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Abstract

Single-cell RNA-seq (scRNA-seq) has become a prominent tool for studying hu-
man biology and disease. The availability of massive scRNA-seq datasets and
advanced machine learning techniques has recently driven the development of
single-cell foundation models that provide informative and versatile cell repre-
sentations based on expression profiles. However, to understand disease states,
we need to consider entire tissue ecosystems, simultaneously considering many
different interacting cells. Here, we tackle this challenge by generating patient-
level representations derived from multi-cellular expression context measured
with scRNA-seq of tissues. We develop PaSCient, a novel model that employs
a multi-level representation learning paradigm and provides importance scores at
the individual cell and gene levels for fine-grained analysis across multiple cell
types and gene programs characteristic of a given disease. We apply PaSCient to
learn a disease model across a large-scale scRNA-seq atlas of 24.3 million cells
from over 5,000 patients. Comprehensive and rigorous benchmarking demon-
strates the superiority of PaSCient in disease classification and its multiple down-
stream applications, including dimensionality reduction, gene/cell type prioritiza-
tion, and patient subgroup discovery.

1 Introduction

Technological innovations in the past decade have led to the collection of vast and exponentially
growing amounts of data for biological research, which can help revolutionize our understanding of
human disease biology Dash et al. (2019); Arowoogun et al. (2024); Obermeyer & Emanuel (2016);
Marx (2013). In particular, the advent of single-cell RNA-seq (scRNA-seq) has enabled the charting
of the heterogeneity of cell states and functions, by profiling the expression of hundreds of millions
of cells Regev et al. (2017). The large number of cell profiles within and across experiments has
opened the way to discoveries from new cell types Jindal et al. (2018), distinct genes programs asso-
ciated with response to therapy or drug resistance, specific marker genes Pullin & McCarthy (2024);
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Liu et al. (2024), and unique patient subsets Rood et al. (2022); Suvà et al. (2014). Nevertheless,
most scRNA-seq studies were analyzed in isolation and only from a limited number of patients,
hindering our ability to understand biological processes at a patient level Kau & Korenblat (2014);
Schaid et al. (2018); Hong et al. (2012); Ioannidis (2007); Dattani et al. (2022); pol (2021). More-
over, studies have typically focused on partitioning cells into categories (types, subtypes, states, etc)
and then studying each of them separately, with only limited efforts focused on the overall ecosys-
tem of cells assembled together. Yet, diseases typically involve breakdown of homeostasis in tissue,
impacting multiple cells.

Fortunately, the growing number of scRNA-seq studies has now reached a total number of patients
that can realistically support machine learning approaches capable of modeling disease biology at a
patient level Barrett et al. (2012); Biology et al. (2023). Reasoning about the disease process at the
patient level with the granularity of single-cell expression could potentially help uncover subgroups
within patient populations (endotypes), understand or predict patient responses to therapies, and
advance toward more precise and personalized medicine.

These considerations have motivated the development of machine learning models to aggregate cells
to identify disease states. However, existing models only focus on binary disease classification, and
were trained with only few samples and studies He et al. (2021); Mao et al. (2024); Xiong et al.
(2023); Mitchel et al. (2024), failing to leverage the large repositories of single-cell expression data
available. A more recent work incorporates a larger patient corpus but focuses on multi-modal
biomedical data integration, and limits its disease prediction to COVID-19 only Litinetskaya et al.
(2024). By contrast, we aspire to a method that can leverage the full scope of available data and
jointly model all diseases in a single model. However, this vision comes with significant challenges,
such as the inherent confounding and batch effects of pooling together data from different stud-
ies Leek et al. (2010), the imbalanced composition of different tissues, cell types, and diseases Fer-
retti et al. (2018), and the noise of scRNA-seq data Janssen et al. (2023); Chu et al. (2022).

Here, we propose PaSCient, a foundation model that produces a patient representation based on the
gene expression of all cells in a patient’s sample, by leveraging large scale single-cell expression
studies across different tissues and disease. Intuitively, each patient is represented as a set (or bag)
of cells, which our model processes to provide a biologically informed vector representation of the
patient. To achieve patient-level representations, we rely on a dedicated attention-based aggregation
mechanism and data resampling strategy, which addresses the data integration challenges Wang
et al. (2024); Boyeau et al. (2022) posed by the dataset heterogeneity. Our versatile representation
can then be used to compare, cluster, or classify patients. To elucidate disease mechanisms at the
patient level, we propose an interpretable mechanism based on integrated gradients Sundararajan
et al. (2017) to score individual genes and/or cell types in a given patient prediction. This enables
a remarkably fine-grained gene or cell-type prioritization, supporting biological discovery at the
patient level in terms of individual genes, specific cell types, multiple cell types (simultaneously)
and their interconnections. Our comprehensive and rigorous benchmarking further demonstrates
the superiority of PaSCient in disease classification compared to single-cell foundation models and
underscores its multiple downstream applications, including dimensionality reduction, biological
prioritization, and patient subgroup discovery.

