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ABSTRACT

Recent advancements in sparse Mixture-of-Experts (MoE) models, particularly in
the Vision MoE (VMoE) framework, have demonstrated promising results in en-
hancing vision task performance. However, a key challenge persists in optimally
routing tokens (such as image patches) to the right experts, without incurring ex-
cessive computational costs. Addressing this, we apply the regularized optimal
transport, which relies on the Sinkhorn algorithm to the Vision MoE (VMoE)
framework, aiming at improving the token-expert matching process. The result-
ing model, Sinkhorn-VMoE (SVMoE), represents a meaningful step in optimizing
efficiency and effectiveness of sparsely-gated MoE models.

1 INTRODUCTION

Sparse Mixture-of-Experts (MoEs) (Shazeer et al., 2017) models represent a significant advance-
ment in deep learning. These models are characterized by their unique architecture, where only a
small subset of the model, known as ‘experts’, are activated based on the input they receive. A key
feature of MoEs is to learn a gating function to route each input token to the most appropriate experts.
These models have shown impressive results in natural language processing (Zhou et al., 2022; Ko-
matsuzaki et al., 2023; Sander et al., 2023). For detailed methodologies, see Fedus et al. (2022) and
Puigcerver et al. (2023). Building upon this foundation, the Vision MoE (VMoE) (Riquelme et al.,
2021), a novel adaptation of the Vision Transformer (ViT) (Dosovitskiy et al., 2021) for image clas-
sification is proposed. The idea of VMoEs is to replace a subset of dense feedforward layers MLP
in ViT by MoEs, where each image patch is routed to a selected group of experts (MLPs).
More precisely, the dense feedforward layers MLP: x ∈ Rd → MLP(x) ∈ Rd in ViT are replaced
with MoEs layers, such that MoE(x) =

∑t
r=1 Gr(x) · MLPr(x). This means we have multiple

experts MLPr(.), and for each input x, the model uses a gating function Gr(x) to decide which
expert should be activated on that data. For each input only those experts with a nonzero gating
function Gr are activated, meaning the input x is ‘routed’ to these selected experts r. However, we
explore a different design methodology for training VMoE, which leads to better performance than
conventional dense models. For a batch of image patches, we use the regularized optimal transport
which relies on the Sinkhorn algorithm (Cuturi, 2013), to efficiently assign tokens to experts, while
limiting the number of tokens assigned to any single expert. Our Sinkhorn VMoE (SVMoE) model
refines this matching process, boosting the VMoE method’s performance.

2 VMOE WITH SINKHORN ALGORITHM (SVMOE)

We use the VMoE architecture (Riquelme et al., 2021), with a specific focus on its routing mecha-
nism that assigns input tokens to appropriate experts. Consider a set of t tokens {x1, ..., xt} in Rd

and a corresponding matrix X ∈ Rt×d, where each row represents a token. Additionally, we have
a matrix W ∈ Rd×e that contains the weights of the experts, with each column corresponding to
the feature vector of an expert. The product of these two matrices L = XW , yields a new matrix
L ∈ Rt×e that represents the affinities between tokens and experts, i.e., the entry in the i-th row and
j-th column of L is the similarity score between the i-th token and the j-th expert, calculated via
inner product. To assign tokens to experts, Riquelme et al. (2021) uses the Topk router, creating a
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gating matrix Π that selects the k largest values from each row of matrix L using the topk function,
Π = Topk(softmax(L+ ασ)) ∈ Rt×e (1)

where L = XW denotes the token-to-expert affinity scores, and σ represents noise added into
the token-expert matrix XW . The parameter α controls the noise intensity, which has a standard
deviation of 1/e during the training. To optimize the model, Riquelme et al. (2021) set a buffer
capacity for each expert, defining the maximum number of tokens an expert can process. With this
capacity and the computed gating matrix Π, the Topk router assigns each token to the highest-ranked
expert, as long as the chosen expert has not reached its full capacity. In our model, the token-
expert matching process is formulated as a regularized optimal transport problem, solved using the
Sinkhorn algorithm. Our aim is to ensure that the number of tokens assigned to each expert does
not exceed a predetermined buffer capacity, k. To achieve this, we define the gating matrix for
regularized OT as ΠOT = argmin

T∈u(a,b)

<T,−L>+ 1
2k∥T∥

2
2, with a = 1e, b = (t/e)1e. The first term,

minimizes the total cost of assigning tokens to experts. The second term, ensures that the solution is
sparse (not too many experts assigned per token). The matrix L is computed by softmax(XW ),
and the transport plan ΠOT can be obtained using the Sinkhorn algorithm. With a computed ΠOT ,
the SVMoE router assigns each token to its top-chosen expert in the same way of the Topk router.

