
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MG2FLOWNET: ACCELERATING HIGH-REWARD
SAMPLE GENERATION VIA ENHANCED MCTS
AND GREEDINESS CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative Flow Networks (GFlowNets) have emerged as a powerful tool for gen-
erating diverse and high-reward structured objects by learning to sample from a
distribution proportional to a given reward function. Unlike conventional rein-
forcement learning (RL) approaches that prioritize optimization of a single tra-
jectory, GFlowNets seek to balance diversity and reward by modeling the entire
trajectory distribution. This capability makes them especially suitable for do-
mains such as molecular design and combinatorial optimization. However, ex-
isting GFlowNets sampling strategies tend to overexplore and struggle to con-
sistently generate high-reward samples, particularly in large search spaces with
sparse high-reward regions. Therefore, improving the probability of generating
high-reward samples without sacrificing diversity remains a key challenge under
this premise. In this work, we integrate an enhanced Monte Carlo Tree Search
(MCTS) into the GFlowNets sampling process, using MCTS-based policy evalua-
tion to guide the generation toward high-reward trajectories and Polynomial Upper
Confidence Trees (PUCT) to balance exploration and exploitation adaptively, and
we introduce a controllable mechanism to regulate the degree of greediness. Our
method enhances exploitation without sacrificing diversity by dynamically bal-
ancing exploration and reward-driven guidance. The experimental results show
that our method can not only accelerate the speed of discovering high-reward
regions but also continuously generate high-reward samples, while preserving
the diversity of the generative distribution. All implementations are available at
https://anonymous.4open.science/r/MG2FlowNet-68B2/.

1 INTRODUCTION

Generative Flow Networks (GFlowNets) (Bengio et al., 2021; Jain et al., 2022; Gao et al., 2022;
Bengio et al., 2023; Zhang et al., 2025) have recently emerged as a powerful tool for generating
diverse high-quality candidates by learning to sample from a reward-proportional distribution. This
property makes GFlowNets particularly attractive for a wide range of structured generation tasks.
For example, Jain et al. (2022) integrates GFlowNets into an active learning pipeline for biological
sequence design. In the domain of Bayesian structure learning, Deleu et al. (2022) and Nishikawa-
Toomey et al. (2022) employ GFlowNets to model posterior distributions over discrete composi-
tional structures such as Bayesian networks. Liu et al. (2023a) utilizes GFlowNets for sampling
modular subnetworks, improving model generalization under distributional shifts.

Despite these advantages, vanilla GFlowNets often struggle to efficiently discover high reward sam-
ples in complex environments. While their inherent exploratory nature enhances diversity, it may
lead to excessive coverage of low-reward regions, particularly during early training when the sam-
pling policy lacks guidance and relies on self-collected experience. This results in slow convergence
and suboptimal performance in sparse reward scenarios. The fundamental challenge lies in balanc-
ing broad exploration with efficient high-reward discovery, highlighting the need for directed ex-
ploration strategies that maintain diversity while effectively guiding the model toward high-reward
areas. To address these issues, several recent efforts have incorporated reinforcement learning tech-
niques into the GFlowNets framework. Notably, QGFN (Lau et al., 2024) introduces action value
(i.e., Q-value) to enhance backward policy estimation, while another approach applies MCTS and

1

https://anonymous.4open.science/r/MG2FlowNet-68B2/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

maximum entropy regularization (Morozov et al., 2024) to enhance planning capabilities. However,
these strategies often rely on noisy or inaccurate value estimates in the early training stages and may
still fail to effectively guide the model toward high-reward regions. Moreover, they typically lack a
fine-grained mechanism for dynamically adjusting the trade-off between exploration and exploita-
tion throughout training. This raises a key question: How can we enhance the model’s ability to
explore high-reward regions early in training, while adaptively using historical experience in later
stages to maintain high-reward sampling?

s1
s2

sn

Explored regions Unexplored regions

x0

R (x0) = 5

favor

favor

disfavor

s0

s : intermediate state x : terminal state
R (x) : reward : edge in the DAG

x1 xi x5

R (xi) = 1

x

R (x) = 8

initial
state

Figure 1: Strategy of MG2FlowNet.
MG2FlowNet prioritizes high reward states in
explored regions while still allocating effort
to unexplored areas, ensuring that potential
high reward states are not overlooked.

Monte Carlo Tree Search (MCTS) is a best-first
search algorithm that has demonstrated strong per-
formance in sequential decision-making tasks such
as AlphaGo Zero (Silver et al., 2016; 2018). It of-
fers an effective way to explore large search spaces.
We build on this idea by proposing a framework
that integrates Polynomial Upper Confidence Trees
(PUCT)-guided MCTS (Coulom, 2006; Kocsis &
Szepesvári, 2006) with a tunable α-greedy sam-
pling strategy. As shown in Figure 1, the framework
directs GFlowNets toward promising regions of the
state space: in explored areas, MG2FlowNet fa-
vors actions leading to high-reward states, while in
unexplored areas it still allocates probability mass
to encourage the discovery of potentially valuable
states. The α-greedy mechanism combines the Q-
values estimated from MCTS rollouts with the for-
ward policy of GFlowNets, allowing adaptive con-
trol over the degree of greediness. This design im-
proves the efficiency of reaching high-reward sam-
ples while preserving the diversity of exploration.
Our main contributions are as follows:

❶ We present a novel integration of enhanced MCTS and Greediness control with GFlowNets
(termed MG2FlowNet), which demonstrates significant improvements in both sample efficiency
and consistent generation of high reward samples, especially in large, sparse reward domains
such as molecule design.

❷ We achieve a better balance between exploration and exploitation. By introducing the PUCT
method in the selection phase of MCTS, we enable the model to adaptively adjust the intensity
of exploration and exploitation.

❸ We implement a controllable soft greedy strategy. We consider both the Q-value of individual
nodes and the flow distribution of the flow network, and use the distribution of Q-values as the
greedy term, which enables us to achieve relatively good results even in the early training stage
when Q-values are unstable.

❹ We empirically validate MG2FlowNet on several tasks, demonstrating improved sample effi-
ciency and high-reward discovery while maintaining the diversity of generated solutions.

2 RELATED WORK

GFlowNets. Generative Flow Networks (GFlowNets) were first proposed by Bengio et al. (2021)
as a framework for sampling compositional objects with probabilities proportional to their rewards,
providing a scalable alternative to classical methods in multimodal or sparse reward settings. This
formulation enables diverse and efficient exploration, which has proven useful in applications such
as biological sequence design (Jain et al., 2022) and Bayesian structure learning (Deleu et al., 2022).
Theoretical advances further connected GFlowNets to variational inference (Zimmermann et al.,
2022). Despite these advances, classical GFlowNets are often prone to inefficient exploration, slow-
ing convergence, and reducing the quality of high-reward samples. Our work addresses this draw-
back by introducing a mechanism that better balances exploration and exploitation.
Improving GFlowNets Sampling. MCTS has demonstrated strong performance in sequential de-
cision making, most notably in AlphaGo and AlphaZero (Silver et al., 2016; 2018). A key refinement
is the PUCT algorithm (Coulom, 2006; Kocsis & Szepesvári, 2006), which integrates visit counts

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

into the selection rule to balance exploration and exploitation. Inspired by these ideas, our work in-
corporates PUCT-guided MCTS and controllable greedy strategies into the GFlowNets framework,
enabling more efficient trajectory generation while preserving theoretical guarantees.

3 PROBLEM FORMULATION

We generate a candidate object from the initial state s0, making a sequence of actions to finally
transfer the state to the terminal state x with probability proportional to a reward function R(x) :
x→ R+. The state transformation process can be illustrated as a directed acyclic graph (DAG). We
denote this sequence as a trajectory τ = (s0 → ... → x), the set of complete trajectories as T , the
set of states as S, the set of terminal states as X , the action as (s → s′), and the set of actions as
A = {(s → s′)|s, s′ ∈ S}. We say s is a parent of s′, and s′ is a child of s. We denote the C(s)
as the set of children of s, the P (s) as the set of parents of s. The set of available actions from s is
denoted as A(s), and thus A(x) = ∅ for any terminal state x. For any state s, define the state flow
F (s) =

∑
s∈τ F (τ), and for any edge s→ s′, the edge flow F (s→ s′) =

∑
τ=(...→s→s′→...) F (τ).