To summarize, our contributions are:

1. We propose a machine-learning model that creates patient-level representations based on
their single-cell expression profiles. This representation can be used to compare, cluster,
or classify patients. Our model leverages single-cell expression studies from over 5,000
patients.

2. The predictions of PaSCient can be interpreted to enable fine-grained prioritization of
genes, cell-types, and sets of cell types (and their genes), thereby holistically interrogat-
ing disease mechanisms at the patient level.

3. We demonstrate the capabilities of PaSCient on a COVID-19 case study, showing that the
model can be used to infer disease severity subgroups and prioritize cell-type specific genes
associated with the disease.

Our code is available at https://github.com/genentech/pascient.
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2 Results

2.1 Overview of PaSCient

PaSCient takes the expression profiles of individual cells present within a patient’s sample as input
and produces a summarized vector representation of the patient. This representation can then be used
for downstream tasks such as dimensionality reduction and visualization, biological feature prioriti-
zation, treatment response prediction, and disease severity prediction, among others (Figure 1(a)).

Architecture. The architecture of PaSCient is inspired by DeepSet Zaheer et al. (2017). The gene
expression of the different cells of a given patient i is represented as a matrix Xi ∈ RMi×dg , where
Mi is the number of cells for patient i, and dg is the number of genes measured. We first encode
each cell in the sample using a learnable cell embedder function fθ : Rd → dh, where dh is the
dimension of the cell representations. At this stage, a patient is represented as a set of vectors
{zj : j = 1, ...,Mi} of size dh. This set can be abstracted as a matrix Zi ∈ RMi×dh . To create a
patient-level embedding ei, we used a softmax-attention pooling layer:

wi = softmax(aθ(Zi)) (1)

ei = wT
i Zi, (2)

where aθ : Rdh → R is a neural network acting on each row of Zi independently. Lastly, the
patient-level embedding is fed into a neural network classifier hθ : Rdh → Rdc , where dc is the
number of disease classes in the pooled dataset. The final disease prediction is obtained as:

p̂i = softmax(hθ(ei)), (3)

where p̂i represents the predicted probabilities for each disease label. We train PaSCient end-to-end
by minimizing the cross-entropy between predicted disease-state label and observed disease-state
label. Different aggregation mechanisms were investigated during the development of the method.
A softmax-attention layer was found to be the most effective in our ablation studies, as shown in
Figure 2(b). To address the disease and tissue heterogeneity of the dataset, we introduce a dedicated
sampling strategy that gives more importance to sample with low prevalence diseases and tissues.
More details can be found in the Methods section.

Fine-grained importance scores. To interpret the predictions of PaSCient, we develop an ap-
proach relying on integrated gradients (IG) Sundararajan et al. (2017). This procedure starts by
producing a gradient attribution for each cell-gene combination of the input sample using IG. Given
the resulting matrix of attributions, we average attributions based on different dimensions, leading
to different levels of interpretability. For instance, averaging the attributions over genes leads to
importance scores for each individual cell, whether averaging over cells leads to importance scores
for individual genes. A similar rationale can be employed to generate importance score for groups
of cells (or cell types) and individual genes within a given group of cells (Figure 1(c)).

Dataset. Our dataset includes 24.3 million scRNA-seq count profiles from over 5,000 patient sam-
ples spanning 135 unique disease-state labels, across 413 studies, and 189 tissues (organs). Each
patient contributed to a single sample (such that patient and samples can be used interchangeably in
this text). All datasets are publicly accessible on CELLxGENE Biology et al. (2023). Cells were
all profiled using droplet based scRNA-seq from 10X Genomics. The data were split into a training
(60%), validation (20%), and test set (20%), ensuring that all samples from a given study are in
the same split. A visual summary of our splits is described in Appendix E. The data distribution
was imbalanced in terms of diseases and tissues, e.g. COVID-19 patients accounted for ∼9% of the
samples, while multiple sclerosis only for ∼2% (Extended Data Fig. 2 (a) and (b)).

2.2 PaSCient can accurately classify disease from a patient’s scRNA-seq profiles.

We train PaSCient to predict the disease label associated with each sample in the dataset and evalu-
ate its performance in terms of weighted F1-score, a widely used metric for evaluating classification
performance Abdelaal et al. (2019); Grandini et al. (2020). We compare our approach with different
embedding baselines, such as a simple pseudo-bulk approach, using cell-type proportions (CTP),
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Figure 1: The landscape of PaSCient. (a) Model description and applications. PaSCient abstracts each patient
as a bag of cells and outputs a single vector summarizing the patient’s cellular context. This vector can be used
for various downstream tasks, such as dimensionality reduction, visualization, biological feature prioritization,
and predicting treatment response or disease severity. (b) Model architecture and training. Each bag of cells
is represented as a gene-expression matrix, where rows correspond to individual cells, and columns represent
specific genes. PaSCient first embeds each cell individually, and these cell embeddings are then summarized
into a patient-level representation by a weighting the embeddings with cell-level attention. A final classifier
takes this patient embedding as input to predict the disease status. The entire architecture is trained end-to-
end. (c) Model interpretability. PaSCient enables fine-grained interpretability, generating importance scores at
various levels—for individual cells, groups of cells (e.g., cell types), individual genes, or genes within specific
cell groups—providing detailed insights into each patient’s cellular landscape.

as well as state-of-the-art single-cell foundation models (CellPLM Wen et al. (2024) and SCimilar-
ity Heimberg et al. (2023)). For each of these methods, we consider two classifiers to predict the
label from the patient embedding: k-Nearest Neighbor Classifier (kNN) Pedregosa et al. (2011) and
a multi-layer perceptron (MLP).

