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ABSTRACT

While model architecture and training objectives are well-studied for Large Lan-
guage Model (LLM), tokenizer, particularly in multilingual contexts, remains a
relatively neglected aspect of LLM development. Existing multilingual tokeniz-
ers often exhibit high token-to-word ratios, leading to inefficient use of context
length and slower inference. This motivated us to conduct a systematic study
that links vocabulary size, pre-tokenization rules, and training-corpus composi-
tion to both token-to-word efficiency and model quality. To ground our analy-
sis in a linguistically diverse context, we conduct extensive experiments on Indic
scripts, which present unique challenges due to their high script diversity and or-
thographic complexity. Drawing on the insights from these analyses, we propose
a novel algorithm AdaptMix, for data composition that balances multilingual data
for tokenizer training.
Our observations on pre-tokenization strategies significantly improve model per-
formance, and our data composition algorithm (AdaptMix) reduces the average
token-to-word ratio by approximately 6% with respect to the conventional data
randomization approach. Our tokenizer achieves more than 40% improvement
on average token-to-word ratio against state-of-the-art multilingual Indic models.
This improvement yields measurable gains in both model performance and in-
ference speed. This highlights tokenization alongside architecture and training
objectives as a critical lever for building efficient, scalable multilingual LLMs.

1 INTRODUCTION

In the domain of natural language processing(NLP) tokenizer is a fundamental component to bridge
human-readable text and model-readable tokens. Tokenizer algorithm such as WordPiece Devlin
et al. (2019), BPE Sennrich et al. (2016), Unigram Kudo & Richardson (2018) and Fast Word-
Piece Song et al. (2021) form the basis of modern NLP. Tokenizer can significantly influences the
efficiency, inference speed and context length of deep-learning models especially for transform-
ers Vaswani et al. (2017a). Indian languages are characterized by their linguistic diversity and
multiple scripts, including native scripts such as Devanagari and Dravidian, as well as transliter-
ated forms in Latin scripts. Native scripts dominate formal contexts such as literature, and academic
publications, whereas informal and digital communication increasingly employ Latin scripts.

Existing multilingual models like Bloom Luccioni et al. (2023); Muennighoff et al. (2023),
LLaMA Touvron et al. (2023a;b); Grattafiori et al. (2024), Gemma3 Team et al. (2024a;b; 2025),
Mistral Jiang et al. (2023), Qwen Bai et al. (2023); Yang et al. (2024); Qwen et al. (2025); et al.
(2025), Nemotron Nvidia et al. (2024), Sarvam AI (2024), Param Pundalik et al. (2025) often
demonstrate suboptimal performance on Indian languages due to their predominantly Latin-centric
vocabularies. Consequently there is a pressing need for tokenizer strategies that efficiently handle
both native and transliterated scripts to accommodate the prevalent code-mixing and the multilingual
nature of Indian digital communication.

Addressing these challenges, we conduct an extensive study on various pre-tokenization strate-
gies and a novel adaptive data mixture algorithm(AdaptMix) for training a multilingual tokenizer.
Method leverages multilingual datasets to dynamically balance language representation, consid-
erably improving tokenization quality. Empirical results demonstrate our algorithm achieves sig-
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nificant improvement in token-to-word ratio compared to standard baselines, enhancing tokenizer
performance. Increasing inference speed of model and efficient context length usage of model.

2 RELATED WORK

Tokenizer has evolved significantly over the past years, particularly with the adoption of subword to-
kenizer algorithms like Byte Pair Encoding (BPE) Sennrich et al. (2016), Unigram language models
Kudo (2018), and SentencePiece Kudo & Richardson (2018). Further advances in word representa-
tion were achived by Radford et al. (2019), which introduced byte-level tokenizer, and by Provilkov
et al. (2020), which proposed BPE-dropout.

While an increasing amount of research explores tokenizer development, most existing studies only
provide high-level descriptions of their approaches and rarely disclose detailed empirical data dis-
tributions influencing vocabulary design. There are a few notable exceptions though, such as Dagan
et al. (2024a); Reddy et al. (2025), that present extensive empirical analysis on the size of the train-
ing data for tokenizers. Several notable approaches like MorphTok Brahma et al. (2025) introduces
manually curated word-set and architectural changes for Indic language, however these methods are
time-consuming to implement and challenging to generalize across languages.

However, in multilingual settings, the data mixture used to train tokenizers is critical but often over-
looked. Models such as XLM-R Lample & Conneau (2019) and mT5 Xue et al. (2021b) typically
construct their vocabulary using large multilingual corpora where data is sampled in proportion to
language availability. This sampling strategy can disproportionally favor high resource languages,
resulting in lower tokenization efficiency for low resource morphologically complex languages.
Even though byte and character level models such as ByT5 Xue et al. (2021a) and Canine Clark
et al. (2021) mitigate this by operating below the subword level, they introduce significantly longer
sequences and hence, increased computational costs.

Despite substantial progress in tokenization techniques, a key gap remains in how multilingual data
is composed during vocabulary construction. This calls for a more careful consideration of data
mixture strategies that go beyond corpus size and incorporate linguistic and structural diversity to
increase the efficiency of tokenization across languages.