We denote the outflow of initial state s0 as Z = F (s0) =
∑

τ∈T F (τ). The forward and backward
probabilities are denoted as PF and PB :

PF (s
′ | s) = F (s→ s′)/F (s), PB(s | s′) = F (s→ s′)/F (s′). (1)

We have the trajectory balance (TB) constraint (Malkin et al., 2022) for any complete trajectory
τ = (s0 → ...→ sn):

Z

n∏
t=1

PF (st|st−1) = F (x)

n∏
t=1

PB(st−1|st), (2)

And the trajectory loss is defined as:

LTB(τ) =

(
log

Zθ

∏n
t=1 PF (st | st−1; θ)

R(x)
∏n

t=1 PB (st−1 | st; θ)

)2

. (3)

Our MCTS algorithm constructs an initially empty directed acyclic graph (DAG) and expands it
incrementally. We denote the resulting MCTS-DAG by Gm = (Vm,Am) and the GFlowNets sam-
pling DAG by G = (V,A), where Vm and V are the sets of nodes, andAm ⊆ Vm×Vm,A ⊆ V×V
are the sets of directed edges (actions). In Gm, individual nodes are denoted by n. To formalize the
MCTS iteration process, we denote the expected value of taking action a at node n by Q(n, a), and
the number of times action a has been executed at n by N(n, a). Let T ⊆ Vm be the set of terminal
nodes, with each terminal node denoted by nT , and let F ⊆ Vm be the set of fully expanded nodes
(i.e., nodes with children). Nodes without children are referred to as leaves. The detailed notations
are provided in Table 3.

4 METHODOLOGY

Framework. To overcome the limitation that GFlowNets struggle to sample high-reward regions
consistently, we incorporate modified MCTS for its planning capability and introduce a parameter α
to link it with the flow network, thereby controlling the level of greediness. As illustrated in Figure 2,
we start from the state s0, which has several available actions {a0, a1, . . . , an}. The objective is to
choose the action most likely to guide the search toward high-reward regions. Before making this
choice, we perform I rounds of MCTS on n0 (corresponding to the s0 in G) in Gm. Each round
consists of four phases: selection, expansion, simulation, and backpropagation. An iteration uses
the current node history to identify a promising path, simulates it to a terminal state nT , records the
reward R(nT), and then backpropagates this reward to update the statistics Q(n, a) and N(n, a) of
all nodes along the path. After I iterations, actions from s0 yield distinct {Q(s0, ai) | ai ∈ A(s0) }.
We then apply a mixed strategy, controlled by α, that combines Q(n, a) with the prior PF to select an
action and move from s0 to s1. This procedure repeats until a terminal state x is reached, producing
a trajectory τ = (s0 → s1 → · · · → x). We next detail the four stages and explain how our
framework implements controllable greedy sampling.

4.1 PUCT GUIDED SELECTION

The selection phase aims to efficiently reach promising leaf nodes through a balance of exploration
and exploitation. During the selection phase, we will meet these situations: (1) The current node
has no child nodes and is called a leaf node. If it is a terminal node (corresponding to a terminal

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Selection Expansion Simulation Backpropagation

Repeat I times

Selection policy
based on PUCT

Terminal
states

Expanded
states

Expanded
states

Updating Q and
N with R(x)

Q(s,a)-->Q'(s,a)
N(s,a)-->N(s,a)+1

Selection policy
based on PUCT

Simulation
policy Backpropagation

Sampling based
on Q and PF

Case: Current MCTS iteration: Round 4

R(x)
Selecting

x based on PF

x

x

xx

x
R(x)

R(x)

R(x)

R(x)

x

initial state

Figure 2: Illustration of framework. The left panel shows trajectory sampling in GFlowNets,
where each action is chosen based on the updated Q(s, a) and PF after I rounds of MCTS iterations.
The right panel illustrates the MCTS procedure, including selection, expansion, simulation, and
backpropagation, with the fourth iteration shown as an example for clarity.

state x ∈ X), then we return the reward R(x) and start the backpropagation stage, and we use −2 in
the code to indicate this case; else we add all legal child nodes to this node, which is the expansion
phase, and we use −1 in the code to indicate this case. (2) The current node has child nodes. Define
the π(n, a) as the selection strategy for taking action a from node n to its child node n′. We define
a selected trajectory τ = (n0 → ...→ ni) from the node n0 corresponding to the current state s0 to
the leaf node ni.

select(n) =

{
(n,−2) if n ∈ T
(n,−1) if n /∈ F
select(π(n, a)) if n ∈ F

(4)

The selection strategy π(n, a) during the selection phase warrants careful consideration. An overly
greedy approach that relies solely on the Q-value predicted by Gm may lead to local optima, while
excessive exploration could slow down convergence. Therefore, we employ the PUCT formula to
dynamically balance exploration and exploitation, using the exploration coefficient cpuct to actively
adjust exploration intensity. This enables rapid acquisition of high-quality samples while maintain-
ing diversity, allowing for greedy generation of high-scoring samples without sacrificing variety.

PUCT(n, a) = Q(n, a) + cpuct · PF ·
√∑

a′ N(n, a′)

1 +N(n, a)
, (5)

ṽa = exp(PUCT(n, a)− max
a′∈A(s)

PUCT(n, a′)), (6)

pa = ṽa/(
∑

a′∈A(s) ṽa′). (7)

The visitation count N(n, a) maintains the exploration statistics for action a at state n. The explo-
ration bonus term exhibits an inverse relationship with N(n, a), creating an adaptive exploration-
exploitation trade-off: When N(n, a) is small (underexplored), the term dominates to encourage
exploration. As N(n, a) grows (well explored), the term decays to prioritize exploitation of high-
reward actions. This dynamic balance motivates our selection policy π(n, a) ∼ Categorical(pa),
which follows a categorical distribution over the action space A(n).

4.2 EXPANDING ALL LEGAL ACTIONS

The expansion stage is a process of adding child nodes to the leaf node. Consider the following
scenario: if only a single child node is expanded upon encountering a leaf node, each subsequent
visit to this node would require another expansion operation until the node is fully expanded, re-
sulting in significant computational overhead. To address this inefficiency, we propose expanding
all legal child nodes during the expansion phase. This expansion approach is computationally jus-
tified because the exploration term in our PUCT formulation Eq. (5) guarantees that these newly
created nodes will be properly prioritized based on their low N(n, a), ensuring they will be system-
atically explored in future iterations. These expanded nodes’ initial value of Q(n, a) and N(n, a)
will be initialized to zero. Because these nodes lack historical statistics due to their initial state,
the GFlowNets’ forward probabilities PF naturally dominate the selection process in subsequent
iterations. This design principle is explicitly illustrated in Eq. (5).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4.3 SIMULATION USING FORWARD PROBABILITY OF GFLOWNETS

To better leverage the model’s forward transition probability PF , we follow the forward transition
probability in our simulation stage. Notably, in the selection stage, we already obtain a trajectory
τ = (n0 → ...→ ni), then we expand the children of ni. After expansion, we select a node ne from
these expanded children based on the PF inherent to GFlowNets. And then the simulation sampling
process is performed starting from ne in line with PF until a terminal node nT ∈ T is reached. In
the simulation stage, we similarly obtain a trajectory τ ′ = (ne → ... → nT) from the child node
ne to the terminal node nT . This trajectory τ ′ is designed to simulate which terminal nodes can be
reached by node ne, and during the subsequent backpropagation phase, the reward values from these
terminal nodes are propagated backward along the selection trajectory τ to the root node. Through
this process, we gain the capacity to anticipate and evaluate future states multiple steps ahead.

