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ABSTRACT

Fourier neural operator (FNO) has demonstrated substantial potential in learn-
ing mappings between function spaces, such as numerical partial differential
equations (PDEs). However, FNO may suffer from inefficiencies when applied
to large-scale, high-dimensional function spaces due to the computational over-
head associated with high-dimensional Fourier and convolution operators. In this
work, we introduce the Tucker-FNO, an efficient neural operator that decom-
poses the high-dimensional FNO into a series of 1-dimensional FNOs through
Tucker decomposition, thereby significantly reducing computational complexity
while maintaining expressiveness. Especially, by using the theoretical tools of
functional decomposition in Sobolev space, we rigorously establish the univer-
sal approximation theorem of Tucker-FNO. Experiments on high-dimensional
numerical PDEs such as Navier-Stokes, Plasticity, and Burger’s equations show
that Tucker-FNO achieves substantial improvement in execution time and per-
formance over FNO. Moreover, by virtue of the compact Tucker decomposition,
Tucker-FNO generalizes seamlessly to high-dimensional visual signals by learn-
ing mappings from the positional encoding space to the signal’s implicit neu-
ral representations (INRs). Under this operator INR framework, Tucker-FNO
gains consistent improvements on continuous signal restoration over traditional
INR methods in terms of efficiency and accuracy. The code is available at
https://github.com/GuanchengZhou/Tucker-FNO.

1 INTRODUCTION

Neural operator (NO) methods have demonstrated great potential in diverse fields of science (Li
et al., 2020) and engineering (Pal et al., 2024). Compared with traditional neural network methods,
which learn the mapping from signal spaces, NO methods (Li et al., 2021; 2023a; Li & Ye, 2025)
design neural networks to learn mappings between function spaces. By discretely sampling a finite
number of observations, the function space can summarize information in tensor form, enabling the
implementation of NO methods in a discretized version. Equipped with the universal approximation
theorem (Kovachki et al., 2021), NO methods can be applied to a variety of tasks, including fast
solution of partial differential equations (PDEs) (Li et al., 2021) and signal restoration (Pal et al.,
2024; Liu & Tang, 2025).

As representative examples, PDEs describe the phenomena in physics, engineering, and other fields
from a mathematical perspective. Traditional numerical solvers (e.g., finite element methods and
finite difference methods) face the challenge of balancing solving speed and accuracy. In contrast, to
obtain the PDE solution for a new condition, NO only needs to run the neural networks once, which
greatly accelerates the solving speed. The universal approximation theorem of neural operators (Li
et al., 2021) further guarantees the performance of NO methods in learning PDE solutions.

Another example is the implicit neural representation (INR) using NOs. Specifically, (Pal et al.,
2024) has shown the ability of NO in signal restoration by leveraging NO-based INR, uncovering
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the potential of NO for general signal processing. The INR methods parameterize data through
learning the mappings from the coordinates to the value of the signal, which can be considered as
a coordinates-value transform. NO-based INR methods learn the mapping between two function
spaces, which are related to the coordinate space and signal space. By learning data representations
in such a function space transformation, the NO-based INR (Pal et al., 2024) can be effectively
trained and evaluated, and can uniquely control the spatial interpolation behavior explicitly.

Traditional NOs based on data-domain integral operators may lack the efficiency comparable to that
of traditional neural networks. Fourier neural operators (FNOs) (Li et al., 2021) address this by
learning mappings in Fourier space, showing promise for efficient function mappings. However, the
Fourier transform is still computationally expensive in high dimensions, with complexity reaching
O(dvn

3 log n3) for 3-dimensional PDEs on an n×n×n grid and dv-dimensional latent space. This
cost makes FNO relatively inefficient for high-dimensional PDEs. Furthermore, both conventional
NOs and FNOs suffer from the curse of dimensionality for representing high-dimensional visual
data, which may limit their efficiency in related applications using INR (Pal et al., 2024).

Low-rank decomposition can effectively reduce model dimensions and enhance computational and
parameter efficiency (Kolda & Bader, 2009a; Luo et al., 2024). Motivated by the compactness of
low-rank decomposition, we propose Tucker-FNO, a novel NO that leverages Tucker decomposition
to enhance operator learning. Especially, we extend the recent functional tensor decomposition (Luo
et al., 2024) to the operator learning level for the first time, and decompose a high-dimensional
FNO into a series of 1-dimensional FNOs in the Tucker format. This splits the high-dimensional
Fourier transform into multiple 1-dimensional transforms, reducing computational complexity from
O(n3 log n3) to O(3dvn logn) for 3-dimensional PDEs. Furthermore, using the Stone-Weierstrass
and universal approximation theorems, we formally derive a tensor product decomposition of high-
dimensional functions and prove the universal approximation capability of Tucker-FNO—the first
such result for a tensor-decomposed NO. The contributions of this work are as follows:

• We propose a novel Tucker-FNO method. Different from traditional FNO methods, our
methods utilize Tucker tensor decomposition to decompose the high-dimensional FNO into
multiple 1-dimensional FNOs, which accelerates the FNO through operator decomposition.

• By utilizing theoretical tools of functional decomposition, we establish the universal ap-
proximation theorem for the decomposition-based FNO, which provides a theoretical guar-
antee for the representation ability of Tucker-FNO.

• Extensive experiments demonstrate the superior performance and efficiency of our methods
for numerical PDE solutions. We also extend the Tucker-FNO to high-dimensional signal
restoration tasks. For signal restoration tasks, our method shows performance that exceeds
that of traditional INRs and similar NO-based INR.

2 RELATED WORK

2.1 NEURAL OPERATORS

Operator learning constructs mapping from parameter function spaces to solution spaces, and is rep-
resented discretely on grids via finite observations in practice (Lu et al., 2021; Raissi et al., 2019;
Mishra & Molinaro, 2023; Kovachki et al., 2023). While conventional neural operators are mesh-
dependent and require retraining for different resolutions, Li et al. (2020) introduced a resolution-
invariant graph neural operator (GNO), later improved via fast Fourier transforms (FFT) to construct
the Fourier neural operator (Li et al., 2021). Subsequent variants like Geo-FNO (Li et al., 2023a)
handle arbitrary geometries, F-FNO (Tran et al., 2023) uses separable spectral layers to reduce pa-
rameters and enable deeper architectures, and T-FNO (Kossaifi et al., 2024) decompose the weights
in FNO to reduce the number of parameters. While these methods improve model performance
and reduce parameter number, they incur additional computational overhead. Recently, D-FNO
(Li & Ye, 2025) observes that FFT calculations dominate the overall computational complexity in
FNO and introduces decomposition to mitigate this cost in FNO. However, such decomposition
may compromise the representational capacity of FNO (e.g., its universal approximation property),
potentially leading to performance degradation. Our proposed Tucker-FNO applies tensor Tucker
decomposition to decompose the high-dimensional FNO, replacing high-dimensional FFT with mul-
tiple 1-dimensional FFTs while preserving expressiveness (in most cases, enhancing performance).
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Especially, we theoretically demonstrate that Tucker-FNO still possesses the universal approxima-
tion theorem.

2.2 IMPLICIT NEURAL REPRESENTATION

Implicit neural representations have garnered great success in continuously representing signals
across various tasks and modalities, such as signal restoration (Chen & Wang, 2022; Shi et al.,
2024; Liu et al., 2024; Saragadam et al., 2022; 2023; Luo et al., 2024), generation (Skorokhodov
et al., 2021; Chen & Zhang, 2019), and object detection (Zheng et al., 2024). NeRF (Mildenhall
et al., 2020) and subsequent works (Feng et al., 2024; Takikawa et al., 2021; Yariv et al., 2021)
leveraged INRs to predict RGB values and density for any given coordinates and view directions
within a 3-dimensional scene. To mitigate the computational overhead associated with traditional
INR methods, incorporating tensor decomposition-based approaches (Luo et al., 2024) can yield
superior and more robust results. Recent research (Pal et al., 2024) studies the potential of NO in
signal restoration tasks through combining NO and INR. Specifically, OINR (Pal et al., 2024) learns
a mapping from the positional encoding space to the signal’s INR space, which improves the repre-
sentation ability and can effectively handle downstream signal processing tasks such as denoising.

3 PROPOSED METHODS

3.1 NOTATION AND PRELIMINARY

Scalars, vectors, matrices, tensors, sets and operators are denoted by fonts x, x, X , X , A, and G ,
respectively. The i-th element of a vector x is denoted by x|(i), and it is similar for matrices and
tensors, i.e., X|(i1,i2) and X|(i1,i2,··· ,iN ). The unfolding operator of a tensor X∈Rn1×n2×···×nN

along the d-th mode (d = 1, 2, · · · , N ) is defined as unfoldd(·) : Rn1×···×nN → Rnd×Πj ̸=dnj ,
which returns the unfolding matrix along the mode d, and the unfolding matrix is denoted by
X(d) := unfoldd(X ). foldd(·) denotes the inverse operator of unfoldd(·). The mode-d
(d = 1, 2, · · · , N ) tensor-matrix product is defined as X ×d A := foldd(AX(d)), which re-
turns a tensor. T ⊂ R is the periodic torus, identified with [0, 2π]. The Tucker rank of a tensor
X ∈ Rn1×n2×···×nN is a vector defined as rankT (X ) := [rank(X(1)), · · · , rank(X(N))] (Kolda
& Bader, 2009b).