3 METHOD

The primary objective is to design and implement a tokenizer that can effectively process diverse
Indic linguistic styles. This includes support for all 22 officially recognized Indian languages and
widely used programming languages that require precise syntactic parsing.

We adopt SentencePiece Kudo & Richardson (2018) algorithm, for training our tokenizer due to its
effectiveness in handling diverse scripts. The datasets span multiple categories such as synthetic
corpora, scraped text, code and mathematical corpora further explained in 3.1. We perform multi-
ple experiments on different vocabulary size to get optimal size for multilingual Indian languages,
further described in 3.2. Extensive experimentation is done to identify suitable pre-tokenization
strategies for Indic languages. To optimize the tokenizer performance across multiple languages and
domains, we used our novel algorithm 3.4 and compared with state-of-the-art tokenizers in 4.3.

3.1 DATASET

To build our tokenizer, we curated a diverse multilingual and multi-domain dataset spanning 16
Indian languages (native and Latin scripts), programming languages, and LaTeX content. Sources
include open corpora, web-scraped and OCR data, and synthetic examples.

Open-Source Dataset: We have included, more than 35 open source datasets, including San-
graha Khan et al. (2024), Samanantar Ramesh et al. (2022), NLLB Team et al. (2022), Wikilin-
gua Ladhak et al. (2020), the Pile Gao et al. (2021), and IndicCorp Kakwani et al. (2020). Addi-
tionally, raw data covering 16 Indic languages was scraped from web sources and parsed through
the following steps: (1) Boilerplate and HTML Removal, (2) Unicode Normalization, (3) Repetition
and Noise Removal, (4) Global Deduplication, (5) Language and Length Filtering. Prior to sam-
pling, the corpus was classified into different quality using in house quality classification pipelines.
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Only high-quality segments from each dataset were retained. The selected data was shuffled and
randomly sampled to ensure broad domain coverage and vocabulary diversity across languages.

Synthetically Curated Data Despite India’s linguistic diversity, many Indic languages, including
Maithili and Sindhi (Devanagri), remain severely underrepresented in publicly available corpora.
Web scraped data is disproportionally skewed towards English and a few high resource languages
like Hindi, leaving limited high quality data for effectively training models and tokenizers.

To address this, we utilized a large scale synthetic indic corpus using persona driven generation Ge
et al. (2025). Drawing upon over 100 million Indian personas across 16 domains and 100+ fine
grained roles contributed to the development of synthetic data for our tokenizer training. Outputs
were generated using open source and filtered for quality, and averaged 900-1000 words per sample.
To enhance Indic language coverage, these English passages were translated into 15+ Indian lan-
guages using a 2 stage neural machine translation pipeline. Initial translation was performed using
IndicTrans2 Gala et al. (2023), followed by post correction through open source LLMs.

3.2 VOCABULARY

To determine the optimal vocabulary size capable of supporting diverse linguistic and structural
complexity present in Indic languages, programming syntax, and mathematical notations, an exten-
sive series of ablation studies was conducted. These studies aimed to evaluate the effects of different
vocabulary sizes on the tokenization granularity by analyzing token-to-word ratio – defined as the
average number of tokens generated per word.

To ensure comprehensive language coverage, we explicitly incorporated all unique characters across
Indian languages in the vocabulary prior to the tokenizer training. Due to extensive character set in-
herent in Indic scripts, this approach prevents the over-fragmentation of rarely occurring characters
which is not present in training dataset. Moreover, the vocabulary includes special tokens such as
pad, start and end of the sentence, as well as multiple instruction tokens like tools, user and assistant
intended for fine-tuning the model in the downstream task. To accommodate future expansion, mul-
tiple tokens are intentionally left unassigned, providing flexibility for domain-specific adaptation.

3.3 PRE-TOKENIZATION

Pre-tokenization rules are vital for building efficient tokenizer, as they standardize input text and
reduce redundancy. It ensures that words with minor diacritic variations are correctly distinguished.
Effective pre-tokenization enables the model to learn representation efficiently and optimize vocab-
ulary usage, since entities with the same sub-word mostly has similar semantic meanings.

Individual digits, including Indic scripts, are also split during pre-tokenization to support the gener-
alization of basic arithmetic or logical reasoning. Prior studies Nogueira et al. (2021), Thawani et al.
(2021), Dagan et al. (2024b) have shown that splitting digits can positively impact the performance
of arithmetic tasks. Similarly, splits are performed on line breaks and trailing whitespace. Taking
programming formats into consideration to prevent long context lengths due to these splits, multiple
groups of whitespace are implicitly added.

