al., 2020; Haarnoja et al., 2018)
have enabled learning policies in continuous state environments with continuous actions enabling
applications in robot control (Lillicrap et al., 2019; Hessel et al., 2017).

A prevalent concern is the propensity of these algorithms to overfit a model, thus losing robustness
and generalizability to changes in the environment. Some efforts have sought to fortify these al-
gorithms through techniques such as domain randomization (Peng et al., 2018) and distributionally
robust reinforcement learning techniques (Smirnova et al., 2019) (Pinto et al., 2017). Current ap-
proaches in Robust RL (Pinto et al., 2017) focus on enabling model adaptation to bridge the gap
between simulation and real-world applications. Simulation models are generally not very realistic,
and fail to consider environmental variables such as resistance, friction, and various other minor dis-
turbances, (commonly referred to as the Sim2Real gap) so they cannot be directly deployed in such
applications. There is also work in adversarial RL (Zhang et al., 2021) that focuses on optimizing
the extent of noise in the environment to train the model to be robust in the worst case, or even
training in the presence of adversarial actions (Tessler et al., 2019). There is also theoretical work
in developing versions of DQN such as DQN-Uncertain Robust Bellman Equation (Derman et al.,
2020) that focuses on developing Robust Markov Decision Processes (RMDPs) with a Bayesian
approach.
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Methods such as proximal policy optimization with domain randomization (PPO-DR) achieve better
performance than traditional deep RL, and algorithms such as Monotonic Robust Policy Optimiza-
tion (Jiang et al., 2021) provide lower bounds for the worst-case performance of a given policy.
Control theory approaches (Rajeswaran et al., 2016) train over under-performing subsets of trajec-
tories and yield policies that demonstrate greater resilience in worst-case scenarios.

Despite these advances, robust adaptation of pre-trained models to environments with substantial
changes is a sizeable challenge. For example, consider situations where the factory floor layout
is altered, driving paths in a warehouse are blocked due to debris or other temporary obstacles,
or road network topology is affected due to a natural disaster, accidents or construction. Each of
these situations represents a significant distribution shift in the dynamics: specific actions previously
enabled in the training environment may no longer be available or be severely sub-optimal in the
new environment. Many such situations often necessitate either complete retraining or, at the least,
extensive adjustments to hyper-parameters alongside substantial training efforts.

1.1 CONTRIBUTIONS:

To address this limitation, we propose a novel approach that couples RL-based planning with evo-
lutionary principles. Drawing inspiration from the ‘vine’ strategy seen in Trust Region Policy Opti-
mization (TRPO) (Schulman et al., 2017a), we generate batches of trajectories using a simulator for
the perturbed environment. In this new environment, we explore by employing an ϵ-soft version of
the optimal policy from the original environment. We then use this data to improve the existing pol-
icy by weighting state-action pairs that exhibit high fitness or returns in trajectories. The incremental
modification of the policy with each new batch of data obviates the use of gradients. It is instead
inspired by the evolutionary game-theoretic idea of replicator dynamics. We establish theoretical
guarantees that our algorithm attains convergence to optimality.

We benchmark our algorithm against the prevailing mainstream deep-RL methodologies, including
PPO (Schulman et al., 2017b), PPO-DR (Peng et al., 2018), DQN (Mnih et al., 2013), and A2C
(Mnih et al., 2016) trained from scratch on the new model and trained from the base model of the
unperturbed environment (denoted as PPO-B, DQN-B and A2C-B respectively). Our approach out-
performs these methods in many standard gym environments used in RL settings. As our work is
currently limited to discrete state and action spaces, we use larger and more complex versions of
FrozenLake, Taxi, CliffWalking, Minigrid: DistributionShift environment and a Minigrid environ-
ment with walls and lava (Walls&Lava). Specifically, we show that we have shorter computation
times and fewer training episodes required to achieve comparable performance levels.

2 PRELIMINARIES

We model the system consisting of an autonomous agent interacting with its environment as a
Markov Decision Process (MDP) defined as the tuple: (S,A,∆, R, γ, I), where, S denotes the
set of possible states of the agent. At each time-step t, we assume that it is in some state st and
executes action at transitioning to the next state st+1 and receiving a reward rt+1. The transition
dynamics ∆ is a probability distribution over S ×A×R× S. In other words, ∆ is the distribution
of MDP transitions or tuples (st, at, rt+1, st+1). It is often convenient to abuse notation, and use
(st+1, rt+1) ∼ ∆(st, at) to denote a transition sampled from ∆, where the first two elements of the
tuple are st, at respectively.

