
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BEYOND BENCHMARKS: TOWARD CAUSALLY FAITH-
FUL EVALUATION OF LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Current large language models (LLMs) evaluations overlook that measured LLM
performance is produced on a full evaluation system, including many indispens-
able components, such as workloads, prompting methods, decoding parameters,
and the supporting software–hardware stack. Without an explicit, controlled spec-
ification of the evaluation system, attributing performance differences to the model
itself is unreliable. Our experiments reveal that uncontrolled testing may lead to
accuracy variations of up to 70%. To address this urgent issue, we introduce LLM
evaluatology, a principled methodology that reduces the evaluation problem to ac-
curately attributing the outcomes to the effect of the evaluated LLM, which is a
high-dimensional causal-attribution problem. Empirical results demonstrate that
LLM evaluatology not only enhances interpretability and causal validity, but also
yields evaluations that are more robust, reproducible, and trustworthy than pre-
vailing benchmarks.

1 INTRODUCTION

Current LLM evaluation practices are fragmented and ad-hoc, spanning standardized test–style
benchmarks (Hendrycks et al., 2020; Huang et al., 2023; Rein et al.; Suzgun et al., 2023; AIME,
2025), human preference–based benchmarks (Chiang et al.; OpenCompass, 2025; Xu et al., 2023),
and dynamic or continuously refreshed benchmarks (Jain et al.; Jimenez et al.; White et al.; Zhu
et al.; Li et al.). Yet all largely treat the model in isolation, neglecting that measured performance
arises from the entire evaluation system, including workloads, prompts, decoding, and even the
software–hardware stack. In reality, LLM evaluation is inherently a high-dimensional problem, as
these interacting components jointly shape outcomes and complicate attribution. As recent studies
show, results can vary sharply with dataset artifacts (Long et al., 2024; Liu et al., 2025), prompt
formatting (He et al., 2024), decoding strategies (Shi et al., 2024), or annotator biases (Das et al.,
2024). But such analyses remain piecemeal, each targeting a single component without quantifying
their combined impact or enabling principled attribution. What is missing is a rigorous methodology
that disentangles intrinsic model capability from confounding influences and establishes a reliable
foundation for evaluation.

Even under a fully specified evaluation system, LLMs differ fundamentally from traditional single-
task or deterministic systems such as conventional algorithms or CPUs. For CPUs, workloads in
domains like desktop computing or high-performance computing exhibit well-characterized pat-
terns, allowing evaluation to focus on representative hotspots while treating less common cases as
secondary. In contrast, LLM workloads are effectively open-ended: each user can define new tasks
across languages, domains, and usage styles. Some tasks resemble those seen during training, oth-
ers require analogical transformation from familiar patterns, and yet others are entirely novel. This
diversity eliminates the notion of a single “typical” workload, making isolated evaluation on a few
canonical examples insufficient. Here we adopt the term ”workload” from CPU benchmarking, us-
ing it to denote a question or instance within a benchmark that the LLM is required to solve. In
addition, LLMs may produce fluent responses without genuine reasoning or knowledge, so-called
hallucinations, meaning that correctly solving one instance does not guarantee mastery of the under-
lying skill. Consequently, reliable evaluation must consider multiple task variations, from familiar
to analogical to novel, in order to disentangle true capability from surface-level correctness. Inter-
preting performance and attributing capability is therefore both a high-dimensional and a content-
sensitive challenge, further amplified by the confounding inherent in the evaluation system.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

This paper introduces LLM evaluatology (Fig. 1), a principled methodology for the rigorous evalu-
ation of LLMs based on Evaluatology (Zhan, 2024; Zhan et al., 2024). At its core, we construct a
Minimal Evaluation System (MES), which explicitly defines the evaluated object (e.g., standalone
LLM or LLM service), the indispensable components influencing performance, and the evalua-
tion conditions (the configuration space formed by admissible settings of these components). By
providing a well-defined, controllable system, MES enables systematic exploration of the evalu-
ation configuration space, capturing how different components jointly affect performance and al-
lowing accurate attribution of model capabilities – a solution to the high-dimensional nature of
LLM evaluation. To address content sensitivity, we further extend MES into an Augmented MES
(A-MES), which transforms existing workloads and generates new instances along semantically re-
lated themes. This approach ensures evaluation coverage across three workload layers: workloads
the model is likely to have seen, workloads requiring analogical transformation, and entirely novel
workloads, thereby mitigating the risks of superficial correctness and hallucination. A-MES offers a
structured, reproducible, and automatable framework that disentangles intrinsic model competence
from confounding influences while accommodating the diversity and dynamism of real-world user
interactions.