We experimented with pre-tokenization strategies, with multiple methods of diacritic separation.
This approach considers a trade-off between token-to-word ratio and the model’s linguistic compre-
hension. Indic scripts, being largely phonetic are prone to errors, especially writing diacritics by the
end-user, which can significantly distort embedding representation during inference. While a large
portion of training data is either synthetically generated or carefully written and thus free from these
types of errors, these representation won’t be learned by the model and hence might be unable to
provide response to end-users correctly. Moreover these errors will also increase the token-to-word
ratio. These discrepancies alter the token embeddings and can impact model performance. By apply-
ing pre-tokenization, we believe the model’s complexity in handling these variations can be reduced.
Two pre-tokenization strategies were evaluated: one involving the separation of all diacritics, and
another separating only a subset to optimize the token-to-word ratio. These were compared against
a baseline tokenizer with no pre-tokenization, along with corresponding models trained using each
tokenizer variant.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.4 ADAPTMIX: ADAPTIVE DATA MIXTURE

In earlier experiments, we consistently observed that languages with high token-to-word ratio such
as Sanskrit often exhibit morphological richness and orthographic complexity. Morphologically
rich languages encode grammatical meaning through extensive inflection and compounding, result-
ing in long and variable word forms. Similarly, scripts such as Malayalam and Devanagari include
ligatures, diacritics, and non-linear character arrangements, increasing the likelihood of token frag-
mentation. This suggested that uniform sampling ignores the linguistic complexity of each language,
causing inherently harder languages to under perform even when equally represented. While there
has been growing interest in optimizing data mixtures for pretraining large language models, such
as in works like DoReMi Xie et al. (2023) and DRO Oren et al. (2019), similar exploration for tok-
enizer training remains limited, especially in multilingual contexts. Some prior efforts, such as the
approach used in Lample & Conneau (2019), attempt to mitigate resource imbalance during training
by sampling sentences from each language according to a smoothed distribution, but the sampling
remains fundamentally tied to corpus availability.

To address these limitations, we propose an adaptive mixture strategy that dynamically adjusts lan-
guage wise sampling proportions based on current token-to-word ratio. This improves representation
of under performing languages and gradually steer the tokenizer training towards a balanced state,
where improvements in one language no longer come at a significant cost to others.

Higher token-to-word ratio indicates that the tokenizer fragments words into more units, which
reflects low tokenization efficiency. Our algorithm incorporates an iterative feedback loop of training
tokenizers, allowing the mixture to adapt over time towards a balanced configuration. This feedback-
driven optimization progressively reallocates training data in response to observed inefficiencies in
token-to-word ratio, aiming to reach an equilibrium.

For each language i ∈ L, a scaled token-to-word ratio fn
i , also known as fertility, is computed to

quantify tokenization inefficiencies in language relative to the target fertility (kept constant at 1),
and normalized by the fertility range. If languages happen to have the same token-to-word ratio, the
optimizer simply reuses the previous mixture proportions, rescaled to match the sampling budget.

δNl =
fN
l − fbest
fN

range
(1)

As lower values of token-to-word ratio or fertility are preferred, fbest = mini∈L fN
i . A small

constant is added to each δNl to ensure all languages retain non-zero weight, preventing exclusion.

wN
l = δNl + ε (2)

The resulting deficit weights are normalized across all languages to ensure that resulting values form
a valid probability distribution. These proportions reflect the composition for next traning iteration,
based purely on its relative tokenization performance. Languages with higher token-to-word ratio
are assigned larger proportions while others receive smaller proportions.

tNl =
wN

l∑
k∈L wN

k

(3)

To avoid abrupt shifts in the sampling distribution from one iteration to the next, the target propor-
tions are combined with the previous mixture using an exponential moving average. This results in
an updated mixture computed as a weighted combination of the past and current targets, controlled
by smoothing factor µ, that determine aggressiveness of weight redistribution. Smaller µ leads to
slower changes and preserving stability, whereas a larger µ allows faster adaptation. This mecha-
nism ensures that mixture adjustments are gradual and stable, reducing the risk of over-correction.

mN
l = (1− µ) ·mN−1

l + µ · tNl (4)

Once the updated mixture is computed for each language, it is scaled by the sampling budget to
determine the actual number of characters to be allocated for each language. The value is rounded
to the nearest integer and normalized to adjust for the small deviations caused by the rounding. This
step finalizes how much training data each language will contribute in the next tokenizer iteration.
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CN
l = round(mN

l · T ) (5)

Together, these steps form a feedback driven optimization loop that adaptively updates data mix-
tures based on the tokenization performance. This ensures that under performing languages receive
increased representation over time, while well performing languages are not destabilized. The entire
process can be expressed in a single consolidated equation as given below:

mN
l = (1− µ) ·mN−1

l + µ ·

 fN
l −fbest

fN
range

+ ε∑
k∈L

(
fN
k −fbest

fN
range

+ ε
)
 (6)

This formula is applied iteratively for each N , and mN
l is re-normalized if the sum deviates from 1.

(a) Fertility Optimization across Iterations. (b) Optimal mixture allocation.

Figure 1: Fertility and Mixture Allocation across Iterations for AdaptMix Tokenizer

If fN
range = 0, then:

mN
l =

mN−1
l∑

k∈L mN−1
k

· T (7)

To evaluate the effectiveness of the strategy, a series of controlled experiments was conducted. All
tokenizers were trained using BPE with a vocabulary size of 128K and no pre-tokenization beyond
optional byte-level splitting. The training data size was kept constant , augmented with a fixed
code-math corpus to ensure coverage of technical symbols. We evaluated 4 data mixtures in total,
shown in Figure 2. The adaptive algorithm began with from a uniform distribution and adjusted
the sampling distribution iteratively based on the observed fertility for each language. Tokenizers
were trained over 20 mixture-adjustment iterations, each involving full training, fertility analysis,
and reweighting. The evolution of language wise fertility across iterations is shown in Figure 1.

