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Abstract

Modeling multivariate time series is a well-established problem with a wide range of applications from healthcare
to financial markets. It, however, is extremely challenging as it requires methods to (1) have high expressive power of
representing complicated dependencies along the time axis to capture both long-term progression and seasonal patterns, (2)
capture the inter-variate dependencies when it is informative, (3) dynamically model the dependencies of variate and time
dimensions, and (4) have efficient training and inference for very long sequences. Traditional State Space Models (SSMs)
are classical approaches for univariate time series modeling due to their simplicity and expressive power to represent linear
dependencies. They, however, have fundamentally limited expressive power to capture non-linear dependencies, are slow
in practice, and fail to model the inter-variate information flow. Despite recent attempts to improve the expressive power
of SSMs by using deep structured SSMs, the existing methods are either limited to univariate time series, fail to model
complex patterns (e.g., seasonal patterns), fail to dynamically model the dependencies of variate and time dimensions,
and/or are input-independent. We present Chimera, an expressive variation of the 2-dimensional SSMs with careful design
of parameters to maintain high expressive power while keeping the training complexity linear. Using two SSM heads with
different discretization processes and input-dependent parameters, Chimera is provably able to learn long-term progression,
seasonal patterns, and desirable dynamic autoregressive processes. To improve the efficiency of complex 2D recurrence,
we present a fast training using a new 2-dimensional parallel selective scan. We further present and discuss 2-dimensional
Mamba and Mamba-2 as the spacial cases of our 2D SSM. Our experimental evaluation shows the superior performance
of Chimera on extensive and diverse benchmarks, including ECG and speech time series classification, long-term and
short-term time series forecasting, and time series anomaly detection.

1 Introduction
Modeling time series is a well-established problem with a wide range of applications from healthcare (Behrouz, Delavari,
and Hashemi 2024; Ivanov et al. 1999) to financial markets (Gajamannage, Park, and Jayathilake 2023; Pincus and Kalman
2004) and energy management (H. Zhou et al. 2021). The complex nature of time series data, its diverse domains of
applicability, and its broad range of tasks (e.g., classification (Behrouz, Delavari, and Hashemi 2024; Wagner et al. 2020),
imputation (Luo and X. Wang 2024; H. Wu, Hu, et al. 2023), anomaly detection (Behrouz, Delavari, and Hashemi 2024;
Su et al. 2019), and forecasting (H. Zhou et al. 2021)), however, raise fundamental challenges to design effective and
generalizable models: (1) The higher-order, seasonal, and long-term patterns in time series require an effective model to be
able to expressively capture complex and autoregressive dependencies; (2) In the presence of multiple variates of time
series, an effective model need to capture the complex dynamics of the dependencies between time and variate axes. More
specifically, most existing multivariate models seem to suffer from overfitting especially when the target time series is not
correlated with other covariates (Zeng et al. 2023a). Accordingly, an effective model needs to adaptively learn to select
(resp. filter) informative (resp. irrelevant) variates; (3) The diverse set of domains and tasks requires effective models to be
free of manual pre-processing and domain knowledge and instead adaptively learn them; and (4) Due to the processing of
very long sequences, effective methods need efficient training and inference.

Classical methods (e.g., State Space Models (Aoki 2013; Harvey 1990), ARIMA (Bartholomew 1971), SARIMA (Bender and
Simonovic 1994), Exponential Smoothing (ETS) (Winters 1960)) require manual data preprocessing and model selection,
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Figure 1: The Overview of Contributions and Architecture of Chimera. We present a 2-dimensional SSM with careful and
expressive parameterization. It uses different learnable discretization processes to learn seasonal and long-term progression patterns,
and leverages a parallelizable and fast training process by re-formulating the 2D input dependent recurrence as a 2D prefix sum problem.

and often are not able to capture complex non-linear dynamics. The raise of deep learning methods and more specifically
Transformers (Vaswani et al. 2017) has led to significant research efforts to address the limitation of classical methods
and develop effective deep models (Z. Chen et al. 2023; Kitaev, Kaiser, and Levskaya 2020; Lim and Zohren 2021; S. Liu
et al. 2021; Yong Liu, Hu, et al. 2024; Woo et al. 2022; H. Wu, J. Wu, et al. 2022; H. Wu, Xu, et al. 2021; Y. Zhang and Yan
2023; T. Zhou, Z. Ma, Wen, X. Wang, et al. 2022). Unfortunately, most existing deep models struggle to achieve all the
above four criteria. The main body of research in this direction has focused on designing attention modules that use the
special traits of time series (Woo et al. 2022; H. Wu, Xu, et al. 2021). However, the inherent permutation equivariance of
attentions contradicts the causal nature of time series and often results in suboptimal performance compared to simple
linear methods (Zeng et al. 2023a). Moreover, they often either overlook difference of seasonal and long-term trend or use
non-learnable methods to handle them (Woo et al. 2022).

A considerable subset of deep models overlook the importance of modeling the dependencies of variates (Nie et al. 2023;
Zeng et al. 2023a; M. Zhang et al. 2023). These dependencies, however, are not always useful; specifically when the target
time series is not correlated with other covariates (S.-A. Chen et al. 2023). Despite several studies exploring the importance
of learning cross variate dependencies (S.-A. Chen et al. 2023; Yong Liu, Hu, et al. 2024; Y. Zhang and Yan 2023), there has
been no universal standard and the conclusion has been different depending on the domain and benchmarks. Accordingly,
we argue that an effective model need to adaptively learn to capture the dependencies of variates in a data-dependent
manner. In this direction, recently, Yong Liu, Hu, et al. (2024) argue that attention mechanisms are more effective when
they are used across variates, showing the importance of modeling complex non-linear dependencies across the variate
axis in a data-dependent manner. However, the quadratic complexity of Transformers challenges the model on multivariate
time series with a large number of variates (e.g., brain activity signals (Behrouz, Delavari, and Hashemi 2024) or traffic
forecasting (H. Zhou et al. 2021)), limiting the efficient training and inference (see Table 3, and Table 5).

The objective of this study is to develop a provably expressive model for multivariate time series that not only can model
the dynamics of the depenendencies along both time and variates, but it also takes advantage of fast training and inference.
To this end, we present a Chimera, a three-headed two-dimensional State Space Model (SSM) that is based on linear
layers along (i) time, (ii) variates, (iii) time→variate, and (iv) variate→time. Chimera has a careful parameterization
based on the pair of companion and diagonal matrices (see Figure 1), which is provably expressive to recover both
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classical methods (Bartholomew 1971; Bender and Simonovic 1994; Winters 1960), linear attentions, and recent SSM-based
models (Behrouz, Santacatterina, and Zabih 2024; Nguyen et al. 2022). It further uses an adaptive module based on a 2D SSM
with an especially designed discretization process to capture seasonal patterns. While our theoretical results and design
of Chimera guarantee the first three criteria of an effective model, due to its 2D recurrence, the naive implementation
of Chimera results in slow training. To address this issue, we reformulate its 2D recurrence as the prefix sum problem
with a 2-dimensional associative operators. This new formulation can be done in parallel and has hardware-friendly
implementation, resulting in much faster training and inference.

We discuss new variants of our 2D SSM in Section 3.2 by limiting its transition matrices. The resulted models can be seen
as the generalization of Mamba (Gu and Dao 2023) and Mamba-2 (Dao and Gu 2024) to 2-dimensional data. While the main
focus of this paper is on time series data, these presented models due to their 2D inductive bias are potentially suitable for
other high dimensional data modalities such as images, videos, and multi-channel audio.

In our experimental evaluation, we explore the performance of Chimera in a wide range of tasks: ECG and audio speech time
series classification, long- and short-term time series forecasting, and anomaly detection tasks. We find that Chimera achieve
superior or on par performance with state-of-the-art methods, while having faster training and less memory consumption.
We perform a case study on the human brain activity signals (Behrouz, Delavari, and Hashemi 2024) to show (1) the
effectiveness of Chimera and (2) evaluate the importance of modeling the dynamics of the variates dependencies.

2 Preliminaries

Notations. In this paper we mainly focus on classification and forecasting tasks. Note that anomaly detection can be seen
as a binary classification task, where 0 means “normall” and 1 means “anomaly”. We let X = {x1, . . . , x𝑁 } ∈ R𝑁×𝑇 be the
input sequences, where 𝑁 is the number of variates and 𝑇 is the time steps. We use x𝑣,𝑡 to refer to the value of the series 𝑣
at time 𝑡 . In classification (anomaly detection) tasks, we aim to classify input sequences and for forecasting tasks, given an
input sequence x𝑖 , we aim to predict x̃𝑖 ∈ R1×𝐻 , i.e., the next 𝐻 time steps for variate x𝑖 , where 𝐻 is called horizon. In 2D
SSMs formulation, for a 2-dimensional vector 𝑥 ∈ C1, we use 𝑥 (1) and 𝑥 (2) to refer to its real and imaginary components,
respectively.

Multi-Dimensional State Space Models. We build our approach on the continuous State Space Model (SSM) but later
we make each component of Chimera discrete by a designed discretization process. For additional discussion on 1D SSMs
see Appendix A. Given parameters A𝜏1 ∈ R𝑁

(𝜏1 )×𝑁 (𝜏1 ) , B𝜏2 ∈ C𝑁
(𝜏2 )×1, and C ∈ C𝑁1×𝑁2 for 𝜏1 ∈ {1, ..., 4} and 𝜏2 ∈ {1, 2}, the

general form of the time-invariant 2D SSM is the map x ∈ C1 ↦→ y ∈ C1 defined by the linear Partial Differential Equation
(PDE) with initial condition ℎ(0, 0) = 0:

𝜕

𝜕𝑡 (1)
ℎ

(
𝑡 (1) , 𝑡 (2)

)
=

(
A1ℎ

(1)
(
𝑡 (1) , 𝑡 (2)

)
,A2ℎ

(2)
(
𝑡 (1) , 𝑡 (2)

))
+ B1x

(
𝑡 (1) , 𝑡 (2)

)
, (1)

𝜕

𝜕𝑡 (2)
ℎ

(
𝑡 (1) , 𝑡 (2)

)
=

(
A3ℎ

(1)
(
𝑡 (1) , 𝑡 (2)

)
,A4ℎ

(2)
(
𝑡 (1) , 𝑡 (2)

))
+ B2x

(
𝑡 (1) , 𝑡 (2)

)
, (2)

y
(
𝑡 (1) , 𝑡 (2)

)
= ⟨C, x

(
𝑡 (1) , 𝑡 (2)

)
⟩. (3)

Contrary to the multi-dimensional SSMs discussed by Gu and Dao (2023) and Gu, Goel, and Re (2022), in which multi-
dimension refers to the dimension of the input but with one time variable, the above formulation uses two variables,
meaning that the mapping is from a 2D grid to a 2D grid.

(Seasonal) Autoregressive Process. Autoregressive process is a basic yet essential premise for time series modeling,
which models the causal nature of time series. Given 𝑝 ∈ N, x𝑘 ∈ R𝑑 , the simple linear autoregressive relationships between
x𝑘 and its past samples x𝑘−1, x𝑘−2, . . . , x𝑘−𝑝 can be modeled as x𝑘 = 𝜙1x𝑘−1 + 𝜙2x𝑘−2 + . . . , 𝜙𝑝x𝑘−𝑝 , where 𝜙1, . . . , 𝜙𝑝 are
coefficients. This is called AR(𝑝). Similarly, in the presence of seasonal patterns, the seasonal autoregressive process,
SAR(𝑝, 𝑞, 𝑠), is:

x𝑘 = 𝜙1x𝑘−1 + 𝜙2x𝑘−2 + . . . , 𝜙𝑝x𝑘−𝑝+𝜂1x𝑘−𝑠 + 𝜂2x𝑘−2𝑠 + · · · + 𝜂𝑞x𝑘−𝑞𝑠 , (4)

where 𝑠 is the frequency of seasonality, and 𝜙1, . . . , 𝜙𝑝 and 𝜂1, . . . , 𝜂𝑞 are coefficients. Note that one can simply extend the
above formulation to multivariate time series by letting coefficients to be vectors and replace the product with element-wise
product.
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3 Chimera: A Three-headed 2-Dimensional State Space Model
In this section, we first present a mathematical model for multivariate time series data and then based on this model, we
present a neural architecture that can satisfy all the criteria discussed in §1.