Lemma 1 (Tensor Tucker decomposition (Kolda & Bader, 2009b)). Let X ∈ Rn1×n2×···×nN

be a tensor. If the Tucker rank of X is [r1, · · · , rN ], then there exist N factor matrices U1 ∈
Rn1×r1 ,U2 ∈ Rn2×r2 , · · · ,UN ∈ RnN×rN and a core tensor C ∈ Rr1×r2×···×rN such that

X = C ×1 U1 ×2 U2 ×3 · · · ×N UN , (1)

which is called the tensor Tucker decomposition and can be written in an equivalent form as

X|(i1,··· ,iN ) = C ×1 U1|(i1,:) ×2 · · · ×N UN |(iN ,:). (2)

3.2 THE SETTING OF FNO

The operator is a mapping from two infinite-dimensional function spaces, i.e., G : A → U, where
A ⊂ Hs(Td;Rda) and U ⊂ Hs(Td;Rdu) are two function spaces. The representation of these
function spaces specifically depends on the particular problem. In general, the solution of a PDE
problem is a function u, which satisfies a constraint of the PDE form with condition a, and there
exists an operator to learn that maps from condition u to the target function u. Specifically, we
consider a PDE problem as {

(Lau)(x) = 0, x ∈ D,

u(x) = 0, x ∈ ∂D,
(3)

where u ∈ Hs(Td,Rdu) is the target solution function, La is a differential operator which depends
on the condition function a ∈ Hs(T;Rda), D ⊂ Td denotes the physical domain, and ∂D ⊂ D
denotes the boundary condition domain. Following the previous work (Kovachki et al., 2021), we
assume that da = du = 1. Otherwise, we can re-formulate the target function a : Td → Rda and
u : Td → Rdu as û(x, r) = u(x)|(r), which satisfies da = du = 1. The goal of our operator
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Figure 1: The architecture of the proposed Tucker-FNO. Given a sample from the condition function,
the pre-lifting module extracts the input into a series of factor inputs. Then, the inputs are processed
by the factor 1-dimensional FNOs, and the outputs are aggregated by Tucker decomposition. Note
that the last post-projection does not influence the universal approximation.

learning is to learn an operator G : a 7→ u that can efficiently approximate the PDE solution in
equation 3.

NO methods (Kovachki et al., 2023; Li et al., 2021) construct a map iteratively from a to u:

u = G (a) = (Q ◦ L L ◦ · · · ◦ L 1 ◦ P)(a), (4)

where ◦ denotes the function composition, L is the number of iterations, P is the lifting operator
that maps the input to the dv-dimensional latent representation, L (l) is l-th non-linear operator
layer, and Q is the projection operator that maps the dv-dimensional latent representation to the
du-dimensional output. For FNO, the non-linear operator layer L (l) are defined as

L (l)(v)(x) := σ

(
v(x)W (l) + b(l)(x) + F−1(

∑
k

F (v)(k) ·R(l)(k))(x)

)
, (5)

where F and F−1 denote the Fourier transform and the inverse Fourier transform (see Lemma 3
in Appendix B), W (l) ∈ Rdv×dv , b(l) define a point-wise affine mapping, k ∈ Zd denotes the
frequency, and R(l) : Zd → Cdv×dv defines the coefficients of a non-local linear mapping via the
Fourier transform. For an efficient implementation, FNO keeps only the top-kmax Fourier frequency
for each dimension. Specifically, we only consider the frequency in {k ∈ Zd : k|(i) ≤ kmax|(i), i =
1, 2, · · · , d}.

To learn operators numerically, NO-based methods assume access only to point-wise evaluations to
work with a and u numerically, and utilize a grid discrete sample I and O on functions a and u to
represent the function information, i.e.,

I := {a(x) : x ∈ S}, O := {u(x) : x ∈ S},
S := {(j1∆1, j2∆2, · · · , jd∆d) ∈ Td : ∆k = 2π/nk, jk ∈ {0, 1, · · · , nk}, k = 1, 2, · · · , d}.

(6)

The sample set S is a Πd
i=1(ni+1)-point discretization of the domain Td. Therefore, we have obser-

vation I and O for a finite collection of input-output pairs. Therefore, the operator learning task can
be formulated discretely as learning an operator G satisfying O = G (I). The Fourier transform is
realized through FFT, which is a discrete Fourier transform. The discrete Fourier transform is com-
puted efficiently via FFT. For a 3-dimensional PDE estimation problem of sample size n× n× n,
the complexity of the Fourier transform is O(dvn

3 log(n3)), which is relatively large w.r.t. n.

3.3 THE SETTING OF TUCKER-FNO

Inspired by the tensor Tucker decomposition in Lemma 1, a continuous function can be approxi-
mated by a functional tensor Tucker decomposition.

Theorem 1 (Universal approximation theorem of functional tensor Tucker decomposition). Let a :
Ω → R be a continuous function defined on a compact subset Ω = [s1, t1]×· · ·× [sd, td] ⊂ Rd. For
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any ϵ > 0, there exists a core tensor C ∈ Rr1×···×rd , and continuous functions gi : [si, ti] → Rri ,
such that

sup
x∈Ω

|f(x)− C ×1 g1(x|(1))×2 · · · ×d gd(x|(d))| < ϵ, (7)

where ri > 0 is the Tucker rank.

Sketch of proof. The detailed proof is proposed in Appendix C. From the Stone-Weierstrass theo-
rem, the function can be approximated by sufficiently high-order polynomials, and the high-order
polynomials can construct the Tucker functional tensor decomposition.

The above theorem proves that an arbitrary continuous function can be approximated by the func-
tional tensor Tucker decomposition to arbitrary precision. Therefore, we can estimate the target
function u by

u(x) ≈ C ×1 g1(x|(1))×2 · · · ×d gd(x|(d)), (8)
and the operator learning task transforms from estimating operators on u to estimating operators
on gi. Motivated by this insight, we propose the Tucker-Fourier Neural Operator (Tucker-FNO),
which decomposes the high-dimensional FNO into a series of 1-dimensional FNOs via tensor Tucker
decomposition. Specifically, we define the Tucker-FNO N : a 7→ u as:

N (a)(x) := C ×1 N1(a)(x|(1))×2 · · · ×d Nd(a)(x|(d)), (9)

where C ∈ Rr1×···×rd , (r1, · · · , rd) ∈ Nd
+ is the rank of Tucker-FNO, and Ni is the 1-dimensional

FNO described in equation 5.

Since we decompose the d-dimensional FNO into d 1-dimensional FNOs, we correspondingly
construct a pre-lifting module, which transforms the d-dimensional representative input tensor
I|(i1,i2,··· .id) := a

(
i1
n1

2π, · · · , id
nd

2π
)

∈ Rn1×···×nd into a series of 1-dimensional representa-
tive factor matrices Ii. Motivated by D-FNO (Li & Ye, 2025), the 1-dimensional representative
factor matrix Ii can be extracted linearly through a pre-lifting operator P̂ , expressed as:

P̂(I) := (I1, · · · , Id), where Ii := unfoldi(I)Wi, (10)

where Wi ∈ RΠj ̸=inj×dv is the pre-lifting weight, dv is the latent dimension, and Ii ∈ Rni×dv is
the i-th factor matrix. Therefore, each representative factor matrix Ii contains partial information
of the function a. To enhance the representability of Tucker-FNO, we empoly a post-projection
Q̂ after the Tucker-FNO, where Q̂ utilizes the structure of a multi-layer perceptron (MLP) for the
discrete setting. In general, we set its input dimension as dv . Under discrete numerical computing,
the Tucker-FNO equation 9 can be expressed as

O = Q̂(C ×1 N1(I1)×2 · · · ×d Nd(Id)), (11)

where each Ni is a 1-dimensional FNO. In this way, we effectively decompose the d-dimensional
FNO into a series of 1-dimensional FNOs by Tucker decomposition.

3.4 THE UNIVERSAL APPROXIMATION THEOREM FOR TUCKER-FNO

The classical FNO (Kovachki et al., 2021) enjoys the universal approximation theorem for any con-
tinuous operator learning, as stated below.
Lemma 2 (Universal approximation theorem of FNO (Kovachki et al., 2021)). Let U :

Hs(Td;Rda) → Hs′(Td;Rdu) be a continuous operator. Let F ⊂ Hs(Td;Rda) be a compact sub-
set. Then for any ϵ > 0, there exists an FNO N : Hs(Td;Rda) → Hs′(Td;Rdu) of the form equa-
tion 5, which is continuous as an operator Hs → Hs′ , such that supf∈F ∥U (f)− N (f)∥Hs ≤ ϵ.

Similarly, we aim to demonstrate that Tucker-FNO also possesses universal approximation capabili-
ties. That is, we show that Tucker-FNO can approximate a broad class of nonlinear operators in con-
tinuous function spaces. The overview of our proof is presented in Appendix A. Especially, we first
establish the universal approximation property for the operator Tucker decomposition. Specifically,
according to Theorem 1, a multivariate function a can be decomposed into a series of 1-dimensional
factor functions using functional tensor Tucker decomposition. This decomposition can be further
extended to the operator level, as stated below.
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Theorem 2 (Universal approximation theorem of operator Tucker decomposition). Let H ⊆
Hs(Td;R) be a compact set of continuous functions with s > d/2. Assume that all h ∈ H are
analytic on Td. Then, for every h ∈ H and any ϵ > 0, there exists ranks (r1, · · · , rd) ∈ Nd

+,
continuous operators Ui : H → Hs(T;Rri), and a core tensor C ∈ Rr1×···×rd , such that

sup
h∈H

∥h(·)− C ×1 U1h(·1)×2 · · · ×d Udh(·d)∥Hs ≤ ϵ. (12)

Sketch of proof. The detailed proof is placed in Appendix E. By Theorem 1 and the finite-
dimensional function space constructed by the Fourier basis, the function in the finite-dimensional
function space can be approximated by the Tucker decomposition form (Lemma 10 in Appendix
D). Therefore, the infinite-dimensional function space can be further approximated by the finite-
dimensional function space. Through the above approximation and Lemma 10, the proof is done.

In Theorem 2, the factor operator Ui can be further approximated by a 1-dimensional FNO using
Lemma 2, and thus the universal approximation theorem of Tucker-FNO equation 9 is established.