3 EXPERIMENT

We replace the Topk router with a regularized optimal transport router in standard VMoE architec-
tures (see Figure 1). Specifically, we use the VMoE B/32 and B/16 architectures, which process
image patches of sizes 32 × 32 and 16 × 16, respectively. In line with the ‘Every-2’ variant from
(Riquelme et al., 2021), we placed SVMoEs in alternate layers of these architectures. For all experi-
ments, we set the total number of experts to 32 (e = 32) and assigned 2 experts to each token, k = 2,
as shown in the Appendix (Figure 3). Consequently, the buffer capacity is fixed to e/k = 32/2 = 16,
meaning each expert handles a maximum of 16 tokens. We also used the ADAM optimizer (Kingma
& Ba, 2015) for 50 steps with a learning rate of 10−2. The results of our experiments are detailed
in Table 1, focusing on the accuracy performance of the ImageNet (Deng et al., 2009) and JFT (Sun
et al., 2017) datasets. Our findings indicate an improvement with the Sinkhorn VMoE (SVMoE)
compared to the baseline VMoE with both B/16 and B/32 architectures on both benchmarks. Addi-
tionally, a reduction in training time was observed - the SVMoE enhances performance over VMoE
by operating with 15% fewer FLOPs, while also 6% faster. This enhancement in training efficiency
and classification accuracy highlights the effectiveness of SVMoE in large-scale vision tasks.

Table 1: Accuracy comparison of ViT, VMoE, and SVMoE on ImageNet-1K and JFT datasets using
B/32 and B/16 architectures. Compared to the baseline methods, our SVMoE achieves the highest
accuracy across both architectures. The performance in terms of FLOPs is given in the Appendix.

Method B/32 architecture B/16 architecture
JFT ImageNet-1K JFT ImageNet-1K

ViT (Dosovitskiy et al., 2021) 39.86 59.30 45.93 66.97
VMoE (Riquelme et al., 2021) 43.51 65.93 49.16 72.34
SVMoE (Sinkhorn VMoE) 44.32 66.47 50.29 72.85

4 CONCLUSION

We presented Sinkhorn VMoE (SVMoE), an approach integrating regularized optimal transport that
relies on the Sinkhorn algorithm, into the Vision MoE framework. Our key objective was to enhance
the token-expert matching process while maintaining strict control over the computational costs. Our
experiment demonstrates that SVMoE not only matches or slightly exceeds the performance of the
VMoE models but also proves to be a scalable approach for large-scale image classification tasks.
While our evaluation currently focuses on ImageNet and JFT, the applicability of SVMoE is not
limited to image classification alone. Looking ahead, we plan to extend our research to assess the
adaptability and effectiveness of SVMoE across a wider range of vision-based applications.
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A RELATED WORK

A.1 SPARSE MIXTURE OF EXPERTS (MOE)

In an MoE model, an expert refers to a sub-model designed to handle specific types of input data.
A single MoE model contains multiple such experts. The gating mechanism is a crucial component
that decides which experts are activated in response to a given input. The gating mechanism routes
the inputs to one or more experts based on the input’s characteristics. Unlike traditional deep learn-
ing models that utilize all parts of the network for processing any input, sparse MoEs activate only
a subset of experts for each input. This sparsity is what makes the MoE model computationally ef-
ficient. Indeed, by activating only relevant parts of the model, sparse MoEs handle more parameters
and computations more efficiently than standard models. Sparse MoE models represent a powerful
paradigm for building scalable and efficient deep learning systems that can handle extensive and
diverse datasets across different domains like computer vision (Riquelme et al., 2021; Komatsuzaki
et al., 2023), natural language processing (Shazeer et al., 2017; Zhou et al., 2022), and more (Sander
et al., 2023; Clark et al., 2022). However, a key feature of an MoE model is its routing mechanism,
which determines which experts are best suited for a given input. Token-based routing is one of the
most common among them. In transformer-based models, the routing mechanism can operate at the
token level— each word or image patch (token) is independently routed to the most suitable expert.
To balance the assignments of tokens to experts, recent works cast the assignment problem as regu-
larized optimal transport (Clark et al., 2022; Kool et al., 2021) for language modeling tasks. In this
paper, we use entropy-regularized optimal transport as a routing mechanism in vision sparse MoEs,
to balance the load among experts, ensuring no single expert becomes a bottleneck. It introduces a
form of regularization that maximizes entropy, thus spreading out the token assignments in a more
balanced and efficient way.