3.1 Motivations & Chimera Model
SSMs have been long-standing methods for modeling time series (Aoki 2013; Harvey 1990), mainly due to their simplicity
and expressive power to represent complicated and autoregressive dependencies. Their states, however, are the function of
a single-variable (e.g., time). Multivariate time series, on the other hand, require capturing dependencies along both time
and variate dimensions, requiring the current state of the model to be the function of both time and variate. Classical 2D
SSMs (Eising 1978; Fornasini and Marchesini 1978; Hinamoto 1980; Kung et al. 1977), however, struggle to achieve good
performance compared to recent advanced deep learning methods as they are : (1) only able to capture linear dependencies,
(2) discrete by design, having a pre-determined resolution, and so cannot simply model seasonal patterns, (3) slow in
practice for large datasets, (4) their update parameters are static and cannot capture the dynamics of dependencies. Deep
learning-based methods (S.-A. Chen et al. 2023; Yong Liu, Hu, et al. 2024; H. Zhou et al. 2021), on the other hand, potentially
are able to address a subset of the above limitations, while having their own drawbacks (discussed in §1). In this section,
we start with continuous SSMs due to their connection to both classical methods (Aoki 2013; Harvey 1990) and recent
breakthrough in deep learning (Gu and Dao 2023; Gu, Goel, and Re 2022). We then discuss our contributions on how to
take the advantages of the best of both worlds, addressing all the abovementioned limitations.

Discrete 2D SSM. We use 2-dimensional SSMs, introduced in Equation 1-3, to model multivariate time series, where the
first axis corresponds to the time dimension and the second axis is the variates. Accordingly, each state is a function of both
time and variates. The first stage is to transform the continuous form of 2D SSMs to discrete form. Given the step size Δ1
and Δ2, which represent the resolution of the input along the axes, discrete form of the input is defined as x𝑘,ℓ = x(𝑘Δ1, ℓΔ2).
Using Zero-Order Hold (ZOH) method, we can discretize the input as (see Appendix C for details):(

ℎ
(1)
𝑘,ℓ+1

ℎ
(2)
𝑘+1,ℓ

)
=

(
Ā1 Ā2
Ā3 Ā4

) (
ℎ
(1)
𝑘,ℓ

ℎ
(2)
𝑘,ℓ

)
+

(
B̄1
B̄2

)
⊗

(
x̄𝑘,ℓ+1
x̄𝑘+1,ℓ

)
, (5)

where Ā𝑖 = exp
(
Δ⌊ 𝑖+1

2 ⌋A𝑖

)
for 𝑖 = 1, 2, 3, 4, B̄1 =

[
A−1

1
(
Ā1 − I

)
B(1)

1
A−1

2
(
Ā2 − I

)
B(2)

1

]
, and B̄2 =

[
A−1

3
(
Ā3 − I

)
B(1)

2
A−1

4
(
Ā4 − I

)
B(2)

2

]
.

Note that this formulation can also be viewed as the modification of the discrete Roesser’s SSM model (Kung et al. 1977)

when we add a lag of 1 in the inputs
(
x̄𝑖, 𝑗
x̄𝑖, 𝑗

)
. This modification, however, misses the discretization step, which is an important

step in our model. We later use the discretization step to (1) empower the model to select (resp. filter) relevant (resp.
irrelevant) information, (2) adaptively adjust the resolution of the method, capturing seasonal patterns.

From now on, we use 𝑡 (resp. 𝑣) to refer to the index along the time (resp. variate) dimension. Therefore, for the sake of
simplicity, we reformulate Equation 5 as follows:

ℎ
(1)
𝑣,𝑡+1 = Ā1ℎ

(1)
𝑣,𝑡 + Ā2ℎ

(2)
𝑣,𝑡 + B̄1x𝑣,𝑡+1, (6)

ℎ
(2)
𝑣+1,𝑡 = Ā3ℎ

(1)
𝑣,𝑡 + Ā4ℎ

(2)
𝑣,𝑡 + B̄2x𝑣+1,𝑡 , (7)

y𝑣,𝑡 = C1ℎ
(1)
𝑣,𝑡 + C2ℎ

(2)
𝑣,𝑡 , (8)

where Ā1, Ā2, Ā3, Ā4 ∈ R𝑁×𝑁 , B̄1, B̄2 ∈ R𝑁×1, and C1,C2 ∈ R1×𝑁 are parameters of the model, ℎ (1)
𝑣,𝑡 , ℎ

(2)
𝑣,𝑡 ∈ R𝑁×𝑑 are

hidden states, and x𝑣,𝑡 ∈ R1×𝑑 is the input. In this formulation, intuitively, ℎ (1)
𝑣,𝑡 is the hidden state that carries cross-time

information (each state depends on its previous time stamp but within the same variate), where Ā1 and Ā2 control the
emphasis on past cross-time and cross-variate information, respectively. Similarly, ℎ (2)

𝑣,𝑡 is the hidden state that carries
cross-variate information (each state depends on other variates but with the same time stamp). Later in this section, we
discuss to modify the model to bi-directional setting along the variate dimension, to enhance information flow along this
non-causal dimension.
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Figure 2: Different forms of Chimera. (Top-Left) Chimera has a recurrence form (bi-directional along the variates), which also can
be computed as a global convolution in training. (Top-Right) In forecasting, we present the multivariate closed-loop to improve the
performance for long horizons. (Bottom) Using data-dependent parameters, Chimera training can be done as a parallel 2D scan.

Interpretation of Discretization. Time series data are often sampled from an underlying continuous process (Hebart et al.
2023; Warden 2018). In these cases, variable Δ1 in the discretization of the time axis can be interpreted as resolution or the
sampling rate from the underlying continuous data. However, discretization along the variate axis, which is discrete by its
nature, or when working directly with discrete data (A. E. Johnson et al. 2023) is an unintuitive process, and raise questions
about its significance. The discretization step in 1D SSMs has deep connections to gating mechanisms of RNNs (Gu and
Dao 2023; Tallec and Ollivier 2018), automatically ensures that the model is normalized (Gu, I. Johnson, Timalsina, et al.
2023), and results in desirable properties such as resolution invariance (Nguyen et al. 2022).

Proposition 3.1. The 2D discrete SSM introduced in Equation 6-8 with parameters ({Ā𝑖 }, {B̄𝑖 }, {C̄𝑖 }, 𝑘Δ1, ℓΔ2) evolves at a rate
𝑘 (resp. ℓ) times as fast as the 2D discrete SSM with parameters ({Ā𝑖 }, {B̄𝑖 }, {C̄𝑖 },Δ1, ℓΔ2) (resp. ({Ā𝑖 }, {B̄𝑖 }, {C̄𝑖 }, 𝑘Δ1,Δ2)).

Accordingly, parameters Δ1 can be viewed as the controller of the length of dependencies that the model captures. That is,
based on the above result, we see the discretization along the time axis as the setting of the resolution or sampling rate:
while small Δ1 can capture long-term progression, larger Δ1 captures seasonal patterns. For now, we see the discretization
along the variate axis as a mechanism similar to gating in RNNs (Gu and Dao 2023; Gu, Gulcehre, et al. 2020), where Δ2
controls the length of the model context. Larger values of Δ2 means less context window, ignoring other variates, while
smaller values of Δ2 means more emphesis on the dependencies of variates. Later, inspired by Gu and Dao (2023), we
discuss making Δ2 as the function of the input, resulting in a selection mechanism that filters irrelevant variates.

Structure of Transition Matrices. For Chimera to be expressive and able to recover autoregressive process, hidden states
ℎ
(1)
𝑣,𝑡 should carry information about past time stamps. While making all the parameters in A𝑖 learnable allows the model

to learn any arbitrary structure for A𝑖 , previous studies show that this is not possible unless the structure of transition
matrices are restricted (Gu, Goel, Gupta, et al. 2022; Gu, I. Johnson, Goel, et al. 2021). To this end, inspired by M. Zhang
et al. (2023) that argue that companion matrices are effective to capture the dependencies along the time dimension, we
restrict A1 and A2 matrices to have companion structure:

A𝑖 =

©­­­­­­­«

0 0 . . . 0 𝑎
(𝑖 )
1

1 0 . . . 0 𝑎
(𝑖 )
2

0 1 . . . 0 𝑎
(𝑖 )
3

...
...

. . .
...

...

0 0 . . . 1 𝑎
(𝑖 )
𝑁

ª®®®®®®®¬
=

©­­­­­­«

0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

ª®®®®®®¬︸                   ︷︷                   ︸
Shift Matrix

+

©­­­­­­­«

0 0 . . . 0 𝑎
(𝑖 )
1

0 0 . . . 0 𝑎
(𝑖 )
2

0 0 . . . 0 𝑎
(𝑖 )
3

...
...

. . .
...

...

0 0 . . . 0 𝑎
(𝑖 )
𝑁

ª®®®®®®®¬︸                      ︷︷                      ︸
Low-rank Matrix

, (9)
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for 𝑖 = 1, 2. Note that these two matrices are responsible to fuse the information along the time axis (see Figure 2). Not only
this formulation is shown to be effective for capturing dependencies along the time dimension (M. Zhang et al. 2023) (also
see Theorem 3.4), but it also can help us to compute the power of A1 and A2 faster in the convolutional form, as discussed
by M. Zhang et al. (2023). Also, for A3 and A4, we observe that even a simpler structure of diagonal matrices is effective to
fuse information along the variate dimension. Not only these simple structured matrices make the training of the model
faster, but they also are proven to be effective (Gu, Goel, Gupta, et al. 2022).

Bi-Directionality. The causal nature of the 2D SSM result in limited information flow along the variate dimension as
variate are not ordered. To overcome this challenge, inspired by the bi-directional 1D SSMs (J. Wang et al. 2023), we use
two different modules for forward and backward pass along the variate dimension:

ℎ
(1) 𝑓
𝑣,𝑡+1 = Ā𝑓

1ℎ
(1)
𝑣,𝑡 + Ā𝑓

2ℎ
(2) 𝑓
𝑣,𝑡 + B̄𝑓

1 x𝑣,𝑡+1,

ℎ
(1)𝑏
𝑣,𝑡+1 = Ā𝑏

1ℎ
(1)
𝑣,𝑡 + Ā𝑏

2ℎ
(2)
𝑣,𝑡 + B̄𝑏

1x𝑣,𝑡+1, (10)

ℎ
(2) 𝑓
𝑣+1,𝑡 = Ā𝑓

3ℎ
(1)
𝑣,𝑡 + Ā𝑓

4ℎ
(2) 𝑓
𝑣,𝑡 + B̄𝑓

2 x𝑣+1,𝑡 ,

ℎ
(2)𝑏
𝑣−1,𝑡 = Ā𝑏

3ℎ
(1)𝑏
𝑣,𝑡 + Ā𝑏

4ℎ
(2)𝑏
𝑣,𝑡 + B̄𝑏

2x𝑣−1,𝑡 , (11)

y𝑓𝑣,𝑡 = C𝑓

1ℎ
(1) 𝑓
𝑣,𝑡 + C𝑓

2ℎ
(2) 𝑓
𝑣,𝑡 , (12)

y𝑏𝑣,𝑡 = C𝑏
1ℎ

(1)𝑏
𝑣,𝑡 + C𝑏

2ℎ
(2)𝑏
𝑣,𝑡 , (13)

y𝑣,𝑡 = y𝑓𝑣,𝑡 + y𝑏𝑣,𝑡 , (14)

where Ā𝜏
1, Ā

𝜏
2, Ā

𝜏
3, Ā

𝜏
4 ∈ R𝑁×𝑁 , B̄𝜏

1, B̄
𝜏
2 ∈ R𝑁×1, and C𝜏

1,C
𝜏
2 ∈ R1×𝑁 are parameters of the model, ℎ (1)𝜏

𝑣,𝑡 , ℎ
(2)𝜏
𝑣,𝑡 ∈ R𝑁×𝑑 are

hidden states, x𝑣,𝑡 ∈ R1×𝑑 is the input, and 𝜏 ∈ {𝑓 , 𝑏}. Figure 2 illustrates the bi-directional recurrence process in Chimera.
For the sake of simplicity, we continue with unidirectional pass, but adapting them for bi-directional setting is simple as
we use two separate blocks, each of which for a direction.