We assume that we are provided with a set of initial states I ⊆ S. At time 0, we assume that an
agent is assigned an initial state sampled randomly from I, i.e., s0 ∼ I. We assume that the control
policy is a stochastic policy π, i.e., at any time t, with the agent in state st, the action at is sampled
from the distribution π(a | s = st).

We are interested in optimizing policies over a finite time horizon T . A trajectory τπ of the agent
induced by policy π is defined as a (T + 1)-length sequence of state-action pairs:

τ = {(s0, a0), (s1, a1), . . . , (sT , aT )},where, ∀i < T : ai ∼ π(a | s = si), and,
∀i < T : (si, ai, ri+1, si+1) ∼ ∆.

(1)

The return function Gπ
∆ maps a given trajectory τπ (induced by the policy π under the transition dy-

namics ∆) to some number in R. In particular, several RL papers use the discounted sum of rewards
accumulated over the trajectory defined as Gπ

∆(τ) =
∑T−1

i=0 γiri+1, where, we assume that for every
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state-action pair (si, ai) ∈ τ , the reward ri+1 corresponds to the transition (si, ai, ri+1, si+1) ∼ ∆.
We can then define the value, and the action-value of a state, and the expected return, under a given
policy π and transition dynamics ∆ as follows:

vπ∆(st) = E
(st+i+1,rt+i+1)∼

∆(st+i,at+i)

[ ∞∑
i=0

γirt+i+1

]
; Qπ

∆(st, at) = E
(st+i+1,rt+i+1)∼

∆(st+i,at+i)

[ ∞∑
i=0

γirt+i+1

]
(2)

Here, we use τ ∼ ∆ to indicate that τ is sequence of state-action pairs as defined in equation 1, and
for each consecutive (si, ai), (si+1, ai+1), (si, ai, ri+1, si+1) ∼ ∆. The expected discounted return
for an agent under the policy π (and with the transition dynamics ∆) across all initial states of the
MDP can then be defined Eq. equation 3

η∆(π) = E
s0∼I

[Gπ
∆(τ)] = E

s0∼I
(ri+1,si+1)∼∆(si,ai)

[
T−1∑
i=0

γiri+1

]
(3)

An optimal policy π⋆
∆ for the MDP with transition dynamics ∆ is then defined as the one that

maximizes η∆(π), i.e.,
π⋆
∆ = argmax

π
η∆(π)

Problem Definition. Suppose that there is a significant perturbation in the distribution representing
the environment dynamics. Let the new environment dynamics be denoted by ∆new. The problem
we wish to solve is to learn a new policy π⋆

∆new
, s.t.,

π⋆
∆new

= argmax
π

η∆new
(π) (4)

Assumptions:

1. We assume we have a procedure that yields us π⋆
∆ = argmaxπ η∆(π). (From here on, we will

simply refer to π⋆
∆ as π⋆

oldor π∗.
2. Let β = DTV (∆||∆new), i.e. the total variation distance between the transition dynamics of

the old and new environments; then β is bounded as β ≤ βhi.
3. The expected performance of the previously optimal policy in the new environment is bounded

as:
η∆(π

⋆
old)− C ≤ η∆new(π

⋆
old) ≤ η∆(π

⋆
old) (5)

where C is a non-negative constant, C ≥ 0 which indicates that the old optimal policy cannot
yield better expected returns in the new environment as opposed to the old one. (This has been
proven in (Jiang et al., 2021).)