Our experiments reveal several important findings. First, by constructing A-MES, we observe that
the accuracy of Doubao varies dramatically with configuration, ranging from 0 to 0.8, highlighting
the substantial impact of evaluation settings. Notably, Doubao-1.5-pro ranks first under MES but
drops to sixth under A-MES, with a significant gap from the top model, indicating limited gener-
alization ability. Within the Qwen series, we find that the smaller model ranks higher under MES
but is surpassed by the larger model under A-MES, suggesting that A-MES provides a more faithful
reflection of scaling properties. By contrast, DeepSeek-V3 consistently achieves strong accura-
cies across all MES and A-MES scenarios, demonstrating the strongest robustness among the tested
models. Second, leveraging analysis of variance (ANOVA), xgboost, and linear models, we quantify
the impact of each component on model accuracy. All components show measurable influence, with
Question Format and COT emerging as the most sensitive, followed by max tokens, Shot, and Multi
Turn. Furthermore, models exhibit heterogeneous sensitivity to languages: for example, DeepSeek-
V3 is most sensitive to Arabic, where its accuracy reaches the lowest among all languages tested.
Finally, we validate that our proposed LLM evaluatology provides the closest approximation to the
accuracy ground truth, significantly outperforming traditional single-configuration evaluations in
reliability and robustness.

Figure 1: LLM Evaluatology: Measured performance arises from an Augmented Minimal Evalu-
ation System (A-MES), which enables disentangling intrinsic model capability from confounding
influences. Here, the evaluation object is defined as the LLM service, comprising the LLM and its
underlying systems. When evaluating a standalone LLM, the underlying systems are instead treated
as part of the evaluation conditions (EC).

2 RELATED WORK

Broadly, existing benchmarks can be grouped into the following three categories. Standardized
test–style benchmarks present problems in the form of test questions, with model outputs compared
against reference answers. Representative examples include MMLU (Hendrycks et al., 2020) and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

its extensions MMLU-Pro (Wang et al., 2024b) and MMLU-Redux (Gema et al., 2025), as well as
C-Eval (Huang et al., 2023) and CMMLU (Li et al., 2024) in the Chinese context. GPQA (Rein
et al.) targets graduate-level science, while other datasets focus on specific capabilities such as
reasoning (BBH (Suzgun et al., 2023), HellaSwag (Zellers et al., 2019), Winogrande (Sakaguchi
et al., 2021)), mathematics (GSM8K (Cobbe et al., 2021), MATH (Hendrycks et al.), AIME (AIME,
2025)), coding (HumanEval (Chen et al., 2021), MBPP (Austin et al., 2021), Aider-polyglot (Aider,
2025), MultiPL-E (Cassano et al., 2023)), long-context understanding (L-Eval (An et al., 2024),
LongBench (Bai et al., 2024), ∞Bench (Zhang et al., 2024a), HELMET (Yen et al., 2025)), safety
(SafetyBench (Zhang et al., 2024b), Toxigen (Hartvigsen et al., 2022)), instruction-following (IFE-
val (Zhou et al., 2023), Multi-Challenge (Sirdeshmukh et al., 2025)), and multimodality (MMBench
(Liu et al., 2024), MMMU (Yue et al., 2024), MathVista (Lu et al.)).

Human preference–based benchmarks evaluate models in interactive settings, collecting user judg-
ments instead of relying on fixed test sets. Chatbot Arena (Chiang et al.) is the most prominent ex-
ample, where pairwise votes are aggregated via Elo ratings. CompassArena (OpenCompass, 2025)
apply similar designs in the Chinese context.

Dynamic or continuously refreshed benchmarks aim to avoid data contamination by relying on
newly released or procedurally generated tasks. Examples include LiveCodeBench (Jain et al.)
(recent programming contests), SWE-bench (Jimenez et al.) (GitHub issues and PRs), LiveBench
(White et al.) (rolling monthly refresh), DyVal (Zhu et al.) (procedural reasoning via DAGs), and
Arena-Hard (Li et al.) (real-time crowdsourced challenges).

Table 1: Evaluation Settings on Different Benchmarks (Lang. = Language, Format = Question
Format, Para. = Question Paraphrase, M-turn = Multi Turn, Temp. = temperature, PP = pres-
ence penalty, MaxTok = max tokens, ori = original, y = yes, n = no)

Model Lang. Format Para. Shot COT M-turn Temp. top p PP MaxTok

MMLU English ori n 0/3/5 y/n n 0.0/0.3/0.5/0.6/0.7 0.8/0.95 0/1.5 1024/8192/32768
AIME English ori n 0 y/n n 0.0/0.6/0.7 0.8/0.95 0/1.5 8192/32768/38912
GPQA English ori n 0/5 y/n n 0.4/0.5/0.6/0.7 0.8/0.95 0/1.5 1024/8192/32768
MATH English ori n 0/8 y/n n 0.0/0.6/0.7 0.8/0.95 0/1.5 8192/32768
SWE-bench English ori n 0 y/n n 0.0/0.8 0.95 x 8192/16384
IFEval English ori n 0 y/n n 0.0/0.6/0.7 0.8/0.95 0,1.5 8192/16384
Arena-Hard English ori n 0 y/n n 0.0/0.6/0.7 0.8/0.95 0/1.5 8192/32768
Human Eval English ori n 0 y/n n 0.3 0.95 x 8192/32768