Convolution Form. Similar to 1D SSMs (Gu, Goel, and Re 2022), our data-independent formulation can be viewed as
a convolution with a kernel K. This formulation not only results in faster training by providing the ability of parallel
processing, but it also connect Chimera with very recent studies of modern convolution-based architecture for time
series (Luo and X. Wang 2024). Applying the recurrent rules in Equation 6-8, we can write the output as:

y𝑣,𝑡 =
∑︁

1≤𝑣≤𝑣

∑︁
1≤𝑡≤𝑡

(
C1K

(1)
𝑣,𝑡

+ C2K
(2)
𝑣,𝑡

)
x𝑣,𝑡 , (15)

where kernels K(𝜏 )
𝑣,𝑡

=
∑

(𝑧1,...,𝑧5 ) ∈P(𝜏 ) 𝑞𝑖 Ā
𝑝1
1 Ā𝑝2

2 Ā𝑝3
3 Ā𝑝4

4 B̄𝑝5 , and P(𝜏 ) is the partitioning of the paths from the starting point
to (𝑣, 𝑡) for 𝜏 ∈ {1, 2}. As discussed by Baron, Zimerman, and Wolf (2024), if the power of Ā𝑖s are given and cached,
calculating the partitioning of all paths can be done very efficiently (near-linearly) as it the generalization of pascal triangle.
To calculate the power of Ā𝑖 , note that we use diagonal matrices as the structure of Ā3, and Ā4, and so computing their
powers is very fast. On the other hand, for Ā1 and Ā2 with companion structures, we can use sparse matrix multiplication,
which results in linear complexity in terms of the sequence length.

Data-Dependent Parameters. As discussed earlier, parameters Ā1 and Ā2 controls the emphasis on past cross-time
and cross-variate information. Similarly, parameters Δ1 and B̄1 controls the emphasis on the current input and historical
data. Since these parameters are data-independent, one can interpret them as a global feature of the system. In complex
systems (e.g., human neural activity), however, the emphasis depends on the current input, requiring these parameters to
be the function of the input (see §4.1). The input-dependency of parameters allows the model to select relevant and filter
irrelevant information for each input data, providing a similar mechanism as transformers (Gu and Dao 2023). Additionally,
as we argue earlier, depending on the data, the model needs to adaptively learn if mixing information along the variates
is useful. Making parameters input-dependent further overcomes this challenge and lets our model to mix relevant and
filter irrelevant variates for the modeling of a variate of interest. One of our main technical contributions is to let B̄𝑖 , C̄𝑖 ,
and Δ𝑖 for 𝑖 ∈ {1, 2} be the function of the input x𝑣,𝑡 . This input-dependent 2D SSM, unfortunately, does not have the
convolution form, limiting the scalability and efficiency of the training. We overcome this challenge by computing the
model recurrently with a new 2D scan.

6



2D Selective Scan. Inspired by the scanning in 1D SSMs (Gu and Dao 2023; Smith, Warrington, and Linderman 2023), we
present an algorithm to decrease the sequential steps that are required to calculate hidden states. Given 𝑝, 𝑞, each of which
with 6 elements, we first define operation ⋇ as: (⊙ is matrix-matrix and ⊗ is matrix-vector multiplication)

𝑝 ⋇ 𝑞 =

(
𝑝1 𝑝2 𝑝3
𝑝4 𝑝5 𝑝6

)
⋇

(
𝑞1 𝑞2 𝑞3
𝑞4 𝑞5 𝑞6

)
=

(
𝑞1 ⊙ 𝑝1 𝑞2 ⊙ 𝑝2 𝑞1 ⊗ 𝑝3 + 𝑞2 ⊗ 𝑝6 + 𝑞3
𝑞4 ⊙ 𝑝4 𝑞5 ⊙ 𝑝5 𝑞4 ⊗ 𝑝3 + 𝑞5 ⊗ 𝑝6 + 𝑞6

)
The proofs of the next two theorems are in Appendix E.

Theorem 3.2. Operator ⋇ is associative: Given 𝑝, 𝑞, and 𝑟 , we have: (𝑝 ⋇ 𝑞) ⋇ 𝑟 = 𝑝 ⋇ (𝑞 ⋇ 𝑟 ).

Theorem 3.3. 2D SSM recurrence can be done in parallel using parallel prefix sum algorithms with associative operator ⋇.

3.2 New Variants of 2D SSM: 2D Mamba and 2D Mamba-2
Figure 2 (Top-Left) shows the recurrence form of our 2D SSM. Each small square is a state of the system, i.e., the state of a
variate at a certain time stamp. 2D SSM considers two hidden states for each state (represented by two colors: light red and
blue), encoding the information along the time (red) and variate (blue), respectively. Furthermore, each arrow represents a
transition matrix A𝑖 that decides to how information need to be fused. In this section, we discuss different variants of our
2D SSM by limiting its parameters.

2D Mamba. We let A2 = A3 = 0 in the formulation of our 2D SSM. The resulting model is equivalent to:

ℎ
(1)
𝑣,𝑡+1 = Ā1ℎ

(1)
𝑣,𝑡 + B̄1x𝑣,𝑡+1, (16)

ℎ
(2)
𝑣+1,𝑡 = Ā4ℎ

(2)
𝑣,𝑡 + B̄2x𝑣+1,𝑡 , (17)

y𝑣,𝑡 = C1ℎ
(1)
𝑣,𝑡 + C2ℎ

(2)
𝑣,𝑡 , (18)

where Ā1 = exp (Δ1A1), Ā2 = exp (Δ2A2), B̄1 =

[
A−1

1
(
Ā1 − I

)
B(1)

1
0

]
, and B̄2 =

[
0

A−1
4

(
Ā4 − I

)
B(2)

2

]
. This formulation with

data-dependent parameters, is equivalent to using two S6 blocks (Gu and Dao 2023) each of which along a dimension.
Notably, these two S6 blocks are not separate as the output y𝑣,𝑡 is based on both hidden states ℎ (1)

𝑣,𝑡 and ℎ (2)
𝑣,𝑡 , capturing 2D

inductive bias.

2D Mamba-2. Recently, Dao and Gu (2024) present Mamba-2 that re-formulates S6 block using structured semi-separable
matrices, resulting in more efficient training and ability of having larger recurrent state sizes. Although we leave the
exploration of how generic 2D SSMs can be re-formulated by tensors (see Section 5 for further discussion), the special case
of A2 = A3 = 0, similar to the above formulation, can be re-formulated as two SSD blocks (Dao and Gu 2024) each of which
along a dimension. Furthermore, for bi-directionality along the variates, one can use quasi-separable structured matrices,
which inherently captures bi-directionality as discussed by Behrouz, Santacatterina, and Zabih (2024):

y𝑣,𝑡 =
©­­­­«

C1𝑣,1 B̄1𝑣,1 0 . . . 0
C1𝑣,2A1𝑣,2 B̄1𝑣,1 C1𝑣,2 B̄1𝑣,2 . . . 0

...
...

. . .
...

C1𝑣,𝑡
(∏𝑡

𝑖=2 A1𝑣,𝑖
)
B̄1𝑣,1 C1𝑣,𝑡

(∏𝑡
𝑖=3 A1𝑣,𝑖

)
B̄1𝑣,2 . . . C1𝑣,𝑡 B̄1𝑣,𝑡

ª®®®®¬︸                                                                                 ︷︷                                                                                 ︸
SSD Block

x𝑣,: (19)

+

©­­­­­­«
𝛾1 C′

2𝑣−1,𝑡
A′

4𝑣−1,𝑡
B̄′

2𝑣,𝑡 . . . C′
2𝑣,𝑡

(∏𝑣−1
𝑖=1 A′

4𝑖,𝑡

)
B̄′

21,𝑡

C22,𝑡A42,𝑡 B̄21,𝑡 𝛾2 . . . C′
2𝑣−1,𝑡

(∏𝑣−1
𝑖=2 A′

4𝑖,𝑡

)
B̄′

22,𝑡
...

...
. . .

...

C2𝑣,𝑡
(∏𝑣

𝑖=2 A4𝑖,𝑡
)
B̄21,𝑡 C2𝑣,𝑡

(∏𝑣
𝑖=3 A4𝑖,𝑡

)
B̄22,𝑡 . . . 𝛾𝑣

ª®®®®®®¬︸                                                                                                     ︷︷                                                                                                     ︸
Quasi-Separable Block

x:,𝑡 , (20)

where x𝑣,: and x:,𝑡 are the vectors when we fix 𝑣 and 𝑡 in input x, respectively.
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3.3 Chimera Neural Architecture
In this section, we use a stack of our 2D SSMs, with non-linearity in between, to enhance the expressive power and
capabilities of the abovementioned 2D SSM. To this end, similar to deep SSM models (M. Zhang et al. 2023), we allow all
parameters to be learnable and in each layer we use multiple 2D SSMs, each of which with its own responsibility. Also, in
the data-dependent variant of Chimera, we let parameters B𝑖 ,C𝑖 , and Δ𝑖 for 𝑖 ∈ {1, 2} be the function of the input x:

B𝑖 = LinearB𝑖 (𝑥), C𝑖 = LinearC𝑖
(𝑥), Δ𝑖 = Softplus

(
LinearΔ𝑖

(𝑥)
)
. (21)

Chimera follows the commonly used decomposition of time series, and decomposes them into trend components and
seasonal patterns. it, however, uses special traits of 2D SSM to capture these terms.

Seasonal Patterns. To capture the multi-resolution seasonal patterns, we take advantage of the discretization process.
Proposition 3.1 states that if x(𝑣, 𝑡) ↦→ y(𝑣, 𝑡) with parameters ({Ā𝑖 }, {B̄𝑖 }, {C̄𝑖 },Δ1,Δ2) then x(𝑣, 𝑘𝑡) ↦→ y(𝑣, 𝑘𝑡) with
({Ā𝑖 }, {B̄𝑖 }, {C̄𝑖 }, 𝑘Δ1,Δ2). Accordingly, we use 2D-SSM(.) module with a separate learnable Δ𝑠 that is responsible to learn
the best resolution to capture seasonal patterns. Another interpretation for this module is based on SAR(𝑝, 𝑞, 𝑠) (Equation 4).
In this case, Δ𝑠 aims to learn a proper parameter 𝑠 to capture seasonal patterns. Since we expect the resolution before and
after this module matches, we add additional re-discretization module (a simple linear layer), after this module.

Trend Components. The second module of Chimera, 2D-SSM𝑡 (.) simply uses a sequence of multiple 2D SSMs to learn
trend components. Proper combination of the outputs of this and the previous modules can capture both seasonal and
trend components.

Both Modules Together. We followed previous studies (Toner and Darlow 2024) and consider residual connection
modeling for learning trend and seasonal patterns. Given input data X̃0 = X, and ℓ = 0, . . . ,L, we have:

X̂ℓ+1 = 2D-SSM𝑡
(
X̃ℓ

)
, (22)

X̃ℓ+1 = Re-Discretization
(
2D-SSM𝑠

(
X̃ℓ − X̂ℓ+1

))
. (23)

Figure 1 illustrate the architecture of Chimera. Due to the ability of our 2D SSM to recover smoothing techniques (see
Theorem 3.4), this combination of modules for trend and seasonal patterns can be viewed as a generalization of traditional
methods that use moving average with residual connection to model seasonality (Toner and Darlow 2024).

Gating with Linear Mapping. Inspired by the success of gated recurrent and SSM-based models (Gu and Dao 2023; Qin,
Yang, and Zhong 2023), we use a head of a fully connected layer with Swish (Ramachandran, Zoph, and Le 2017), resulting
in SwiGLU variant (Touvron et al. 2023). While we validate the significance of this head, this

Closed-Loop 2D SSM Decoder. To enhance the generalizability and the ability of our model for longer-horizon, we
extend the closed-loop decoder module (M. Zhang et al. 2023), which is similar to autoregression, to multivariate time
series. We use distinct processes for the inputs and outputs, using additional matrices D1 and D2 in each decoder 2D SSM,
we model future input time-steps explicitly:

y𝑣,𝑡 = C1ℎ
(1)
𝑣,𝑡 + C2ℎ

(2)
𝑣,𝑡 , (24)

u𝑣,𝑡 = D1ℎ
(1)
𝑣,𝑡 + D2ℎ

(2)
𝑣,𝑡 , (25)

where u𝑣,𝑡 is the next input and y𝑣,𝑡 is the output. Note that the other parts (recurrence) are the same as Equation 6. Figure 2
illustrate the architecture of closed-loop 2D SSM.