4.4 BACKPROPAGATION ALONG PROMISING PATHS

The Q(n, a) update during backpropagation is crucial because it directly governs the accuracy of
node evaluations in Gm. Our method employs weighted incremental updates for value backpropa-
gation, where each node’s Q(n, a) and N(n, a) are updated as:

Q(n, a)← Q(n, a) +
R(nT)−Q(n, a)

nvisit
, n ∈ τ(n0 → ...→ ni), (8)

nvisit ← nvisit + 1. (9)
The update for Q(n, a) and N(n, a) is as shown above in Eq. (8) and Eq. (9). The update of N(n, a)
aims to control the level of exploration. As N(n, a) increases, the exploration term in Eq. (5) de-
creases, leading to reduced exploration of that node. At the same time, the update of Q(n, a) ensures
that nodes with higher reward values are more likely to be selected. These two components are both
essential and work together to strike a balance between exploration and exploitation. There is a chal-
lenge in updating the nodes during the backpropagation phase. Because updating different parents
leads to a completely different distribution of the flow network. We address the backpropagation
challenge by updating only the nodes along the trajectory τ selected during the selection phase.
Details are provided in Sec. E.

4.5 GREEDINESS CONTROL

To combine the PF and the Q(n, a) prediction accuracy for taking action a at node n, we propose a
α-greedy strategy in Eq. (11) to dynamically adjust the proportion between the global flow network
and the value distribution of Q-values.

pi =
(Qi −Qmin)∑
k (Qk −Qmin)

, (10)

As shown in Eq. (10), instead of adopting a max Q strategy, we choose to use a softmax policy
based on Q-values. This decision stems from our goal of encouraging more goal-directed behavior
on top of a learned flow model, rather than pursuing greediness for its own sake. Directly using the
maximal Q-value may lead to premature convergence and getting stuck in a local optimum. More-
over, Q-values are often inaccurate in the early training stages, making the model highly sensitive to
estimation errors. To mitigate these risks, we opt for a soft Q-value policy that balances exploitation
and exploration more effectively.

µ ∼ Categorical
((1− α)·PF + α· p
∥(1− α)·PF + α· p∥1

)
. (11)

In summary, we can adaptively balance exploration and exploitation by PUCT during the selection
phase. We can control the level of greediness in the model by tuning the value of α, and consider both
the global flow network and the value distribution, thereby making it adjustable and controllable.
The details of our algorithm are as in Sec. C.

5 EXPERIMENTS

In this section, we evaluate the performance of MG2FlowNet on two tasks: Hypergrid and Molecule
Design. These tasks are designed to test the model under different conditions: the former involves
long action trajectories with sparse rewards, while the latter involves short trajectories with a large
action space, also under sparse rewards. Our evaluation focuses on two central research questions:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

❶ How effectively does the model achieve early discovery and sustained generation of high-
reward candidates?

❷ How well does the model maintain diversity among generated candidates?

To provide a comprehensive view of the model’s capabilities with respect to these questions, we
report a set of carefully chosen metrics. In addition, we examine how key parameters of the model
are learned, and we conduct ablation studies on the joint forward probability PF and MCTS-based
planning in Sec. F. The experimental setup and results for each task are detailed below.

5.1 HYPERGRID TASK

Task Description. We begin our evaluation with the Hypergrid environment introduced by Bengio
et al. (2021), a canonical testbed for assessing compositional generalization in GFlowNets. The
environment consists of a D-dimensional discrete state space structured as a hypercube with edge
length H , yielding HD distinct states. This task challenges agents to develop long-horizon planning
capabilities while learning from extremely sparse reward signals. The agent initiates each episode at
the origin (0, 0, · · · , 0) ∈ ZD and executes actions by incrementing any single coordinate by 1 (i.e.,
∆xd = 1 for dimension d). From any state, the agent may alternatively choose a termination action
that yields a reward determined by the following function:

R(x) = R0 +R1

D∏
d=1

I
(∣∣∣∣ xd

H − 1
− 0.5

∣∣∣∣ ∈ (0.25, 0.5]

)
+R2

D∏
d=1

I
(∣∣∣∣ xd

H − 1
− 0.5

∣∣∣∣ ∈ (0.3, 0.4]

)
, (12)

where I denotes the indicator function, and we adopt the standard parameterization: R0 = 10−5,
R1 = 0.5, R2 = 2, with grid parameters H = 8, D = 4.

Metrics. Since the grid environment is relatively simple with only 16 modes, we adopt the fol-
lowing two metrics to evaluate the performance of our model: 1) Number of modes, which reflects
the model’s exploration capacity and structural diversity. 2) The ℓ1 error Ex∼p

[∣∣∣p(x)− R(x)
Z

∣∣∣],
where Z =

∑
x R(x), measuring how well the learned sampling distribution p(x) matches the target

reward distribution. This ℓ1 error directly assesses whether the GFlowNets achieves its fundamental
objective of generating samples with probabilities proportional to their rewards.

Baselines. We compare MG2FlowNet with representative flow-based baselines like TB and
MCMC (Malkin et al., 2022; Bengio et al., 2021; Zhang et al., 2022b), as well as several non-flow-
based methods, including PPO (Schulman et al., 2017) and RANDOM-TRAJ (which samples ac-
tions uniformly at random). All methods are evaluated under the same grid environment and reward
function to ensure fairness. The following sections present the results and analysis of MG2FlowNet
in comparison to these baselines across multiple evaluation metrics.

Effectiveness Evaluation. The right of Figure 3 shows that the number of modes discovered
is a key indicator of how effectively a model identifies high reward candidates. TB recovers 8
modes within 20,000 state visits, whereas MG2FlowNet achieves the same within only 10,000 vis-
its. Most baselines eventually identify all 16 modes after 40,000 visits. These results indicate that
MG2FlowNet is more effective at locating high reward regions. The underlying reason lies in the
different exploration strategies: vanilla GFlowNets emphasize balanced exploration across all candi-
date regions, which slows down the process of reaching high-reward areas. In contrast, MG2FlowNet
enhances the sampling process through action value prediction and controllable greedy exploration,
which systematically biases the trajectories toward promising states. Once certain high-reward re-
gions are discovered, the model tends to revisit and exploit those areas more frequently in subsequent
iterations, thereby accelerating the discovery of near-optimal solutions and reducing the number of
visits required to recover all modes.

Accuracy Evaluation of GFlowNets. The left of Figure 3 reports the ℓ1 error across differ-
ent models, which captures the alignment between the generated distribution and the reward-
proportional objective of GFlowNets. Vanilla GFlowNets achieve relatively low ℓ1 error by strictly
adhering to the proportionality principle, ensuring that sampling frequencies closely follow reward
magnitudes. By contrast, MG2FlowNet incorporates the MCTS algorithm to guide the sampling
process, which introduces a more greedy bias toward high reward regions. As a consequence, once
the model identifies promising areas, it tends to allocate a greater proportion of its sampling budget

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

States visited

1

2

3

10000 30000 50000 80000 100000
States visited

0.0

0.1

0.2

0.3

0.4

0.5

D
is

tr
ib

ut
io

n
er

ro
r

TB
MG2FlowNet
MCMC
PPO
RANDOM-TRAJ

10000 20000 30000 40000
States visited

0

2

4

6

8

10

12

14

16

N
um

be
r

of
 m

od
es

TB
MG2FlowNet
MCMC
PPO
RANDOM-TRAJ

Figure 3: High Reward Mode Discovery and Distribution Matching Error on Hypergrid. Left:
Comparison of the number of high-reward region modes that different models can find with the same
number of visits. Right: Comparison of ℓ1 loss across models, measuring deviation between learned
sampling distribution and target reward distribution.

to those regions in later training stages. This intentional departure from exact proportionality leads
to slightly larger ℓ1 error values, but remains consistent with the design goal: prioritizing the rapid
identification of promising regions and the generation of high reward candidates. In practice, this
results in a sampling distribution that, while not perfectly reward proportional, is better suited for
producing near-optimal solutions within fewer training rounds.

5.2 MOLECULE DESIGN TASK

Task Description. Recent advances in artificial intelligence have revolutionized computational
chemistry, particularly in molecular property prediction and design (Du et al., 2024; Li et al., 2024;
Zhang et al., 2023b). Molecular design presents an ideal application scenario for GFlowNets, as it
requires simultaneous optimization of two critical objectives: 1) quality (achieving target chemical
properties) and 2) diversity (generating structurally distinct candidates). This dual requirement stems
from practical drug discovery needs, where viable candidates must not only exhibit strong binding
affinities but also possess synthesizable structures. We focus on the specific challenge of designing
molecules with maximal binding energy to a target protein. To this end, we formally describe the
action space for molecular generation: building on junction tree-based molecular generation and
following Bengio et al. (2021), we define:

A(s) = {(v, b) | v ∈ V(s), b ∈ B}, (13)
where v denotes the choice of target atom, b denotes the choice of building block. where V(s)
denotes attachable atoms in state s and B is our building block vocabulary (|B| = 105). Given
a molecule, a building block can be added to the molecule at different positions. The combinato-
rial action space poses significant exploration challenges while enabling the generation of diverse
molecular scaffolds.