Remarkably, PaSCient outperforms all baselines by a significant margin (Figure 2 (a)). Notably, a
simple pseudo-bulk approach outperforms more complicated foundation models in this task. Ad-
ditional results on a simpler binary classification task (i.e., COVID-19 vs. healthy) are given in
Appendix F, including the comparison with the most recent domain-expert model ScRAT Mao et al.
(2024), which performs significantly worse than PaSCient.

We investigated different aggregation mechanisms for pooling cell-level embeddings into a patient-
level embedding, including mean-pooling, transformer, gated attention, linear attention, and non-
linear attention mechanisms. We found that non-linear attention performed best, improving the
weighted F1-score by 16.6% compared to a mean-pooling mechanism (Figure 2(b)). The trans-
former approach, although more expressive, results in poor performance, probably due to a larger
than necessary number of parameters for this task.

To account for the class imbalance in the data, we investigated different resampling mechanisms. We
studied the impact of resampling both per disease-class and per tissue-class (Methods). Oversam-
pling the training set for both disease and tissue resulted in a significant improvement compared to
baseline (Figure 2(b)). Model training and hyper-parameter tuning details are given in Appendix G.
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Figure 2: Benchmarking the performance of PaSCient on multi-disease classification. (a) Weighted F1-score
results. Performance comparison between PaSCient and relevant baseline models, with standard deviations cal-
culated from experiments using different seeds. PaSCientemploys non-linear attention aggregation combined
with oversampling based on disease and tissue. (b) Ablation studies. Analysis of different training config-
urations for PaSCient, including various cell-level aggregation methods (without resampling) and sampling
strategies to address label imbalance. The best performance was achieved using non-linear attention aggrega-
tion with oversampling based on both disease and tissue labels (Oversample d+t).
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Figure 3: Patient embeddings using PaSCient organize by both tissue and disease. Uniform manifold approxi-
mation and projection (UMAP) of patient embeddings colored by each of 8 most common disease labels (a) or
by tissue (b). We only visualize the samples whose disease-state labels exist in all the splits.

The patient embedding space learned by PaSCient is organized by disease state (Figure 3(a)) and
by tissue (Figure 3(b)). Notably, COVID-19 patients partition into two clusters, corresponding to
blood and lung tissue samples. Additional analyses of the patient embedding space, aggregated per
disease, are given in Appendices H and I.

2.3 PaSCient prioritizes gene and cell-type roles in disease prediction.

We use our importance score methodology (described in Section 2.1 and in the Methods section) to
enable a fine-grained analysis of the individual cells and genes that contribute most to a disease of
interest. As a proof of concept, we focus our analysis on COVID-19 prediction and select a cohort
of patients with a COVID-19 disease label.
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Figure 4: Prioritizing cell types and cell-type-specific genes for COVID-19 by integrated gradients (IG) anal-
ysis. (a) Attributions averaged over cells and genes for each cell type (each point is a patient). Cell types are
ranked by their mean attribution, with classical monocytes and platelets identified as the most predictive for
COVID-19 diagnosis. (b) Attributions aggregated over classical monocytes (each point is a patient). Genes
are ranked by mean attribution, with the green line indicating the median value and the green triangle denoting
the mean value. (c) Attributions aggregated over platelets (each point is a patient). Genes are ranked by mean
attribution, with the green line indicating the median value and the green triangle denoting the mean value.
We first compute cell type level attributions to uncover what cell types were contributing most to
the COVID-19 label for each patient (Figure 4(a)). The highest average attributions (computed over
all patients) are found for classical monocytes and platelets, suggesting the importance of these cell
types in COVID-19. Notably, these cell types have been identified in the literature as playing a
key-role in the disease pathogenesis Junqueira et al. (2022); Wool & Miller (2021).

Remarkably, our fine-grained importance methodology enables further exploration within cell types
of interest. We investigate what genes were most impacting COVID-19 prediction for each of these
cell types specifically. For each patient, we compute the importance of gene in monocytes (Fig-
ure 4(b)) and in platelets (Figure 4(b)). This procedure identifies the specific importance of genes in
a given cell type. Ranking genes by average importance reveals that S100A8, IFITM3, and IFI27 are
the most pertinent genes in monocytes for COVID-19. IFI27, HBB, and CA1 are found to be most
important in platelets. These genes are associated with COVID-19 severity or treatment Mellett &
Khader (2022); Xu et al. (2022); Shojaei et al. (2023); Zhang et al. (2022); Deniz et al. (2021).