Theorem 3 (Universal approximation theorem of Tucker-FNO). Let G : Hs(Td;R) → Hs′(Td;R)
be a continuous operator. Suppose F ⊆ Hs(Td;R) be a compact set and H := G (F). Assume
that s, s′ > d/2 and that all h ∈ H are analytic on Td. Then for all ϵ > 0, there exists rank
(r1, · · · , rd) ∈ Nd

+, Tucker-FNO N : F → H of the form equation 9, and a core tensor C ∈
Rr1×···×rd , such that

sup
f∈F

∥G (f)− N (f)∥Hs ≤ ϵ. (13)

The detailed proof of Theorem 3 is proposed in Appendix F. Thus, we demonstrate that Tucker-
FNOs are universal approximators, capable of approximating any continuous operator to a desired
accuracy. It is important to note that, owing to the universal approximation properties of MLP
(Rosenblatt, 1958), the inclusion of the post-projection Q̂ in equation 11 does not influence the
universal approximation theorem of Tucker-FNO.

3.5 TUCKER-FNO FOR SIGNAL RESTORATION

Following OINR (Pal et al., 2024), which demonstrates the potential of NO in signal processing
through NO-based INR, we further introduce Tucker-FNO to high-dimensional signal restoration
tasks. Specifically, the natural signal is continuous and can be considered as a continuous function
in signal space Hs(Td;R). Traditional INRs learn a map from the coordinate positional encoding
to the signal space, and operator-based INRs learn an operator G from the input function space
F to signal function space H, where F,H ∈ Hs(Ω,R) and Ω is the domain of definition (e.g.,
a 2-dimensional plane for images, and a 3-dimensional cube for volumes). Following OINR, we
define our input function in terms of sinusoidal positional encodings (Mildenhall et al., 2020) which
involve sinusoids across many frequencies. Specifically, for a 2-dimensional plane for images, we
define the input space F as

F := {fS(x, y) : S > 0}, (14)

where fS(x, y) := [sin(2lπx), cos(2lπx), sin(2lπy), cos(2lπy), · · · ], l ∈ {0, 1, · · · , S − 1}, where
S denotes the encoding length. Therefore, the operator-based INR can be defined as:

h(x) = G [f ](x), (15)

where f ∈ F is the input function, h ∈ H is the signal function and G is the operator mapping from
F to H. For Tucker-FNO, the d-dimensional sinusoidal positional encodings can be reformulated as

fS(x|(1),x|(2), · · · ,x|(d)) = [f∗
S(x|(1)), f∗

S(x|(2)), · · · , f∗
S(x|(d))], (16)

where f∗
S(x) := [sin(2lπx), cos(2lπx), · · · ], l ∈ {0, 1, · · · , S − 1}. Then, the sinusoidal positional

encoding can be decomposed across each dimension, which is similar to Tucker decomposition.
Therefore, thanks to the decomposition property, Tucker-FNO can remove the pre-lifting operator
and be simplified to

G [fS ] = Q̂ ◦ (C ×1 U1(f
∗
1 )×2 · · ·Ud(f

∗
d )). (17)

Similar to Theorem 3, the Tucker-FNO here enjoys universal approximation ability to learn any
high-dimensional signal structures (e.g., image signals).
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Table 1: The comparisons of computational complexity and parameter number for FFT-related cal-
culations. dv is the latent dimension, k is the frequency truncation threshold, n is the input size, r̂ is
the maximum of decomposition rank.

Components FNO T-FNO Tucker-FNO

FFT O(dvdn
d log(n)) O(dvdn

d log(n)) O(dvdn log(n))

Multiplying Weights O(d2
vk

d) O(r̂d2
vk

d) O(d2
vdk)

Inverse FFT O(dvdn
d log(n)) O(dvdn

d log(n)) O(dvdn log(n))

Params O(d2
vk

d) O(r̂d+2 + r̂(dv + k)) O(d2
vdk)

3.6 COMPUTATIONAL COMPLEXITY ANALYSIS

By decomposing the d-dimensional FNO into d 1-dimensional FNOs, Tucker-FNO can efficiently
process the high-dimensional data. Although recent tensorized FNOs (Kossaifi et al., 2024; Tran
et al., 2023) also incorporate the tensor decomposition to improve FNO by decomposing the model
weight to reduce the model parameter, it leads to higher computational complexity. As noted in a
recent study (Li & Ye, 2025), FFT calculations dominate the overall computational complexity of
FNO, indicating that the key to accelerating FNO lies in reducing the complexity of FFT-related
calculations. In FNO, the FFT-related calculations includes FFT, multiplying weights, and inverse
FFT. In the following analysis, we evaluate the computational complexity of FNO based on these
components, using a d-dimensional grid of n × n × · · · × n as the example to calculate the com-
putational complexity. The complexity comparisons among FNO, T-FNO (Kossaifi et al. (2024), a
recent tensorized FNO) , and Tucker-FNO are as follows:

• FNO. The computational complexity for FFT and inverse FFT is O(dvn
d log(nd)) =

O(dvdn
d log(n)), where dv is the latent dimension of FNO, and the computational com-

plexity for multiplying weights is O(d2vk
d), where k is the frequency truncation threshold.

• T-FNO. T-FNO decomposes the model weight R ∈ Rk×k×···k×dv×dv , where k is the fre-
quency truncation threshold and dv is the latent dimension. Specifically, the weight R can
be decomposed to R = C ×1 U1 ×2 · · · ×d+2 Ud+2, where C ∈ Rr1×r2×···×rd+2 is the
core tensor, (r1, · · · , rd+2) is the rank, and Ui ∈ Rk×ri (for i ≤ d) or Ui ∈ Rdv×ri (for
i > d) are the factor matrices. This weight decomposition does not influence the com-
putational complexity, i.e., the computational complexity for FFT and inverse FFT is still
O(dvdn

dlog(n)). For multiplying weights, the computational complexity for multiplying
weights increase to O(r̂d2vk

d + d2vk
d) = O(r̂d2vk

d), where r̂ = max{r1, · · · , rd+2} is the
maximum of rank, and O(r̂d2vk

d) is the computational complexity for the decomposition
of R. Due to the computation for the the decomposition of R, T-FNO incurs increased
computational complexity.

• Tucker-FNO. By decomposing the d-dimensional FNO into a series of 1-dimensional
FNO, Tucker-FNO processes 1-dimensional FFT and inverse FFT for d times, i.e., the
computational complexity for FFT and inverse FFT is reduced to O(dvdn log(n)). Simi-
larly, the computational complexity for multiplying weights is reduced to O(d2vdk), where
k is the frequency truncation threshold.

For clarity, the computational complexities of FNO, T-FNO, and Tucker-FNO are summarized in
Table 1. Notably, Tucker-FNO significantly reduces the computational burden associated with FFT-
related operations. Furthermore, in Tucker-FNO, decomposition is performed after all FFT-related
computations, with a complexity of O(r̂dvn

d), where r̂ is the maximum of rank. While this com-
plexity may appear to grow rapidly, it only becomes dominant when the rank is extremely large,
which is validated in Appendix I. Beyond computational efficiency, Tucker-FNO also reduces the
number of model parameters, as shown by the weight scales reported in Table 1.

Remark. In summary, although both T-FNO and Tucker-FNO employ tensor decomposition, their
implementations and motivations differ. T-FNO applies decomposition to the network parameters to
reduce the parameter number, introducing an parameterization scheme for FNO. In contrast, Tucker-
FNO applies decomposition directly to the operator, aiming to reduce computational complexity.
Thus, T-FNO focuses on parameter efficiency, whereas Tucker-FNO proposes a novel FNO-based
paradigm centered on computational efficiency.
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Figure 2: Error maps comparisons of different NO methods for Navier-Stokes (the first row) and
Burger’s equation (the second row).
4 EXPERIMENTS

4.1 EXPERIMENT SETTINGS

Task. To validate the effectiveness and efficiency of Tucker-FNO, we evaluate the performance on
the NO-based PDE approximation task and INR-based signal restoration task. For PDE approxima-
tion tasks, we compare the proposed Tucker-FNO with multiple neural network architectures and
NO-based approximation methods on the Navier-Stokes equation, the Plasticity equation, and the
Burger equation. The details of PDE datasets are presented in Appendix G. For signal restoration
tasks, we utilize the NO-based INR architectures (Pal et al., 2024) and compare the proposed Tucker-
FNO-based INR in equation equation 17 with multiple INR signal restoration methods and other
NO-based INRs on the image signal denoising, inpainting, and 3-dimensional volume representa-
tion tasks for different signals, e.g., multi-spectral images (MSIs), multi-dimensional images, and
3-dimensional volume. For image denoising, the testing data are MSIs from the benchmark CAVE
dataset* (Yasuma et al., 2010), including Cups, Balloons, Cloth, Toys, Clay, and Fruits. We consider
three noisy cases containing Gaussian noise with different noise deviations of 0.1, 0.15, and 0.2.
For image inpainting, testing data consists of two videos (Foreman and Carphone†). We consider
random missing with observed sampling rates (SRs) 0.1, 0.15, and 0.2 for image inpainting. For the
3-dimensional volume representation task, the occupancy volume is sampled in a 512× 512× 512
voxel grid following OINR (Pal et al., 2024), where each voxel within the volume is assigned a value
of 1 inside an object and 0 outside an object.

Benchmark. For PDE approximation tasks, we compare our methods with ResNet18 (He et al.,
2016), FNO (Li et al., 2021), Com-FNO (Li et al., 2024), T-FNO (Kossaifi et al., 2024), D-FNO (Li
& Ye, 2025). For signal restoration tasks, we compare our methods with sinusoidal representation
networks (SIREN) (Sitzmann et al., 2020), multiplicative filter networks (MFN) (Fathony et al.,
2020), low-rank tensor function representation (LRTFR) (Luo et al., 2024), OINR (Pal et al., 2024),
and OINR-FNO, which replaces NO with FNO in OINR.

Metric. For the PDE approximation task, following F-FNO Tran et al. (2023), the results are quan-
titatively evaluated by normalized root mean square error (NMSE) and vorticity correlation error
(VCE, 1− vorticity correlation). For signal restoration tasks, the results are quantitatively evalu-
ated by peak-signal-to-noise ratio (PSNR), structural similarity (SSIM), and NMSE.