Metrics. 1) Number of modes, which reflects the model’s exploration capacity and structural
diversity. 2) Average top 100, Among all generated candidate molecules, we report how many
molecular states are visited when the top-100 average reward exceeds 7.0, 7.5, and 8.0. Fewer
visited states to reach the corresponding average reward indicate faster discovery of high reward
regions. 3) Tanimoto similarity, in molecular generation tasks, if all high-reward molecules pro-
duced are structurally almost identical, then even high reward values would indicate that the model
suffers from mode collapse. To address this, we additionally adopt the Tanimoto similarity metric,
which measures the structural differences among generated molecules and further reflects whether
the model can maintain diversity while consistently generating high-reward molecules.

Baselines. we compare MG2FlowNet with four popular flow-based baselines, TB (Malkin et al.,
2022), SubTB (Madan et al., 2023), DB (Bengio et al., 2021) and QGFN (Lau et al., 2024). Here,
we adopt the same training parameters as the vanilla GFlowNets.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Round

0

500

1000

1500

2000

2500
N

um
be

r
of

 m
od

es

(a) Modes with reward > 7.5
TB
SubTB
DB
QGFN
MG2FlowNet

0 2000 4000 6000 8000 10000
Round

0

100

200

300

400

N
um

be
r

of
 m

od
es

(b) Modes with reward > 8.0
TB
SubTB
DB
QGFN
MG2FlowNet

Figure 4: Number of modes with reward > 7.5 and > 8.0 in molecule design task. Left: Com-
parison of different models in terms of the number of modes with reward greater than 7.5. Right:
Comparison of different models in terms of the number of modes with reward greater than 8.0.

Effectiveness Evaluation. Figure 4 reports the discovery of high reward samples. SubTB and DB
show significantly inferior performance, as no high reward samples (with reward > 7.5 or > 8.0)
are discovered even after 10,000 iterations. TB performs slightly better than SubTB and DB, but it
still lags behind MG2FlowNet and QGFN in efficiently identifying high-reward samples. Notably,
MG2FlowNet demonstrates superior effectiveness by discovering high-reward samples earlier and
more consistently. In particular, MG2FlowNet surpasses QGFN in locating samples with reward
> 8.0, successfully achieving this within only 300 iterations. This improvement stems from the
exploration term in our Eq. (5) formulation, which plays a crucial role in the early training phase by
adaptively balancing exploration and exploitation, unlike QGFN, which solely relies on Q-values.

Table 1: Number of states visited for top candidates (lower
is better). Bold: best; underline: second best.

States
visited

avg top 100 avg top 100 avg top 100
> 7.0 > 7.5 > 8.0

TB 2,824 6,425 12,816
QGFN 2,000 2,800 10,800

MG2FlowNet 644 964 5,204

Table 1 further confirms these observa-
tions with the average top 100 (avg top
100) rewards. SubTB and DB are ex-
cluded, as reaching average top 100 re-
wards of 7.0, 7.5, or 8.0 would require pro-
hibitively many state visits. Both QGFN
and MG2FlowNet show marked improve-
ments, benefiting from action value guided
sampling. However, due to inaccurate Q-
values in the early stages, QGFN some-
times overestimates intermediate reward regions and tends to waste effort on low-potential paths. In
contrast, MG2FlowNet performs consistently well across all thresholds (7.0, 7.5, and 8.0), strongly
supporting the effectiveness of integrating MCTS and the α-greedy strategy into the GFlowNets
framework. These mechanisms enable adaptive balancing throughout training, ultimately leading to
faster and more stable discovery of high-reward samples.

0 5000 10000 15000 20000
Trajectories

0.325

0.350

0.375

0.400

0.425

0.450

0.475

0.500

0.525

Ta
ni

m
ot

o
si

m
ila

ri
ty

TB
SubTB
QGFN
DB
MG2FlowNet

Figure 5: The Tanimoto similarity among the top-
1000 molecules with the highest rewards generated
by different models.

Diversity Evaluation. Diversity is as-
sessed through the Tanimoto similarity
in Figure 5, which reflects the similarity
among generated samples. The results
show that MG2FlowNet maintains a low
Tanimoto similarity, indicating that even
while adopting a greedy sampling strategy,
it still preserves diversity to a large extent.
This complements the evidence from the
number of modes: although our model
discovers substantially more modes than
baselines, these are not redundant or trivial
repetitions, as the Tanimoto similarity does
not increase significantly. Together, these
findings demonstrate that MG2FlowNet not
only generates more high-reward candidates
but also achieves this while maintaining diverse coverage of the search space.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.3 ABLATION STUDY OF GREEDINESS COEFFICIENT α

Table 2: Number of modes (average top > 8.0) discov-
ered under different α settings. Bold: best in each column.
Temp denotes that α is linearly annealed from 0 to 0.2 dur-
ing training.

Model settings 12,000 24,000 40,000
of modes (avg top 100 > 8.0)

c puct = 1, α = 0.2 92 175 459
c puct = 1, α = 0.4 17 46 249
c puct = 1, T emp 1 26 103
c puct = 1, α = 0 14 61 105

We conduct ablation studies to investigate
the role of the MCTS component in our
framework, and to analyze how controlling
the degree of integration between MCTS
and GFlowNets influences model perfor-
mance. As illustrated in the Table. 2, We
investigate the effect of different greediness
coefficients on model performance. Addi-
tionally, we introduce a temperature coeffi-
cient to realize a dynamic strategy that pro-
motes stronger exploration during the early
phase of training and gradually shifts toward greedier exploitation in later stages.

Greedy sampling (α = 0.4). We initially hypothesized that a higher value of the α-greedy param-
eter, which corresponds to a more exploitative sampling strategy, would lead to better performance
in the early stage of training but worse performance later on. The intuition was that a greedier policy
would favor seemingly high-reward samples at the beginning, thus boosting the average top-k score
temporarily. However, the empirical results contradicted our expectations. We attribute this to ex-
cessive greediness, which causes premature convergence to suboptimal regions that initially appear
promising but in fact correspond to low-reward trajectories, ultimately degrading long-term perfor-
mance. This observation confirms that setting α too high has a detrimental impact on performance.

Temperature controlled strategy (α from 0 to 0.2). The temperature-controlled strategy theoret-
ically offers more robust training dynamics. However, the empirical results diverged substantially
from our expectations. We consider that this discrepancy arises from the configuration of the transi-
tion steps. Since determining the optimal value for this setting is nontrivial and beyond the primary
scope of this work, we did not further pursue this direction. Importantly, this does not affect the core
performance of our model, as the analysis was conducted as an auxiliary study. We attribute the
observed performance degradation to the initially very small value of α, which effectively reduces
the model to a standard GFlowNets. Because our PUCT-based selection still incorporates an explo-
ration term that dominates in the early stages of training, as discussed in our analysis of cpuct, the
result is additional over-exploration on top of the base GFlowNets behavior, leading to a significant
performance drop. From these observations, we conclude that the temperature-based scheduling
of α is undesirable for two reasons: first, it is difficult to precisely control the rate of change; and
second, the model often exhibits negative performance gains in the early phase. Consequently, we
empirically determine that a fixed value of α = 0.2 provides the best trade-off.

Effect of MCTS. When α = 0, the model degenerates to a vanilla GFlowNets, yielding fewer
modes than α = 0.2 or α = 0.4, which confirms the utility of the MCTS component in guiding
sampling toward high reward regions. Although scheduling α to increase over training rounds leads
to worse performance than α = 0, this can be explained by excessive exploration on an unstable
flow network in the early stage, causing a significant drop in performance. These results validate the
effectiveness of the MCTS component.