3 MOTIVATION

The flaw of existing LLM evaluation methodology. Existing LLM benchmarks define workload
formats and scoring rules, but leave crucial indispensable components uncontrolled, e.g., decoding
parameters and prompting methods. As a result, reported evaluation outcomes often do not allow
a direct comparison of model differences and may conflate intrinsic capability with arbitrary com-
ponent settings. To make this issue concrete, we systematically reviewed major benchmarks and
compiled a taxonomy of which components are explicitly defined and which are left open (Table 1).
Strikingly, many widely used benchmarks, including AIME, specify only a subset of variables while
leaving key components underspecified. To quantify the implications, we reconstructed the AIME
evaluation space by enumerating plausible settings of uncontrolled components (e.g., COT, temper-
ature, top-p, presence penalty, max tokens), yielding 162 distinct evaluation conditions. Accuracy
under these conditions varied by as much as 70% across settings, and the distributions often diverged
substantially from the single numbers reported in technical documentation. On some models, the
median relative change between our measured accuracy and the accuracy reported in the technical
report reached as high as 50%(see Figure 2). Comparable inconsistencies are evident in MMLU
(Appendix A.2) and other flagship benchmarks, suggesting that the problem is not dataset-specific
but structural across current LLM evaluation methodologies. These findings reveal a fundamen-
tal flaw in current practice: a benchmark score is often not a property of the model alone but of
the loosely specified evaluation system surrounding it. Without principled control over these con-
founding components, evaluation becomes unstable, attribution unreliable, and comparisons across
models misleading.

The challenges of using Evaluatology for LLM evaluation. Zhan et al. conceptualize evaluation
as constructing a minimal system that integrates the evaluation object with indispensable compo-
nents while considering user requirements (Zhan, 2024; Zhan et al., 2024). Wang et al. illustrate this

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

approach for CPUs, where a Minimal Evaluation System (MES) isolates CPU behavior from con-
founding components (Wang et al., 2024a). However, extending Evaluatology to LLMs presents a
qualitatively deeper challenge than in the case of CPUs or other deterministic systems. For such con-
ventional artifacts, workloads can be reasonably characterized and stabilized: standardized bench-
marks capture dominant usage scenarios and once confounders are controlled, evaluation outcomes
largely reflect intrinsic system differences. By contrast, LLM workloads are inherently open-ended
and socially constructed, shaped by heterogeneous users, diverse linguistic and cultural contexts,
and the continual emergence of novel use cases. In this setting, even the “unit of evaluation” be-
comes unstable: what qualifies as mainstream, extrapolative, or atypical shifts across communities
and over time. To illustrate, consider the following problem from AIME: “Let A, B, C, and D be
points on the hyperbola x2

20 − y2

24 = 1 such that ABCD is a rhombus whose diagonals intersect at
the origin. Find the greatest real number that is less than BD2 for all such rhombi.” When eval-
uated on nine LLMs including deepseek, doubao, gpt series, moonshot, mistral, qwen series, etc.,
five were able to solve this original (seen)
workload correctly. However, after perform-
ing analogical transformations through insert-
ing distractor: “In a geometric study, we often
encounter various shapes and their properties.
Also, the concept of symmetry plays an impor-
tant role in analyzing the relationships between
different geometric figures. Let A, B, C, and D

be points on the hyperbola x2

20−
y2

24 = 1 such that
ABCD is a rhombus whose diagonals intersect
at the origin. Find the greatest real number that
is less than BD2 for all such rhombi.”, none of
these models produced correct solutions. This
striking contrast illustrates why A-MES is es-
sential: performance on a single workload can
be misleading, as models may succeed on prob-
lems they have effectively memorized yet fail
when the same reasoning must be applied under
slightly altered conditions.

Figure 2: Accuracy deviations on AIME when
evaluating with identical workloads across 162
combinations of component settings (COT, tem-
perature, top-p, presence penalty, and max to-
kens).

4 LLM EVALUATOLOGY

LLM evaluatology consists of three essential steps: (1) defining MES, (2) defining A-MES, and (3)
evaluating MES/A-MES and attributing evaluation outcomes.

4.1 DEFINING MINIMAL EVALUATION SYSTEM (MES)

We define the Minimal Evaluation System (MES) for LLM evaluation as the smallest independently
runnable system that includes the evaluated object and all indispensable components that materially
affect the evaluation outcome. The evaluated object O is not limited to a bare LLM; it can also
encompass the broader deployed LLM service that fuses the model with its supporting software and
hardware stack. For example, when evaluating through an API, the LLM and its underlying systems
should be treated as an inseparable whole, whereas for locally deployed open-source models, the
surrounding system environment may either be incorporated into O or explicitly modeled as part of
the other indispensable components. Thus, the first step of defining MES is to rigorously define the
evaluated object.