Table 2: Performance (NMSE ↓, VCE ↓) on Navier-Stokes, Burger, and Plasticity equations among
different methods. The best and second-best values are highlighted.

Config. Navier-Stokes Plasticity Burger
T = 20 T = 30

Metric NMSE VCE NMSE VCE NMSE VCE NMSE VCE

ResNet 0.0911 0.0053 0.2582 0.0351 0.1015 0.0587 0.0941 0.0651
FNO 0.0034 1.0311e-5 0.0072 3.9776e-5 0.0080 1.9514e-4 0.0087 4.4465e-5
Com-FNO 0.0036 1.1265e-5 0.0071 3.8146e-5 0.0084 2.0897e-4 0.0063 2.4543e-5
T-FNO 0.0035 8.8214e-6 0.0065 3.0354e-5 0.0079 2.0076e-4 0.0075 2.9672e-5
D-FNO 0.0063 3.0994e-5 0.0132 9.1426e-5 0.0097 2.2150e-4 0.0071 2.8610e-5
Tucker-FNO 0.0028 8.2254e-6 0.0061 2.9742e-5 0.0073 2.0010e-4 0.0070 2.0050e-5

4.2 TUCKER-FNO IN PDE APPROXIMATION TASK

Setup. The details of the settings of the PDEs are presented in Appendix G. Here, we perform
training for 500 epochs using a batch size of 20 using the Adam optimizer (Kingma, 2014) with a

*https://www.cs.columbia.edu/CAVE/databases/multispectral/
†http://trace.eas.asu.edu/yuv/
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Table 4: The average quantitative results (PSNR ↑ (dB), SSIM ↑, MSE ↓) by different methods for
multi-spectral image inpainting. The best and second-best values are highlighted.

Sampling rate 0.1 0.15 0.2

Data Metric PSNR SSIM NMSE PSNR SSIM NMSE PSNR SSIM NMSE

Videos
Foreman
Carphone

(144×176×100)

Observed 5.20 0.023 0.949 5.45 0.035 0.922 5.71 0.047 0.895
SIREN 23.85 0.806 0.112 24.11 0.815 0.109 24.61 0.821 0.105
MFN 22.47 0.778 0.132 24.16 0.801 0.108 26.20 0.828 0.083
LRTFR 26.96 0.813 0.071 28.75 0.870 0.064 30.22 0.903 0.056
OINR 23.32 0.738 0.108 24.04 0.791 0.095 25.17 0.840 0.083
OINR-FNO 24.53 0.803 0.080 25.02 0.837 0.076 26.27 0.857 0.072
Tucker-FNO 28.09 0.860 0.074 29.57 0.901 0.059 31.17 0.939 0.047

PSNR 3.61 PSNR 23.26 PSNR 21.58 PSNR 26.24 PSNR 21.56 PSNR 24.06 PSNR 27.54 PSNR Inf

PSNR 7.05 PSNR 25.27 PSNR 25.86 PSNR 28.11 PSNR 25.8 PSNR 25.38 PSNR 30.17 PSNR Inf
Observed SIREN MFN LRTFR OINR OINR-FNO Tucker-FNO Original

Figure 3: The results of multi-dimensional image inpainting by different methods on video Foreman
(SR=0.1) and Carphone (SR=0.15).

learning rate of 0.001. The latent dimension dv is set 32, and the Tucker rank of Tucker-FNO is set
to the same as the latent dimension. The Tucker rank rate for T-FNO is 0.4, which indicates that the
Tucker rank of each dimension is 0.4 of the size of the dimension. The Fourier frequency truncation
threshold is kmax = (12, 12, · · · ) for each dimension. The depth of NO-based methods is 4. And
the post-projection Q̂ is a 2-layer MLP.

Table 3: Comparisons (Params
↓, Time/iter ↓ (seconds)) of
parameter number and running
time in 256× 256 data.

Method Params Time/iter

FNO 593.7 K 0.0685
T-FNO 232.6 K 0.0746
D-FNO 307.8 K 0.0382

Tucker-FNO 293.5 K 0.0352

Result summary. The results of PDE approximation task are
shown in Table 2 and Fig. 2. Tucker-FNO outperforms the
baselines FNO, T-FNO and D-FNO, achieving the best perfor-
mance. From the Fig. 2, the comparisons of the error maps
on Navier-Stokes and Burger’s equations and the results on the
Plasticity equation demonstrate that Tucker-FNO performs better
on regions with significant numerical variation. More qualitative
results are demonstrated in Appendix H. Additionally, the pro-
posed Tucker-FNO demonstrates outperforming advantages in ef-
ficiency. From Table 3, we can observe that the proposed Tucker-FNO is more efficient than FNO,
T-FNO and D-FNO in terms of the parameter number of model parameters and the execution time.
In 256 × 256 data, Tucker-FNO reduces the parameter by 50% and the execution time by 48.6%
compared to FNO. T-FNO reduces the parameters but increases computational complexity. While
D-FNO reduces the computation complexity, it compromises performance as shown in Table 2. In
contrast, Tucker-FNO excels in both performance and efficiency.

4.3 TUCKER-FNO IN SIGNAL RESTORATION

Setup.
Table 5: Comparisons (Params
↓, Time/iter ↓ (seconds)) of
parameter number and running
time in the signal restoration
task with 1024×1024×31 data.

Method Params Time/iter

OINR-FNO 1.06 M 0.2322
Tucker-FNO 553 K 0.0963

The rank of Tucker-FNO is set (r1, r2, r3) = (n1, n2, ⌊n3/2⌋),
where nds (d = 1, 2, 3) denote the sizes of the observed data.
We parameterize each 1-dimensional factor mapping as a DNN,
which consists of one lifting layer with sine activation, two FNO
layers with a latent dimension of dv = 32 and a final lin-
ear projection across all experiments. The factor network takes
sinusoidal positional encodings described in equation 16 with
S = 10. The post-projection is a 2-layer MLP. We use the Adam

9
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Table 6: Ablation experiments of latent dimensions and frequency truncation threshold for PDE
solving problems in Plasticity equations. The Tucker rank is set as dv .

k 8 12 16

dv NMSE VCE NMSE VCE NMSE VCE

16 0.0098 2.07e-4 0.0092 2.06e-4 0.0092 2.06e-5
32 0.0074 2.18e-4 0.0074 2.00e-4 0.0073 1.98e-4
64 0.0068 2.45e-4 0.0064 2.04e-4 0.0062 2.00e-4

Table 7: Ablation experiments of Tucker-FNO rank and the latent dimensions for PDE solving
problems in Plasticity equations.

Rank 16 32 64

dv NMSE VCE NMSE VCE NMSE VCE

16 0.0092 2.06e-4 0.0087 1.84e-4 0.0086 1.97e-5
32 0.0079 2.03e-4 0.0074 2.00e-4 0.0071 1.78e-4
64 0.0064 1.87e-4 0.0064 2.00e-4 0.0063 2.04e-4

optimizer with a learning rate of 0.001 and no weight decay. To determine the optimal frequency
truncation threshold kmax = (k, k, k) which controls the number of retained Fourier frequencies in
each spatial dimension, we consider a range of candidate values for k ∈ {6, 12, 18, 24, 30, 36} to
balance model expressivity and computational efficiency.

Result summary. The quantitative results of multi-dimensional image inpainting are summarized
in Table 4. Our proposed Tucker-FNO achieves better performances and surpasses the baselines on
video restoration with a considerable margin. As illustrated in Fig. 3, Tucker-FNO holds superior
edge preservation and smoothness recovery for different videos. The results of image denoising
and 3-dimensional volume representation are demonstrated in Appendix H. Similar to the PDE
approximation task, Tucker-FNO also demonstrates advantages in efficiency. From Table 5, the
proposed Tucker-FNO achieves a significant execution time reduction and parameter reduction in
signal restoration as compared with OINR (Pal et al., 2024). The results of Tucker-FNO for these
high-dimensional visual data validate its superior efficiency and applicability.

4.4 ABLATION EXPERIMENTS

6 12 18 24 30 36
:

25

26

27

28

29

PS
N

R

3E = 16
3E = 32

3E = 48
3E = 64

3E = 96
3E = 128

Figure 4: The PSNR results of
Tucker-FNO w.r.t. different dv
and k of the network for Fore-
man (SR = 0.15) inpainting.

Table 6 demonstrates the influence of latent dimension dv and
the frequency truncation threshold k, where the rank is the same
as dv . Table 7 further examines the influence of the rank and
dv while keeping k fixed. From these results, Tucker-FNO’s dv ,
rank, and k exhibit a positive correlation with the Tucker-FNO’s
performance, and the rank and k demonstrate relatively greater
robustness.

In the Carphone video reconstruction task, our method performs
robustly across various k and latent dimension dv in Fig. 4. Per-
formance initially increases then decreases with these hyperpa-
rameters, peaking at dv = 32 and k = 24. This pattern arises because excessive parameters lead
to over-fitting, while moderate width implicitly captures signal low-rankness, facilitating faster and
better convergence.

5 CONCLUSION

We proposed an efficient neural operator based on Tucker decomposition, termed Tucker-FNO,
which decomposes the high-dimensional FNO into multiple 1-dimensional FNOs, thereby largely
accelerating the classical FNO while maintaining expressiveness. Utilizing theoretical tools of func-
tional decomposition, we establish the universal approximation theorem for Tucker-FNO, which
provides a theoretical guarantee for the representation ability of Tucker-FNO. Extensive experiments
demonstrate that Tucker-FNO achieves substantially improved performance in terms of both effec-
tiveness and efficiency for the PDE approximation task and the signal restoration task. Moreover,
Tucker-FNO has the potential in future research to handle higher-dimensional PDE approximation
problems. The detailed optimization dynamics and implicit regularization of Tucker-FNO also war-
rant further exploration.
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A THE SKETCH OF PROOF FOR UNIVERSAL APPROXIMATION THEOREM OF
TUCKER-FNO

Figure 5: The sketch of proof for the universal approximation theorem of Tucker-FNO. For simplic-
ity, the universal approximation theorem is abbreviated as UAT.