6 CONCLUSION

In this paper, we introduce MG2FlowNet, a novel framework that integrates enhanced MCTS with
controllable greediness into GFlowNets by adapting the selection, simulation, and backpropagation
stages to DAG-structured environments. Our method employs a PUCT-based selection policy to-
gether with a tunable greediness mechanism to achieve a principled balance between exploration
and exploitation. Through extensive experiments, we demonstrate that MG2FlowNet substantially
improves both sample efficiency and diversity, particularly in large-scale and sparse-reward set-
tings such as molecular generation. Overall, our study highlights the feasibility and effectiveness of
combining MCTS with GFlowNets, providing insights for developing more powerful reinforcement
learning algorithms integrated with GFlowNets. We also envision extending this approach or other
more effective methods to dynamic environments where the action space and reward function evolve
over time, thereby addressing more challenging tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research relies exclusively on publicly available benchmark environments from Malkin et al.
(2022), including the Hypergrid task and standard molecular design datasets, which contain no per-
sonally identifiable or sensitive information. No human or animal subjects were involved, and there-
fore no ethical approval was required. We acknowledge that generative modeling techniques, such
as MG2FlowNet, could be misapplied in high-stakes domains, including drug discovery or person-
alized recommendation systems. However, our contributions are purely methodological, and all
experiments are restricted to controlled and widely accepted benchmarks. To mitigate risks, we
emphasize that any downstream applications of this method should be accompanied by domain-
specific safeguards, rigorous evaluation, and appropriate human oversight. No conflicts of interest
or external influences are associated with this work.

REPRODUCIBILITY STATEMENT

We have taken extensive measures to ensure the reproducibility of our results. The main text
and appendix provide full details of model architectures, optimization objectives, training hyper-
parameters, and evaluation metrics. Additional experimental settings, ablation studies, and en-
vironment specifications are documented in the supplementary material. We have released the
anonymized source code, configuration files, and preprocessing scripts, which are available at
https://anonymous.4open.science/r/MG2FlowNet-68B2/. With the released re-
sources and instructions, independent researchers are able to reproduce all reported results reliably.

REFERENCES

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

Rémi Coulom. Efficient selectivity and backup operators in monte-carlo tree search. In International
conference on computers and games, pp. 72–83. Springer, 2006.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian structure learning with generative flow networks. In Uncertainty
in Artificial Intelligence, pp. 518–528. PMLR, 2022.

Wenjie Du, Shuai Zhang, Jun Xia Di Wu, Ziyuan Zhao, Junfeng Fang, and Yang Wang. Mmgnn: A
molecular merged graph neural network for explainable solvation free energy prediction. In Pro-
ceedings of the Thirty-Third International Joint Conference on Artificial Intelligence, pp. 5808–
5816, 2024.

Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: A
benchmark for practical molecular optimization. In S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Pro-
cessing Systems, volume 35, pp. 21342–21357. Curran Associates, Inc., 2022. URL
https://proceedings.neurips.cc/paper_files/paper/2022/file/
8644353f7d307baaf29bc1e56fe8e0ec-Paper-Datasets_and_Benchmarks.
pdf.

Edward J Hu, Moksh Jain, Eric Elmoznino, Younesse Kaddar, Guillaume Lajoie, Yoshua Bengio,
and Nikolay Malkin. Amortizing intractable inference in large language models. arXiv preprint
arXiv:2310.04363, 2023.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In International Conference on Machine Learning,
pp. 9786–9801. PMLR, 2022.

10

https://anonymous.4open.science/r/MG2FlowNet-68B2/
https://proceedings.neurips.cc/paper_files/paper/2022/file/8644353f7d307baaf29bc1e56fe8e0ec-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8644353f7d307baaf29bc1e56fe8e0ec-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/8644353f7d307baaf29bc1e56fe8e0ec-Paper-Datasets_and_Benchmarks.pdf

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In European conference
on machine learning, pp. 282–293. Springer, 2006.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernández-Garcıa, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of con-
tinuous generative flow networks. In International Conference on Machine Learning, pp. 18269–
18300. PMLR, 2023.

Elaine Lau, Stephen Lu, Ling Pan, Doina Precup, and Emmanuel Bengio. Qgfn: Controllable
greediness with action values. Advances in neural information processing systems, 37:81645–
81676, 2024.

Seanie Lee, Minsu Kim, Lynn Cherif, David Dobre, Juho Lee, Sung Ju Hwang, Kenji Kawaguchi,
Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, et al. Learning diverse attacks on large language
models for robust red-teaming and safety tuning. arXiv preprint arXiv:2405.18540, 2024.

Jiahe Li, Wenjie Du, and Yang Wang. Molclw: Molecular contrastive learning with learn-
able weighted substructures. In 2024 IEEE International Conference on Bioinformatics and
Biomedicine (BIBM), pp. 828–831. IEEE, 2024.

Dianbo Liu, Moksh Jain, Bonaventure FP Dossou, Qianli Shen, Salem Lahlou, Anirudh Goyal,
Nikolay Malkin, Chris Chinenye Emezue, Dinghuai Zhang, Nadhir Hassen, et al. Gflowout:
Dropout with generative flow networks. In International Conference on Machine Learning, pp.
21715–21729. PMLR, 2023a.

Shuchang Liu, Qingpeng Cai, Zhankui He, Bowen Sun, Julian McAuley, Dong Zheng, Peng Jiang,
and Kun Gai. Generative flow network for listwise recommendation. In Proceedings of the 29th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 1524–1534, 2023b.

Ziru Liu, Shuchang Liu, Bin Yang, Zhenghai Xue, Qingpeng Cai, Xiangyu Zhao, Zijian Zhang,
Lantao Hu, Han Li, and Peng Jiang. Modeling user retention through generative flow networks.
In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pp. 5497–5508, 2024.

George Ma, Emmanuel Bengio, Yoshua Bengio, and Dinghuai Zhang. Baking symmetry into
gflownets. arXiv preprint arXiv:2406.05426, 2024.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain, An-
drei Cristian Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning gflownets from
partial episodes for improved convergence and stability. In International Conference on Machine
Learning, pp. 23467–23483. PMLR, 2023.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. Advances in Neural Information Processing Systems,
35:5955–5967, 2022.

Nikita Morozov, Daniil Tiapkin, Sergey Samsonov, Alexey Naumov, and Dmitry Vetrov. Improving
gflownets with monte carlo tree search. arXiv preprint arXiv:2406.13655, 2024.

Mizu Nishikawa-Toomey, Tristan Deleu, Jithendaraa Subramanian, Yoshua Bengio, and Laurent
Charlin. Bayesian learning of causal structure and mechanisms with gflownets and variational
bayes. arXiv preprint arXiv:2211.02763, 2022.

Ling Pan, Dinghuai Zhang, Aaron Courville, Longbo Huang, and Yoshua Bengio. Generative aug-
mented flow networks. arXiv preprint arXiv:2210.03308, 2022.

Ling Pan, Moksh Jain, Kanika Madan, and Yoshua Bengio. Pre-training and fine-tuning generative
flow networks. arXiv preprint arXiv:2310.03419, 2023a.

Ling Pan, Nikolay Malkin, Dinghuai Zhang, and Yoshua Bengio. Better training of gflownets with
local credit and incomplete trajectories. In International Conference on Machine Learning, pp.
26878–26890. PMLR, 2023b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ling Pan, Dinghuai Zhang, Moksh Jain, Longbo Huang, and Yoshua Bengio. Stochastic generative
flow networks. In Uncertainty in Artificial Intelligence, pp. 1628–1638. PMLR, 2023c.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement
learning algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–
1144, 2018.

Fangxu Yu, Lai Jiang, Haoqiang Kang, Shibo Hao, and Lianhui Qin. Flow of reasoning: Efficient
training of llm policy with divergent thinking. arXiv preprint arXiv:2406.05673, 1(2):6, 2024.

Dinghuai Zhang, Ricky TQ Chen, Nikolay Malkin, and Yoshua Bengio. Unifying generative models
with gflownets and beyond. arXiv preprint arXiv:2209.02606, 2022a.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and Yoshua
Bengio. Generative flow networks for discrete probabilistic modeling. In International Confer-
ence on Machine Learning, pp. 26412–26428. PMLR, 2022b.