3.4 Theoretical Justification
In this section, we provide some theoretical evidences for the performance of Chimera. These results are mostly revisiting
the theorems by M. Zhang et al. (2023) and Baron, Zimerman, and Wolf (2024), and extending them for Chimera. In
the first theorem, we show that Chimera recovers several classic methods, and pre-processing steps as it can recover
SpaceTime (M. Zhang et al. 2023) and additionally because of its design, it can recover SARIMA (Bender and Simonovic
1994):
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Theorem 3.4. Chimera can represent seasonal autoregressive process, SARIMA (Bender and Simonovic 1994), SpaceTime (M.
Zhang et al. 2023), and so ARIMA (Bartholomew 1971), exponential smoothing (Winters 1960), and controllable linear
time–invariant systems (C.-T. Chen 1984).

Theorem 3.5. Chimera can represent S4nd (Nguyen et al. 2022), TSM2 (Behrouz, Santacatterina, and Zabih 2024), and
TSMixer (S.-A. Chen et al. 2023).

Next theorem compares the expressiveness of Chimera with some existing 2D deep SSMs. Since Chimera can recover
2DSSM (Baron, Zimerman, and Wolf 2024), it can express full-rank kernels with a constant number of parameters:

Theorem 3.6. Similar to 2DSSM (Baron, Zimerman, and Wolf 2024), Chimera can express full-rank kernels with O (1)
parameters, while existing deep SSMs (Behrouz, Santacatterina, and Zabih 2024; Nguyen et al. 2022) require O (𝑁 ) parameters
to express 𝑁 -rank kernels.

4 Experiments

Goals and Baselines. We evaluate Chimera on a wide range of time series tasks. In § 4.1 we compare Chimera with the
state-of-the-art general multivariate time series models (Behrouz, Santacatterina, and Zabih 2024; Das et al. 2023; Lim and
Zohren 2021; M. Liu et al. 2022; Yong Liu, Hu, et al. 2024; Luo and X. Wang 2024; Badri N. Patro and Vijay S. Agneeswaran
2024; Woo et al. 2022; H. Wu, Hu, et al. 2023; H. Wu, Xu, et al. 2021; Y. Zhang and Yan 2023; T. Zhou, Z. Ma, Wen, X. Wang,
et al. 2022) on long-term forecasting and classification tasks. In the next part, we test the performance of Chimera in
short-term forecasting. In § 4.1 we perform a case study on human neural activity to classify seen images, which requires
capturing complex dynamic dependencies of variates, to test the ability of Chimera in capturing cross-variate information
and the significance of data-dependency. In § 4.2, we evaluate the significance of the Chimera’s components by performing
ablation studies. In § 4.2, we evaluate whether the superior performance of Chimera coincide with its efficiency. Finally,
we test the Chimera’s generalizability on unseen variates and further evaluate its ability to filter irrelevant context in § 4.3.
The details and additional experiments are in Appendix G.

Table 1: Average Performance on long-term forecasting task. The first and second results are highlighted in red (bold) and orange
(underline). Full results are reported in Appendix G.

Chimera TSM2 Simba TCN iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear
(ours) 2024 2024 2024 2024 2023 2023 2023 2023 2023 2023

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.345 0.377 0.361 - 0.383 0.396 0.351 0.381 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407
ETTm2 0.250 0.316 0.267 - 0.271 0.327 0.253 0.314 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401
ETTh1 0.405 0.424 0.403 - 0.441 0.432 0.404 0.420 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452
ETTh2 0.318 0.375 0.333 - 0.361 0.391 0.322 0.379 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515
ECL 0.154 0.249 0.169 - 0.185 0.274 0.156 0.253 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300
Exchange 0.311 0.358 0.443 - - - 0.302 0.366 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414
Traffic 0.403 0.286 0.420 - 0.493 0.291 0.398 0.270 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383
Weather 0.219 0.258 0.239 - 0.255 0.280 0.224 0.264 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317

1st Count 5 5 1 - 0 0 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.1 Main Results: Classification and Forecasting

Long-Term Forecasting. We perform experiments in long-term forecasting task on benchmark datasets (H. Zhou et al.
2021). Table 1 reports the average of results over different horizons (for the results of each see Table 8). Chimera shows
outstanding performance, achieving the best or the second best results in all the datasets and outperforms baselines in 5
out of 8 benchmarks. Notably, it surpasses extensively studied MLP-based and Transformer-based models while being
more efficient (see Table 3, Figure 4, and Appendix G), providing a better balance of performance and efficiency. It further
significantly outperforms recurrent models, including very recent Mamba-based architectures (Behrouz, Santacatterina,
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and Zabih 2024; Badri N. Patro and Vijay S. Agneeswaran 2024), unleashing the potential of classical models, SSMs, when
are carefully designed in deep learning settings.

Classification and Anomaly Detection. We evaluate the performance of Chimera in ECG classification on PTB-XL
dataset (Wagner et al. 2020) (see Table 2), speech classification (Warden 2018)(Table 3), 10 multivariate datasets from
UEA Time Series Classification Archive (Bagnall et al. 2018) (see Figure 3 and Table 10), and anomaly detection tasks
on five widely-used benchmarks: SMD (Su et al. 2019), SWaT (Mathur and Tippenhauer 2016), PSM (Abdulaal, Z. Liu,
and Lancewicki 2021) and SMAP (Hundman et al. 2018) (see Figure 3 and Table 11). For each benchmark, we use the
state-of-the-art methods that are applicable to the task as the baselines. Table 2 reports the performance of Chimera and
baselines on ECG classification tasks. Chimera outperforms all the baselines in 4/6 tasks, while achieving the second best
results on the remaining tasks. Since these tasks are univariate time series, we attribute the outstanding performance of
Chimera, specifically compared to SpaceTime (M. Zhang et al. 2023), to its ability of capturing seasonal patterns and its
input-dependent parameters, resulting in dynamically learn dependencies.

Table 3 reports the results on speech audio classification task, which require long-range modeling of time series. Due to
the length of the sequence (16K), LSSL (Gu, Goel, and Re 2022) and Transformer (Vaswani et al. 2017) has out of memory
(OOM) issue, showing the efficiency of Chimera compared to alternative backbones.

Finally, we report the summary of the results in multivariate time series classification and anomaly detection tasks in
Figure 3. The full list of results can be found in Table 10 and Table 11. Chimera shows outstanding performance, achieving
highest average accuracy and F1 score in classification and anomaly detection tasks even compared to very recent and
state-of-the-art methods (Luo and X. Wang 2024; H. Wu, Hu, et al. 2023).

Table 2: ECG statement classification on PTB-XL (100 Hz version).

Tasks All Diag Sub-diag Super-diag Form Rhythm
Chimera 0.941 0.947 0.935 0.930 0.901 0.975
SpaceTime (M. Zhang et al. 2023) 0.936 0.941 0.933 0.929 0.883 0.967
S4 (Gu, Goel, and Re 2022) 0.938 0.939 0.929 0.931 0.895 0.977
Inception 0.925 0.931 0.930 0.921 0.899 0.953
xRN-101 0.925 0.937 0.929 0.928 0.896 0.957
LSTM 0.907 0.927 0.928 0.927 0.851 0.953
Transformer 0.857 0.876 0.882 0.887 0.771 0.831

Table 3: Speech classification.

Method Acc. (%)
Chimera 98.40
SpaceTime 97.29
S4 98.32
LSSL OOM
WaveGan-D 96.25
Transformer OOM

Short-Term Forecasting. Our evaluation on short-term forecasting tasks on M4 benchmark datasets (Godahewa et
al. 2021) reports in Table 4 (Full list in Table 9), which also shows the superior performance of Chimera compared to
baselines.

Table 4: Short-term forecasting task on the M4 dataset. Full results are reported in Appendix G.

Models ChimeraModernTCN PatchTST TimesNet N-HiTS N-BEATS∗ ETS∗ LightTS DLinear FED∗ Stationary Auto∗ Pyra∗ In∗ Re∗ LSTM
(ours) 2024 2023 2023 2022 2019 2022 2022 2023 2022 2022 2021 2021 2021 2020 1997

W
ei
gh

te
d

Av
er
ag
e SMAPE 11.618 11.698 11.807 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987 14.086 18.200 160.031

MASE 1.528 1.556 1.590 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771 3.265 2.718 4.223 25.788
OWA 0.827 0.838 0.851 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939 1.480 1.230 1.775 12.642

Case Study of Brain Activity. Input dependency is a must to capture the dynamic of dependencies. To support this claim,
we use BVFC (Behrouz, Delavari, and Hashemi 2024) (multivariate time series only), which aim to classify seen images
by its corresponding brain activity response. This task, requires focusing more on the dependencies of brain units and
their responses rather than the actual time series. Also, since each window corresponds to a specific image, the model
needs to capture the dependencies based on the current window, requiring to be input-dependent. Results are reported in
Table 5. Chimera significantly outperforms all the baselines including our Chimera but without data-dependent parameters
(convolution form). Due to the large number of brain units, i.e., 9K, in the first dataset, transformer-based methods face
OOM issue. However, they are also data-dependent and so shows the second best results in second and third datasets. This
results support the significance of data-dependency in Chimera.
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4.2 Ablation Study and Efficiency
To evaluate the significance of the Chimera’s design, we perform ablation studies and remove one of the components at
each time, keeping other parts unchanged. Table 6 reports the results. The first row reports the Chimera’s performance,
while row 2 uses unidirectional recurrence along the variate dimension, row 3 removes the gating mechanism, row 4 uses
convolution form (data-independent), and row 5 removes the module for seasonal patterns. The results show that all the
components of Chimera contributes to its performance.

Table 5: Image classification by brain activity (Acc. %).

Method Chimera Chimera (ind.) SpaceTime S4 iTrans. Trans. DLinear
(ours) (ours) 2023 2022 2024 2017 2023

BVFC (9K) 69.41 62.36 41.20 40.89 OOM OOM 39.74
BVFC (1K) 58.99 50.25 34.31 35.19 54.18 43.60 33.09
BVFC (400) 51.08 45.17 33.58 33.76 48.22 38.05 32.73

Table 6: Ablation study on the Chimera’s design.

Method ETTh1 ETTm1 ETTh2
MSE MAE MSE MAE MSE MAE

Chimera 0.405 0.424 0.345 0.377 0.318 0.375
Uni.-directional 0.409 0.429 0.354 0.385 0.326 0.381
w/o Gating 0.418 0.433 0.351 0.384 0.321 0.379
Input-independent 0.471 0.498 0.361 0.389 0.372 0.401
w/o seasonal 0.426 0.431 0.357 0.382 0.331 0.386

Figure 3: Classification and anomaly detection performance. Full list with additional
baselines is in Appendix G. Figure 4: Wall-clock scaling.

Length of Time Series. We perform experiments on the effect of the sequence length on the efficiency of Chimera
and baselines. The results are reported in Figure 4. Chimera scales linearly with respect to the sequence length and has
smoother scaling than S4 (Gu, Goel, and Re 2022) and Transformers (Vaswani et al. 2017). These results also highlight
the significance of our algorithm that uses 2D parallel scans for training Chimera. This algorithm results in ≈ ×4 faster
training, which is very closed to the convolutional format without data dependency. Chimera also has a close running time
to SpaceTime (M. Zhang et al. 2023), which has 1D recurrent.

4.3 Selection Mechanism Along Time and Variate

Variate Generalization. We argue that the data-dependency with discretization allows the model to filter the irrelevant
context based on the input, resulting in more generalizability. Inspired by Yong Liu, Hu, et al. (2024), we train our model
(and baseline) on 20% of variates and evaluate its generalizability to unseen variates. The results are reported in Figure 5.
Chimera has on par generalizability compared to Transformers (when applied along the variate dimension), which we
attributes to its data-dependent parameters as Chimera with convolution form performs poorly on unseen variates.

Context Filtering. Increasing the lookback length does not necessarily result in better performance for Transformers (Yong
Liu, Hu, et al. 2024). Due to the selection mechanism of Chimera, we expect it to filter irrelevant information and
monotonically performs better. Figure 6 reports the Chimera’s performance (w/ and w/o data-dependency) and transformer-
based baselines (H. Wu, J. Wu, et al. 2022; H. Zhou et al. 2021) while varying the lookback length. Chimera due to its
selection mechanism monotonically performs better with increasing the lookback.
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Figure 5: Selection results in generalization to unseen variates. Figure 6: Effect of lookback length.