Our proof follows a general approach: starting from the tensor level (Lemma 1), we extend to the
function level (Theorem 1), then to operators in finite-dimensional function spaces (Lemma 10), and
finally demonstrate universal approximation for operators in the general function space (Theorem
2).
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Specifically, in Appendix B, we demonstrate some preliminary auxiliary lemmas for the following
proof. Then, in Appendix C, through Stone-Weierstrass theorem, we propose the universal ap-
proximation theorem of functional tensor Tucker decomposition. Therefore, in Appendix D, we
further propose the universal approximation theorem of operator Tucker decomposition in finite-
dimensional function space. In Appendix E, through the universal approximation theorem of FNO
in (Kovachki et al., 2021), we finally propose the universal approximation theorem of Tucker-FNO.

B PRELIMINARY LEMMA

Lemma 3 (Fourier transform and inverse Fourier transform). For any such function v ∈ L2(Td),
there exists Fourier Transformer as

F (v)(k) :=
1

(2π)d

∫
Td

v(x)e−ik·xdx. (18)

For k ∈ Zd, the k-th Fourier coefficient of v is denoted by v̂k = F (v)(k).

The inverse Fourier Transformer is defined as:

F−1(v̂)(x) :=
∑
k∈Zd

v̂ke
ik·x (19)

Definition 1 (The Hs norm). Let h ∈ H ⊆ Hs(Td;R), where Td = [0, 2π]d, its Fourier series
expansion is given by:

h(x) =
∑
k∈Zd

cke
ik·x, ck =

1

(2π)d

∫
Td

h(x)e−ik·xdx, (20)

where k = (k|(1), . . . ,k|(d)) ∈ Zd \ {0}. The Hs-norm of h is

||h||2Hs =
∑
k∈Zd

(1 + |k|2)s|ck|2. (21)

To prove that the combination of the Fourier basis can approximate any function in Hs(Td,R), we
propose Lemma 4-7, and then propose the approximation lemma of the Fourier basis in Lemma 8.
Lemma 4. For any d ≥ 1, s ≥ 0 and k ∈ Rd \ {0}, we have

(1 + |k|2)s ≤
(

s

⌊s/2⌋

) ∑
|β|≤s

|k|2|β|. (22)

Proof. According to the binomial theorem, we can expand (1 + |k|2)s as follows:

(1 + |k|2)s =
s∑

m=0

(
s

m

)
|k|2m. (23)

The binomial coefficient
(
s
m

)
achieves its maximum value when m = ⌈s/2⌉ or m = ⌊s/2⌋, thus we

have

(1 + |k|2)s ≤
s∑

m=0

(
s

⌊s/2⌋

)
|k|2m. (24)

Since
(
m+d−1
d−1

)
≥ 1 for all m ≥ 0, we have

s∑
m=0

(
s

⌊s/2⌋

)
|k|2m ≤

s∑
m=0

(
s

⌊s/2⌋

)(
m+ d− 1

d− 1

)
|k|2m

=

(
s

⌊s/2⌋

) s∑
m=0

(
∑

|β|=m

1)|k|2m

=

(
s

⌊s/2⌋

) ∑
|β|≤s

|k|2|β|.

(25)

Combining equation 24 and equation 25, the proof is completed.
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Lemma 5. For any d ≥ 1, s ≥ 0 and k ∈ Rd \ {0}, we have∑
|β|≤s

|k|2|β| ≤ (d+ 1)s|k|2s. (26)

Proof. The direct computation is as follows∑
|β|≤s

|k|2|β| =
s∑

m=0

(
∑

|β|=m

1)|k|2m

=

s∑
m=0

(
m+ d− 1

d− 1

)
|k|2m

≤
s∑

m=0

(
m+ d− 1

d− 1

)
|k|2s

=

(
s+ d

d

)
|k|2s

=

s∏
i=1

(
1 +

d

i

)
|k|2s ≤ (d+ 1)s|k|2s.

(27)

Therefore, the proof is completed.

Lemma 6. Let h ∈ H ⊆ Hs(Td;R), where Td = [0, 2π]d. Its Fourier series expansion is given by:

h(x) =
∑
k∈Zd

cke
ik·x, ck =

1

(2π)d

∫
Td

h(x)e−ik·x dx, (28)

where k = (k|(1), . . . ,k|(d)) and |k| =
√
k2|(1) + · · ·+ k2|(d). We aim to prove that its Fourier

coefficients ck satisfy:
|ck| ≤ Cm|k|−m, ∀m ∈ N, k ∈ Zd \ {0}, (29)

where Cm is a constant depending only on the m-th derivatives of h.

Proof. Choose j such that
∣∣k|(j)∣∣ = max1≤i≤d

∣∣k|(i)∣∣, then |k|(j)| ≥ |k|/
√
d. Perform m-th inte-

gration by parts along the j-th direction:

ck =
1

(ik|(j))m
· 1

(2π)d

∫
Td

∂mh(x)

∂x|m(j)
e−ik·x dx, (30)

where xi denote x|(i) here for simplicity. Estimate and take absolute values:

|ck| ≤
1∣∣k|(j)∣∣m · 1

(2π)d

∫
Td

∣∣∣∣∣∂mh(x)

∂x|m(j)

∣∣∣∣∣ dx ≤
∥∂m

j h∥L∞∣∣k|(j)∣∣m . (31)

Using
∣∣k|(j)∣∣ ≥ |k|/

√
d, we can conclude |ck| ≤ Cm/|k|m with Cm = (

√
d)m∥∂m

j h∥L∞ . There-
fore, the proof is completed.

Lemma 7. For any d ≥ 1, s ≥ 0 and x ∈ Rd \ {0}, if m− s ≥ d/2, we have∫
∥x∥∞>n

|x|−2(m−s)dx ≤ Cm,s,dn
−2(m−s−d/2). (32)

where Cm,s,d = 2d·d
2(m−s)−1 .

Proof. Since ∥x∥∞ = maxi=1,··· ,d
∣∣x|(i)∣∣, thus in d-dimensional space, we can rewrite ∥x∥∞ > n

as follows

∥x∥∞ > n =

d⋃
i=1

{x :
∣∣x|(i)∣∣ > n,

∣∣x|(j)∣∣ ≤ n for j ̸= i}. (33)
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By symmetry, the contribution from each region where
∣∣x|(i)∣∣ > n is identical, specifically∫

∥x∥∞>n

|x|−2(m−s)dx = d

∫
|x|(1)|>n

∫ n

−n

· · ·
∫ n

−n

|x|−2(m−s)
. (34)

It is obvious that |x| >
∣∣x|(1)∣∣, thus the integral can be bounded and directly calculated as follows:

d

∫
|x1|>n

∫ n

−n

· · ·
∫ n

−n

|x|−2(m−s)dxd · · · dx2dx1

≤d

∫
|x1|>n

∫ n

−n

· · ·
∫ n

−n

|x1|−2(m−s)dxd · · · dx2dx1

=d(2n)d−1

∫
|x1|>n

|x1|−2(m−s)dx1

=2d(2n)d−1

∫ ∞

n

x
−2(m−s)
1 dx1

=2d(2n)d−1 n1−2(m−s)

2(m− s)− 1

=
2d · d

2(m− s)− 1
n−2(m−s−d/2),

(35)

where xi denotes x|(i) for simplicity. The proof is completed by combining equation 34 and equa-
tion 35.

Lemma 8 (The approximation lemma of the Fourier basis). Let h ∈ H ⊆ Hs(Td;R), where
Td = [0, 2π]d. Its Fourier series expansion is given by:

h(x) =
∑
k∈Zd

cke
ik·x, ck =

1

(2π)d

∫
Td

h(x)e−ik·x dx, (36)

Let the truncated Fourier series be

Pn(h)(x) =
∑

∥k∥∞≤n

cke
ik·x, (37)

and define the remainder as Rn(h)(x) := h(x)− Pn(h)(x). Thus we can conclude that

lim
n→+∞

∥Rn(h)∥2Hs = 0. (38)

Proof. We have

∥Rn(h)∥2Hs =
∑

∥k∥∞>n

(1 + |k|2)s|ck|2

≤
(

s

⌊s/2⌋

) ∑
∥k∥∞>n

∑
|β|≤s

|k|2|β|
 |ck|2

≤
(

s

⌊s/2⌋

)
(d+ 1)s

∑
∥k∥∞>n

|k|2s|ck|2

=

(
s

⌊s/2⌋

)
C2

m(d+ 1)s
∑

∥k∥∞>n

|k|−2(m−s),

(39)

where the first inequality follows from Lemma 4, the second inequality follows from Lemma 5 and
the last inequality follows from Lemma 6.

The series
∑

k∈Zd |k|−2(m−s) converges if m > s + d/2. According to Lemma 7, we further
estimate: ∑

∥k∥∞>n

|k|−2(m−s) ≤
∫
∥x∥∞>n

|x|−2(m−s) ≤ Cm,s,dn
−2(m−s−d/2). (40)
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Thus we have
∥Rn(h)∥Hs ≤ Mm,s,dn

−(m−s−d/2), (41)

where Mm,s,d =
√(

s
⌊s/2⌋

)√
Cm,s,dCm(d+ 1)s/2.

For any ϵ > 0, exists N = s+ d/2 + ⌈log2(Mm,s,d/ϵ)⌉, such that

∥Rn∥Hs ≤ ϵ. (42)

Therefore, the proof is completed.