The second step in defining MES is to identify the indispensable components that shape evaluation
outcomes and to establish their value ranges, collectively denoted as evaluation conditions (EC).
We organize EC into three layers, covering workload, prompting method, and decoding param-
eters, which together yield 10 key factors (C1–C10). Workload captures data-related variations,
including Language, Question Format, and Question Paraphrase (C1–C3). Note that Question Para-
phrase is introduced as a key component to mitigate hallucination and data contamination, referring
to reformulating questions without altering their semantics or correct answers. Prompting method
accounts for interaction styles, namely Shot, COT(chain-of-thought), and Multi Turn (C4–C6). De-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 2: Evaluation Conditions: Indispensable Components and Value Ranges

Variable Value Range

Language Chinese, English, Japanese, Arabic, French, Russian
Question Format Multiple-choice, Fill-in-the-blank
Question Paraphrase Yes, No
Shot Yes, No
COT Yes, No
Multi Turn Yes, No
temperature 0.0, 1.0, 2.0
top p 0.2, 0.6, 1.0
presence penalty -0.5, 0.5, 1.5
max tokens 10, 100, 4000

coding parameters represent inference controls, including temperature, top p, presence penalty, and
max tokens (C7–C10). Each component is instantiated with representative values to balance cover-
age of real-world variability against configuration space tractability. The indispensable components
and their value ranges are summarized in Table 2, with both components and their value ranges con-
figurable based on the evaluation object and user-defined requirements. Each MES instance is then
specified as MES = EC × O, ensuring that performance measurements are attributed correctly
while systematically controlling for confounding factors introduced by indispensable components.

4.2 CONSTRUCTING AUGMENTED MES (A-MES)

To further overcome the limitations of traditional evaluation, we extend MES into an augmented
form (A-MES) by expanding the workload subspace. Specifically, an MES is defined as EC × O,
where the evaluation conditions factorize as EC = W (workload) × P (prompting methods) ×
D(decoding parameters). We do augmentation in workload W and leave the non-workload EC
components P and D unchanged when building A-MES. Thus A-MES = O×ECA, with ECA =
WA × P ×D,WA = A(W). A() is the augmentation operator that expands the original workload
W into an enriched workload WA. Practically, A(W) is constructed by partitioning and extending
items from the original workload into three purpose-built categories—original (seen), analogical
transformation (transformed), and novel (newly-synthesized) workloads—as shown in Fig. 3:

In our implementation, the latter two categories of augmented workloads are constructed through
five systematically defined, script-driven transformation pipelines including: three analogical (dis-
tractor insertion, numeric substitution, conditional recomposition) and two novel (recent-source
adaptation and conceptual synthesis) pipelines. For each pipeline, we fix general prompts and
scaffolding, and then run the entire process automatically through LLM API calls (e.g., GPT-5),
lightweight verification scripts and other auxiliary tooling. This setup scales to large workloads
and produces diverse variants, without any per-item manual rewriting or hand-crafting of individ-
ual problems. Below we outline the overall automatic transformation process; detailed procedures,
transformation examples, and algorithmic pseudocode are provided in Appendix A.3.

(1) Analogical Pipelines

• Distractor Insertion. Distractor insertion augments an original question by adding redundant
sentences at a random position. We systematically divide redundant information into three cat-
egories: (i) context-irrelevant redundancy that is completely unrelated to the problem content;
(ii) context-relevant explanatory redundancy that explains concepts already appearing in the
problem; and (iii) context-relevant misleading redundancy that is logically related to the prob-
lem but deliberately nudges the solver toward an incorrect strategy. By providing the LLM with
transformation examples, the correct answer, and (optionally) solution steps, all three types of
redundancy are generated via similar structured prompts and automatically inserted at random
positions in the problem statement. We empirically evaluated multiple candidate LLMs for
this task and selected the one that most consistently respects these constraints, GPT-5, as our
transformation executor.

• Numeric Substitutions. Numeric substitution augments a problem by systematically perturb-
ing its key numerical parameters. We leverage the correct answer, solution sketches, and in-
formation from a pre-built formula library to prompt the LLM to generate a Python solver that
explicitly parameterizes the key numbers in the problem. We then execute this solver locally
and, if any error or mismatch is detected, feed the error messages back to the LLM for iterative
refinement until the code passes verification. Once a reliable solver is obtained, we automat-
ically sample new parameters within a predefined range and invoke the solver to compute the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

corresponding new answers, thereby creating a family of numeric variants without manually
editing each instance or recomputing answers by hand.

• Conditional Recomposition Conditional recomposition augments a problem by constructing
“inverse” variants where the original answer is treated as a given condition and some of the
original conditions become the new target quantities. We first prompt the LLM to identify
which conditions and target quantities can be interchanged, and then, following a procedure
similar to numeric substitutions, use a large language model to generate a Python solver that
explicitly parameterizes the key numerical quantities in the problem. The solver is iteratively
refined until it passes verification. Once a verified solver is obtained, we perturb the new
input conditions within a reasonable range and automatically generate multiple “conditionally
recomposed” variants of the original problem.

(2) Novel Pipelines

• Recent-source Adaptation Recent-source adaptation augments a problem by aligning it with
thematically similar questions drawn from recent real-world exams. Given an original problem,
we first use an LLM to extract its core knowledge points. We then query a public exam-question
repository, indexed by year, region, subject, and knowledge point, to retrieve recent (e.g., 2025)
exam questions that match these knowledge points. The retrieved questions are subsequently
paraphrased via LLM, and can optionally be further transformed using the three analogical
pipelines described above. In this way, we obtain recent-source adapted problems that remain
aligned with the original item at the knowledge-point level while being entirely new instances.