We validate the set of important genes uncovered by PaSCient by measuring the overlap with the
set of differentially expressed genes from ToppCell Jin et al. (2021). A Fisher’s exact test indicates
strong overlap for both classical monocytes (p-value=2.1e-22) and platelets (p-value=2.5e-20). A
similar analysis for other diseases is presented in Appendix J. These analyses show that we can
capture and prioritize disease-specific genes and cell types at different resolutions.

2.4 PaSCient recovers disease severity of individual patients.

To investigate the patient representations learnt by our method, we collect four scRNA-seq datasets
from COVID-19 patients where a severity label is available (mild or severe) Lemsara et al. (2022);
Schulte-Schrepping et al. (2020); Wilk et al. (2021); Lee et al. (2020), and that were not included
during training. Visualizing the patient representations generated by our model, we find that the
landscape is primarily organized by disease severity and not by study (Figure 5(a)). Conversely, a
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principal components analysis (PCA) representation of pseudo-bulk data is organized primarily by
study rather than severity, highlighting batch effects.
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Figure 5: PaSCient captures disease severity in COVID-19 patients. (a) Patient embeddings generated by
PaSCient and PCA on pseudo-bulk data, colored by disease severity. PaSCient organizes patient representa-
tions based on disease severity, whereas the pseudo-bulk embeddings are influenced by study-specific effects.
The accuracy of a k-nearest-neighbor (kNN) classifier is reported for both disease severity and study labels to
quantitatively assess embedding quality. Higher accuracy suggests the embedding is more organized according
to that specific variable. (b) Magnitude of integrated gradients attributions averaged across all myeloid den-
dritic cells for each sample, grouped by disease severity. P-values are Bonferroni-corrected. (c) Probability of
COVID-19 diagnosis predicted by PaSCient for each sample, stratified by disease severity.
Moreover, the importance scores given by our model to different cell types correlates with disease
severity, with significant associations (corrected p< 0.01) for NK cells, B cells, myeloid dendritic
cells, and MAIT cells. Indeed, there is a significant difference in the magnitude of the integrated
gradients attributions of the model, averaged over all myeloid dendritic cells in each patient sample,
between mild and severe patient groups (Figure 5(b), Bonferroni-corrected p-value=0.001, rank sum
test). Similarly, there is a significant association between the disease severity and the magnitude
of the probability of COVID-19 diagnosis predicted by PaSCient (Figure 5(c)). Together, these
results show that PaSCient can implicitly represent the disease severity of each patient. Associations
between severity and other cell types are given in Appendix K. A case study for predicting drug
response is presented in Appendix L.

3 Discussion

Here, we introduced a new model, PaSCient, that generates patient-level embeddings given a single-
cell RNA-seq context, leveraging thousands of samples. PaSCient builds upon recent single-cell
foundation models Cui et al. (2024); Heimberg et al. (2023); Hao et al. (2024), and multi-cellular
representations models He et al. (2021); Mao et al. (2024); Xiong et al. (2023) but differs in key
aspects. First, PaSCient builds upon the large scale training of single-cells foundation models but
extends the approach to multi-cellular representations. While single-cell representations can be
pooled into a patient-level representation (e.g., via average-pooling), our experiments showed that
this resulted in sub-optimal performance. Our approach is indeed more expressive as it learns a
dedicated aggregation mechanism that better reflects the underlying biological processes. Second,
PaSCient extends previous works on multi-cellular representations by going beyond binary classifi-
cations and by leveraging hundreds of single-cell expression studies.

Providing biologically informed patient-level representations presents several advantages for biolog-
ical and clinical research. Such representations enable a patient-specific understanding of disease
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mechanisms and can improve patient segmentation, thereby contributing to more targeted therapies.
We demonstrated the potential of PaSCient in patient segmentation by showing that the learnt em-
beddings implicitly encoded clinical information such as disease severity. From a target discovery
perspective, we highlighted the fine-grained resolution of our importance scores. We showed that
our model could be used to prioritize individual cells and genes, but also groups of cells (such as
cell types) and cell-type-specific genes, underlining a promising knowledge discovery toolkit.

Our work represents an important step toward patient-level representations contextualized by single-
cell expression. While our datasets included millions of cells, the increasing scale of available
single-cell repositories suggests further iterations of this class of models will lead to better represen-
tations.

4 Methods

Notations. We define the aggregated dataset includes N patient samples: D = {s1, s2, ..., sN},
where si represents the ith patient sample. Each patient includes Mi cells (where Mi varies per
patient): si = {c1, c2, ...cMi

}i, where cj represents the jth cell in si. Lastly, each cell cj is a vector
whose features are gene expression counts with dimension dg = 28, 231. Each patient can then be
represented as a matrix Xi ∈ RMi×dg . Patient-level metadata is also available such as disease label
yi and tissue label ti.