3 SOLUTION

We use the principles of evolutionary game theory (EGT) (Smith, 1982), (Sandholm, 2009) to ap-
proach the solution to this problem. We define a fitness function over the trajectory induced by the
policy. The fitness can be synonymous with the trajectory’s return, i.e. f(τ |π) = Gπ(τ |p).1 A com-
monly used dynamic equation in Evolutionary Game Theory is the replicator equation (Sandholm,
2009), which for our scenario can be represented as:

πi+1 = πi × [f(τ |π)− σ(π)] where σ(π) = η∆(π) (6)

i.e., the policy in the (i+ 1)th iteration is given by the product of the policy in the ith iteration and
the difference between the fitness of the trajectory and the average fitness of the population. In our
scenario, the average fitness is the same as the expected sum of discounted rewards. This equation
ensures that the policy is incremented if the fitness of a trajectory is greater than the average fitness
and vice versa.
Let us use the notation τs to denote the set of all trajectories that contain s, and similarly use τ(s,a)
to indicate the set of trajectories containing the pair (s, a).
As we make state-wise updates, we modify the replicator equation to be:

πi+1 = πi · α · E[f(τs,a)|π]
E[f(τs)|π]

(7)

1From here on, we use the fitness notation in place of the return
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Algorithm 1: EVOLUTIONARY ROBUST POLICY OPTIMIZATION

Input :
• π⋆ = argmaxπ η∆(π)
• ∀s ∈ S, a ∈ A : π0

new(s, a) = 1/|A|
• ϵ, ν ∈ (0, 1), δ > 0; and α > 1

Output: π⋆
new = argmax

π
η∆new

(π)

1 i← 0; η0 ← η∆new
(π⋆) π0

train ← wπ⋆ + (1− w)π0
new do

2 for b = 1 to Number of Episodes per Batch do
3 Sample the initial state: s0 ∼ I
4 for t = 1 to T do
5 Sample action as per training policy: at ∼ πtrain

6 Sample next state: (st, at) ∼ ∆new

7 Append the transition to the trajectory τb = τb ◦ (st, at, st+1)

8 Append trajectory τb to batch
9 for all trajectories τb in batch do

10 for each (s, a) ∈ τb do
11 Update πi+1

new(s, a) ← πi
new(s, a) · α ·

E[f(τs,a)]
E[f(τs)]

12 Normalize πi+1
new

13 ηi+1 ← η∆new
(πi

train); π
i+1
train ← wπ⋆ + (1− w)πi+1

new
14 w ← w − ν; i← i+ 1

15 while ( (w > ϵ) or (ηi+1 − ηi > δ) )
16 Output πtrain as π∗new .

where α ∈ R+ and α < 1, and (s, a, ·, s′) ∼ ∆. i.e., we use the ratio of the expected value of fitness
of all trajectories containing the pair (s, a) to the expected value of the fitness of all the trajectories
containing s′ rather than the difference. We also use a constant α, which allows us to control the
rate of change of the population depending on our environment rewards.

3.1 PROPOSED ALGORITHM

Our algorithm uses batch-based updates: We initialize our training policy to be a weighted com-
bination of the old optimal policy π⋆, and our new policy πnew- which is initially random (see 1).
We sample trajectories as part of a batch, and the state-action pairs in these trajectories are updated
according to the update rule 11. The return for the (i + 1)th iteration is set as the return under the
training policy, and the training policy is updated 13, to take into account the update to πnew in 11.
The weight assigned to the old policy is decremented with each iteration 14. This process is repeated
until both our termination conditions have been met 15, i.e.

1. (ηi+1 − ηi > δ) ): This condition checks if our policy is improving with each update. If it
does not, we say it has converged.

2. w > ϵ: As w is the weight assigned to π∗, we decrement it by some 0 < ν < 1 with each
batch update, until w ≤ ϵ, which will indicate that our policy πtrain, is an ϵ−soft policy.

3.2 PROOF OF CONVERGENCE:

We first provide a list of assumptions required for our proposed algorithm to converge.

1. We assume the existence of at least one feasible solution in the new environment.
2. We assume a sparse reward setting, where very few (or only the goal states) have an informative

reward. In such cases, the value of a state can be approximated to the average return across all
trajectories containing the state.

3. Additionally, for the sake of the proof, we assume that the rewards are non-negative. The results
in (Ng et al., 1999) show that policies are invariant to reward scaling, which allows us to use this
algorithm even in scenarios with negative rewards.
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Theorem 1. The algorithm ERPO converges to an optimal policy in the new environment, i.e.:

π∗
new = argmax

π
η∆new(π) (8)

Proof. As our system is an MDP, we know that at least one optimal policy must exist (Sutton &
Barto, 2018). Our algorithm ERPO is based on policy iteration so to show convergence, we show that
vπi(s) ≤ vπi+1(s), where πi and πi+1 are the policies in the ith and (i+1)th iterations respectively.
Therefore, we show that our value function monotonically improves with each algorithm iteration
to prove convergence.