5 Conclusion and Future Work
This paper presents Chimera, a three-headed 2-dimensional SSM model with provably high expressive power. Chimera
is based on 2D SSMs with careful design of parameters that allows it to dynamically and simultaneously capture the
dependencies along both time and variate dimensions. We provide different views of our 2D SSM for efficient training, and
present a data-dependent formulation with a fast implementation using 2D scans. Chimera uses two different modules to
capture trend and seasonal patterns and its discretization process allows these modules to adjust the resolution at each time
stamp and for each variate. Our experimental and theoretical results support the effectiveness and efficiency of Chimera in
a wide range of tasks.

Other Data Modalities. While the parameterization of Chimera is designed to expressively model time series data, the
overall architecture of Chimera and our data-dependent 2D SSM with its 2D scan form in training are potentially applicable
for other higher dimensional data types, e.g., images, videos, multi-channel speech, etc. Despite recent attempts to design
effective SSM-based vision models (Badri Narayana Patro and Vijay Srinivas Agneeswaran 2024), the existing models
suffer from the lack of 2D spatial inductive bias. Our 2D SSM, however, is able to provide 2D inductive bias, potentially
being more effective than existing 1D selective SSMs. Accordingly, a promising direction is to explore the potential of 2D
selective SSMs for other high dimensional data modalities and different tasks.

Variants of Chimera. As discussed in Section 3.2, different variants of Chimera result in the extension of well-known
architectures like Mamba (Gu and Dao 2023) to 2-dimensional data, or extension of methods like S4ND (Nguyen et al. 2022),
and 2DSSM (Baron, Zimerman, and Wolf 2024) to have data-dependent weights. Despite the fact that our formulation of
the 2D SSM with discretization and data dependent parameters provides a more general framework to extend SSMs to
higher-dimensional data, it does not necessarily mean that for any data modalities and network size, its generic form can
achieve the best result. While our experimental evaluation is limited to the generic form of our 2D SSM and Chimera, it
is a promising future direction to see if limiting transition matrix A𝑖 (i.e., 2D Mamba, 2D Mamba-2) can result in more
powerful models. We leave the experimental evaluations of these spacial cases of our 2D SSM for future work.

Efficiency. While our 2D scan decreases the number of required recurrence to compute the hidden states, its still based on
a naive implementation of parallel scan. There is a potential for further improvement of 2D parallel scan’s efficiency by
using more hardware-aware implementations similar to selective scan by Gu and Dao (2023).
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A Background

A.1 1D Space State Models
1D Space State Models (SSMs) are linear time-invariant systems that map input sequence 𝑥 (𝑡) ∈ R𝐿 ↦→ 𝑦 (𝑡) ∈ R𝐿 (Aoki
2013). SSMs use a latent stateℎ(𝑡) ∈ R𝑁×𝐿 , transition parameterA ∈ R𝑁×𝑁 , and projection parametersB ∈ R𝑁×1,C ∈ R1×𝑁

to model the input and output as:

ℎ′ (𝑡) = A ℎ(𝑡) + B 𝑥 (𝑡), 𝑦 (𝑡) = C ℎ(𝑡). (26)

Most existing SSMs (Behrouz, Santacatterina, and Zabih 2024; Gu and Dao 2023; Gu, Goel, and Re 2022), first discretize the
signals A,B, and C. That is, using a parameter 𝚫 and zero-order hold, the discretized formulation is defined as:

ℎ𝑡 = Ā ℎ𝑡−1 + B̄ 𝑥𝑡 , 𝑦𝑡 = C ℎ𝑡 , (27)

where Ā = exp (𝚫A) and B̄ = (𝚫A)−1 (exp (𝚫A − 𝐼 )) .𝚫B. (Gu, Dao, et al. 2020) show that discrete SSMs can be interpreted
as both convolutions and recurrent networks: i.e.,

K̄ =

(
CB̄,CĀB̄, . . . ,CĀ𝐿−1B̄

)
,

𝑦 = 𝑥 ∗ K̄, (28)

which makes their training and inference very efficient as a convolution and recurrent model, respectively.

A.2 Data Dependency
Above discrete SSMs are based on data-independent parameters. That is, parameters 𝚫, Ā, B̄, and C are time invariant and
are the same for any input. Gu and Dao (2023) argue that this time invariance has the cost of limiting SSMs effectiveness in
compressing context into a smaller state (Gu and Dao 2023). To overcome this challenge, they present a selective SSMs
(S6) block that effectively selects relevant context by enabling dependence of the parameters B̄, C̄, and 𝚫 on the input 𝑥𝑡 ,
i.e.:

B̄𝑡 = LinearB (𝑥𝑡 ) (29)
C̄𝑡 = LinearC (𝑥𝑡 ) (30)
𝚫𝑡 = Softplus (Linear𝚫 (𝑥𝑡 )) , (31)

where Linear(.) is a linear projection and Softplus(.) = log(1 + exp(.)). This data dependency comes at the cost of
efficiency as the model cannot be trained as a convolution. To overcome this challenge, Gu and Dao (2023) show that the
linear recurrence in Equation 1 can be formulated as an associative scan (Martin and Cundy 2018), which accepts efficient
parallel algorithms.

B Additional Related Work

Classical Approach. Modeling time series data is a long-standing problem and has attracted much attention during the past
60 years. There have been several mathematical models to capture the time series traits like exponential smoothing(Winters
1960), autoregressive integrated moving average (ARIMA) (Bartholomew 1971), SARIMA (Bender and Simonovic 1994),
Box-Jenkins method (Box and Jenkins 1968), and more recently state-space models (Aoki 2013; Harvey 1990). Despite
their more interpretability, these methods usually fail to capture non-linear dependencies and also often require manually
analyzing time series features (e.g., trend or seasonality), resulting in lack of generalizability.

Recurrent and Deep State Space Models. Another group of relevant studies to ours is deep sequence models. A
common class of architectures for sequence modeling are recurrent neural networks such as like GRUs (Chung et al. 2014),
DeepAR (Salinas et al. 2020), LSTMs (Hochreiter and J. Schmidhuber 1997). The main drawback of RNNs is their potential
for vanishing/exploding gradients and also their slow training. Recently, linear attention methods with fast training
attracted attention (Katharopoulos et al. 2020; Schlag, Irie, and Jürgen Schmidhuber 2021; Yang et al. 2024). Katharopoulos
et al. (2020) show that these methods have recurrent formulation and can be fast in inference.

17



Recently, deep state space models have attracted much attention as the alternative of Transformers (Vaswani et al. 2017),
due to their fast training and inference (Gu, Dao, et al. 2020). These methods are the combination of traditional SSMs with
deep neural networks by directly parameterizing the layers of a neural network with multiple linear SSMs, and overcome
common recurrent training drawbacks by leveraging the convolutional view of SSMs (Gu, Dao, et al. 2020; Gu, Goel, Gupta,
et al. 2022; Gu, Goel, and Re 2022; Gu, I. Johnson, Goel, et al. 2021; Smith, Warrington, and Linderman 2023). Recently, Gu
and Dao (2023) present a new formulation of deep SSMs by allowing the parameters to be the function of inputs. This
architecture shows promissing potential in various domains like NLP (Gu and Dao 2023), vision (Behrouz, Santacatterina,
and Zabih 2024; Yue Liu et al. 2024; J. Ma, F. Li, and B. Wang 2024), graphs (Behrouz and Hashemi 2024), DNA modeling (Gu
and Dao 2023; Schiff et al. 2024).

All the above methods are design for 1D data, meaning that the states depends on one variable. There are, however, a few
studies that uses 2D SSMs in deep learning settings. S4ND (Nguyen et al. 2022) uses continuous signals to model images.
These methods not only consider two separate SSM for the axes, but it also directly treat the system as a continuous
system without discretization step. Furthermore, S4ND has data-independent parameters. Another similar approach is
2DSSM (Baron, Zimerman, and Wolf 2024), that models images as discrete signals. That is, the initial SSM model is discrete
and again there is a lack of discretization step, which is important for time series as we discussed earlier. Also, their method
again is based on data-independent parameters. Both S4ND and 2DSSM can be computed as a convolution. We, however,
present a new scanning technique for fast training of 2D SSMs, even with input-dependent parameters.

Other methods. Transformer-based models have attracted much attention over recent years for multivariate time series
forecasting, when modeling the complex relationships of co-variates or along the time dimension is required (Ilbert et al.
2024; Kitaev, Kaiser, and Levskaya 2020; S. Liu et al. 2021; Nie et al. 2023; H. Wu, Xu, et al. 2021; Zeng et al. 2023a; Y. Zhang
and Yan 2023; H. Zhou et al. 2021; T. Zhou, Z. Ma, Wen, X. Wang, et al. 2022). Several studies have focused on designing
more efficient and effective attentions with using special traits of time series (Woo et al. 2022). Some other studies have
focused on extracting long-term information for better forecasting (Nie et al. 2023; T. Zhou, Z. Ma, Wen, Sun, et al. 2022).
In addition to transformers, linear models also have shown promising results (S.-A. Chen et al. 2023; H. Wu, Hu, et al. 2023).
For example, S.-A. Chen et al. (2023) present TSMixer, an all-MLP architecture for time series forecasting, with promising
performance. Due to the expressive power of our 2D SSM, these linear methods sometimes can be viewed as a special case
of 2D SSMs. Recently, convolution-based models for time series have shown promising results (Luo and X. Wang 2024).
These methods by using global kernels enhance the global receptive field. Our data-independent formulation of Chimera is
connected to this line of work as it can be written as a global convolution.

C Details of the Discretization
Given PDE with initial condition ℎ(0, 0) = 0:

𝜕

𝜕𝑡 (1)
ℎ (1)

(
𝑡 (1) , 𝑡 (2)

)
=

(
A1ℎ

(1)
(
𝑡 (1) , 𝑡 (2)

)
,A2ℎ

(2)
(
𝑡 (1) , 𝑡 (2)

))
+ B1x

(
𝑡 (1) , 𝑡 (2)

)
, (32)

𝜕

𝜕𝑡 (1)
ℎ (2)

(
𝑡 (1) , 𝑡 (2)

)
=

(
A1ℎ

(1)
(
𝑡 (1) , 𝑡 (2)

)
,A2ℎ

(2)
(
𝑡 (1) , 𝑡 (2)

))
+ B1x

(
𝑡 (1) , 𝑡 (2)

)
, (33)

𝜕

𝜕𝑡 (2)
ℎ (1)

(
𝑡 (1) , 𝑡 (2)

)
=

(
A3ℎ

(1)
(
𝑡 (1) , 𝑡 (2)

)
,A4ℎ

(2)
(
𝑡 (1) , 𝑡 (2)

))
+ B2x

(
𝑡 (1) , 𝑡 (2)

)
, (34)

𝜕

𝜕𝑡 (2)
ℎ (2)

(
𝑡 (1) , 𝑡 (2)

)
=

(
A3ℎ

(1)
(
𝑡 (1) , 𝑡 (2)

)
,A4ℎ

(2)
(
𝑡 (1) , 𝑡 (2)

))
+ B2x

(
𝑡 (1) , 𝑡 (2)

)
, (35)

over the sampling intervals [𝑘Δ𝑡 (1) , (𝑘 + 1)Δ𝑡 (1) ] and [ℓΔ𝑡 (2) , (ℓ + 1)Δ𝑡 (2) ] we have:∫ (𝑘+1)Δ𝑡 (1)

𝑘Δ𝑡 (1)

𝜕

𝜕𝑡 (1)
ℎ (1)

(
𝑡 (1) , 𝑡 (2)

)
𝑑𝑡 (1)

=

∫ (𝑘+1)Δ𝑡 (1)

𝑘Δ𝑡 (1)

(
A1ℎ

(1)
(
𝑡 (1) , 𝑡 (2)

)
+ B(1)

1 x(1)
(
𝑡 (1) , 𝑡 (2)

))
𝑑𝑡 (1) (36)
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and so: ∫ (𝑘+1)Δ𝑡 (1)

𝑘Δ𝑡 (1)

𝜕

𝜕𝑡 (1)
ℎ (2)

(
𝑡 (1) , 𝑡 (2)

)
𝑑𝑡 (1)

=

∫ (𝑘+1)Δ𝑡 (1)

𝑘Δ𝑡 (1)

(
A2ℎ

(2)
(
𝑡 (1) , 𝑡 (2)

)
+ B(2)

1 x(2)
(
𝑡 (1) , 𝑡 (2)

))
𝑑𝑡 (1) (37)

Similarly, for the second equation we have:∫ (ℓ+1)Δ𝑡 (2)