To assess whether improvements in fertility translated to improved model performance, small lan-
guage models were trained using each tokenizer variant. Each model was trained on the same
dataset and initialization, using only the tokenizer as the variable component. We then evaluated
each model’s perplexity on a multilingual held-out test set to assess downstream performance.

4 RESULTS

4.1 VOCABULARY, BPE AND UNIGRAM

A comprehensive set of experiments was conducted to evaluate the impact of vocabulary size on
tokenizer performance, with vocabulary sizes of 32K, 64K, 128K and 256K for both Byte-Pair En-
coding(BPE) Sennrich et al. (2016) and Unigram Kudo (2018) algorithms. The results, presented
in Table 1, highlight the token-to-word ratio of the key metric. Byte-Level tokenizers demonstrated
better performance in terms of token-to-word ratio across multiple configuration of both BPE and
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(a) AdaptMix Distribution (b) Uniform Distribution (c) Sangraha Distribution (d) Skewed Distribution

Figure 2: Data Mixture Comparison ‘AdaptMix’ (Optimal) our proposed adaptive sampling based
on tokenization difficulty. ‘EnHiMix’ (Skewed) biases the data toward English and Hindi. ‘UniMix’
(Uniform) applies uniform sampling across languages. ‘SangrahaMix’ reflects the distribution in
the Sangraha dataset Khan et al. (2024). Language abbreviations used are listed in Appendix A.1

Table 1: Token-to-word ratio Comparison for different Vocabulary Size

Language BPE 32K BPE 64K BPE 128K BPE 256K BL Unigram 32K Unigram 64K BL Unigram 128K Unigram 256K BL
Assamese 2.15 1.75 1.5 1.37 2.51 2.31 2.27 2.27
Bengali 4.37 3.68 3.26 3.01 4.51 4.01 3.86 3.82
English 3.86 3.49 3.22 3.01 4.17 3.73 3.45 3.33
Gujarati 2.89 2.44 2.17 2 3.11 2.76 2.64 2.62
Hindi 2.14 1.94 1.83 1.78 2.34 2.2 2.15 2.15
Kannada 4.1 3.52 3.18 2.98 4.24 3.79 3.68 3.66
Maithili 2.53 2.18 1.98 1.85 2.82 2.6 2.53 2.51
Malayalam 2.88 2.47 2.23 2.09 3.12 2.85 2.77 2.76
Marathi 3.02 2.56 2.3 2.15 3.38 3.13 3.06 3.05
Nepali 2.93 2.52 2.27 2.13 3.21 2.93 2.84 2.82
Odia 3.82 3.26 2.94 2.75 3.96 3.58 3.47 3.45
Punjabi 2.6 2.27 2.06 1.92 2.88 2.72 2.68 2.68
Sanskrit 2.4 2.15 2 1.9 2.64 2.43 2.34 2.32
Sindhi 1.92 1.64 1.48 1.39 2.32 2.1 2.03 2.02
Tamil 2.79 2.44 2.22 2.09 3.05 2.8 2.71 2.69
Telugu 3.61 3.14 2.85 2.67 3.75 3.38 3.25 3.23
Average 3 2.59 2.34 2.19 3.25 2.96 2.86 2.84

The table compares token-to-word ratio for different vocabulary size of 32K, 64K, 128K and 256K
across multiple Indian languages. BL denotes byte level segmentation.

Unigram algorithms. Among various sizes, the vocabulary size of 128K emerged as the most bal-
anced configuration. It offers an effective tradeoff between token-to-word ratio and model efficiency,
especially considering the inclusion of mathematical symbols, programming language tokes, and re-
served special tokens. While the 256K vocabulary showed marginal improvement in token-to-word
ratio, it effectively doubles the embedding matrix size, leading to significant overhead in memory
consumption and model performance. Further analysis revealed that certain languages exhibited
a persistently high token-to-word ratio even at a larger vocabulary size. This phenomenon was at-
tributed to linguistic features such as Sandhi Vibhajan (Morphological Fusion), a morphological rule
prevalent in many Indic languages, where multiple words are merged into a single compound word.
Such language-specific phenomenon introduce challenges in achieving a low token-to-word ratio.
While Unigram tokenization yields results that are only slightly inferior to BPE at a vocabulary size
of 32K, its token-to-word ratio deteriorates with a large vocabulary size. The probabilistic nature of
the unigram model encounters numerical instability resulting in NaN errors during training.

4.2 PRE-TOKENIZATION

Pre-tokenization strategies significantly influence the efficiency and quality of the tokenizer by stan-
dardizing input text and reducing redundancy. We investigated multiple pre-tokenization methods,
particularly focusing on the segmentation of diacritics common in Indic scripts. Two distinct strate-
gies were evaluated: one strategy involved separating all diacritics, while the other selectively sep-
arated only a subset aimed at optimizing the token-to-word ratio. Empirical results, summarized in
Table 2, reveal nuanced impacts of pre-tokenization strategies. Surprisingly, our experiments indi-
cate that applying aggressive pre-tokenization consistently worsened the fertility scores across most
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languages, contrary to our initial hypothesis. This finding suggests that excessive pre-tokenization
can lead to unnecessary fragmentation, diminishing the overall token-to-word ratio.