We partition the action space A into the following sets:

• Ah(s) = {a ∈ A|vπi(s′) ≥ E[vπi(s)], where (s, a, ·, s′) ∼ ∆}
• Al(s) = {a ∈ A|vπi(s′) < E[vπi(s)], where (s, a, ·, s′) ∼ ∆}

Now we can denote vπi(s) as:

vπi(s) =
∑

ah∈Ah(s)

πi(ah|s)Qπi(s, ah) +
∑

al∈Al(s)

πi(al|s)Qπi(s, al) (9)

According to our update rule:

πi+1(s, a) = πi(s, a)×
E[f(τ(s,a))]
E[f(τs)]

By our sparse reward assumption 2, we can say that v(s′) ≈ E[f(τs)], and similarly, Q(s, a) ≈
E[f(τ(s,a))] and so:

πi+1(s, a) = πi(s, a)× Qπi(s, a)

E[vπi(s)]

By our assumption of non-negative rewards, 3, ∵ vπi(s′h) ≥ E[vπi(s)], Qπi(s, ah) ≥ E[vπi(s)]

∴ πi+1(s, ah) ≥ πi(s, ah)

and since our policies are normalized after every update, vπi+1(s) ≥ vπi(s).

4 EXPERIMENTS

Baselines. For our experiments we compare our method against PPO-DR (Peng et al., 2018) (i.e.,
PPO trained with domain randomization to improve its robustness), PPO, DQN (Mnih et al., 2013),
A2C (Advantage Actor-Critic) (Mnih et al., 2016), when re-trained from scratch on the new world
parametrized by ∆new (except for PPO-DR), as well as when they are trained over the model that
produces π∗ in the world parametrized by ∆. (These are the base models indicated in the figures, and
the algorithms are indicated as A2C-B, PPO-B, and DQN-B, respectively.) 2 We use the ‘stable-
baselines3’(Raffin et al., 2021) implementation for the aforementioned Deep RL algorithms and
tuned the hyper-parameters using the ‘optuna’(Akiba et al., 2019) library. We test these algorithms
on the FrozenLake, CliffWalking, and Taxi environments in Open AI gymnasium, Minigrid’s Dis-
tribution Shift environment (Chevalier-Boisvert et al., 2023) and a version of the Minigrid: Empty
environment customized with walls and lava. We remark that we use larger and more complex
versions of the standard environments to test our algorithm effectively.

1. FrozenLake: In the FrozenLake environment, the episode terminates when the agent enters a hole
or reaches a goal. We have a base model with few holes and three additional levels of environ-
ments with increasing grid area occupied by holes, indicated with the darker blue in Fig. 1e.

2. CliffWalking: In the CliffWalking Environment, if the agent enters a grid location labeled ‘cliff’,
it is returned to the start position. We have a base model with one row of cliffs, similar to the
standard model, and three additional levels with increasing cliff area (indicated in brown Fig. 1d).
The final level (Level 3) only has a narrow strip across which the agent can walk, making it a
very difficult environment to navigate.

2The experiments were performed on a high-performance computing cluster with nodes using dual 8-16
core processors, using 16 CPUs with 32GB memory each.
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Base Model Level 1 Level 2 Level 3

(a) Walls&Lava models

Base Model Level 1 Level 2 Level 3

(b) DistributionShift models

Base Model Level 1 Level 2 Level 3

(c) Taxi models

Base Model Level 1 Level 2 Level 3

(d) CliffWalking models

Base Model Level 1 Level 2 Level 3

(e) FrozenLake models

(f) Experimental environments including the base model and their variations

3. Taxi: A passenger must be picked up from one of the designated stations and dropped off at
another. Barriers prevent the Taxi from turning left or right. The base model has no barriers,
and additional levels have increasing numbers of barriers (see Fig. 1c), making navigating more
circuitous.

4. Minigrid: DistributionShift: The aim of this specific environment is to test the ability of the
algorithm to generalize across two variations of the environment. The episode terminates when
the agent reaches the goal or a location with lava. We have three levels of environments with
increasing grid areas occupied by lava. See Fig. 1b.