ℓΔ𝑡 (2)

𝜕

𝜕𝑡 (2)
ℎ (1)

(
𝑡 (1) , 𝑡 (2)

)
𝑑𝑡 (2)

=

∫ (ℓ+1)Δ𝑡 (2)

ℓΔ𝑡 (2)

(
A3ℎ

(1)
(
𝑡 (1) , 𝑡 (2)

)
+ B(1)

2 x(1)
(
𝑡 (1) , 𝑡 (2)

))
𝑑𝑡 (2) (38)

and so: ∫ (ℓ+1)Δ𝑡 (2)

ℓΔ𝑡 (2)

𝜕

𝜕𝑡 (2)
ℎ (2)

(
𝑡 (1) , 𝑡 (2)

)
𝑑𝑡 (2)

=

∫ (ℓ+1)Δ𝑡 (2)

ℓΔ𝑡 (2)

(
A4ℎ

(2)
(
𝑡 (1) , 𝑡 (2)

)
+ B(2)

2 x(2)
(
𝑡 (1) , 𝑡 (2)

))
𝑑𝑡 (2) (39)

Next, the integrals can be simplified as:

ℎ (1)
(
(𝑘 + 1)Δ𝑡 (1) , 𝑡 (2)

)
= 𝑒A1Δ𝑡 (1)ℎ (1)

(
𝑘Δ𝑡 (1) , 𝑡 (2)

)
+

∫ (𝑘+1)Δ𝑡 (1)

𝑘Δ𝑡 (1)
𝑒A1 (𝑡 (1)−𝑘Δ𝑡 (1) )B(1)

1 x(1)
(
𝑡 (1) , 𝑡 (2)

)
𝑑𝑡 (1) , (40)

and

ℎ (2)
(
(𝑘 + 1)Δ𝑡 (1) , 𝑡 (2)

)
= 𝑒A2Δ𝑡 (1)ℎ (2)

(
𝑘Δ𝑡 (1) , 𝑡 (2)

)
+

∫ (𝑘+1)Δ𝑡 (1)

𝑘Δ𝑡 (1)
𝑒A2 (𝑡 (1)−𝑘Δ𝑡 (1) )B(2)

1 x(2)
(
𝑡 (1) , 𝑡 (2)

)
𝑑𝑡 (1) , (41)

and similarly for the third and fourth equations we have:

ℎ (1)
(
𝑡 (1) , (ℓ + 1)Δ𝑡 (2)

)
= 𝑒A3Δ𝑡 (2)ℎ (1)

(
𝑡 (1) , ℓΔ𝑡 (2)

)
+

∫ (ℓ+1)Δ𝑡 (2)

ℓΔ𝑡 (2)
𝑒A3 (𝑡 (2)−ℓΔ𝑡 (2) )B(1)

2 x(1)
(
𝑡 (2) , 𝑡 (1)

)
𝑑𝑡 (2) (42)

and

ℎ (2)
(
𝑡 (1) , (ℓ + 1)Δ𝑡 (2)

)
= 𝑒A4Δ𝑡 (2)ℎ (2)

(
𝑡 (1) , ℓΔ𝑡 (2)

)
+

∫ (ℓ+1)Δ𝑡 (2)

ℓΔ𝑡 (2)
𝑒A4 (𝑡 (2)−ℓΔ𝑡 (2) )B(2)

2 x(2)
(
𝑡 (2) , 𝑡 (1)

)
𝑑𝑡 (2) (43)

Using ZOH assumption, we have:
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∫ Δ𝑡 (1)

0
𝑒A1𝑠 𝑑𝑠 = A(1)−1

(
𝑒A1Δ𝑡 (1) − I

)
∫ Δ𝑡 (1)

0
𝑒A2𝑠 𝑑𝑠 = A(2)−1

(
𝑒A2Δ𝑡 (1) − I

)
(44)∫ Δ𝑡 (2)

0
𝑒A3𝑠 𝑑𝑠 = A(3)−1

(
𝑒A3Δ𝑡 (2) − I

)
(45)∫ Δ𝑡 (2)

0
𝑒A4𝑠 𝑑𝑠 = A(4)−1

(
𝑒A4Δ𝑡 (2) − I

)
(46)

Accordingly, the discretized form is as follows:

ℎ
(1)
𝑘+1,ℓ = 𝑒A1Δ𝑡 (1)ℎ

(1)
𝑘,ℓ

+ A(1)−1
(
𝑒A1Δ𝑡 (1) − I

)
B(1)

1 x(1)
𝑘+1,ℓ (47)

ℎ
(2)
𝑘+1,ℓ = 𝑒A2Δ𝑡 (1)ℎ

(2)
𝑘,ℓ

+ A(2)−1
(
𝑒A2Δ𝑡 (1) − I

)
B(2)

1 x(2)
𝑘+1,ℓ (48)

ℎ
(1)
𝑘,ℓ+1 = 𝑒A3Δ𝑡 (2)ℎ

(1)
𝑘,ℓ

+ A(3)−1
(
𝑒A3Δ𝑡 (2) − I

)
B(1)

2 x(1)
𝑘,ℓ+1 (49)

ℎ
(2)
𝑘,ℓ+1 = 𝑒A4Δ𝑡 (2)ℎ

(2)
𝑘,ℓ

+ A(4)−1
(
𝑒A4Δ𝑡 (2) − I

)
B(2)

2 x(2)
𝑘,ℓ+1, (50)

which means that:

Ā1 = exp (A1Δ1) , (51)
Ā2 = exp (A2Δ1) , (52)
Ā3 = exp (A3Δ2) , (53)
Ā4 = exp (A4Δ2) , (54)

(55)

and

B̄1 =

[
A(1)−1 (

𝑒A1Δ1 − I
)
B(1)

1
A(2)−1 (

𝑒A2Δ1 − I
)
B(2)

1

]
, (56)

B̄2 =

[
A(3)−1 (

𝑒A3Δ2 − I
)
B(1)

2
A(4)−1 (

𝑒A4Δ2 − I
)
B(2)

2

]
. (57)

D Details of the Structure of Transition Matrices
Definition D.1 (Companion Matrix). A matrix 𝐴 ∈ R𝑁×𝑁 has companion form if it can be written as:

𝐴 =

©­­­­­­­­«

0 0 . . . 0 𝑎1
1 0 . . . 0 𝑎2
0 1 . . . 0 𝑎3
...

...
. . .

...
...

0 0 . . . 0 𝑎𝑁1
0 0 . . . 1 𝑎𝑁

ª®®®®®®®®¬
. (58)
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These matrices can be decompose into a shift and a low-rank matrix. That is:

𝐴 =

©­­­­­­­­«

0 0 . . . 0 𝑎1
1 0 . . . 0 𝑎2
0 1 . . . 0 𝑎3
...

...
. . .

...
...

0 0 . . . 0 𝑎𝑁1
0 0 . . . 1 𝑎𝑁

ª®®®®®®®®¬
=

©­­­­­­­­«

0 0 . . . 0 0
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 0 0
0 0 . . . 1 0

ª®®®®®®®®¬︸                   ︷︷                   ︸
Shift Matrix

+

©­­­­­­­­«

0 0 . . . 0 𝑎1
0 0 . . . 0 𝑎2
0 0 . . . 0 𝑎3
...

...
. . .

...
...

0 0 . . . 0 𝑎𝑁1
0 0 . . . 0 𝑎𝑁

ª®®®®®®®®¬︸                      ︷︷                      ︸
Low-rank Matrix

. (59)

This formulation can help us to compute the power of 𝐴 faster in the convolutional form, as discussed by M. Zhang et al.
(2023).

E Theoretical Results

E.1 Proof of Theorem 3.2
In this part, we want to prove that ⋇ is associative. This operator is defined as:

𝑝 ⋇ 𝑞 =

(
𝑝1 𝑝2 𝑝3
𝑝4 𝑝5 𝑝6

)
⋇

(
𝑞1 𝑞2 𝑞3
𝑞4 𝑞5 𝑞6

)
=

(
𝑞1 ⊙ 𝑝1 𝑞2 ⊙ 𝑝2 𝑞1 ⊗ 𝑝3 + 𝑞2 ⊗ 𝑝6 + 𝑞3
𝑞4 ⊙ 𝑝4 𝑞5 ⊙ 𝑝5 𝑞4 ⊗ 𝑝3 + 𝑞5 ⊗ 𝑝6 + 𝑞6

)
Accordingly, we have:

(𝑝 ⋇ 𝑞) ⋇ 𝑟 =
(
𝑞1 ⊙ 𝑝1 𝑞2 ⊙ 𝑝2 𝑞1 ⊗ 𝑝3 + 𝑞2 ⊗ 𝑝6 + 𝑞3
𝑞4 ⊙ 𝑝4 𝑞5 ⊙ 𝑝5 𝑞4 ⊗ 𝑝3 + 𝑞5 ⊗ 𝑝6 + 𝑞6

)
⋇

(
𝑟1 𝑟2 𝑟3
𝑟4 𝑟5 𝑟6

)
, (60)

re-using the definition of ⋇, we have:

(𝑝 ⋇ 𝑞) ⋇ 𝑟 =
(
𝑞1 ⊙ 𝑝1 𝑞2 ⊙ 𝑝2 𝑞1 ⊗ 𝑝3 + 𝑞2 ⊗ 𝑝6 + 𝑞3
𝑞4 ⊙ 𝑝4 𝑞5 ⊙ 𝑝5 𝑞4 ⊗ 𝑝3 + 𝑞5 ⊗ 𝑝6 + 𝑞6

)
⋇

(
𝑟1 𝑟2 𝑟3
𝑟4 𝑟5 𝑟6

)
(61)

=

(
𝑟1 ⊙ (𝑞1 ⊙ 𝑝1) 𝑟2 ⊙ (𝑞2 ⊙ 𝑝2) 𝑟1 ⊗ (𝑞1 ⊗ 𝑝3 + 𝑞2 ⊗ 𝑝6 + 𝑞3) + 𝑟2 ⊙ (𝑞4 ⊗ 𝑝3 + 𝑞5 ⊗ 𝑝6 + 𝑞6) + 𝑟3
𝑟4 ⊙ (𝑞4 ⊙ 𝑝4) 𝑟5 ⊙ (𝑞5 ⊙ 𝑝5) 𝑟4 ⊗ (𝑞1 ⊗ 𝑝3 + 𝑞2 ⊗ 𝑝6 + 𝑞3) + 𝑟4 ⊗ (𝑞4 ⊗ 𝑝3 + 𝑞5 ⊗ 𝑝6 + 𝑞6) + 𝑟6

)
(62)

Using the fact that ⊙ and ⊗ are associative, we have:

(𝑝 ⋇ 𝑞) ⋇ 𝑟 =
(
𝑞1 ⊙ 𝑝1 𝑞2 ⊙ 𝑝2 𝑞1 ⊗ 𝑝3 + 𝑞2 ⊗ 𝑝6 + 𝑞3
𝑞4 ⊙ 𝑝4 𝑞5 ⊙ 𝑝5 𝑞4 ⊗ 𝑝3 + 𝑞5 ⊗ 𝑝6 + 𝑞6

)
⋇

(
𝑟1 𝑟2 𝑟3
𝑟4 𝑟5 𝑟6

)
(63)

=

(
𝑟1 ⊙ (𝑞1 ⊙ 𝑝1) 𝑟2 ⊙ (𝑞2 ⊙ 𝑝2) 𝑟1 ⊗ (𝑞1 ⊗ 𝑝3 + 𝑞2 ⊗ 𝑝6 + 𝑞3) + 𝑟2 ⊙ (𝑞4 ⊗ 𝑝3 + 𝑞5 ⊗ 𝑝6 + 𝑞6) + 𝑟3
𝑟4 ⊙ (𝑞4 ⊙ 𝑝4) 𝑟5 ⊙ (𝑞5 ⊙ 𝑝5) 𝑟4 ⊗ (𝑞1 ⊗ 𝑝3 + 𝑞2 ⊗ 𝑝6 + 𝑞3) + 𝑟4 ⊗ (𝑞4 ⊗ 𝑝3 + 𝑞5 ⊗ 𝑝6 + 𝑞6) + 𝑟6

)
(64)

=

(
𝑝1 𝑝2 𝑝3
𝑝4 𝑝5 𝑝6

)
⋇

(
𝑟1 ⊙ 𝑞1 𝑟2 ⊙ 𝑞2 𝑟1 ⊗ 𝑞3 + 𝑟2 ⊗ 𝑞6 + 𝑟3
𝑟4 ⊙ 𝑞4 𝑟5 ⊙ 𝑞5 𝑟4 ⊗ 𝑞3 + 𝑟5 ⊗ 𝑞6 + 𝑟6

)
(65)

= 𝑝 ⋇ (𝑞 ⋇ 𝑟 ), (66)

which proves the theorem.