However, evaluating the token-to-word ratio alone did not provide a comprehensive picture, and
thus, assessing perplexity scores was also essential. To investigate this, we trained a 100M parameter
model using each of the pre-tokenization strategies, ensuring that model configuration was consistent
across experiments. All pre-tokenization strategies yielded substantially better perplexity scores than
without pre-tokenization baseline, with clear variations observed across strategies in Table 3.

Table 2: Token-to-Word ratio comparison for different Pre-Tokenization Strategies

Language PT-0 BPE PT-0 Unigram PT-1 BPE PT-1 Unigram PT-2 BPE PT-2 Unigram
Assamese 1.88 3.21 2.27 2.84 3.11 3.69
Bengali 1.85 3.15 2.23 2.77 3.26 3.77
English 1.45 2.75 1.48 2.03 1.43 1.76
Gujarati 1.83 3.15 2.17 2.64 3.01 3.6
Hindi 1.35 2.66 1.83 2.15 2.58 2.88
Kannada 2.21 3.41 2.94 3.47 4.09 4.83
Maithili 1.71 2.87 2 2.34 2.57 2.91
Malayalam 2.72 3.76 3.26 3.86 4.89 5.9
Marathi 1.72 3.14 2.22 2.71 3.44 3.81
Nepali 1.65 3 1.98 2.53 3.15 3.61
Odia 1.87 3.3 2.3 3.06 3.27 4.04
Punjabi 1.65 3.14 2.06 2.68 2.64 3.26
Sanskrit 3.02 3.7 3.22 3.45 4.09 4.67
Sindhi 1.54 3.19 1.5 2.27 1.44 1.93
Tamil 2.16 3.41 2.85 3.25 4.43 5.28
Telugu 2.44 3.5 3.18 3.68 4.2 4.9
Average 1.94 3.21 2.34 2.86 3.23 3.8

Table 3: Perplexity Score Comparison for Different Pre-tokenization strategies

Language PT-0 BPE PT-1 BPE PT-2 BPE PT-0 Unigram PT-1 Unigram PT-2 Unigram
Assamese 94.56 40.55 59.62 39.87 32.75 39.84
Bengali 116.63 42.41 70.26 47.34 35.96 47.08
English 153.34 167.9 136.16 42.96 83.6 42.74
Gujarati 101.66 44.81 69.55 42.5 35.3 42.49
Hindi 97.12 36.17 54.68 35.34 31.99 35.43
Kannada 102.86 40.56 59.42 50.8 32.17 50.77
Maithili 124.97 50.4 77.77 45.09 41.68 45.2
Malayalam 92.21 39.15 61.54 50.83 30.94 50.92
Marathi 154.23 44.7 84.44 51.93 39.02 52.12
Nepali 139.38 48.23 86.75 52.86 41.64 52.88
Odia 93.14 40.14 63.61 40.66 32.19 40.76
Punjabi 81.88 41.03 54.06 33.73 32.36 33.76
Sanskrit 70.76 32.74 50.57 40.8 29.51 40.86
Sindhi 101.42 46.9 62.61 43.5 38.59 43.75
Tamil 107.17 35.9 61.5 49.68 29.07 49.81
Telugu 95.51 39.55 55.51 49.41 32.04 49.29
Average 107.93 69.25 49.45 44.83 44.86 37.43

The table compares perplexity scores across different Indian languages using two tokenization
algorithms: SentencePiece Byte Pair Encoding (BPE) and Unigram, under three distinct pre-
tokenization strategies: PT-0 (Baseline, without pre-tokenization), PT-1 (Pre-tokenization of certain
diacritics), and PT-2 (Pre-tokenization of all diacritics). Lower perplexity scores indicate better
tokenization performance.
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Table 4: Token-to-word ratio Comparison Across Mixtures

Language AdaptMix EnHiMix UniMix SangrahaMix
Assamese 1.93 2.47 1.93 2.35
Bengali 1.90 2.22 1.89 1.74
English 1.47 1.27 1.42 1.39
Gujarati 2.03 8.60 2.05 2.20
Hindi 1.43 1.18 1.35 1.30
Kannada 2.30 2.92 2.40 2.56
Maithili 1.73 1.71 1.70 1.88
Malayalam 2.60 3.45 2.83 2.77
Marathi 1.87 1.86 1.83 1.78
Nepali 1.70 1.92 1.62 1.58
Odia 1.95 2.64 1.94 2.33
Punjabi 1.61 2.05 1.50 1.80
Sanskrit 2.57 2.97 2.66 2.91
Sindhi 1.67 1.70 1.55 1.73
Tamil 2.35 2.84 2.44 2.22
Telugu 2.34 2.73 2.44 2.39
Average 1.97 2.66 1.97 2.06

(a) Data distribution before applying AdaptMix (b) Data distribution after applying AdaptMix

Figure 3: Data Mixture Transition Left data distribution: Initial Uniform distribution across lan-
guages. Right data distribution: After applying ‘AdaptMix’ algorithm to uniform distribution. Lan-
guage abbreviations used are listed in Appendix A.1

4.3 ADAPTMIX: ADAPTIVE DATA MIXTURE

Results demonstrated consistent and interpretable trends; languages such as Sanskrit, Tamil, Malay-
alam, etc. initially exhibited higher fertility, but showed steady reductions across iterations until the
optimal mixture was reached. At the same time, languages that started with low fertility, such as En-
glish, Maithili and Punjabi, retained stable performance, indicating that the optimization algorithm
retained its efficiency.