5. Minigrid: Walls&Lava: In this environment, we test the ability of the algorithm to perform
navigation in the presence of walls that block the agent’s vision and movement, or lava that
terminates the episode, or both. The base model is an empty grid, Level 1 has lava, Level 2 has
walls, and Level 3 has both. See Fig. 1a.
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5 RESULTS

We present the results of each environment for ERPO and the other baseline algorithms. In particu-
lar, we report the number of timesteps it takes to reach convergence and the actual time elapsed (in
seconds). A key feature we observe is that the performance of ERPO does not vary much with in-
creasing levels of difficulty, even when the new environment is drastically different and much more
difficult to navigate than the base environment, while all the other algorithms worsen significantly.
We also observe that in terms of absolute time taken, ERPO greatly outperforms the others by almost
always taking two to three orders of magnitude less time.

From Table 1a, we see that ERPO significantly outperforms the other algorithms with only PPO and
A2C approaching convergence but still requiring up to an order of magnitude more timesteps than
ERPO in the Walls&Lava environment. For the Minigrid: DistributionShift environment, we see
from Table 1d that A2C-B is similar but slightly worse than ERPO. The other baselines took signif-
icantly longer or did not converge. In the results of the Taxi environment (see 1c), PPO-DR and
PPO-B have the closest performance to the ERPO algorithm. However, the PPO-DR environment
requires almost ten times longer, and PPO-B takes up to three times more timesteps. PPO takes five
to ten times longer than ERPO to converge. We see that the modified CliffWalking environments
seem extremely hard to solve (see Table. 1b) because of the large cliff area and episodes that go on
almost endlessly (in the original environment there is no termination condition apart from reaching
the goal, but we keep an upper limit of 5-10K steps depending on the level). Most algorithms do not
converge, but A2C-B performs almost as well as ERPO, albeit taking more absolute time. Finally, in
the FrozenLake environment, we see that most algorithms perform well albeit requiring 3 to 5 times
more timesteps and 10 to 100 times longer than ERPO, but the performance of these algorithms de-
teriorates significantly with each level while ERPO’s performance does not worsen as much (Table
1e).

Discussion: We observe that our algorithm outperforms PPO, PPO-DR, and A2C, which rely on
batch-wise updates, and DQN which relies on episode-wise updates. These models weight every
step equally for performing an update. ERPO, on the other hand, makes sizeable updates for tra-
jectories that either significantly outperform the others in the batch or severely underperform. Most
trajectories with fitness close to the average fitness in the batch do not drastically affect the policy
update. The fittest trajectories are thus replicated most widely, and within a small number of training
episodes, represent most of the batch.

6 LIMITATIONS AND FUTURE WORK:

Our set up is limited to discrete state-action spaces. We are working on an extension that works
with continuous spaces. This will be carried out with function approximation using radial basis
functions that also update the policies of states within a certain distance of the state we are updating.
Additionally, because we normalize the probability distribution across actions of a given state, a
continuous model would work instead along with a probability density function that can be updated
using Dirac delta functions. Our set up is also limited to single agent models (unless extended
with independent learning). We are working on extensions that can combine other game-theoretic
solution concepts for cooperative multi-agent learning.

7 CONCLUSION

We discuss the shortcomings of current deep RL models to adapt to large-scale environmental dis-
tribution shifts. To overcome these, we present an algorithm, ERPO, based on the principles of EGT
and leverage replicator dynamics to adapt policies from base models for the perturbed environments.
Theoretically, we show that our algorithm converges to an optimal policy. Experimentally, we com-
pare our model to various state-of-the-art models in different OpenAI environments and show that
our model converges faster in terms of timesteps and absolute time, and yields higher rewards than
the others. For future work, we will extend our settings to include continuous state-action spaces
and multi-agent environments. Additionally, we will work on providing theoretical guarantees in
terms of convergence, and safety and robustness.
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Level 1 Level 2 Level 3