Model architecture. PaSCient combines a cell encoder fθ(·), an aggregator hθ(·), and a classifier
gθ(·), all implemented by neural networks. At a high level, the cell encoder produces an embed-
ding for each cell in a patient sample, the aggregator combines the cell embeddings into a patient
embedding, and the classifier predicts the disease label based on the patient embedding.

The cell encoder is a linear layer. The classifier is a multi-layer perceptron (MLP) with a final soft-
max activation. We write the output of the cell encoder as zi = fθ(ci), the output of the aggregator
as ei = gθ(zi) with z = [z1, z2, ..., zMi ]i), and the output of the classifier as p̂i = hθ(ei). The
model is trained by minimizing the cross-entropy between p̂i and yi. A graphical depiction of the
model architecture is given in Figure 1.

Aggregators. We considered multiple different aggregators. Most aggregators have the form of
a weighted sum: ei =

∑Mi

j=1 wjzj . Aggregators differ by the way the weights w = [w1, ..., wMi
]

are computed. The mean aggregator uses wj = 1
Mi

; the linear attention aggregator uses w =

Softmax(z); the non-linear attention uses Softmax(aθ(z)) with aθ a learnable neural network
that operates on each zj independently; and the gated-attention uses w = Softmax(Uθ(z) ⊙
Sigmoid(Vθ(z))) with two learnable neural networks uθ and vθ. The transformer aggregator differs
in its architecture as it updates the embeddings of each cell according to the entire sample and sums
the resulting embeddings.

Resampling strategies. We used the following resampling strategies for addressing the disease
and tissue imbalances in the dataset: (1) Downsampling disease: subsampling the most frequent
disease classes such as to balance the disease label overall; (2) Oversampling disease: oversampling
the least frequent disease classes such as to balance the disease label overall; (3) Oversampling
tissue: oversampling the least frequent tissue classes such as to balance the tissue label overall; (4)
Oversampling disease and tissue: oversampling the least frequent tissue and disease classes such as
to balance both tissue and disease labels overall.

Model explainability. We used the integrated gradients method on the input matrix Xi Sundarara-
jan et al. (2017). Computing the integrated gradients on this input results in an attribution matrix
Ri ∈ RMi×dg with the same dimensions as the input matrix. The attribution of a given gene was
obtained by averaging Ri across all cells. The attribution of a given cell was obtained by averaging
over all genes. Any other combination follows from generalizing this procedure.

Disease classification metrics. We evaluated classification performance using the weighted F1-
score. F1-score is robust to class imbalance and reflects both precision and recall across all classes.
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Each experiment was repeated 10 times using different seeds leading to different cells being sampled
for each patient. This repetition allowed computing an empirical standard deviation on the results.

Dataset pre-processing. All datasets were profiled by droplet based scRNA-Seq from 10X Ge-
nomics. We removed cell profiles with no gene expression levels and normalized all remaining
profiles to the corrected sequencing depth, followed by a log(x+ 1) transformation.

Reproducibility and Data The sources of datasets used for training/validating/testing as well as
downstream applications can be found in the Supplementary File 1. Our collected descriptions for
diseases and tissues can be found in Supplementary File 2. The genes from ToppCell are listed in
Supplementary File 3. The running time of our method for different tasks is included in Supplemen-
tary File 4.
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Jordan, Elham Azizi, Can Ergen, and Nir Yosef. Deep generative modeling of sample-level
heterogeneity in single-cell genomics. BioRxiv, pp. 2022–10, 2022.

Yan-Mei Chen, Yuanting Zheng, Ying Yu, Yunzhi Wang, Qingxia Huang, Feng Qian, Lei Sun, Zhi-
Gang Song, Ziyin Chen, Jinwen Feng, et al. Blood molecular markers associated with covid-19
immunopathology and multi-organ damage. The EMBO journal, 39(24):e105896, 2020.

Shih-Kai Chu, Shilin Zhao, Yu Shyr, and Qi Liu. Comprehensive evaluation of noise reduction
methods for single-cell rna sequencing data. Briefings in bioinformatics, 23(2):bbab565, 2022.

Haotian Cui, Chloe Wang, Hassaan Maan, Kuan Pang, Fengning Luo, Nan Duan, and Bo Wang.
scgpt: toward building a foundation model for single-cell multi-omics using generative ai. Nature
Methods, pp. 1–11, 2024.

Sabyasachi Dash, Sushil Kumar Shakyawar, Mohit Sharma, and Sandeep Kaushik. Big data in
healthcare: management, analysis and future prospects. Journal of big data, 6(1):1–25, 2019.

Saloni Dattani, David M Howard, Cathryn M Lewis, and Pak C Sham. Clarifying the causes of
consistent and inconsistent findings in genetics. Genetic epidemiology, 46(7):372–389, 2022.

Secil Deniz, Tugba Kevser Uysal, Clemente Capasso, Claudiu T Supuran, and Ozen Ozensoy Guler.
Is carbonic anhydrase inhibition useful as a complementary therapy of covid-19 infection? Jour-
nal of Enzyme Inhibition and Medicinal Chemistry, 36(1):1230–1235, 2021.