As per Figure 3 it is evident that substantial cross-linguistic variation necessitates assigning appro-
priate weights to each language so that a balanced tokenizer attains an optimal token-to-word ratio
across languages. Sanskrit and Dravidian languages (Kannada, Malayalam, Telugu, Tamil) require
greater weights. We found their agglutination and longer orthographic word forms yield higher token
rates than in other languages. Similar insight is shared by Saluja et al. (2019) for these languages.
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To assess generalization, we experimented with varying vocabulary sizes between 16K and 128K.
Despite the variation, the results showed consistent allocation patterns with deviations within 1–2%,
suggesting robustness to vocabulary size.

Tokenizer trained using AdaptMix algorithm, with the optimal data mixture shown in 2a, achieved
the lowest fertility score among all evaluated tokenizers across all 16 languages. To validate the
effectiveness of the optimal mixture, Table 4 shows a comparison between 4 different data sampling
strategies, while keeping tokenizer configuration same.

To assess the downstream impact of tokenization strategies, identical models were trained using
each tokenizer variant and evaluated on a held out test set. All models shared the same configuration
and training data, ensuring that the tokenizer was the only differing factor. The optimal mixture tok-
enizer achieved the lowest overall perplexity, with improvements in morphologically rich languages
like Bengali, Malayalam, Oriya, and Tamil, while maintaining strong performance on high resource
languages like English and Hindi. Notably, the English/Hindi heavy tokenizer excels on its focus
languages but performs poorly on others. Random and uniform mixtures show inconsistent results
due to a lack of adaptive balancing. These findings reinforce the earlier analysis on fertility and par-
ity, demonstrating that improvements in tokenization quality translate to downstream performance
benefits.

Table 5: Token-to-word ratio Comparison Across state-of-the-art Tokenizers

Language AdaptMix Qwen LLaMA Nemotron
Mistral

Nemotron
Mini Sarvam-M DeepSeekv3 Gemma 27B Airavata

Assamese 1.93 7.18 8.06 4.24 4.58 4.24 3.59 2.68 8.94
Bengali 1.90 6.92 7.85 2.93 2.65 2.93 2.89 1.74 8.20
English 1.47 1.36 1.35 1.37 1.35 1.37 1.33 1.35 1.58
Gujarati 2.03 8.53 9.54 3.59 15.17 3.59 4.84 2.39 14.14
Hindi 1.43 4.66 2.65 1.97 1.77 1.97 2.92 1.38 1.80
Kannada 2.30 11.08 13.81 3.82 4.02 3.82 5.83 3.15 19.35
Maithili 1.73 4.67 2.85 2.53 2.28 2.53 3.28 1.90 2.45
Malayalam 2.60 13.30 16.00 4.88 4.71 4.88 7.83 3.39 11.38
Marathi 1.87 6.46 3.86 3.14 2.62 3.14 4.15 1.94 3.31
Nepali 1.70 6.28 3.61 3.04 2.32 3.04 4.07 2.06 3.05
Oriya 1.95 12.92 15.91 1.71 17.24 17.23 7.26 4.60 17.29
Punjabi 1.61 7.39 7.88 3.12 12.70 3.12 4.51 2.74 10.84
Sanskrit 2.57 8.00 4.75 4.26 4.32 4.26 4.95 3.36 4.66
Sindhi 1.67 3.09 2.99 2.65 2.83 2.65 2.98 2.14 5.04
Tamil 2.35 9.75 11.89 3.71 3.57 3.71 4.88 2.42 10.50
Telugu 2.34 11.45 13.30 3.90 3.77 3.90 5.99 2.93 19.51
Average 1.97 7.69 7.89 3.18 5.37 4.15 4.46 2.51 8.88

Table 5 shows AdaptMix performs better across the state-of-the-art tokenizers in terms of the token-
to-word ratio properly balancing the ratio of different languages.