Figure 2: Average Rewards vs. timesteps for the Walls&Lava environment

Level 1 Level 2 Level 3

Figure 3: Average Rewards vs. timesteps for the DistributionShift environment

Level 1 Level 2 Level 3

Figure 4: Average Rewards vs timesteps for the Taxi environment

Level 1 Level 2 Level 3

Figure 5: Average Rewards vs. timesteps for the FrozenLake environment

Level 1 Level 2 Level 3

Figure 6: Average Rewards vs. timesteps for the CliffWalking environment
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Walls&Lava
Environment Level Comparison metric Algorithms

ERPO PPO DQN A2C PPO-B DQN-B A2C-B PPO-DR

Level 1 Timesteps till convergence (×105) 1 60 DNC 50 DNC DNC DNC DNC

Time elapsed (s) 50 2000 - 1500 - - - -

Level 2 Timesteps till convergence (×105) 1 50 50 8 DNC 50 DNC DNC

Time elapsed (s) 50 1500 1000 1000 - 1000 - -

Level 3 Timesteps till convergence (×105) 2 50 50 10 DNC DNC DNC DNC

Time elapsed (s) 70 1500 1000 2000 - - - -

(a) Results of the Walls&Lava Minigrid environment

CliffWalking
Environment Level Comparison metric Algorithms

ERPO PPO DQN A2C PPO-B DQN-B A2C-B PPO-DR

Level 1 Timesteps till convergence (×105) 1.8 DNC DNC DNC >100 >1.8 DNC

Time elapsed (s) 12 - >1000 - - >1000 35 -

Level 2 Timesteps till convergence (×105) 1.5 DNC >100 >100 >100 >100 >1.8 DNC

Time elapsed (s) 20 - >1000 >1000 >1000 >1000 35 -

Level 3 Timesteps till convergence (×105) 1.5 >100 >100 >100 >100 >100 >2 DNC

Time elapsed (s) 20 - >1000 >1000 >1000 >1000 35 -

(b) Results of the CliffWalking environment

Taxi Environment
Level Comparison metric Algorithms

ERPO PPO DQN A2C PPO-B DQN-B A2C-B PPO-DR

Level 1 Timesteps till convergence (×105) 1 >100 >500 >500 3 >100 >100 9

Time elapsed (s) 25 >1500 >2000 >2000 1250 >2000 250 1500

Level 2 Timesteps till convergence (×105) 1.8 >100 >500 >500 6 >100 >100 9

Time elapsed (s) 45 >1500 >2000 - 1250 >2000 250 1500

Level 3 Timesteps till convergence (×105) 2 >100 >500 DNC 6 >500 >100 9

Time elapsed (s) 50 >1500 >2000 - 1250 >2000 250 1500

(c) Results of the Taxi environment

DistributionShift
Environment Level Comparison metric Algorithms

ERPO PPO DQN A2C PPO-B DQN-B A2C-B PPO-DR

Level 1 Timesteps till convergence (×104) 2 >500 >500 40 DNC >500 4 DNC

Time elapsed (s) 25 >1500 >1500 300 - 1500 35 -

Level 2 Timesteps till convergence (×104) 2 20 >500 80 DNC >500 7 DNC

Time elapsed (s) 20 >1500 >1500 300 - >1500 35 -

Level 3 Timesteps till convergence (×104) 2 >500 >500 40 DNC >500 100 DNC

Time elapsed (s) 10 >1500 >1500 300 - >1500 600 -

(d) Results of the DistributionShift Minigrid environment

FrozenLake
Environment Level Comparison metric Algorithms

ERPO PPO DQN A2C PPO-B DQN-B A2C-B PPO-DR

Level 1 Timesteps till convergence (×104) 8 25 50 50 15 >50 >50 DNC

Time elapsed (s) 5 300 500 300 150 600 150 -

Level 2 Timesteps till convergence (×104) 25 25 >100 >100 20 >100 90 DNC

Time elapsed (s) 15 2000 800 800 1500 1500 200 -

Level 3 Timesteps till convergence (×104) 20 DNC >100 >100 30 >100 80 DNC

Time elapsed (s) 15 - 1000 >2000 500 >2000 300 -

(e) Results of the FrozenLake environment
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8 REPRODUCIBILITY

We use publicly available environments in the OpenAI gymnasium and compare our algorithm
against deep RL models that are available through the ‘stable-baselines3’ package. We have pro-
vided information that can be used to replicate the environments in the Experiments and Results
sections. The hyperparameters used in each of these models and implementation details of our al-
gorithm is provided in the Supplementary Material. We believe that these details will be sufficient
to reproduce our results. Additionally, we will make our code publicly available upon publication.
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A APPENDIX

A.1 NOTES FOR IMPLEMENTATION:

Below are the default hyperparameters for each of the baselines. Unless specified otherwise in the
following section, we will use these.