E.2 Proof of Theorem 3.3
For each 𝑣, 𝑡 , we can pre-compute B1x𝑣,𝑡 and B2x𝑣,𝑡+1. Accordingly, all the following parameters are pre-computed:

𝑐
(𝑖, 𝑗,𝑘,ℓ )
𝑣,𝑡 =

(
A1 A2 B1x𝑣+𝑖,𝑡+𝑗
A3 A4 B2x𝑣+𝑘,𝑡+ℓ

)
, (67)
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for all inputs x𝑣,𝑡 and 𝑖, 𝑗, 𝑘, ℓ ∈ {0, 1}. Now, starting from
(
S(1)0,0
S(2)0,0

)
=

(
𝐼 𝐼 0
𝐼 𝐼 0

)
, we have:(

S0,1
S1,0

)
=

(
𝐼 𝐼 0
𝐼 𝐼 0

)
⋇

(
A1 A2 B1x0,1
A3 A4 B2x1,0

)
(68)

=

(
A1 A2 B1x0,1
A3 A4 B2x1,0

)
. (69)

Re-using operator ⋇, we have: (
S1,1
S1,1

)
=

(
S0,1
S1,0

)
⋇

(
A1 A2 B1x1,1
A3 A4 B2x1,1

)
︸                  ︷︷                  ︸

Pre-computed

(70)

=

(
A2

1 A2
2 A1B1x0,1 + A2B2x1,0 + B1x1,1

A3 A2
4 A3B1x0,1 + A4B2x1,0 + B2x1,1

)
(71)

Looking at the third element of each row, these elements are calculating the hidden states of the recurrent (it can be shown
by a straightforward induction). Accordingly, using this operation, we can recursively calculate the the outputs of 2D
SSM.

However, using Theorem 3.2, we know that this is an associative operation, so instead of calculating in the recurrent form,
we can use parallel pre-fix sum make this computation parallel, decreasing the sequential operations required to calculate
the hidden states. Note that since our above operation can model the problem as an parallel prefix, all the algorithms for
this problem can be used to enhance the efficiency.

E.3 Proof of Theorem 3.4
To prove this theorem, we need to (1) show that Chimera can recover SpaceTime. Given this, since SpaceTime is capable of
recovering ARIMA (Bartholomew 1971), exponential smoothing (Winters 1960), and controllable linear time–invariant
systems (C.-T. Chen 1984), we can conclude that Chimera can also recover these methods. Then, (2) we need to prove that
Chimera can recover SARIMA. This is the model that SpaceTime is not capable of recovering due to the additional seasonal
terms.

Note that using A2 = A3 = A4 = 0, results in a 1D SSM, with companion matrix as the structure of A1, which is SpaceTime.
Accordingly, SpaceTime is a special case of Chimera when the recurrence only happen along the time direction.

Note that as discussed in Proposition 3.1, multiplying the discretization parameter Δ results in multiplying the steps.
Accordingly, using 𝑠 as the Δ in our seasonal module and also letting A2 = A3 = A4 = 0 for the seasonal module, we can
model the seasonal terms in the formulation of SAR(𝑝, 𝑞, 𝑠), meaning that Chimera can also recover SARIMA which is
ARIMA with seasonal terms. Note that the reason that Chimera is capable of such modeling is that it uses two heads
separately for trend and seasonal terms. Therefore, using different discretization parameters, each can model their own
corresponding terms in SAR(𝑝, 𝑞, 𝑠).

E.4 Proof of Theorem 3.5
Similar to the above, using A2 = A3 = 0, our formulation is equivalent to S4D, while we use diagonal matrices as the
structure of A1. Similarly, as discussed by Behrouz, Santacatterina, and Zabih (2024), MambaMixer is equivalent to S4ND
but on patched data. Using our Theorem 5, we can recover linear layers, resulting in recovering TSMixer by setting
A2 = A3 = 0.

E.5 Proof of Theorem 3.6
We in fact will show that restricting Chimera results in recovering 2DSSM (Baron, Zimerman, and Wolf 2024). As discussed
earlier, this method do not use discretization and initially starts from a discrete system. Also, it uses input-independent
parameters. Therefore, we use LinearΔ1 (.) = LinearΔ2 (.) as broadcast function, and restrict Chimera to have input-
independent parameters, then Chimera can recover 2DSSM (Baron, Zimerman, and Wolf 2024).
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F Experimental Settings
We provide the description of datasets in Table 7.

Table 7: Dataset descriptions. The dataset size is organized in (Train, Validation, Test).

Tasks Dataset Dim Series Length Dataset Size Information (Frequency)

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) Electricity (15 mins)

ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Electricity (15 mins)

Forecasting Electricity 321 {96, 192, 336, 720} (18317, 2633, 5261) Electricity (Hourly)

(Long-term) Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Transportation (Hourly)

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) Weather (10 mins)

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Exchange rate (Daily)

ILI 7 {24, 36, 48, 60} (617, 74, 170) Illness (Weekly)

M4-Yearly 1 6 (23000, 0, 23000) Demographic

M4-Quarterly 1 8 (24000, 0, 24000) Finance

Forecasting M4-Monthly 1 18 (48000, 0, 48000) Industry

(short-term) M4-Weakly 1 13 (359, 0, 359) Macro

M4-Daily 1 14 (4227, 0, 4227) Micro

M4-Hourly 1 48 (414, 0, 414) Other

EthanolConcentration 3 1751 (261, 0, 263) Alcohol Industry

FaceDetection 144 62 (5890, 0, 3524) Face (250Hz)

Handwriting 3 152 (150, 0, 850) Handwriting

Heartbeat 61 405 (204, 0, 205) Heart Beat

Classification JapaneseVowels 12 29 (270, 0, 370) Voice

(UEA) PEMS-SF 963 144 (267, 0, 173) Transportation (Daily)

SelfRegulationSCP1 6 896 (268, 0, 293) Health (256Hz)

SelfRegulationSCP2 7 1152 (200, 0, 180) Health (256Hz)

SpokenArabicDigits 13 93 (6599, 0, 2199) Voice (11025Hz)

UWaveGestureLibrary 3 315 (120, 0, 320) Gesture

SMD 38 100 (566724, 141681, 708420) Server Machine

Anomaly MSL 55 100 (44653, 11664, 73729) Spacecraft

Detection SMAP 25 100 (108146, 27037, 427617) Spacecraft

SWaT 51 100 (396000, 99000, 449919) Infrastructure

PSM 25 100 (105984, 26497, 87841) Server Machine

F.1 Baselines
In our experiments, we use the following baselines:

• Table 8: TSM2 (Behrouz, Santacatterina, and Zabih 2024), Simba (Badri N. Patro and Vijay S. Agneeswaran 2024),
TCN (Luo and X. Wang 2024), iTransformer (Yong Liu, Hu, et al. 2024), RLinear (Z. Li et al. 2023), PatchTST (Nie et al.
2023), Crossformer (Y. Zhang and Yan 2023), TiDE (Das et al. 2023), TimesNet (H. Wu, Hu, et al. 2023), DLinear (Zeng
et al. 2023b), SCINet (M. Liu et al. 2022), FEDformer (T. Zhou, Z. Ma, Wen, X. Wang, et al. 2022), Stationary (Yong Liu,
H. Wu, et al. 2022a), Autoformer (H. Wu, Xu, et al. 2021)
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• Table 9: ModernTCN (Luo and X. Wang 2024), PatchTST (Nie et al. 2023), TimesNet (H. Wu, Hu, et al. 2023),
N-HiTS (Challu et al. 2022), N-BEATS∗ (Oreshkin et al. 2019), ETSformer (Woo et al. 2022), LightTS (T. Zhang et al.
2022), DLinear (Zeng et al. 2023a), FEDformer (T. Zhou, Z. Ma, Wen, X. Wang, et al. 2022), Stationary (Yong Liu,
H. Wu, et al. 2022b), Autoformer (H. Wu, Xu, et al. 2021), Pyraformer (S. Liu et al. 2021), Informer (H. Zhou et al.
2021), Reformer (Kitaev, Kaiser, and Levskaya 2020), LSTM (Hochreiter and J. Schmidhuber 1997)

• Table 10: LSTM (Hochreiter and J. Schmidhuber 1997), LSTNet (Lai et al. 2018), LSSL (Gu, Goel, and Re 2022),
Trans.former (Vaswani et al. 2017), Reformer (Kitaev, Kaiser, and Levskaya 2020), Informer (H. Zhou et al. 2021),
Pyraformer (S. Liu et al. 2021), Autoformer (H. Wu, Xu, et al. 2021), Station. (Yong Liu, H. Wu, et al. 2022b),
FEDformer (T. Zhou, Z. Ma, Wen, X. Wang, et al. 2022), ETSformer (Woo et al. 2022), Flowformer (H. Wu, J. Wu, et al.
2022), DLinear (Zeng et al. 2023a), LightTS. (T. Zhang et al. 2022), TimesNet (H. Wu, Hu, et al. 2023), PatchTST (Nie
et al. 2023), MTCN (Luo and X. Wang 2024)

For the results of the baselines, we re-use the results reported by H. Wu, Hu, et al. (2023), or from the original cited
papers.

G Additional Experimental Results

G.1 Long Term Forecasting Full Results
The complete results of long term forecasting are reported in Table 8.

G.2 Short-Term Forecasting
The complete results of short term forecasting are reported in Table 9.

G.3 Classification
The complete results of time series classification are reported in Table 10.

G.4 Anomaly Detection
The complete results of anomaly detection tasks are reported in Table 11.
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Table 8: Long-term forecasting task with different horizons H. The first, second, and third best results are highlighted in red (bold),
orange (underline), and purple.

Chimera TSM2 Simba TCN iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
(ours) 2024 2024 2024 2024 2023 2023 2023 2023 2023 2023 2022 2022 2022 2021

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ET
Tm

1

96 0.293 0.351 0.322 - 0.324 0.360 0.292 0.346 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.329 0.362 0.349 - 0.363 0.382 0.332 0.368 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.352 0.383 0.366 - 0.395 0.405 0.365 0.391 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.408 0.412 0.407 - 0.451 0.437 0.416 0.417 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561

Avg 0.345 0.377 0.361 - 0.383 0.396 0.351 0.381 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

ET
Tm

2

96 0.168 0.261 0.173 - 0.177 0.263 0.166 0.256 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.215 0.289 0.230 - 0.245 0.306 0.222 0.293 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.278 0.337 0.279 - 0.304 0.343 0.272 0.324 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.341 0.378 0.388 - 0.400 0.399 0.351 0.381 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432

Avg 0.250 0.316 0.267 - 0.271 0.327 0.253 0.314 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371

ET
Th

1

96 0.362 0.391 0.375 - 0.379 0.395 0.368 0.394 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491 0.449 0.459
192 0.398 0.415 0.398 - 0.432 0.424 0.405 0.413 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504 0.500 0.482
336 0.402 0.416 0.419 - 0.473 0.443 0.391 0.412 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535 0.521 0.496
720 0.458 0.477 0.422 - 0.483 0.469 0.450 0.461 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616 0.514 0.512

Avg 0.405 0.424 0.403 - 0.441 0.432 0.404 0.420 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487

ET
Th

2

96 0.257 0.325 0.253 - 0.290 0.339 0.263 0.332 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.314 0.369 0.334 - 0.373 0.390 0.320 0.374 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.316 0.381 0.347 - 0.376 0.406 0.313 0.376 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.388 0.427 0.401 - 0.407 0.431 0.392 0.433 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511

Avg 0.318 0.375 0.333 - 0.361 0.391 0.322 0.379 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

EC
L

96 0.132 0.234 0.142 - 0.165 0.253 0.129 0.226 0.148 0.240 0.201 0.281 0.181 0.270 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.169 0.273 0.201 0.317
192 0.144 0.223 0.153 - 0.173 0.262 0.143 0.239 0.162 0.253 0.201 0.283 0.188 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.182 0.286 0.222 0.334
336 0.156 0.259 0.175 - 0.188 0.277 0.161 0.259 0.178 0.269 0.215 0.298 0.204 0.293 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.200 0.304 0.231 0.338
720 0.184 0.280 0.209 - 0.214 0.305 0.191 0.286 0.225 0.317 0.257 0.331 0.246 0.324 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.222 0.321 0.254 0.361