5 CONCLUSION

We presented a comprehensive analysis of multilingual tokenizer strategies and demonstrated that
any optimal vocabulary size of 128K effectively balances tokenization efficiency and computa-
tional constraints, outperforming both smaller or larger vocabularies. Furthermore, various pre-
tokenization methods improves models performance, despite a slight increase in the token-to-word
ratio. In our experiment we varied the mixture weights across Indic languages to study their impact
on tokenizer and model performance. Our proposed AdaptMix algorithm dynamically optimized
multilingual training data composition for all languages, significantly reducing disparity of token-
word-ratio across languages. Collectively these contribution underline tokenizer as a fundamental
component on par with model architecture and training objectives in building scalable and efficient
multilingual language models.
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tonia Paterson, Beth Tsai, Bobak Shahriari, Charline Le Lan, Christopher A. Choquette-Choo,
Clément Crepy, Daniel Cer, Daphne Ippolito, David Reid, Elena Buchatskaya, Eric Ni, Eric
Noland, Geng Yan, George Tucker, George-Christian Muraru, Grigory Rozhdestvenskiy, Hen-
ryk Michalewski, Ian Tenney, Ivan Grishchenko, Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Brennan, Jeremy Chen, Johan Ferret, Justin Chiu,
Justin Mao-Jones, Katherine Lee, Kathy Yu, Katie Millican, Lars Lowe Sjoesund, Lisa Lee,
Lucas Dixon, Machel Reid, Maciej Mikuła, Mateo Wirth, Michael Sharman, Nikolai Chinaev,
Nithum Thain, Olivier Bachem, Oscar Chang, Oscar Wahltinez, Paige Bailey, Paul Michel, Petko
Yotov, Rahma Chaabouni, Ramona Comanescu, Reena Jana, Rohan Anil, Ross McIlroy, Ruibo
Liu, Ryan Mullins, Samuel L Smith, Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, Shree
Pandya, Siamak Shakeri, Soham De, Ted Klimenko, Tom Hennigan, Vlad Feinberg, Wojciech
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao Gong, Tris Warkentin, Ludovic Peran, Minh
Giang, Clément Farabet, Oriol Vinyals, Jeff Dean, Koray Kavukcuoglu, Demis Hassabis, Zoubin
Ghahramani, Douglas Eck, Joelle Barral, Fernando Pereira, Eli Collins, Armand Joulin, Noah
Fiedel, Evan Senter, Alek Andreev, and Kathleen Kenealy. Gemma: Open models based on
gemini research and technology, 2024a. URL https://arxiv.org/abs/2403.08295.

14

https://arxiv.org/abs/2412.15115
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://aclanthology.org/2022.tacl-1.9/
https://aclanthology.org/2022.tacl-1.9/
https://arxiv.org/abs/2502.20273
https://arxiv.org/abs/2502.20273
https://doi.ieeecomputersociety.org/10.1109/ICDAR.2019.00034
https://aclanthology.org/P16-1162
https://aclanthology.org/2021.emnlp-main.160/
https://arxiv.org/abs/2403.08295


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
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Batra, Harsh Dhand, Ivan Nardini, Jacinda Mein, Jack Zhou, James Svensson, Jeff Stanway, Jetha
Chan, Jin Peng Zhou, Joana Carrasqueira, Joana Iljazi, Jocelyn Becker, Joe Fernandez, Joost van
Amersfoort, Josh Gordon, Josh Lipschultz, Josh Newlan, Ju yeong Ji, Kareem Mohamed, Kar-
tikeya Badola, Kat Black, Katie Millican, Keelin McDonell, Kelvin Nguyen, Kiranbir Sodhia,
Kish Greene, Lars Lowe Sjoesund, Lauren Usui, Laurent Sifre, Lena Heuermann, Leticia Lago,
Lilly McNealus, Livio Baldini Soares, Logan Kilpatrick, Lucas Dixon, Luciano Martins, Machel
Reid, Manvinder Singh, Mark Iverson, Martin Görner, Mat Velloso, Mateo Wirth, Matt Davidow,
Matt Miller, Matthew Rahtz, Matthew Watson, Meg Risdal, Mehran Kazemi, Michael Moyni-
han, Ming Zhang, Minsuk Kahng, Minwoo Park, Mofi Rahman, Mohit Khatwani, Natalie Dao,
Nenshad Bardoliwalla, Nesh Devanathan, Neta Dumai, Nilay Chauhan, Oscar Wahltinez, Pankil
Botarda, Parker Barnes, Paul Barham, Paul Michel, Pengchong Jin, Petko Georgiev, Phil Culli-
ton, Pradeep Kuppala, Ramona Comanescu, Ramona Merhej, Reena Jana, Reza Ardeshir Rokni,
Rishabh Agarwal, Ryan Mullins, Samaneh Saadat, Sara Mc Carthy, Sarah Cogan, Sarah Perrin,
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A APPENDIX

A.1 ABBREVIATIONS

Abbreviation Language
as Assamese
bn Bengali
en English
gu Gujarati
hi Hindi
kn Kannada
mai Maithili
ml Malayalam
mr Marathi
ne Nepali
or Odia
pa Punjabi
sd Sindhi
sa Sanskrit
ta Tamil
te Telugu

A.2 TOKEN TO WORD RATIO

Token to Word Ratio is also commonly known as Fertility score. It is defined as,
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Token-to-Word Ratio =
Total Number of Tokens
Total Number of Words

(8)

A.3 MODEL TRAINING DETAILS

All models were trained from scratch using causal decoder transformer Vaswani et al. (2017b) archi-
tecture with 16 layers and a hidden size of 512, resulting in approximately 100M parameters. Each
model used a vocabulary size of 128k, based on the tokenizer being evaluated. The optimizer used
was AdamW Loshchilov & Hutter (2017) with a learning rate of 3e-4, cosine learning rate decay
Loshchilov & Hutter (2016) and the weight decay set to 0.1. Training was performed using BF16
precision on a single node with 2 GPUs, using Fully Sharded Data Parallelism (FSDP) Zhao et al.
(2023) for efficient memory and compute scaling.