• Conceptual Synthesis Conceptual synthesis augments a problem by generating conceptual
questions that target the underlying concepts. Based on authoritative textbooks in PDF form,
we build a structured knowledge base in which each concept is associated with its definitions,
theorems, phenomena, and canonical examples extracted from the textbooks. For a given prob-
lem, we use an LLM to identify its primary knowledge points and retrieve the corresponding
concept entries from the knowledge base. If the corresponding concept entries is missing, we
trigger a textbooks crawling and parsing step to expand the knowledge base and try again.
We then prompt the LLM to synthesize new conceptual questions grounded in these entries,
yielding problems that probe conceptual understanding underlying the origin item.

Figure 3: Augment the original workload into analogical transformation and novel workloads.

4.3 EVALUATING ON A-MES AND ATTRIBUTING EVALUATION OUTCOMES

MES samples from the full space defined by 10 variables, whereas A-MES starts from this same
space and, for each question within a benchmark, applies all seven mechanisms to construct the
full space of augmented variants, filtering out transformation attempts that fail (e.g., numeric sub-
stitutions or conditional recomposition without a stable solver). Evaluation then samples directly
from this augmentation space, ensuring that no invalid transformations are ever selected; the small
number of discarded variants has negligible impact on overall coverage or robustness.

Given the exponentially large space of workload, prompting methods, and decoding parameters, ex-
haustive testing is generally infeasible. Evaluation on MES/A-MES balances the trade-off between
evaluation accuracy and evaluation cost by systematically sampling the configuration space of evalu-
ation conditions under a joint convergence- and LLN-based stopping rule. Specifically, we generate

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

the full list of configurations once and shuffle it with a fixed random seed. This single globally
shuffled list is then shared across all models and workloads. For any given model and benchmark,
use a sample size N by selecting the first N configurations from this global list, without any further
re-shuffling. We process this shuffled list sequentially in fixed-size batches (e.g., 10). After every
batch, we recompute the running mean accuracy over all configurations seen so far, together with
the corresponding 95% confidence interval. We stop sampling when two conditions are satisfied
simultaneously: (i) the absolute changes in the running mean accuracy for the last three updates are
all smaller than 0.002, and (ii) the length of the 95% confidence interval is smaller than 0.06. The
number of configurations evaluated when these criteria are first satisfied is denoted Nconv. After con-
vergence, we further apply a simple Law of Large Numbers–based estimation: using the empirical
variance of the current results, we compute the minimal sample size required to achieve the desired
error tolerance and confidence level, obtaining an LLN-based sample size NLLN. If NLLN is larger
than Nconv, we continue sampling along the same shuffled order until NLLN configurations have been
evaluated; otherwise, we stop at Nconv. Combining the convergence criterion with the LLN-based
check ensures that our sample sizes are both empirically stable and theoretically justified.

The sampled evaluation conditions are then used to test the evaluation object, yielding performance
outcomes under diverse settings. The final reported evaluation score for each model is then the mean
performance over the sampled instances, together with 95% and 99% confidence intervals, providing
a stable summary metric that balances comprehensiveness with practical efficiency. One approach
to isolate component effects is to use equivalent evaluation conditions, where all component settings
are held constant except for the factor of interest; differences in measured performance can thus be
attributed directly to that component, effectively mitigating confounding. An alternative and com-
plementary approach is to apply ANOVA (analysis of variance) across the sampled configurations,
quantifying the proportion of performance variance explained by each component and enabling sys-
tematic attribution of effects. Together, these strategies provide both controlled and statistical means
to disentangle intrinsic model capability from the influence of evaluation conditions.

5 EVALUATION

In this section, we evaluate the proposed methodology using mainstream LLMs that are publicly
accessible, including deepseek-v3, doubao-1.5-pro-32k, gpt-3.5, gpt-4.1, moonshot-v1-8k, mistral-
large, mistral-medium, qwen-plus and qwen2.5-32b-instruct. We have three targets. 1) Demonstrate
the necessity of constructing MES and A-MES for LLM evaluation by varying the settings of each
indispensable component within MES and A-MES. 2) Quantify the contribution of each indispens-
able component to overall performance variance and identify the key components affecting LLM
behavior using ANOVA. 3) Compare LLM evaluatology with traditional LLM evaluation methods
and show how it enables accurate attribution of performance differences to specific components.

For online testing, we primarily access the models through their official APIs; however, since the
official API for Deepseek v3 has been discontinued, we instead use the API provided by a third-
party server deployment. This study employs several widely used and representative benchmark
datasets—MMLU, GPQA, and AIME—as the basis for evaluation. Note that due to the page limit,
the results of MMLU and GPQA are listed in Appendix A.4. MMLU covers 57 subjects and contains
a large collection of multiple-choice questions, widely used to assess models’ general knowledge
and reasoning abilities. GPQA consists of 448 challenging multiple-choice questions developed and
validated by experts in biology, physics, and chemistry, designed to evaluate AI models’ reasoning
ability on complex scientific problems. AIME is a highly selective U.S. high school mathematics
competition, well known for its challenging problems that test deep mathematical reasoning. It is
worth noting that our methodology is not tied to any specific benchmark and can be applied to the
evaluation of any LLM.