Avg 0.154 0.249 0.169 - 0.185 0.274 0.156 0.253 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296 0.227 0.338

Ex
ch
an
ge

96 0.077 0.198 0.163 - - - 0.080 0.196 0.086 0.206 0.093 0.217 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278 0.111 0.237 0.197 0.323
192 0.159 0.270 0.229 - - - 0.166 0.288 0.177 0.299 0.184 0.307 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.271 0.315 0.219 0.335 0.300 0.369
336 0.311 0.344 0.383 - - - 0.307 0.398 0.331 0.417 0.351 0.432 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.460 0.427 0.421 0.476 0.509 0.524
720 0.697 0.623 0.999 - - - 0.656 0.582 0.847 0.691 0.886 0.714 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.797 1.195 0.695 1.092 0.769 1.447 0.941

Avg 0.311 0.358 0.443 - - - 0.302 0.366 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

Tr
affi

c

96 0.366 0.248 0.396 - 0.468 0.268 0.368 0.253 0.395 0.268 0.649 0.389 0.462 0.295 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338 0.613 0.388
192 0.394 0.292 0.408 - 0.413 0.317 0.379 0.261 0.417 0.276 0.601 0.366 0.466 0.296 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340 0.616 0.382
336 0.409 0.311 0.427 - 0.529 0.284 0.397 0.270 0.433 0.283 0.609 0.369 0.482 0.304 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328 0.622 0.337
720 0.443 0.294 0.449 - 0.564 0.297 0.440 0.296 0.467 0.302 0.647 0.387 0.514 0.322 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355 0.660 0.408

Avg 0.403 0.286 0.420 - 0.493 0.291 0.398 0.270 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379

W
ea
th
er

96 0.146 0.206 0.161 - 0.176 0.219 0.149 0.200 0.174 0.214 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336
192 0.189 0.239 0.208 - 0.222 0.260 0.196 0.245 0.221 0.254 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.244 0.281 0.252 - 0.275 0.297 0.238 0.277 0.278 0.296 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.297 0.309 0.337 - 0.350 0.349 0.314 0.334 0.358 0.347 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428

Avg 0.219 0.258 0.239 - 0.255 0.280 0.224 0.264 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

25



Table 9: Full results for the short-term forecasting task in the M4 dataset. ∗. in the Transformers indicates the name of
∗former. Stationary means the Non-stationary Transformer.

Models ChimeraModernTCN PatchTST TimesNet N-HiTS N-BEATS∗ ETS∗ LightTS DLinear FED∗ Stationary Auto∗ Pyra∗ In∗ Re∗ LSTM
(ours) 2024 2023 2023 2022 2019 2022 2022 2023 2022 2022 2021 2021 2021 2020 1997

Ye
ar
ly SMAPE 13.107 13.226 13.258 13.387 13.418 13.436 18.009 14.247 16.965 13.728 13.717 13.974 15.530 14.727 16.169 176.040

MASE 2.902 2.957 2.985 2.996 3.045 3.043 4.487 3.109 4.283 3.048 3.078 3.134 3.711 3.418 3.800 31.033
OWA 0.767 0.777 0.781 0.786 0.793 0.794 1.115 0.827 1.058 0.803 0.807 0.822 0.942 0.881 0.973 9.290

Q
ua
rte

rly SMAPE 9.892 9.971 10.179 10.100 10.202 10.124 13.376 11.364 12.145 10.792 10.958 11.338 15.449 11.360 13.313 172.808
MASE 1.105 1.167 0.803 1.182 1.194 1.169 1.906 1.328 1.520 1.283 1.325 1.365 2.350 1.401 1.775 19.753
OWA 0.853 0.878 0.803 0.890 0.899 0.886 1.302 1.000 1.106 0.958 0.981 1.012 1.558 1.027 1.252 15.049

M
on

th
ly SMAPE 12.549 12.556 12.641 12.670 12.791 12.677 14.588 14.014 13.514 14.260 13.917 13.958 17.642 14.062 20.128 143.237

MASE 0.914 0.917 0.930 0.933 0.969 0.937 1.368 1.053 1.037 1.102 1.097 1.103 1.913 1.141 2.614 16.551
OWA 0.864 0.866 0.876 0.878 0.899 0.880 1.149 0.981 0.956 1.012 0.998 1.002 1.511 1.024 1.927 12.747

O
th
er
s SMAPE 4.685 4.715 4.946 4.891 5.061 4.925 7.267 15.880 6.709 4.954 6.302 5.485 24.786 24.460 32.491 186.282

MASE 3.007 3.107 2.985 3.302 3.216 3.391 5.240 11.434 4.953 3.264 4.064 3.865 18.581 20.960 33.355 119.294
OWA 0.983 0.986 1.044 1.035 1.040 1.053 1.591 3.474 1.487 1.036 1.304 1.187 5.538 5.013 8.679 38.411

W
ei
gh

te
d

Av
er
ag
e SMAPE 11.618 11.698 11.807 11.829 11.927 11.851 14.718 13.525 13.639 12.840 12.780 12.909 16.987 14.086 18.200 160.031

MASE 1.528 1.556 1.590 1.585 1.613 1.599 2.408 2.111 2.095 1.701 1.756 1.771 3.265 2.718 4.223 25.788
OWA 0.827 0.838 0.851 0.851 0.861 0.855 1.172 1.051 1.051 0.918 0.930 0.939 1.480 1.230 1.775 12.642

Table 10: Full results for the classification task (accuracy %). We omit “former” from the names of Transformer-based
methods. For all methods, the standard deviation is less than 0.1%.

Datasets / Models
LSTMLSTNet LSSL Trans. Re. In. Pyra.Auto.Station. FED. /ETS./Flow./DLinear/LightTS./TimesNet/PatchTST/MTCN/Chimera

1997 2018 2022 2017 2020 2021 2021 2021 2022 2022 2022 2022 2023 2022 2023 2023 2024 (ours)

EthanolConcentration 32.3 39.9 31.1 32.7 31.9 31.6 30.8 31.6 32.7 31.2 28.1 33.8 32.6 29.7 35.7 32.8 36.3 39.8
FaceDetection 57.7 65.7 66.7 67.3 68.6 67.0 65.7 68.4 68.0 66.0 66.3 67.6 68.0 67.5 68.6 68.3 70.8 70.4
Handwriting 15.2 25.8 24.6 32.0 27.4 32.8 29.4 36.7 31.6 28.0 32.5 33.8 27.0 26.1 32.1 29.6 30.6 32.9
Heartbeat 72.2 77.1 72.7 76.1 77.1 80.5 75.6 74.6 73.7 73.7 71.2 77.6 75.1 75.1 78.0 74.9 77.2 81.3
JapaneseVowels 79.7 98.1 98.4 98.7 97.8 98.9 98.4 96.2 99.2 98.4 95.9 98.9 96.2 96.2 98.4 97.5 98.8 99.1
PEMS-SF 39.9 86.7 86.1 82.1 82.7 81.5 83.2 82.7 87.3 80.9 86.0 83.8 75.1 88.4 89.6 89.3 89.1 89.5
SelfRegulationSCP1 68.9 84.0 90.8 92.2 90.4 90.1 88.1 84.0 89.4 88.7 89.6 92.5 87.3 89.8 91.8 90.7 93.4 93.7
SelfRegulationSCP2 46.6 52.8 52.2 53.9 56.7 53.3 53.3 50.6 57.2 54.4 55.0 56.1 50.5 51.1 57.2 57.8 60.3 59.9
SpokenArabicDigits 31.9 100.0 100.0 98.4 97.0100.0 99.6 100.0 100.0 100.0100.0 98.8 81.4 100.0 99.0 98.3 98.7 100.0
UWaveGestureLibrary 41.2 87.8 85.9 85.6 85.6 85.6 83.4 85.9 87.5 85.3 85.0 86.6 82.1 80.3 85.3 85.8 86.7 86.7

Average Accuracy 48.6 71.8 70.9 71.9 71.5 72.1 70.8 71.1 72.7 70.7 71.0 73.0 67.5 70.4 73.6 72.5 74.2 75.3
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Table 11: Full results for the anomaly detection task. The P, R and F1 represent the precision, recall and F1-score (%)
respectively. A higher value of P, R and F1 indicates a better performance.

Datasets SMD MSL SMAP SWaT PSM Avg F1

Metrics P R F1 P R F1 P R F1 P R F1 P R F1 (%)

LSTM 1997 78.52 65.47 71.41 78.04 86.22 81.93 91.06 57.49 70.48 78.06 91.72 84.34 69.24 99.53 81.67 77.97
Transformer 2017 83.58 76.13 79.56 71.57 87.37 78.68 89.37 57.12 69.70 68.84 96.53 80.37 62.75 96.56 76.07 76.88
LogTrans 2019 83.46 70.13 76.21 73.05 87.37 79.57 89.15 57.59 69.97 68.67 97.32 80.52 63.06 98.00 76.74 76.60
TCN 2019 84.06 79.07 81.49 75.11 82.44 78.60 86.90 59.23 70.45 76.59 95.71 85.09 54.59 99.77 70.57 77.24
Reformer 2020 82.58 69.24 75.32 85.51 83.31 84.40 90.91 57.44 70.40 72.50 96.53 82.80 59.93 95.38 73.61 77.31
Informer 2021 86.60 77.23 81.65 81.77 86.48 84.06 90.11 57.13 69.92 70.29 96.75 81.43 64.27 96.33 77.10 78.83
Anomaly∗ 2021 88.91 82.23 85.49 79.61 87.37 83.31 91.85 58.11 71.18 72.51 97.32 83.10 68.35 94.72 79.40 80.50
Pyraformer 2021 85.61 80.61 83.04 83.81 85.93 84.86 92.54 57.71 71.09 87.92 96.00 91.78 71.67 96.02 82.08 82.57
Autoformer 2021 88.06 82.35 85.11 77.27 80.92 79.05 90.40 58.62 71.12 89.85 95.81 92.74 99.08 88.15 93.29 84.26
LSSL 2022 78.51 65.32 71.31 77.55 88.18 82.53 89.43 53.43 66.90 79.05 93.72 85.76 66.02 92.93 77.20 76.74
Stationary 2022 88.33 81.21 84.62 68.55 89.14 77.50 89.37 59.02 71.09 68.03 96.75 79.88 97.82 96.76 97.29 82.08
DLinear 2023 83.62 71.52 77.10 84.34 85.42 84.88 92.32 55.41 69.26 80.91 95.30 87.52 98.28 89.26 93.55 82.46
ETSformer 2022 87.44 79.23 83.13 85.13 84.93 85.03 92.25 55.75 69.50 90.02 80.36 84.91 99.31 85.28 91.76 82.87
LightTS 2022 87.10 78.42 82.53 82.40 75.78 78.95 92.58 55.27 69.21 91.98 94.72 93.33 98.37 95.97 97.15 84.23
FEDformer 2022 87.95 82.39 85.08 77.14 80.07 78.57 90.47 58.10 70.76 90.17 96.42 93.19 97.31 97.16 97.23 84.97
TimesNet (I) 2023 87.76 82.63 85.12 82.97 85.42 84.18 91.50 57.80 70.85 88.31 96.24 92.10 98.22 92.21 95.21 85.49
TimesNet (R) 2023 88.66 83.14 85.81 83.92 86.42 85.15 92.52 58.29 71.52 86.76 97.32 91.74 98.19 96.76 97.47 86.34
CrossFormer 2023 83.6 76.61 79.70 84.68 83.71 84.19 92.04 55.37 69.14 88.49 93.48 90.92 97.16 89.73 93.30 83.45
PatchTST 2023 87.42 81.65 84.44 84.07 86.23 85.14 92.43 57.51 70.91 80.70 94.93 87.24 98.87 93.99 96.37 84.82
ModernTCN 2024 87.86 83.85 85.81 83.94 85.93 84.92 93.17 57.69 71.26 91.83 95.98 93.86 98.09 96.38 97.23 86.62
Chimera (ours) 87.74 83.29 85.46 84.01 86.83 85.39 93.05 58.12 71.55 92.18 95.93 94.01 97.30 96.19 96.74 86.69
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