A.2 OPTIMAL TRANSPORT (OT)

OT is a mathematical framework used for comparing probability distributions and finding the most
efficient way of transforming one distribution into another (Peyré et al., 2019). This framework
has applications across various fields, including machine learning and data analysis (Khamis et al.,
2024). We now break down the preliminary concepts of OT and its specific formulations. Let us
define the probability simplex Σr as follows,

Σr := {x ∈ Rr
+|x⊤1r = 1}

where 1r is an r-dimensional vector of ones. A vector x in this simplex are probability distributions
because their elements are non-negative and sum to one. Given two distributions α ∈ Σr and
β ∈ Σc, the transport polytope U(α, β) is defined as,

U(α, β) = {Q ∈ Rr×c
+ |Q1c = α,Q⊤1r = β}

Here, Q represents a matrix of transport plans or joint probabilities where Qij is the amount of
mass transported from the i-th element of α to the j-th element of β. Essentially, each matrix
Q in this set describes a different way of transporting mass from distribution α to distribution β.
However, incorporating an entropy regularization term leads to a more differentiable and often more
computationally feasible problem that can be defined as

OTϵ(M,α, β) = arg max
Q∈U(α,β)

Tr(Q⊤M) + ϵH(Q)

where, M is a similarity (or cost) matrix between the elements of α and β. ϵ is a regular-
ization parameter, and H(Q) = −

∑
ij Qij logQij is the entropy of Q, which discourages ex-

treme transport plans and promotes plans that spread out the mass more evenly. The matrix
Q∗, which is the solution to the entropy-regularized OT problem, has a specific form given by,
Q∗ = Diag(u) exp(M/ϵ)Diag(v), where u and v are vectors that can be computed efficiently us-
ing Sinkhorn’s algorithm (Cuturi, 2013). This formulation allows to control the smoothness of the
transport plan through the entropy ϵ, making it particularly useful in cases where distributions often
need to be compared or aligned efficiently.
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Figure 1: The VMoE model takes the basic design of a Vision Transformer (ViT) and replaces
some of its standard dense feedforward layers, MLPs, with sparsely-gated mixture-of-experts (MoE)
layers. Here, each token is evaluated independently, and only the most relevant experts (MLP) for
that particular token (x) are activated. The TopK router is the decision-maker. It compares it with
the experts (MLP) and then creates a sparse gating matrix to find which experts are the best match
for that token. In our model (SVMoE), we used regularized optimal transport as the TopK router.

Figure 2: Performance vs. inference FLOPs for VMoEs and SVMoEs. Each color represents a
different VMoE variant (B/32, B/16, L/32, L/16). Our model slightly outperforms the VMoEs with
fewer FLops. VMoEs with the original routing are represented by •, while ▶ shows SVMoEs.
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Figure 3: Training FLOPs versus k (experts per token) using VMoE-S/32 (by replacing the TopK
router with the regularized OT. Our model’s cost depends on the number of selections per token.
We used k=2 in our experiments, as choosing k > 2 doesn’t significantly improve performance but
notably increases computation cost.

B COMPARING THE SPEED OF ROUTERS

The architecture of our model is detailed in Figure 1. Additionally, Figures 2 and 3 illustrate the
comparative impact of using the optimal transport router versus the TOPk router in VMoE models,
with a specific focus on the ImageNet and JFT datasets. OT router uses a cost-efficient strategy to
assign tokens to experts, aiming to minimize the transport cost in terms of computational resources.
TOPk routing mechanism selects the top k experts for each token based on predefined criteria such as
similarity or capacity. Our findings indicate that using OT leads to a consistent and slight improve-
ment in the efficiency of all VMoE architectures during both the training and inference process,
which is characterized by reduced FLOPs. As demonstrated in Figure 3, the computational cost of
our model is influenced by the number of experts selected per token. In our experiments, setting
k = 2 provided an optimal balance between performance and computational cost. It’s noteworthy
that selecting k > 2 does not yield a substantial enhancement in performance, yet it leads to a
considerable increase in computational demand.
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