9



Maria Teresa Ferretti, Maria Florencia Iulita, Enrica Cavedo, Patrizia Andrea Chiesa, Annemarie
Schumacher Dimech, Antonella Santuccione Chadha, Francesca Baracchi, Hélène Girouard,
Sabina Misoch, Ezio Giacobini, et al. Sex differences in alzheimer disease—the gateway to
precision medicine. Nature Reviews Neurology, 14(8):457–469, 2018.

Margherita Grandini, Enrico Bagli, and Giorgio Visani. Metrics for multi-class classification: an
overview. arXiv preprint arXiv:2008.05756, 2020.

Minsheng Hao, Jing Gong, Xin Zeng, Chiming Liu, Yucheng Guo, Xingyi Cheng, Taifeng Wang,
Jianzhu Ma, Xuegong Zhang, and Le Song. Large-scale foundation model on single-cell tran-
scriptomics. Nature Methods, pp. 1–11, 2024.

Bryan He, Matthew Thomson, Meena Subramaniam, Richard Perez, Chun Jimmie Ye, and James
Zou. Cloudpred: Predicting patient phenotypes from single-cell rna-seq. pp. 337–348, 2021.

Graham Heimberg, Tony Kuo, Daryle DePianto, Tobias Heigl, Nathaniel Diamant, Omar Salem,
Gabriele Scalia, Tommaso Biancalani, Shannon Turley, Jason Rock, et al. Scalable querying
of human cell atlases via a foundational model reveals commonalities across fibrosis-associated
macrophages. bioRxiv, pp. 2023–07, 2023.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer.
arXiv preprint arXiv:2102.01293, 2021.

Huixiao Hong, Lei Xu, Zhenqiang Su, Jie Liu, Weigong Ge, Jie Shen, Hong Fang, Roger Perkins,
Leming Shi, and Weida Tong. Pitfall of genome-wide association studies: Sources of inconsis-
tency in genotypes and their effects. 2012.

John PA Ioannidis. Non-replication and inconsistency in the genome-wide association setting. Hu-
man heredity, 64(4):203–213, 2007.

Philipp Janssen, Zane Kliesmete, Beate Vieth, Xian Adiconis, Sean Simmons, Jamie Marshall,
Cristin McCabe, Holger Heyn, Joshua Z Levin, Wolfgang Enard, et al. The effect of background
noise and its removal on the analysis of single-cell expression data. Genome Biology, 24(1):140,
2023.

Kang Jin, Eric E Bardes, Alexis Mitelpunkt, Jake Y Wang, Surbhi Bhatnagar, Soma Sengupta,
Daniel P Krummel, Marc E Rothenberg, and Bruce J Aronow. A web portal and workbench for
biological dissection of single cell covid-19 host responses. bioRxiv, pp. 2021–06, 2021.

Aashi Jindal, Prashant Gupta, Jayadeva, and Debarka Sengupta. Discovery of rare cells from volu-
minous single cell expression data. Nature communications, 9(1):4719, 2018.
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D Reproducibility, data, and code availability

The sources of datasets used for training/validating/testing as well as downstream applications can
be found in the Supplementary File 1. Our collected descriptions for diseases and tissues can be
found in Supplementary File 2. The genes from ToppCell are listed in Supplementary File 3.

We used a server with eight NVIDIA A100 GPUs and 300 GB maximal RAM to conduct all the
experiments. The minimal requirement for training/inference based on our model is one A100 GPU,
80 GB. The running time of our method for different tasks is included in Supplementary File 4.

All the codes used in model training and downstream applications can be found in https:
//github.com/edebrouwer/pascient.

E Dataset

In Extended Data Figure 1, we present a graphical overview of the dataset used for training our
model. Extended Data Figure 1 shows the proportions of diseases and tissues in the dataset.

F Binary disease classification with PaSCient

We evaluated the performance PaSCient to classify patients with health and COVID-19 labels and
benchmark it with other methods for performing binary disease-health classification. The results are
given in Extended Data Figure 3.

We found that PaSCient outperformed all baselines by a significant margin. We also found that
linear attention aggregation performed best than other mechanisms.

F.1 Including cell-type information in the prediction

We further investigated whether introducing cell-type information can help predicting the disease
label more accurately. We designed a new baseline by using the cell-type proportions to represent
each patient and classified the binary conditions based on a kNN classifier (CTP-kNN). We also
introduce a modified loss function for PaSCient by using a contrastive learning approach Musgrave
et al. (2020) to bring cells from the same type closer together in embedding space, while pushing
apart cells of different types (PaSCient-CT). Such an approach can reduce the potential batch effect
existing in the training data Heimberg et al. (2023). The results are given in Extended Data Fig-
ure 3(c). We observed that PaSCient achieved the best performance, followed by our modified loss
function (PaSCient-CT) and the cell type proportions baselines.
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Total corpus: 413 studies, 24.4M cells

Extended Data Fig. 1: Overview of our training datasets colored by tissues and diseases. The length of bubbles
represent number of cells included in the given tissue/diseases.
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Extended Data Fig. 2: Statistics of disease states and tissues in our collected datasets.