Dinghuai Zhang, Ricky Tian Qi Chen, Cheng-Hao Liu, Aaron Courville, and Yoshua Bengio. Diffu-
sion generative flow samplers: Improving learning signals through partial trajectory optimization.
arXiv preprint arXiv:2310.02679, 2023a.

Jiahui Zhang, Wenjie Du, Di Wu, Jiahe Li, Shuai Zhang, and Yang Wang. Improving efficiency in
rationale discovery for out-of-distribution molecular representations. In 2023 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pp. 401–407. IEEE, 2023b.

Yudong Zhang, Xuan Yu, Xu Wang, Zhaoyang Sun, Chen Zhang, Pengkun Wang, and Yang
Wang. COFlownet: Conservative constraints on flows enable high-quality candidate genera-
tion. In The Thirteenth International Conference on Learning Representations, 2025. URL
https://openreview.net/forum?id=tXUkT709OJ.

Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, and Christian A Naesseth. A
variational perspective on generative flow networks. arXiv preprint arXiv:2210.07992, 2022.

12

https://openreview.net/forum?id=tXUkT709OJ

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

2 Related Work 2

3 Problem Formulation 3

4 Methodology 3

4.1 PUCT Guided Selection . 3

4.2 Expanding All Legal Actions . 4

4.3 Simulation Using Forward Probability of GFlowNets 5

4.4 Backpropagation Along Promising Paths . 5

4.5 Greediness Control . 5

5 Experiments 5

5.1 Hypergrid Task . 6

5.2 Molecule Design Task . 7

5.3 Ablation Study of Greediness Coefficient α . 9

6 Conclusion 9

A Notation 14

B Background 14

B.1 Generative Flow Networks (GFlowNets) . 14

B.2 Monte Carlo Tree Search . 15

C Detailed Algorithm 15

D Related Work 15

D.1 Generative Flow Networks (GFlowNets) . 15

D.2 Reinforcement Learning and MCTS in GFlowNets 16

D.3 Potential Applications of GFlowNets . 16

E Backpropagation Challenge Details 17

F Additional Experimental Results 18

F.1 Study on Greediness Term . 18

F.2 Study on Exploration Term . 18

F.3 Different Exploration Coefficient cpuct . 18

F.4 Comparison of Different Expanding Strategies . 19

G Detailed Experimental Setup 19

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

H Proof of Equation (10) 20

I Discussion 20

I.1 Limitations . 20

I.2 Future Work . 20

J Use of LLMs 21

A NOTATION

This section provides a summary of the key notations throughout this paper. The symbols and
corresponding descriptions are listed in Table 3.

Table 3: Summary of Key Notations

Symbol Description
s0, s

′, s, st States (initial state s0, intermediate state s′, s, st)
x Terminal state
S State space
X Set of terminal states
A(s) Available action set at state s
τ = (s0 → · · · → x) A trajectory from the initial state s0 to a terminal state x
T Set of trajectories
F (s) Flow of state s (inflow equals outflow)
F (s→ s′) Flow from state s to s′

Z Flow of the initial state s0
PF (s

′|s) Forward transition probability from s to s′

PB(s|s′) Backward transition probability from s′ to s
LTB(τ) Trajectory Balance loss
nT Terminal node in Gm
n, n0 nodes in Gm (intermediate node n, root node n0)
Q(n, a) Estimated value of taking action a at node n in Gm
N(n, a) Visit count of taking action a at node n in Gm
R(x) or R(nT) Reward of terminal state or node
π(n, a) Policy for selecting action a at node n
PUCT(n, a) PUCT value of taking action a at node n in Gm
cpuct Exploration coefficient in PUCT
α Greediness coefficient
ṽa Unnormalized score of action a before softmax normalization
pa Probability of selecting action a after softmax normalization

ℓ1
ℓ1 error between generated distribution
and reward-proportional distribution

V(s) Set of attachable atoms in state s (molecule design)
B Building block vocabulary for molecule generation
G DAG representing the flow network
Gm DAG representing the MCTS policy

B BACKGROUND

B.1 GENERATIVE FLOW NETWORKS (GFLOWNETS)

GFlowNets (Bengio et al., 2021) are a class of generative models designed for sampling composi-
tional objects x ∈ X through a sequential construction process. The generation process is formalized
as a trajectory τ = (s0, . . . , x) over a directed acyclic graph (DAG) G = (S,A), where S represents

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

the set of partially constructed states and A ⊂ S × S denotes valid transitions (e.g., adding a frag-
ment to a molecule). The DAG is rooted at a unique initial state s0, and terminal states correspond
to fully constructed objects.GFlowNets are trained to satisfy flow balance conditions, ensuring that
the flow F (s) through states is conserved. Terminal states act as sinks, absorbing flow R(s) (a non-
negative reward), while intermediate states balance incoming and outgoing flows. This is expressed
by the balance equation for any partial trajectory (sn, . . . , sm):

F (sn)

m−1∏
i=n

PF (si+1|si) = F (sm)

m−1∏
i=n

PB(si|si+1), (14)

where PF and PB are the forward and backward policies, respectively, representing the fraction of
flow directed toward children or parents of a state. For terminal states, F (s) = R(s). PF and PB

are related to the Markovian flow F as follows:

PF (s
′ | s) = F (s→ s′)

F (s)
, PB(s | s′) =

F (s→ s′)

F (s′)
(15)

B.2 MONTE CARLO TREE SEARCH

Monte Carlo Tree Search (MCTS) (Coulom, 2006) is a best-first search algorithm that combines tree
search with Monte Carlo simulation. The algorithm iteratively builds a search tree through four key
phases: Selection→ Expansion→ Simulation→ Backpropagation.

• Selection: Traverse the tree from root to leaf using a tree policy (typically Upper Confi-
dence Bound for Trees, UCT) (Kocsis & Szepesvári, 2006):

a∗ = argmax
a

(
Q(s, a) + c

√
lnN(s)

N(s, a)

)
, (16)

where Q(s, a) is the action value, N(s) and N(s, a) are visit counts, and c is an exploration
constant.

• Expansion: When reaching an expandable node, create one or more child nodes represent-
ing possible state transitions.

• Simulation: Perform a Monte Carlo rollout from the expanded node using a default policy
to estimate the reward.

• Backpropagation: Update statistics along the traversed path:

C DETAILED ALGORITHM

This section describes the detailed algorithmic flow of our framework, as shown in the Algorithm 15.

D RELATED WORK

D.1 GENERATIVE FLOW NETWORKS (GFLOWNETS)

Since their introduction by Bengio et al. (2021), GFlowNets have attracted increasing attention as a
framework for sampling compositional objects with probabilities proportional to their rewards. This
formulation enables efficient exploration in multimodal or sparse reward settings, where traditional
approaches often struggle. Subsequent research has expanded both the theoretical foundations and
methodological scope of GFlowNets. For instance, Malkin et al. (2022) and Zimmermann et al.
(2022) connected GFlowNets to variational inference, showing advantages when leveraging off-
policy data. Methodological improvements have focused on more efficient credit assignment (Pan
et al., 2022; 2023b), while others explored multi-objective generation (Jain et al., 2022) and world
modeling (Pan et al., 2023c). Extensions to unsupervised learning (Pan et al., 2023a) and bias reduc-
tion via isomorphism tests (Ma et al., 2024) have further broadened their applicability. From a prob-
abilistic modeling perspective, Zhang et al. (2022b) proposed joint training of energy-based models

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Algorithm 1 MCTS Iterations with Greediness Controlled Sampling
1: Input: Reward function R : X → R>0, batch size M , model PF with parameters θ, root node n0, number

of MCTS iterations nplayout, PUCT exploration coefficient cpuct, greediness factor α
2: Output: MCTS sampling policy
3: Initialize MCTS graph Gm with root node n0 corresponding to state s0
4: for i = 1 to nplayout do
5: Selection: Traverse tree from n0 to a leaf ni using PUCT; record path τ = (n0 → · · · → ni)
6: if ni is terminal then
7: Backpropagate reward R(ni) along the trajectory τ
8: else
9: Expansion: Add A(ni) (all available actions of ni) to Gm

10: Simulation: Choose one child ne from the children generated during the expansion stage, and roll
out to terminal node nT using PF

11: Backpropagation: Propagate reward R(nT) along τ
12: end if
13: end for
14: Sampling Phase: Use α-greedy over Q-values predicted by Gm and PF to generate new samples
15: µ ∼ Categorical

(
(1−α)·PF+α·p

∥(1−α)·PF+α·p∥1

)

and GFlowNets, and subsequent work connected GFlowNets with diffusion models (Zhang et al.,
2022a; Lahlou et al., 2023; Zhang et al., 2023a). Despite these advances, a persistent limitation of
classical GFlowNets is their tendency toward inefficient exploration, which slows convergence and
reduces the quality of high-reward samples. This work directly targets this drawback by proposing
a principled mechanism to improve exploration efficiency.