Lemma 9 (The relation between L∞ norm and the Hs norm). Let s > 0, and a compact set
F ⊂ Hs(Ω;R) where Ω ∈ Rd is a compact subset. Here, ∀f ∈ F f is a analytic function on Ω.
There exists As > 0, such that

∥f∥Hs ≤ As sup
x∈Ω

|f(x)|. (43)

Proof. From f being analytic in compact set Ω and the Cauchy inequality, there exist constant
C,M > 0 that are independent of f , such that

∥Dαf(x)∥∞ ≤ CM |α||α|!. (44)

Because Ω is a compact set, we can define A :=
∫
Ω
1dx > 0. Then, we have

∥f∥ℓ2 ≤
√
A∥f∥∞ ≤

√
ACM |α||α|!. (45)

For ∥f∥Hs , we have

∥f∥2Hs =
∑
|α|≤s

∥Dαf∥2ℓ2 ≤ A
∑
|α|≤s

(CM |α||α|!)2. (46)

Because F is a compact set and f is analytic, there exists a constant As > 0, such that∑
|α|≤s

(CM |α||α|!)2 ≤ A2
s∥f∥∞. (47)

Therefore, we have
∥f∥Hs ≤

√
AAs∥f∥∞. (48)

The proof is completed.

C PROOF OF UNIVERSAL APPROXIMATION THEOREM OF FUNCTIONAL
TUCKER DECOMPOSITION (THEOREM 1)

Proof of Theorem 1. Due to Ω is a compact set, the Heine-Cantor theorem is valid. So, f being
continuous on Ω implies uniform continuity, i.e., for any ϵ > 0, there exists δ > 0, such that

∥x− x′∥ < δ ⇒ ∥f(x)− f(x′)∥ < ϵ. (49)

Therefore, from the Stone-Weierstrass Theorem, for any ϵ > 0, there exists polynomial P (x) =∑r1−1
i1=0 · · ·

∑rd−1
id=0 ai1,··· ,idΠ

d
j=1x

ij |(j), such that

sup
x∈Ω

|f(x)− P (x)| < ϵ. (50)

Define index sets Ii := {0, 1, · · · , ri−1}, core tensor C ∈ Rr1×···×rd , and basis functions gi(x) :=
[x0, x1, · · · , xri−1]T . Therefore, P can be rewritten as

P (x) = C ×1 g1(x1)×2 · · · ×d gd(xd). (51)

Then, from equation 50, we have

sup
x∈Ω

|f(x)− C ×1 g1(x|(1))×2 · · · ×d gd(x|(d))| < ϵ. (52)

The proof is completed.
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D PROOF OF UNIVERSAL APPROXIMATION THEOREM OF OPERATOR
TUCKER DECOMPOSITION IN FINITE-DIMENSIONAL FUNCTION SPACE
(FOR THEOREM 2)

Definition 2. Let d be the number of variables and n the maximum Fourier degree. The basis
functions are ϕα(x) = eik·x for all multi-indices k = (k|(1),k|(2), · · · ,k(d)) ∈ Zd with ∥k∥∞ ≤ n,
then we can define

An = span{ϕk(x)|∥k∥∞ ≤ n}. (53)
For any coordinate vector a := (a|(k))∥k∥∞≤n ∈ RN , the mapping H : RN → An (where
N = ♯{ϕk(x)|∥k∥∞ ≤ n} = (2n+ 1)d) is defined as

H (a)(x) =
∑

∥k∥∞≤n

a|(k)ϕk(x), (54)

where the basis is ordered by ascending total degree, and lexicographically within the same degree.
Each component a|(k) corresponds uniquely to the basis ϕk(x).
Lemma 10 (Universal approximation theorem of Tucker operator decomposition finite-dimen-
sional function space). Let H ⊆ Hs(Td;R) be a compact subset with s > d

2 and define
An = span{ϕk(x)|∥k∥∞ ≤ n}. Assume that all h ∈ H are analytic on Td. Then for all h ∈ H,
ϵ > 0, there exists ranks (r1, · · · , rd) ∈ Nd, continuous operators Ui : An ∩H → Hs(Td;Rri)
and a core tensor C ∈ Rr1×r2×···×rd , such that

sup
h∈H

∥h(·)− C ×1 U1h(·1)×2 · · · ×d Udh(·d)∥Hs < ϵ. (55)

Proof. Define the basis function of An is {ϕ1, · · · , ϕN}, i.e., An = span{ϕ1, · · · , ϕN}. From
Theorem 1, for ϵ > 0, there exist tucker rank (r1, · · · , rd), the core tensor C(i) ∈ Rr1×···×rd , such
that

|ϕi(x)− C(i) ×1 g
(i)
1 (x|(1))×2 · · · ×d g

(i)
d (x|(d))| ≤

ϵ

N
(56)

For h ∈ An, we have h =
∑N

i=1 a
(h)
i ϕi, where ϕi(x) := e−iki·x, and a

(h)
i :=< h, ϕi > is

continuous for h.

Therefore, define

C := diag{C(1), · · · , C(N)},

U(h)(xi) := [
d

√
a
(h)
1 g

(i)
1 (x|(1)), · · · ,

d

√
a
(h)
d g

(i)
d (x|(d))]T ,

(57)

we have
|h(x)− C ×1 U1(h)(x|(1))×2 · · · ×d Ud(x|(d))|

=|
N∑
i=1

a
(h)
i ϕi(x)−

N∑
i=1

a
(h)
i C(i) ×1 g

(i)
1 (x|(1))×2 · · · ×d g

(i)
d (x|(d))|

=|
N∑
i=1

a
(h)
i (ϕi(x)− C(i) ×1 g

(i)
1 (x|(1))×2 · · · ×d g

(i)
d (x|(d)))|

≤
N∑
i=1

a
(h)
i |ϕi(x)− C(i) ×1 g

(i)
1 (x(1))×2 · · · ×d g

(i)
d (x|(d))|

≤
N∑
i=1

a
(h)
i

ϵ

N
.

(58)

For H is a compact set and a
(h)
i =< h, ϕi >, there exist constant A > 0, such that a(h)i ≤ A.

Therefore, from equation 58, we have

|h(x)− C ×1 U1(h)(x|(1))×2 · · · ×d Ud(x|(d))| ≤ Aϵ, (59)

i.e., ∥h(·)− C ×1 U1(h)(·1)×2 · · · ×d Ud(·d)∥∞ ≤ Aϵ.
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From Lemma 9, there exists As, such that ∥f∥HS < As∥f∥∞. Then, we have

sup
h∈H

∥h(·)− C ×1 U1h(·1)×2 · · · ×d Udh∥Hs

≤As sup
h∈H

∥h(·)− C ×1 U1h(·1)×2 · · · ×d Udh∥∞

≤AsAϵ.

(60)

Therefore, the proof is completed.

E PROOF OF UNIVERSAL APPROXIMATION THEOREM OF FUNCTIONAL
TUCKER DECOMPOSITION (THEOREM 2)

Proof of Theorem 2. From Lemma. 8, for all ϵ > 0, there exists n such that

∥h− Pn(h)∥Hs ≤ ϵ

2
, ∀h ∈ H, (61)

where Pn is define in equation 37.

From Lemma. 10, there exist continuous operators Ũi : An → Hs(Td;Rri) and core tensor
C ∈ Rr1×···×rd , such that

sup
hn∈An

∥hn(x)− C ×1 Ũ1hn(x|(1))×2 · · · ×d Ũdhn(x|(d))∥Hs ≤ ϵ

2
. (62)

We define Ui := Ũi ◦ Pn. For Pn(h)(x) =
∑

∥k∥∞≤n cke
ik·x and ck = 1

(2π)d

∫
Td h(x)e

−ik·x dx,
we have ck is continuous for h and Pn is also continuous for h, i.e., Pn is also a continuous operator.
Therefore, From the continuity of Ũi and Pn, Ui = Ũi ◦ Pn is also a continuous operator.

For all h ∈ H, we have

∥h(·)− C ×1 U1h(·1)×2 · · · ×d Udh(·d)∥Hs

= ∥h(·)− C ×1 Ũ1(Pnh(·1))×2 · · · ×d Ũd(Pnh(·d))∥Hs

≤ ∥h− Pn(h)∥Hs + ∥Pn(h)(·)− C ×1 Ũ1(Pnh(·1))×2 · · · ×d Ũd(Pnh(·d))∥Hs

≤ ϵ,

(63)

i.e.,
sup
h∈H

∥h(·)− C ×1 U1h(·1)×2 · · · ×d Udh(·d)∥Hs ≤ ϵ. (64)

Therefore, we have continuous operators Ui satisfying the lemma.

F PROOF OF UNIVERSAL APPROXIMATION THEOREM OF TUCKER-FNO
(THEOREM 3)

Proof of Theorem 3. For G is continuous and F is a compact subset, H is also a compact subset
on Hs′(Td;R). Therefore, from Theorem 2 and the constraint of FS-rank, for all ϵ > 0, there exist
Ûi : H → Hs′(T;R) and the core tensor C ∈ Rr1×···×rd satisfying

∥h(·)− C ×1 Û1h(·1)×2 · · · ×dÛdh(·d)∥Hs ≤ ϵ1, ∀h ∈ H. (65)

Therefore, we define Ui := Ûi ◦ G , such that

∥G f(·)− C ×1 U1f(·1)×2 · · · ×d Udf(·d)∥Hs

=∥G f(·)− C ×1 Û1G f(·1)×2 · · · ×d ÛdG f(·d)∥Hs

≤ ϵ

2
.