5.1 THE NECESSITY OF CONSTRUCTING MES AND A-MES

This section demonstrates that LLMs exhibit significant performance variations across different
MES and A-MES configurations, thereby underscoring the inadequacy of single-configuration eval-
uations in accurately capturing their true capabilities.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Performance Rankings of LLMs (deepseek = deepseek-v3, doubao = doubao-1.5-pro-32k,
mistralL = mistral-large, mistralM = mistral-medium, kimi = moonshot-v1-8k, qwenP = qwen-plus)

Type 1. 2 3 4 5 6 7 8 9

Original deepseek(0.4) gpt4.1(0.07) doubao(0) gpt3.5(0) mistralL(0) mistralM(0) kimi(0) qwenP(0) qwen2.5(0)
A-MES deepseek(0.45) qwenP(0.43) mistralL(0.38) gpt4.1(0.37) mistralM(0.36) doubao(0.34) qwen2.5(0.26) kimi(0.18) gpt3.5(0.13)
MES doubao(0.25) deepseek(0.21) qwen2.5(0.21) mistralL(0.20) mistralM(0.20) qwenP(0.18) gpt4.1(0.16) gpt3.5(0.10) kimi(0.08)

Note: Models are sorted alphabetically by name when accuracy equals zero.

In the MES experiments, we conducted 500 random samplings without replacement from the MES
configuration space described in Section 4.1. The specific components and their corresponding value
ranges are summarized in Table 2. We determined 500 as a conservative sample-size upper bound
by combining a convergence-based stopping rule with LLN-guided estimates.

In the A-MES experiments, to verify the effectiveness of the Augmented Minimal Evaluation System
(A-MES) proposed in Section 4.2 and comprehensively evaluate the performance of LLMs across
diverse task scenarios, we conducted a comparative analysis of their performance on two types of
datasets: the original AIME workload and four augmented workloads derived from this original
workload. For the analogical transformation workload, we employed two specific methods: the first
involves inserting redundant information into the stem of the original question, information that is
irrelevant to the problem-solving logic and methods yet consistent with the question scenario, to
interfere with the output results of LLMs; The second method involves numeric substitutions. For
novel (newly-synthesized) workloads, this study designs two core strategies: the first is a knowledge
point-based question generation strategy, which specifically generates new tasks based on the core
knowledge points covered in the original questions and combined with the conceptual system and
expression paradigm of relevant textbook chapters; The second is an adaptation and transformation
strategy based on college entrance examination (gaokao) questions, which involves selecting the
latest gaokao questions that match the target knowledge points and generating new tasks by adjusting
the scenario of the question, questioning logic, and other aspects.

The experimental results of this study are presented in Figure 4. As shown in Figure 4, significant
variations in accuracy trends are observed across different models and configuration spaces. For
instance, the accuracy of the deepseek-v3 model fluctuates within a range of 0 to 0.78 under MES
experiments, and from 0.23 to 0.7 under A-MES experiments. As shown in Table 3, we have also
generated performance rankings for large models based on the original workload, MES workload,
and A-MES workload. For the MES and A-MES scenarios, we employ their average accuracy as
the performance metric for the LLMs. It is crucial to note that when the accuracy is zero, we sort
the models alphabetically based on their names. Drawing insights from the rankings, we observe
three key conclusions: first, the original evaluation methodology demonstrates limited effectiveness
in benchmarking large language models (LLMs) due to its inability to distinguish performance be-
yond two models achieving non-zero accuracy scores; second, DeepSeek consistently outperforms
all competing models across diverse evaluation conditions, underscoring its robustness and supe-
rior generalization capabilities; third, model performance rankings exhibit contextual sensitivity,
as evidenced by Doubao’s inferior performance relative to DeepSeek in both Original and A-MES
workloads, yet its top-ranking achievement in MES, thereby highlighting the non-transitive nature
of LLM performance across varying task formulations and data distributions.

(a) Distribution of Model Accuracies on MES (b) Distribution of Model Accuracies on A-MES

Figure 4: Distribution of Model Accuracies

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: ANOVA results on DeepSeek-V3 (sorted by effect size in descending order)

Factor Effect Size η2 p-value

Question Format 0.399643 0.000
Question Format - COT 0.161394 0.000
COT 0.080156 0.000
max tokens 0.028099 0.000
Question Format - Shot 0.011101 0.000
Language - Question Format 0.008178 0.006
COT - max tokens 0.006721 0.010
Language - COT 0.004345 0.038
Multi Turn - max tokens 0.003841 0.050
Language 0.003841 0.046
Shot - max tokens 0.003669 0.046
Question Format - max tokens 0.002687 0.100
Language - Multi Turn 0.002600 0.066
temperature - top p 0.002082 0.178
Question Format - Multi Turn 0.001321 0.244

5.2 QUANTIFY THE CONTRIBUTION OF EACH INDISPENSABLE COMPONENT TO OVERALL
PERFORMANCE VARIANCE

In LLM evaluation, a key challenge lies in effectively evaluating the contribution of each compo-
nents illustrated in Fig. 1 to overall performance variance. Given the enormous number of possible
EC configuration combinations, exhaustively testing every configuration is computationally infea-
sible. To address this, we selected a limited number of experimental points from the full space,
allowing us to systematically and evenly examine the effects of multiple components and their lev-
els on performance with significantly fewer trials. This design reduces experimental cost while
maintaining scientific rigor and representativeness.