G Model training details

During the training process of PaSCient, we explored different factors that could affect the training
process, including hyper-parameters, size of sampled cells, composition of diseases, and scaling law
Hernandez et al. (2021); Kaplan et al. (2020). The sensitivity analyses focusing on these factors
could help us understand the difficulties of patient modeling in a broader vision. We found that
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Extended Data Fig. 3: Benchmarking results for binary classification. (a): Comparisons between PaSCient
and the rest of baselines for classifying COVID-19 versus healthy condition. (b): Ablation study for different
aggregation mechanisms. (c) Impact of cell type labels on performance. (PaSCient-CL) uses a modified con-
trastive training approach that uses cell type labels. CTP-kNN is kNN disease classifier based on cell types
proportions for each sample.

learning rate closing to 1e-4 (illustrated in Extended Data Figure 4 (a)) could reduce the negative
effects brought by over-fitting. Meanwhile, a small number of epochs (< 40 for binary classifica-
tion and < 5 for multi-label classification, based on the epoch with the best validation accuracy)
also contributed to better model performances, which matched recent analyses in foundation model
training Xue et al. (2024). The dropout rate and weight decay rate also work better with a small
value (illustrated in Extended Data Figures 4 (b) and (c)). Meanwhile, we found that increasing the
number of sampled cells does not always enhance the performances of PaSCient, shown in Extended
Data Figure 4 (d) for the experiments based on binary classification, which also matched previous
research about selecting the random sampling policies for multiple instance learning Tarkhan et al.
(2023). A suitable range of sampled cell numbers was found to be in (100, 2000).

In the multi-class setting, we faced a more complicated condition with different compositions of
diseases with different difficulties. Therefore, to investigate the prediction performances specific
to different diseases, we hypothesized that model performances was correlated to the frequency of
diseases included in the training dataset. PaSCient should be able to classify healthy conditions with
diseases whose frequency is low (as multiple binary classification problems). In contrast, PaSCient
might face a more and more challenging problem when introducing more diseases in the classifica-
tion problem (as multiple multi-label classification problems). To validate the first assumption, we
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Extended Data Fig. 4: Sensitivity analysis of PaSCient. (a) Performance of PaSCient under different learning
rates for binary classification. (b) Performance of PaSCient under different dropout rates for binary classifica-
tion. (c) Performance of PaSCient under different weight decay rights for binary classification. (d) Performance
of PaSCient under different number of sampled cells for binary classification. (e) Performances of PaSCient
under the cumulative setting of different diseases states. (f) Performance of PaSCient for classifying healthy
samples and other samples with different diseases. (g) Performance of PaSCient under different widths of neu-
ral network layers. (h) Performance of PaSCient under different depths of neural network layers.

separated the eight diseases into eight classification problems versus healthy conditions and trained
PaSCient to distinguish them. The results of this experiment are presented in Extended Data Figure
4 (e). We found that diseases with lower frequency were generally easier to identify. Meanwhile,
we added diseases to evaluate the cumulative performances from the largest frequency to the lowest
frequency shown in Extended Data Figure 4 (f), which showed that introducing more diseases might
reduce classification performances.

To explore the scaling law of PaSCient, we considered adjusting two architecture parameters, in-
cluding (1) the width of layers (shown in Extended Data Figure 4 (g)) and (2) the number of layers
(shown in Extended Data Figure 4 (h)). We found that increasing the width of the layers can help
improving the prediction performance, while increasing the number of layers might harm the pre-
diction performance.
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Extended Data Fig. 5: Demonstration of patient-sample-level embeddings. Correlation coefficients of disease
embeddings across different tissues. The clusters are generated based on the hierarchical clustering with one
minus correlation coefficient as distance.

H PaSCient learns the differences and similarities of different diseases in
the representation space

Modeling patients is a complex problem, so using classifier performance to measure patient repre-
sentation is insufficient to show that we have learned meaningful patient embeddings. For the given
group of patient embeddings, We can categorize them by disease as well as by tissue of their origin
to study the effects of the same disease on different tissues. By averaging the patient embeddings
by both diseases and tissues and computing the correlation matrix, we visualized the correlation
results in Figure 5. We found that disease embeddings from COVID-19 and lung adenocarcinoma
have a high correlation across different tissues, which implied that PaSCient successfully learned
the patient sample representations across different tissues from the same disease. Our embeddings
also captured signals of different tissues within the same disease demonstrated by the results of hier-
archical clustering. Such findings could also be supported by recent research about the multi-tissue
damages of COVID-19 Chen et al. (2020) and lung adenocarcinoma Zhu et al. (2021), as these
diseases tended to affect different tissues jointly.