1. A2C: {policy: MlPPolicy, n envs : 8, learning rate: 7e-4,
n steps: 5, gamma: 0.99, gae lambda: 1.0, ent coef: 0.0,
vf coef: 0.5, max grad norm: 0.5, rms prop eps: 1e-5,
use rms prop: True, use sde: False, sde sample freq:
-1, normalize advantage: False, stats window size: 100,
verbose: 1, seed: Optional[int] : None, init setup model:
True}

2. PPO: { policy: MlPPolicy, n envs: 8, learning rate:
0.0003, n steps: 2048, batch size: 64, n epochs: 10,
gamma: 0.99, gae lambda: 0.95, clip range: 0.2,
clip range vf: None, normalize advantage: True, ent coef:
0.0, vf coef: 0.5, max grad norm: 0.5, use sde: False,
sde sample freq: -1, target kl: None, stats window size:
100, tensorboard log: None, policy kwargs: None, verbose:
1, seed: None, init setup model: True[source] }

3. DQN: { policy: MlPPolicy, n envs: 8, learning rate:
0.0001, buffer size: 1000000, learning starts: 50000,
batch size: 32, tau: 1.0, gamma: 0.99, train freq:
4, gradient steps: 1, replay buffer class: None,
replay buffer kwargs: None, optimize memory usage: False,
target update interval: 10000, exploration fraction: 0.1,
exploration initial eps: 1.0, exploration final eps: 0.05,
max grad norm: 10, stats window size: 100, tensorboard log:
None, policy kwargs: None, verbose: 1, seed: None,
init setup model: True }

4. PPO-B: (Same as the PPO settings used for the base model of each environment.)

5. A2C-B: (Same as the A2C settings used for the base model of each environment.)

6. DQN-B: (Same as the DQN settings used for the base model of each environment.)

7. PPO-DR: (Same as the PPO settings used for the base model of each environment.)

• CliffWalking:
1. PPO: { n steps: 512, learning rate: 0.00025}
2. DQN: { exploration fraction: 0.8, exploration final eps:

0.01, learning starts: 1000 }
3. A2C: { n steps: 100, learning rate: 0.0005}
4. ERPO: { number of episodes per batch: 50, w: 0.3,

epsilon: 0.01, alpha: 2, nu: 0.05 }
• DistributionShift:

1. PPO: { n steps: 512, learning rate: 0.00025}
2. DQN: { exploration fraction: 0.8, exploration final eps:

0.01, learning starts: 1000 }
3. A2C: { n steps: 500, learning rate: 0.0005}
4. ERPO: { number of episodes per batch: 50, w: 0.3,

epsilon: 0.01, alpha: 2, nu: 0.01 }
• Walls&Lava:

1. PPO: { n steps: 512, learning rate: 0.00025}
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2. DQN: { exploration fraction: 0.7, exploration final eps:
0.01, learning starts: 1000 }

3. A2C: { n steps: 500, learning rate: 0.0005}
4. ERPO: { number of episodes per batch: 30, w: 0.5,

epsilon: 0.01, alpha: 2, nu: 0.01 }
• Taxi:

1. PPO: { n steps: 4096, learning rate: 0.00025}
2. DQN: { exploration fraction: 0.8, exploration final eps:

0.01, learning starts: 1000 }
3. A2C: { learning rate: 0.0005}
4. ERPO: { number of episodes per batch: 20, w: 0.5,

epsilon: 0.01, alpha: 3, nu: 0.01 }
• FrozenLake:

1. PPO: { n steps: 512, learning rate: 0.00025}
2. DQN: { exploration fraction: 0.8, exploration final eps:

0.01, learning starts: 1000 }
3. A2C: { n steps: 250, learning rate: 0.0005}
4. ERPO: { number of episodes per batch: 30, w: 0.2,

epsilon: 0.01, alpha: 3, nu: 0.05 }
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