A.4 PROBLEMS WITH WEIGHTED DATA MIXTURE OPTIMIZATION

Prior to scaling optimization algorithm to 16 languages, preliminary experiments were conducted
on a subset of four languages: English, Punjabi, Malayalam and Sanskrit. The subset was chosen
to reflect a range of token-to-word ratio behaviors as these languages have unique character sets
and grammatical rules. English and Punjabi generally perform well over default mixtures, whereas
Malayalam and Sanskrit are observed to exhibit higher token-to-word ratio. These small scale ex-
periments helped to mold core algorithm without compute over-utilization.

However, during the early stage experiments, we observed unintended behavior in the way token-to-
word ratio deficits were calculated. Initially, the best token-to-word ratio was defined dynamically
as the lowest token-to-word ratio among all languages in each iteration. While this allowed the al-
gorithm to adaptively update the mixture, it introduced a problematic patterns; instead of increasing
the proportion of under-performing languages, the optimizer began decreasing the proportion of well
performing ones, as observed in Figure 4. This occurred because Sanskrit and Malayalam could not
realistically reach the same tokenization efficiency as English or Punjabi within the same vocabu-
lary size. As a result, the algorithm minimized the overall deficit by degrading the performance of
already efficient languages instead of improving under-performing ones.

(a) Weighted Fertility across Iterations. (b) Weighted Mixture allocation.

Figure 4: Fertility and Mixture Allocation across Iterations for Weighted Algorithm

This problem was resolved using our novel AdaptMix Algorithm on the same set of dataset and
configuration as shown in 5.

A.5 PARITY CALCULATION

In addition to evaluating fertility, Table 6 shows tests conducted on Parity Petrov et al. (2023),
which quantifies cross lingual fairness and bias in tokenization. Across the 16 Indian languages, the
optimal data mixture consistently outperformed state of the art open source model tokenizers like
Qwen, LLama, DeepSeek, and Gemma in achieving parity with English.

A.6 APDATMIX PSEUDO CODE
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(a) AdaptMix Fertility across Iterations. (b) AdaptMix Mixture allocation.

Figure 5: Fertility and Mixture Allocation across Iterations for AdaptMix Algorithm

Table 6: Parity Comparison Across state-of-art Tokenizers

Language AdaptMix Qwen LLaMA Nemotron
Mistral

Nemotron
Mini Sarvam-M DeepSeek v3 Gemma 27B

Assamese 1.31 5.27 5.97 3.09 3.39 3.09 2.69 1.98
Bengali 1.29 5.08 5.81 2.13 1.96 2.13 2.17 1.28
English 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Gujarati 1.37 6.27 7.06 2.62 11.23 2.62 3.63 1.77
Hindi 0.96 3.42 1.96 1.43 1.31 1.43 2.19 1.02
Kannada 1.56 8.14 10.22 2.78 2.97 2.78 4.38 2.33
Maithili 1.17 3.43 2.11 1.84 1.68 1.84 2.46 1.40
Malayalam 1.76 9.77 11.85 3.56 3.48 3.56 5.88 2.51
Marathi 1.26 4.75 2.85 2.29 1.94 2.29 3.12 1.43
Nepali 1.15 4.61 2.67 2.21 1.71 2.21 3.06 1.52
Oriya 1.32 9.50 11.78 12.57 12.77 12.57 5.45 3.40
Punjabi 1.09 5.43 5.83 2.27 9.40 2.27 3.39 2.02
Sanskrit 1.74 5.88 3.51 3.10 3.20 3.10 3.72 2.48
Sindhi 1.13 2.27 2.21 1.93 2.09 1.93 2.24 1.58
Tamil 1.59 7.16 8.80 2.70 2.64 2.70 3.66 1.79
Telugu 1.58 8.41 9.85 2.84 2.79 2.84 4.50 2.17

Algorithm 1 Calculate Mixture

Require: Current mixture Mt, token-to-word ratio/fertility scores F , learning rate λ, constant ϵ
Ensure: New mixture Mt+1

1: total chars←
∑

i current mixture[li]

2: best fertility ← min(F.values())
3: worst fertility ← max(F.values())
4: fertility range← worst fertility − best fertility
5: for each language li do
6: if fertility range > 0 then
7: scaled deficit[li]← (F [li]− best fertility)/fertility range
8: else
9: scaled deficit[li]← 0

10: end if
11: deficit weight[li]← scaled deficit[li] + ϵ
12: end for

13: total deficit←
∑

i deficit weight[li]
14: for each language li do
15: deficit target[li]← deficit weight[li]/total deficit
16: new prop[li]← current prop[li](1− λ) + deficit target[li]λ
17: current prop[li]← current mixture[li]/total chars
18: new mixture[li]← ⌊new prop[li]× total chars⌋
19: end for
20: return new mixture
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