(66)

Because Ui are continuous operator define in the compact set F, there exist C, such that

sup
f∈F

∥Ui(f)∥Hs ≤ C. (67)
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From Lemma 2, there exist continuous FNOs Ni : F → Hs′(Td;Rri), such that

∥Ui(f)− Ni(f)∥Hs ≤ ϵ2, ∀ϵ2 > 0. (68)

From equation 67, we have
sup
f∈F

∥Ni(f)∥Hs ≤ C + ϵ2. (69)

Therefore, we have

∥C ×1 U1f ×2 · · · ×d Udf − C ×1 N1f ×2 · · · ×d Ndf∥Hs

≤ ∥C ×1 U1f ×2 · · · ×d Ndf − C ×1 U1f ×2 · · · ×d−1 Ud−1f ×d Ndf∥Hs

+∥C ×1 U1f ×2 · · · ×d Ndf − C ×1 U1f ×2 · · · ×d−1 Nd−1f ×d Ndf∥Hs

· · ·
+∥C ×1 U1f ×2 U2f ×2 · · · ×d Ndf − C ×1 N1f ×2 · · · ×d Ndf∥Hs

= ∥C ×1 U1f ×2 · · · ×d (Ud − Nd)f∥Hs

+∥C ×1 U1f ×2 · · · ×d−1 (Ud−1 − Nd−1)f ×d Ndf∥Hs

· · ·
+∥C ×1 (U1 − N1)f ×2 U2f ×2 · · · ×d Ndf∥Hs

(70)

By defining

Tif := C ×1 U1f ×2 · · · ×i−1 Ui−1f ×i+1 Ni+1f ×i+2 · · · ×d Ndf, (71)

we have

∥C ×1 U1f ×2 · · · ×d Udf − C ×1 N1f ×2 · · · ×d Ndf∥Hs

≤ ∥Tdf × (Ud − Nd)f∥Hs + ∥Td−1f × (Ud−1 − Nd−1)f∥Hs · · ·+ ∥T1f × (U1 − N1)f∥Hs ,
(72)

From Sobolev Embedding Theorem and Kato-Ponce Inequality, for f1, f2 ∈ Hs(Td;Rr), there
exists Cf1,f2 > 0, such that,

∥f1 × f2∥Hs ≤ Cf1,f2∥f1∥Hs∥f2∥Hs . (73)

Therefore, there exists Ĉ > 0, such that

∥Tif × (Uif − Nif)∥Hs ≤ Ĉ∥Tif∥Hs∥Uif − Nif∥Hs . (74)

For each Ti, we have

∥Tif∥Hs

=∥C ×1 U1f ×2 · · · ×i−1 Ui−1f ×i+1 Ni+1f ×i+2 · · · ×d Ndf∥Hs

≤C̃∥Uf∥Hs · · · ∥Ui−1f∥Hs∥Ui+1f∥Hs · · · ∥Ndf∥Hs

≤C̃Ci−1(C + ϵ2)
d−i

≤C̃(C + ϵ2)
d−1,

(75)

where C̃ > 0 is existed from the analysis from equation 73.

Therefore, we have

∥C ×1 U1f ×2 · · · ×d Udf − C ×1 N1f ×2 · · · ×d Ndf∥Hs

≤ĈdΠd
i=1∥Tif∥Hs∥Uif − Nif∥Hs

≤ĈdC̃d(C + ϵ2)
d(d−1)ϵd2.

(76)

Obviously, when ϵ2 → 0, we have ĈdC̃d(C+ ϵ2)
d(d−1)ϵd2 → 0. Therefore, for all ϵ > 0, there exist

continuous FNOs Ni : F → Hs′(Td;Rri), such that

∥C ×1 U1f ×2 · · · ×d Udf − C ×1 N1f ×2 · · · ×d Ndf∥Hs ≤ ϵ

2
. (77)

20



Published as a conference paper at ICLR 2026

Then, from equation 66 and equation 77, we have
∥G f(·)− C ×1 N1f(·1)×2 · · · ×d Ndf(·d)∥Hs

≤ ∥G f(·)− C ×1 U1f(·1)×2 · · · ×d Udf(·d)∥Hs

+∥C ×1 U1f(·1)×2 · · · ×d Udf(·d)− C ×1 N1f(·1)×2 · · · ×d Ndf(·d)∥Hs

≤ ϵ

2
+

ϵ

2
= ϵ

(78)

Therefore, we have Tucker-FNO
N (f)(x) := C ×1 N1f(x|(1))×2 · · · ×d Ndf(x|(d)), (79)

such that,
∥G (f)− N (f)∥ ≤ ϵ. (80)

The proof is completed.

G THE SETTINGS OF PDE

For PDE approximation task, we evaluate Tucker-FNO in three PDEs, e.g., Navier-Stokes, Plasticity
and Burger’s equations.

The Navier-Stokes equation for a viscous, incompressible fluid in vorticity form on the unit torus:
∂w(x, t)

∂t
+ u(x, t) · ∇w(x, t) = µ∆w(x, t) + f(x), x ∈ (0, 1)2, t ∈ [0, T ],

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ],

w(x, 0) = w0(x), x ∈ (0, 1)2,

(81)

where u is the velocity field, w = ∇×u is the vorticity, w0 is the initial vorticity and µ is the viscosity
coefficient. f is the force term, which is fixed as f(x) = 0.1(sin(2π(x1+x2))+cos(2π(x1+x2))).
The initial vorticity w0 follows the Gaussian random field with a covariance decay of 2.5 and a scale
parameter of 7. The viscosity coefficient is set as 1e − 5. Following FNO (Li et al., 2021), we are
interested in learning the operator mapping from the vorticity up to time 10 to the vorticity up to
some later time T > 10, i.e., G : w|(0,1)2×[0,10] 7→ w|(0,1)2×(10,T ], and we fix the sample resolution
as 64 × 64. The data are from (Li et al., 2021), and we utilize 1000 samples for training and 200
samples for testing.

The Plasticity equation is a non-linear PDE for the Plastic forging problem, where a block of material
is impacted by a frictionless, rigid die at time t = 0. The governing equation is the same as the
previous example given by

ρs
∂2u

∂t2
+∇ · σ = 0

σ = C : (ϵ− ϵp)

ϵ̇p = λ∇σf(σ)

f(σ) =

√
3

2
|σ − 1

3
tr(σ) · I|F − σY ,

(82)

where the PDE detail setting is the same as Geo-FNO(Li et al., 2021). To validate the efficiency and
performance of Tucker-FNO, we extend the 1-dimensional input to 2-dimensions by duplicating the
input to align it with the output, which is different from (Li et al., 2021) Our dataset is also from (Li
et al., 2021), and we utilize 900 samples for training and 80 samples for testing.

The Burger’s equation is a non-linear PDE to model the 1-dimensional flow of viscous fluid, which
is formed as

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
= µ

∂2u(x, t)

∂x2
, x ∈ (0, 1), t ∈ (0, 1],

u(x, 0) = u0(x), x ∈ (0, 1),

(83)

where u0 is the initial condition and µ = 5e − 3 is the viscosity coefficient. Following FNO (Li
et al., 2021), we are interested in the operator mapping from the initial condition u0 to the target
solution u, i.e., G : u0 7→ u. The dataset is from (Li et al., 2021), and we utilize 100 samples for
training, and 20 samples for testing.
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H MORE NUMERICAL EXPERIMENTS
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Figure 6: Error map comparisons of different NO methods for the Navier-Stokes equation.
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Figure 7: Error map comparisons of different NO methods for the Burger’s equation.
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Figure 8: Qualitative comparisons of different NO methods for the Plasticity equation.
More results of PDE approximation task. Here, we demonstrate more qualitative results of the
Navier-Stokes, Plasticity, and Burger’s equation in Fig.6-8. These qualitative results further demon-
strate the superiority of our Tucker-FNO in regions containing high-frequency signals.

More results of large-scale PDE approximation task. To investigate the influence of decomposition
on FNO for large-scale PDE problems with complex geometry, we replace the FNO in GINO (Li
et al., 2023b) with our Tucker-FNO, and evaluate it in Car-CFD task (Li et al., 2023b), which is a
3-dimensional Reynold-Averaged Navier-Stokes PDE problem with velocity 20m/s. The dataset
takes 611 weight-tight shapes out of the 889 instances, and divides the 611 instances into 500 for
training and 111 for validation. For Car-CFD task, the goal is to estimate the full pressure field given
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Figure 9: Error map comparisons of different NO methods for the Car-CFD. The first row demon-
strates the results with kmax = (12, 12, 12), and the second row demonstrates the results with
kmax = (16, 16, 16).

Table 8: The average quantitative results (PSNR ↑ (dB), SSIM ↑, NMSE ↓) by different methods for
multi-spectral image denoising. The best and second-best values are highlighted.

Noise level 0.1 0.15 0.2

Data Metric PSNR SSIM NMSE PSNR SSIM NMSE PSNR SSIM NMSE

MSIs
Ballons
Fruits
Toys

(256×256×31)

Observed 20.00 0.313 0.922 16.48 0.202 0.940 13.98 0.140 0.953
SIREN 26.23 0.821 0.173 25.92 0.795 0.180 25.82 0.730 0.185
MFN 28.43 0.833 0.151 27.23 0.794 0.163 26.14 0.779 0.170
LRTFR 30.60 0.896 0.139 29.51 0.866 0.144 28.63 0.839 0.150
OINR 30.48 0.880 0.140 29.14 0.861 0.150 28.27 0.821 0.155
OINR-FNO 31.19 0.909 0.122 29.40 0.880 0.134 28.94 0.838 0.142
Tucker-FNO 33.41 0.945 0.092 31.63 0.911 0.113 30.30 0.875 0.130

MSIs
Cups
Clay
Cloth

(256×256×31)

Observed 20.01 0.231 0.932 16.48 0.152 0.950 13.98 0.110 0.967
SIREN 28.55 0.862 0.155 27.83 0.834 0.165 27.04 0.795 0.173
MFN 30.41 0.877 0.138 27.63 0.824 0.165 25.91 0.776 0.184
LRTFR 32.30 0.939 0.108 31.27 0.911 0.117 30.24 0.864 0.130
OINR 33.18 0.930 0.097 31.65 0.909 0.112 30.25 0.869 0.130
OINR-FNO 33.80 0.944 0.088 32.28 0.917 0.101 30.73 0.875 0.122
Tucker-FNO 35.89 0.957 0.061 33.79 0.927 0.089 31.52 0.900 0.112

the shape of the vehicle as input, and we input the meshgrid in the surface, which stores 3586 mesh
points for each sample. For the GINO framework, it maps the non-grid data into a grid latent space
using an encoder GNO, and then FNO performs learning. The latent grid space is then mapped
back to the original non-grid space through a decoder GNO. Here, we perform training using Adam
optimizer (Kingma, 2014) with a learning rate 0.001. Following the configuration of GINO, the
latent dimension dv is 32, and the rank of Tucker-FNO is set to the latent dimension. The Fourier
frequency truncation threshold is kmax = (12, 12, 12) or kmax = (16, 16, 16). The depth of NO-
based methods is 4. And the post-projection Q̂ is a 2-layer MLP. The preliminary results under 10
training epochs are shown in Table 9 and the qualitative results are demonstrated in the Figure 9.
These results indicate that Tucker-FNO remains effective and efficient for the large-scale 3-D task.