I Evaluating patient embeddings with large language models

Rigorously evaluating the quality of the embeddings produced by a given method is a challenging
task, that requires meta-data annotations that is not always available. To address this challenge, we
constructed a disease similarity measure based on the text descriptions of each disease, extracted
from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database Kanehisa & Goto (2000);
Kanehisa (2019); Kanehisa et al. (2023) and National Center for Biotechnology Information (NCBI)
Sayers et al. (2024). Each disease description was converted to an embedding using the OpenAI text-
embedding tool OpenAI et al. (2024). Similarity between diseases was then obtained by computing
the Pearson Correlation Coefficients (PCCs) between their respective embedding. The resulting
similarity matrix is given in Extended Data Figure 6(a).

We then constructed a similarity measure between diseases from the embeddings of PaSCient by
averaging the embbedings of all patients with a given disease and computing the pairwise Pearson
Correlation Coefficients. Lastly, we used a similar procedure for computing disease similarities from
pseudobulk data. The resulting similarity matrices are presented in Extended Data Figure 6(a).
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To quantitatively assess the discrepancy between the text-based disease similarities and PaSCient-
based similarities, we computed the PCCs between both similarity matrices. We found that the cor-
relation from PaSCient’s result (PCC=0.65, p-value=9.5e-33) was higher than the correlation from
pseudobulk gene expression levels (PCC=0.28, p-value=2.6e-6), suggesting that PaSCient can learn
better patient representations by considering both the differences and similarities across different
diseases.

Furthermore, we investigated whether PaSCient could capture the similarity of certain disease-tissue
embeddings with other embeddings by visualizing the relationship between the correlation from
text embeddings and the correlation from PaSCient (Extended Data Figure 6(b,c)). We found that
PaSCient aligned with the human understanding of diseases with patient representations from tran-
scriptomic data for the lung samples with lung cancer (PCC=0.83, p-value=1.2e-4) and for the lung
samples with COVID-19 (PCC=0.72, p-value=2.0e-3). Overall, these preliminary results show that
text embeddings can be a promising metric for evaluating the reliability of learned patient represen-
tations.

J Explainability of multi-disease states

We visualized the importance scores across cell states and genes by different diseases in Extended
Data Figure 7 and Extended Data Figure 8.

K Association of cell-types importance scores and COVID-19 severity

We visualized the association between attribution scores and COVID-19 severity for each cell-type
in Extended Data Figure 9.

L Case study: Identification of treatment responders in melanoma

To complement our quality-assessment of the patient representations learnt by PaSCient, we inves-
tigated whether it could identify treatment responders for T-cell immunotherapy in melanoma. We
collected two scRNA-seq datasets from patients with melanoma treated with T-cell immunotherapy,
and for which a binary treatment outcome label was available Sade-Feldman et al. (2018); Yost et al.
(2019).

Following the settings of Lin & Sun (2024), we utilized the former dataset as a training dataset and
the latter as a testing dataset. For reference, we used the pseudobulk data from original expression
profiles by patients with a Support Vector Classifier (SVC), and extracted the patient representations
by querying PaSCient with the original gene expression profiles and performed classification under
the same training/testing datasets. The whole workflow is shown in Extended Data Figure 10 (a).
We also visualized the sample embeddings of training dataset in Extended Data Figure 10 (b) and
observed clusters for non-response samples. Furthermore, we visualized the classification results
in Extended Data Figure 10 (c), and the SVC using representations form PaSCient as input could
outperform the baseline model under different classification metrics, especially because the baseline
model predicted all patient samples as drug-responsible.
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Extended Data Fig. 6: Evaluation patient embeddings with the prior information from text descriptions. (a):
Correlation matrices of embeddings computed based on different rules for disease similarity across different
diseases. The sources and correlations between computed matrix and ground truth matrix are labelled in the
figure. (b) Scatter plot between the correlation computed with embeddings from PaSCient and the correlation
computed with text embeddings for describing the similarity of lung cancer in lung and other disease-tissue
pairs. (c) Scatter plot between the correlation computed with embeddings from PaSCient and the correlation
computed with text embeddings for describing the similarity of COVID19 in lung and other disease-tissue pairs.
All the p-values corresponding to correlations are significant.
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Extended Data Fig. 7: The averaged attributions of different cell types for diseases. The attributions are scaled
for each diseases for better visualization, and the cell types are corrected and annotated with SCimilarity.

Extended Data Fig. 8: Averaged attributions of each gene for different diseases. Each figure represents one
disease and we select top 20 genes to present, ranked by their average attributions.
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Extended Data Fig. 9: Results of t-tests for the association between attribution scores and COVID-19 severity
for each cell-type. p-values are Bonferroni corrected.
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Extended Data Fig. 10: Performances of PaSCient for patient-level treatment response prediction. (a):
Overview of treatment prediction task. We utilize patient sample embeddings from PaSCient as input and
classify these samples with their known treatment responses and transfer the knowledge to predict unknown
treatment responses in the testing dataset. (b): Visualization of sample embeddings colored by treatment re-
sponses. (c): Benchmarking results between PaSCient embeddings and pseudobulk gene expression levels as
inputs for this task.
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