To quantify the proportion of performance variance explained by each MES component, we adopted
an analysis of variance (ANOVA) approach. Specifically, for component C1–C10, we selected two
levels (“high” and “low”) within their respective ranges, with these ranges given in Table 2, thereby
constructing a subspace of size 210 = 1024. For the Language component, we selected Chinese
and English, while for three-valued components we used their maximum and minimum values.
Within this subspace, variance decomposition was used to quantify the contributions of different
components and their interactions to variations in accuracy. Moreover, we employed a permutation
test to evaluate statistical significance, enabling a more robust assessment of component importance
without relying on additional distributional assumptions. This procedure yields both the relative
importance and the statistical significance of all components.

Taking the DeepSeek-V3 model as an example, Table 4 reports the main effects and two-way in-
teractions that significantly influence its accuracy on the AIME’24 benchmark, with the complete
ANOVA results provided in Appendix A.5. Overall, Question type, COT, max tokens, and their
interactions with other components exhibit the most significant effects. Shot, Multi turn, and Lan-
guage also show significant effects, while the remaining components have only limited impact.

Consistent patterns were observed across other LLMs (see Appendix A.5). Using p < 0.05 as
the significance threshold, we found that the main effects of Question format and COT, or their
interactions with other components, were consistently significant across all LLMs. Furthermore,
max tokens, Shot, and Multi turn also reached significance for the vast majority of models. In ad-
dition to these five core components, Language, top p, and temperature were significant for some
models. It is worth noting that for the remaining two components, Question Paraphrase and pres-
ence penalty, the p-values did not meet the significance threshold, but reached 0.19 and 0.16, re-
spectively, on GPT-4.1. This suggests that they may exert some influence on model performance,
although the evidence is not sufficient for a definitive conclusion.

5.3 COMPARE LLM EVALUATOLOGY WITH TRADITIONAL LLM EVALUATION METHODS
AND ATTRIBUTE THE PERFORMANCE DIFFERENCES TO SPECIFIC COMPONENTS

This section demonstrates that evaluating models under a single configuration fails to capture their
true capabilities, while LLM evaluatology not only yields results in strong agreement with the
ground truth, but also attributes the performance differences to specific components.

Based on the randomly sampled data collected from the complete configuration space spanned by
the components in Table 2, we estimated the overall average accuracies of different models on the
same benchmark using their 95% and 99% confidence intervals. As illustrated in Figure 5a, we

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

(a) Accuracy confidence intervals
of different LLMs on AIME

(b) Accuracy difference confidence intervals of different models on
AIME

Figure 5: Comparison of LLM Evaluatology and Traditional Method on AIME

report the performance of different models on AIME’2024, where the purple dots denote the test
results under the commonly adopted default setting, using the original workloads without optimized
prompting methods and with default decoding parameters. It can be observed that the purple dots
are far from the confidence intervals (interval estimation of the population mean) obtained through
random sampling, showing that evaluating a model under a single configuration is unreliable. Note
that accuracy values of 0 in Figure 5a are not due to missing data, but to the high difficulty of AIME
problems, which are challenging even for human contestants.

Figure 5b further presents, on AIME’2024, the accuracy differences between two models under the
default configuration, together with the 95% and 99% confidence intervals constructed from accu-
racy differences observed across sampled equivalent evaluation configurations. In 10 cases, the con-
fidence intervals and the default accuracy differences fall on opposite sides of the zero line, revealing
contradictions in the conclusions regarding model superiority. For instance, the 99% confidence in-
terval for the mean accuracy difference between Doubao-1.5-pro and GPT-4.1 lies entirely above
the zero line, implying that overall Doubao-1.5-pro outperforms GPT-4.1. However, if one were
to rely on the result of a single experiment under the default configuration, the accuracy difference
would fall below the zero line, leading instead to the opposite conclusion that GPT-4.1 outperforms
Doubao-1.5-pro. This “conclusion reversal” highlights the limitations of relying solely on single-
configuration testing. More detailed results on additional benchmarks including MMLU and GPQA
can be found in the Appendix.

Furthermore, we selected the five most influential components for a cost-efficient accuracy test on
each LLM, based on the ANOVA data in Section 5.2. We then constructed the configuration sub-
space restricted to these components and conducted exhaustive testing within this subspace. The
mean performance obtained was taken as a “restricted-space ground truth.” As shown by the red di-
amond in Figure 5a, for all models, this reference truth fell within the confidence intervals estimated
from random sampling, thereby demonstrating both the validity and the robustness of the proposed
LLM evaluatology method.