More results of image denoising. The results of MSI noise removal are shown in Table 8 and
Fig. 10. It can be observed that Tucker-FNO consistently outperforms all baselines across different
noise cases and datasets. According to Fig. 10, Tucker-FNO could obtain better visual results than
other competing methods. Specifically, Tucker-FNO could attenuate noise well and also preserve
the details of the MSI better.
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PSNR 16.48 PSNR 22.21 PSNR 26.44 PSNR 27.31 PSNR 28.09 PSNR 29.44 PSNR 30.94 PSNR Inf

PSNR 13.98 PSNR 21.97 PSNR 24.32 PSNR 24.17 PSNR 24.80 PSNR 24.91 PSNR 26.62 PSNR Inf

PSNR 20.01 PSNR 31.34 PSNR 31.35 PSNR 34.77 PSNR 36.09 PSNR 36.15 PSNR 37.66 PSNR Inf

PSNR 16.48 PSNR 31.28 PSNR 27.5 PSNR 33.09 PSNR 32.82 PSNR 32.96 PSNR 34.72 PSNR Inf
Observed SIREN MFN LRTFR OINR OINR-FNO Tucker-FNO Original

Figure 10: The qualitative results of MSI denoising by different methods on Toys (0.15), Cloth (0.2),
Fruits (0.1) and Cups (0.15).

NMSE 0.169 NMSE 0.147 NMSE 0.150 NMSE 0.121 NMSE 0.133 NMSE 0.106 NMSE 0
SIREN MFN LRTFR OINR OINR-FNO Tucker-FNO Original

Figure 11: The qualitative results of 3-dimensional volume representation by different methods.

More results of 3D volume representation. INRs are commonly used as a continuous representation
of 3D volumes or surfaces. Fig. 11 shows that Tucker-FNO performs well in NMSE in this case.
Tucker-FNO exhibits superior recovery performance and demonstrates a distinct advantage in high-
frequency signals (as indicated by the red box in Fig. 11).

More results of video inpainting. To further test the scalability of our method on a long and high-
resolution video from Zhang et al. (2024). The video dataset has a relatively large spatial resolution
of 720 × 960 and contains 600 frames in total. In the experiments, we extract frames of varying
lengths to evaluate the video inpainting performance (sampling rate = 0.1) of our method across
different data scales. The results, presented in Table 10, show that Tucker-FNO holds advantages
in terms of both effectiveness and efficiency than the OINR baseline across varying frame lengths.
These findings reveal the scalability of Tucker-FNO on relatively large-scale data.
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Table 9: Performance (Test Error ↓, Training Time ↓ (seconds/epoch), Evaluation Time ↓ (sec-
onds/epoch), FNO Running Time ↓ (seconds/sample)) on Car-CFD. The test error is the de-
normalized L2 error here.

Method Fourier Mode Test Error Training Time Evaluation Time FNO Running Time

GINO 12 0.2047 1832.13 327.18 0.0078
GINO-D-FNO 12 0.2187 1801.25 309.24 0.0065

GINO-Tucker-FNO 12 0.2031 1792.43 300.77 0.0062

GINO 16 0.1382 1858.23 337.28 0.0081
GINO-D-FNO 16 0.1432 1832.54 329.73 0.0070

GINO-Tucker-FNO 16 0.1297 1826.12 326.65 0.0064

Table 10: Comparisons (PSNR ↑ (dB), Time/iter ↓ (seconds)) of OINR and Tucker-FNO on a long
and high-resolution video.

Frames Methods PSNR Time/iter

100 OINR 39.6516 0.0231
Tucker-FNO 46.5796 0.0173

300 OINR 0.9024 0.0409
Tucker-FNO 42.0626 0.0280

600 OINR 35.4867 0.0702
Tucker-FNO 39.7912 0.0342

I MORE COMPARISONS OF EFFICIENCY

Table 11: Comparisons (Params ↓, MACs ↓, Time/iter ↓ (milliseconds)) of parameter number, com-
putation complexity, and execution time in the PDE approximation task.

Size 64 × 64 128 × 128 256 × 256

Method Params MACs Time/iter Params MACs Time/iter Params MACs Time/iter

FNO 593.7 K 4.01 M 5.62 593.7 K 55.6 M 26.19 593.7 K 217.66 M 68.50
D-FNO 234.1 K 3.95 M 2.16 258.7 K 23.75 M 15.24 307.8 K 98.77 M 38.30

Tucker-FNO 256.6 K 2.44 M 3.15 268.9 K 16.45 M 14.14 293.5 K 80.23 M 35.23

We conduct more experiments to validate the efficiency of Tucker-FNO on the computation cost
here. Table 11-12 demonstrates the parameters of the model, multiply accumulate operations
(MACs), and execution time across different scales of data and various tasks. In Table 11, the
results demonstrate that Tucker-FNO can significantly reduce both the number of parameters and
the computational complexity of the algorithm in the PDE approximation task. As the input scale
increases, the advantage of Tucker-FNO grows accordingly. In Table 12, Tucker-FNO presents a
more significant improvement in the signal restoration task than the PDE approximation task.

Here, we further test the running time of the lifting, FNO processing, decomposition and post-
projection separately in FNO and Tucker-FNO in Tablr 14, where dv = 16 and k = 12. We set a
2-d PDE problem where the size of input is 128× 128 with batch size 8. To highlight the efficiency
difference, we test the running time on the CPU. The results demonstrate that the bottleneck of the
decomposition module occurs when the rank is extremely large (> 1024), which far exceeds the
rank settings (∼ 32) of our method. Consequently, for Tucker-FNO, FFT calculations still dominate
the overall computational complexity in most scenarios, only in extreme scenarios (rank > 1024)
might the complexity of decomposition become the dominant factor.

J MORE ABLATION EXPERIMENTS
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Table 12: Comparisons (Params ↓, MACs ↓, Time/iter ↓ (seconds)) of parameter number and running
time in the signal restoration task.

Size 512 × 512 × 31 768 × 768 × 31 1024 × 1024 × 31

Method Params MACs Time/iter Params MACs Time/iter Params MACs Time/iter

OINR-FNO 1.06 M 3.338 B 0.0525 1.06 M 7.512 B 0.1292 1.06 M 13.354 B 0.2322
Tucker-FNO 486 K 0.538 B 0.0424 519 K 1.211 B 0.0638 553 K 2.152 B 0.0963

Table 13: Ablation experiments (NMSE ↓, VCE ↓) of Tucker-FNO rank for PDE solving problems
in Burger’s equations.

k 8 12 16

dv NMSE VCE NMSE VCE NMSE VCE

16 0.0124 8.3804e-5 0.0071 3.1113e-5 0.0069 2.7835e-5
32 0.0086 4.1782e-5 0.0070 2.0050e-5 0.0063 1.1622e-5
64 0.0082 3.8027e-5 0.0060 1.0669e-5 0.0055 9.4175e-5

Table 15: Performance (NMSE ↓,
VCE ↓) on Plasticity equation.

Method NMSE VCE

FNO 0.0080 1.9514e-4
D-FNO 0.0097 2.2150e-4

Tucker-FNO 0.0073 2.0010e-4
CP-FNO 0.0082 2.0021e-4

Here, we conduct more experiments on the width dv and
Fourier frequency truncation kmax = (k, k, · · · ). Table 13
further demonstrates the ablation results in Burger’s equation.
Similar to the Plasticity equation in Table 6, performance im-
proves with both k and dv . Moreover, Fig. 12 demonstrate
the influence of k and dv in the inpainting and denoising
tasks. The best performance occurs at dv = 16 ∼ 32 and
k = 18 ∼ 24, which further validates the effectiveness of the
low-rank structure in Tucker-FNO.

Here, we compare the different tensor decomposition in the Plasticity equation. By applying the
methodological paradigm to Canonical Polyadic (CP) decomposition (Kolda & Bader, 2009a), we
derive a variant of Tucker-FNO, termed CP-FNO. Table 15 demonstrates comparisons between
Tucker-FNO and CP-FNO. Although the efficiency of CP decomposition is higher than that of
Tucker decomposition, it has a relatively inferior accuracy. This can be attributed to the stronger
representation ability of the Tucker decomposition.
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Table 14: Comparisons (Time ↓ (seconds), Params ↓) of running time and parameter number in the
PDE approximation task.

Methods Time Params
Type Rank Lifting FNO Processing Decomposition Projection Total Time

FNO - 0.0010 0.4057 - 0.0935 0.5002 593281
Tucker-FNO 16 0.0008 0.1761 0.0005 0.0423 0.2197 70593
Tucker-FNO 64 0.0011 0.2753 0.0011 0.0597 0.3372 170529
Tucker-FNO 256 0.0009 0.2736 0.0088 0.0691 0.3551 1307553
Tucker-FNO 1024 0.0010 0.3114 0.1412 0.0648 0.5184 17652129
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Figure 12: The PSNR results of Tucker-FNO w.r.t. different parameters k and dv for Carphone
inpainting with sampling rate 0.15 (left), and Clay denoising with noise deviation of 0.15 (right).
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