D.2 REINFORCEMENT LEARNING AND MCTS IN GFLOWNETS

Beyond standalone developments, recent efforts have explored integrating reinforcement learning
techniques into GFlowNets, such as QGFN (Lau et al., 2024) and MaxEnt RL connections (Mo-
rozov et al., 2024). Relatedly, Monte Carlo Tree Search (MCTS) has achieved remarkable success
in sequential decision-making, as demonstrated in AlphaGo and AlphaZero (Silver et al., 2016;
2018). A central refinement of MCTS is the Polynomial Upper Confidence Trees (PUCT) algo-
rithm (Coulom, 2006; Kocsis & Szepesvári, 2006), which balances exploration and exploitation by
incorporating visit counts. However, existing strategies, such as the p-greedy rule:

πtree (· | s) = (1− ps) Softmax (Qtree (s, ·)) + ps · U(C(s)), (17)

which often fall into local optima when high-scoring nodes dominate Q values, and the uniform
exploration term ignores prior probabilities from GFlowNets. Entropy regularization has been pro-
posed as a remedy, but it passively enforces exploration without leveraging historical statistics such
as visit counts. Inspired by these limitations, we incorporate PUCT-guided selection and control-
lable greedy strategies into the GFlowNets framework, enabling more efficient trajectory generation
while preserving theoretical guarantees.

D.3 POTENTIAL APPLICATIONS OF GFLOWNETS

GFlowNets have demonstrated significant potential across multiple domains due to their unique
ability to sample diverse solutions while maintaining reward proportionality. Their strong gener-
alization capabilities enable effective handling of unseen states, making them particularly suitable
for exploration-intensive tasks. The technology has shown remarkable success in molecular design,
where it outperforms traditional reinforcement learning methods in exploring chemical space while
preserving synthetic feasibility and drug-like properties.

Additionally, GFlowNets have emerged as a powerful framework for recommendation systems,
demonstrating particular effectiveness in addressing the critical diversity-quality trade-off. Recent
studies have successfully applied GFlowNets to enhance listwise recommendations by maintaining
recommendation quality while significantly improving diversity Liu et al. (2023b), as well as opti-
mizing user retention through intelligent exploration strategies Liu et al. (2024). Beyond traditional
recommendation tasks, GFlowNets have shown remarkable adaptability for large language model

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

fine-tuning across various domains. Notable applications include diverse text generation for sen-
tence infilling and chain-of-thought reasoning Hu et al. (2023), adversarial prompt generation in red
teaming scenarios Lee et al. (2024), and complex puzzle-solving in domains such as BlocksWorld
and Game24 Yu et al. (2024). These applications collectively demonstrate GFlowNets’ versatility
in handling both recommendation tasks and language model optimization challenges.

E BACKPROPAGATION CHALLENGE DETAILS

There is a challenge in updating the nodes during the backpropagation phase. Because updating
different parents leads to a completely different distribution of the flow network. There are some al-
ternative options: 1) The reward R(nT) is uniformly propagated back to each parent node, such that
if there are n parent nodes, each parent node updates its own Q-value with R(nT)/n. 2) Distribute
the reward R(nT) to all parent nodes proportionally based on their relative flow magnitudes within
the flow network. Each parent node updates its own Q-value with ρR(nT), where ρ represents the
proportion of flow from the parent node to a specific child node. 3) the reward R(nT) is only prop-
agated back along the trajectory τ = (n0 → ... → ni) in the selection phase, described in detail in
Sec. 4.1. Each node included in the trajectory τ updates its own Q-value with R(nT).

n0

nT1 n1 n2 n3 n4 nT2

nT3R(nT1)=20

n0

nT1 n1 n2 n3 n4 nT6

nT2 nT3 nT4 nT5

R(nT3)=40

R(nT2)=20 R(nT1)=20 R(nT6)=20

R(nT2)=R(nT3)=R(nT4)=R(nT5)=10

n : intermediate node nT : terminal node
R(nT) : reward : flow with different size

root node root node

Shared node policy
via different action

Split node policy
via different action

Figure 6: Comparison of different representations for reaching the same state via multiple
action sequences. On the left, identical states are represented by a single shared node; On the right,
the same state reached through different action sequences is represented by distinct nodes.

In our work, we adopt the third method for the following reasons. The first two approaches require
updating all parent nodes and iteratively propagating these updates further up the tree by updating
the parents of parents and so on. This results in significant computational overhead. Moreover,
the second method incurs additional cost by computing the proportion of flow from each parent to
its children, which further increases the computational burden. Furthermore, restricting updates to
nodes along the selected path τ serves to emphasize the most promising trajectory. In contrast, the
first two methods would dilute the relative contribution of this most promising path by distributing
credit more broadly, which is undesirable. For different actions that lead to the same node, we have
designed a global mapping of state nodes. For identical states, only one node is preserved. This
approach also aligns with the objective of flow network training. As shown in Figure 6, if we create
multiple nodes for the same terminal state via different action orders, we will distribute the propor-
tion of high reward regions among these nodes, which may prevent the MCTS tree from accurately
reflecting the high reward characteristics of these terminal nodes. Given these considerations, we
opt for the third approach in our experimental design.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 STUDY ON GREEDINESS TERM

Table 4: The number of states visited for top-
performing candidates. Results with and without the
exploration term.

States
visited

Average Top-100
>7 >7.5 >8

MG2FlowNet (without Q) 1524 2404 9204
MG2FlowNet (with Q) 644 964 5204

In this section, we use the Molecule Design
experiment as an example to illustrate the sig-
nificant role of the greediness term. The per-
formance is evaluated based on the average
reward of the top 100 samples, comparing
greedy and non-greedy variants of the pol-
icy. As reported in Table 4, we can observe
that achieving the same average top-100 re-
ward requires visiting a significantly larger
number of states, indicating that the propor-
tion of high-reward samples obtained during
sampling is relatively low. This further sub-
stantiates the critical importance of the greedy term in the algorithm. The greedy term plays a pivotal
role in guiding the model to sample from high-reward regions of the state space. Without this greedy
component, the model fails to consistently generate high-reward samples, which fundamentally con-
tradicts the original design intent of our approach.

F.2 STUDY ON EXPLORATION TERM

Table 5: The number of states visited for different modes
discovered. Comparison of results with and without the ex-
ploration term.

States visited 4 8 16
MG2FlowNet (cpuct = 0) 6,416 19,216 49,616
MG2FlowNet (cpuct = 0.2) 4,816 9,616 20,816

To illustrate the critical role of the
exploration term, we use the Hy-
pergrid experiment as an example.
As shown in the ablation study re-
sults in Table 5, the model performs
significantly worse when the explo-
ration term is removed, with perfor-
mance reduced to less than half of
that achieved with the term included.
This clearly demonstrates the impor-
tance of the exploration component.

We conclude that the exploration term plays a crucial role, especially in the early stages of training.
During this phase, the Q-values are still inaccurate and highly uncertain. Without the exploration
term, the agent tends to exploit unreliable estimates, leading to unstable learning dynamics and
ultimately degraded performance.

Table 6: Number of modes discovered under two thresholds. Bold numbers are the highest in
their respective column.

Configuration average top > 7.5 average top > 8.0

12,000 24,000 40,000 12,000 24,000 40,000
MG2FlowNet (cpuct = 0.5, α = 0.2) 402 947 1,879 128 312 704
MG2FlowNet (cpuct = 2, α = 0.2) 546 923 1,645 189 301 612
MG2FlowNet (cpuct = 1, α = 0.2) 507 1,080 2,848 165 384 1,053
MG2FlowNet (cpuct = 1, α = 0.4) 74 365 2,106 21 102 783
MG2FlowNet (cpuct = 1, Temp) 4 170 1,123 1 43 398

F.3 DIFFERENT EXPLORATION COEFFICIENT cpuct

As reported in Table 6, empirical results reveal that reducing the exploration coefficient cpuct signif-
icantly impairs the model’s ability to consistently generate high reward samples. This observation
supports our initial hypothesis: a smaller cpuct limits the model’s capacity to explore less-visited
regions of the state space, potentially causing it to overlook promising high-reward areas during

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

the early training phase. On the other hand, setting cpuct to a relatively large value leads to stronger
early-stage performance, as it encourages broader exploration and facilitates early discovery of high-
reward trajectories. However, as training progresses, such high exploration settings begin to exhibit
diminishing returns and even hinder further progress. While early identification of promising regions
might be expected to guide subsequent sampling toward them, the problem actually arises from an
imbalance between exploration and exploitation. When cpuct is set excessively large, the exploration
term in the PUCT (Eq. (5)) selection formula dominates, leading to over-exploration and suboptimal
convergence. Based on extensive empirical evaluations, we find that cpuct = 1 provides a favorable
trade-off between exploration and exploitation throughout the training process.

F.4 COMPARISON OF DIFFERENT EXPANDING STRATEGIES

In the main text, we mentioned that our expanding strategy is adding all child nodes to the unex-
panded node, because the exploration term in our PUCT formulation (Eq. (5)) guarantees that these
newly created nodes will be properly prioritized based on their low nvisit, ensuring they will be
systematically explored in future iterations.

To better validate the rationality of our design, we conducted a comparative experiment in the Hy-
pergrid environment, comparing the approach of expanding all child nodes versus expanding only
one child node. The goal was to measure the number of states visited required to discover the
same number of modes. If discovering the same modes requires visiting significantly more states,
it indicates wasted MCTS iterations and lower state-visit efficiency, making such an approach less
desirable. The results of this comparative experiment are shown below:

Table 7: The number of states visited for differ-
ent modes discovered. Results of comparing the
approach of expanding all child nodes versus ex-
panding only one child node, fewer states visited to
discover the same number of modes, indicate higher
exploration efficiency.

States visited 4 8 16
MG2FlowNet (all) 4,816 9,616 20,816
MG2FlowNet (one) 9,616 134,416 /

Since the strategy of expanding only one
child node requires an impractically large
number of state visits to discover all 16
modes (rendering it meaningless for compar-
ison), we omit this result here. However, the
state visit counts required for discovering 4
and 8 modes clearly demonstrate the infeasi-
bility of single child expansion. Our results
show that this approach significantly reduces
exploration efficiency.

We attribute this inefficiency to the funda-
mental limitation of single child expansion:
Each training iteration predominantly revisits
previously explored nodes due to constrained
graph width in MCTS. This severe restriction on new node access dramatically reduces the explo-
ration space. Even in our grid experiment, the state visit counts reached alarming magnitudes, let
alone in molecular experiments with exponentially larger state spaces where such costs would be-
come computationally prohibitive.

These experimental results conclusively validate our design rationale: expanding all valid child
nodes during the expansion phase is essential for achieving optimal state visitation and exploration
efficiency.

G DETAILED EXPERIMENTAL SETUP

Parameter Setup in Hypergrid Task. For the GFlowNets policy model, we use the same config-
uration as vanilla GFlowNets, and we sampled trajectories with a batch size of 16, using the Adam
optimizer with all other parameters at their default values. All experiments in this task are performed
on a CPU. The horizon and dimension are set to 8 and 4. For the MCTS framework, we set the num-
ber of MCTS iterations to 1, the maximum depth of simulation to 20, the exploration coefficient to
1, and the greediness factor to 0.2.

Parameter Setup in Molecule Design Task. For the GFlowNets policy model, we use the dataset
and proxy model provided by Bengio et al. (2021); Lau et al. (2024); Malkin et al. (2022). Different
from the hypergrid experiment, due to the large state space of this experiment, we set the number of

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

MCTS iterations to 1, the maximum depth of simulation to 8, the exploration coefficient to 1, and
the greediness factor to 0.2.

H PROOF OF EQUATION (10)

■ Recall Equation (10):

pi =
(Qi −Qmin)∑
k (Qk −Qmin)

.

As shown in Eq. (10), instead of adopting a max-Q strategy, we choose to use a softmax policy
based on Q-values. This decision stems from our goal of encouraging more goal-directed behavior
on top of a learned flow model, rather than pursuing greediness for its own sake. Directly using the
maximal Q-value may lead to premature convergence and get stuck in a local optimum. Moreover,
Q-values are often inaccurate in the early training stages, making the model highly sensitive to
estimation errors. To mitigate these risks, we opt for a soft value policy Q that more effectively
balances exploitation and exploration.

■ Proof. As for node n, we define the Q-values of the child nodes of node n as a set
{Q1, Q2, ..., Qn}. In order to compute the Q-values distribution of these child nodes, we normalize
the data of Q-values,

Q̂i =
Qi −Qmin

Qmax −Qmin
. (18)

Then, we need to obtain the probabilities of these child nodes. Pi = Q̂i/
∑

k Q̂k, so we can obtain
this result:

pi =
(Qi −Qmin)/(Qmax −Qmin)∑
k(Qk −Qmin/Qmax −Qmin)

. (19)

By normalizing both numerator and denominator through division by Qmax − Qmin, the formula
can be simplified to:

pi =
Qi −Qmin∑
k(Qk −Qmin)

. (20)

Therefore, we finally obtain Eq. (10).

I DISCUSSION

I.1 LIMITATIONS

The present study is conducted in controlled environments where both the action space and the
reward function remain fixed. This setting is sufficient for validating the core ideas of MG2FlowNet
and provides a clear basis for comparison across methods. However, it does not cover scenarios
where the available actions evolve during training or where the reward distribution changes over
time. These cases are outside the scope of this work and will be investigated in future studies.

I.2 FUTURE WORK

Building on the strengths of MG2FlowNet, a natural extension is to adapt the framework to more
dynamic and realistic environments. One promising direction is to incorporate mechanisms that can
flexibly accommodate evolving action sets, enabling the model to remain effective as the space of
available choices expands or shifts. Another direction is to develop adaptive strategies for nonsta-
tionary reward distributions, where feedback signals change due to external interventions or shifting
objectives. Possible solutions include adaptive exploration policies, meta-learning techniques that
transfer knowledge across tasks, or hybrid methods that couple MCTS with fast bandit style esti-
mators. Given the scalability and planning capabilities of MG2FlowNet, we believe these extensions
would not only broaden its applicability but also strengthen its role as a general framework for
lifelong reinforcement learning and adaptive molecular design.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

J USE OF LLMS

In preparing this manuscript, we used a large language model (LLM) as a writing assistant tool,
specifically for grammatical refinement, style polishing, and correction of minor typographical er-
rors. The LLM did not contribute to the scientific ideas, algorithm design, or experimental setup. All
substantive content, reasoning, and conclusions are entirely the product of the authors. We accept
full responsibility for all content in the paper, including parts refined or corrected by the LLM, and
affirm that no text generated by the LLM constitutes original scientific contributions attributed to it.

21

	Introduction
	Related Work
	Problem Formulation
	Methodology
	PUCT Guided Selection
	Expanding All Legal Actions
	Simulation Using Forward Probability of GFlowNets
	Backpropagation Along Promising Paths
	Greediness Control

	Experiments
	Hypergrid Task
	Molecule Design Task
	Ablation Study of Greediness Coefficient

	Conclusion
	Notation
	Background
	Generative Flow Networks (GFlowNets)
	Monte Carlo Tree Search

	Detailed Algorithm
	Related Work
	Generative Flow Networks (GFlowNets)
	Reinforcement Learning and MCTS in GFlowNets
	Potential Applications of GFlowNets

	Backpropagation Challenge Details
	Additional Experimental Results
	Study on Greediness Term
	Study on Exploration Term
	Different Exploration Coefficient cpuct
	Comparison of Different Expanding Strategies

	Detailed Experimental Setup
	Proof of Equation (10)
	Discussion
	Limitations
	Future Work

	Use of LLMs