6 CONCLUSION

LLM Evaluatology establishes a principled methodology for assessing LLMs through an Augmented
Minimal Evaluation System (A-MES), explicitly accounting for both intrinsic model capabilities and
the many confounding components that shape observed performance, thereby enabling accurate at-
tribution of performance differences to their true sources. Our analysis reveals that meaningful eval-
uation of LLMs requires careful consideration of both workload heterogeneity and the vast space of
evaluation condition (EC) configurations. We advocate for the adoption of evaluatology as a foun-
dational paradigm, encouraging the community to develop richer workload augmentation strategies
and robust evaluation practices that mirror the complexity of actual deployment scenarios.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Aider. Aider llm leaderboards. https://aider.chat/docs/leaderboards/, 2025. Ac-
cessed: 2025-09-13.

AIME. AIME Problems and Solutions. https://artofproblemsolving.com/wiki/
index.php/AIME_Problems_and_Solutions, 2025. Accessed: 2025-09-05.

Chenxin An, Shansan Gong, Ming Zhong, Xingjian Zhao, Mukai Li, Jun Zhang, Lingpeng Kong,
and Xipeng Qiu. L-eval: Instituting standardized evaluation for long context language models.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 14388–14411, 2024.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. In Proceedings of the 62nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 3119–3137, 2024.

Federico Cassano, John Gouwar, Daniel Nguyen, Sydney Nguyen, Luna Phipps-Costin, Donald
Pinckney, Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, Molly Q Feldman, et al. Multipl-
e: A scalable and polyglot approach to benchmarking neural code generation. IEEE Transactions
on Software Engineering, 49(7):3675–3691, 2023.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anastasios Nikolas Angelopoulos, Tianle Li,
Dacheng Li, Banghua Zhu, Hao Zhang, Michael Jordan, Joseph E Gonzalez, et al. Chatbot
arena: An open platform for evaluating llms by human preference. In Forty-first International
Conference on Machine Learning.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Amit Das, Zheng Zhang, Najib Hasan, Souvika Sarkar, Fatemeh Jamshidi, Tathagata Bhattacharya,
Mostafa Rahgouy, Nilanjana Raychawdhary, Dongji Feng, Vinija Jain, et al. Investigating anno-
tator bias in large language models for hate speech detection. arXiv preprint arXiv:2406.11109,
2024.

Aryo Pradipta Gema, Joshua Ong Jun Leang, Giwon Hong, Alessio Devoto, Alberto Carlo Maria
Mancino, Rohit Saxena, Xuanli He, Yu Zhao, Xiaotang Du, Mohammad Reza Ghasemi Madani,
et al. Are we done with mmlu? In Proceedings of the 2025 Conference of the Nations of the Amer-
icas Chapter of the Association for Computational Linguistics: Human Language Technologies
(Volume 1: Long Papers), pp. 5069–5096, 2025.

Thomas Hartvigsen, Saadia Gabriel, Hamid Palangi, Maarten Sap, Dipankar Ray, and Ece Kamar.
Toxigen: A large-scale machine-generated dataset for adversarial and implicit hate speech detec-
tion. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 3309–3326, 2022.

Jia He, Mukund Rungta, David Koleczek, Arshdeep Sekhon, Franklin X Wang, and Sadid Hasan.
Does prompt formatting have any impact on llm performance? arXiv preprint arXiv:2411.10541,
2024.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2).

11

https://aider.chat/docs/leaderboards/
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2020.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Yao Fu, et al. C-eval: A multi-level multi-discipline chinese eval-
uation suite for foundation models. Advances in Neural Information Processing Systems, 36:
62991–63010, 2023.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In The Thirteenth International Conference on
Learning Representations.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. Swe-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang, Hai Zhao, Yeyun Gong, Nan Duan, and Timothy
Baldwin. Cmmlu: Measuring massive multitask language understanding in chinese. In Findings
of the Association for Computational Linguistics ACL 2024, pp. 11260–11285, 2024.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E Gon-
zalez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and
benchbuilder pipeline. In Forty-second International Conference on Machine Learning.

Jiacheng Liu, Mayi Xu, Qiankun Pi, Wenli Li, Ming Zhong, Yuanyuan Zhu, Mengchi Liu, and
Tieyun Qian. Format as a prior: Quantifying and analyzing bias in llms for heterogeneous data.
arXiv preprint arXiv:2508.15793, 2025.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around
player? In European conference on computer vision, pp. 216–233. Springer, 2024.

Do Xuan Long, Hai Nguyen Ngoc, Tiviatis Sim, Hieu Dao, Shafiq Joty, Kenji Kawaguchi, Nancy F
Chen, and Min-Yen Kan. Llms are biased towards output formats! systematically evaluating and
mitigating output format bias of llms. arXiv preprint arXiv:2408.08656, 2024.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning
of foundation models in visual contexts. In The Twelfth International Conference on Learning
Representations.

OpenCompass. Compassarena. https://opencompass.org.cn/arena, 2025. Accessed:
2025-09-08.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Chufan Shi, Haoran Yang, Deng Cai, Zhisong Zhang, Yifan Wang, Yujiu Yang, and Wai Lam. A
thorough examination of decoding methods in the era of llms. arXiv preprint arXiv:2402.06925,
2024.

Ved Sirdeshmukh, Kaustubh Deshpande, Johannes Mols, Lifeng Jin, Ed-Yeremai Cardona, Dean
Lee, Jeremy Kritz, Willow Primack, Summer Yue, and Chen Xing. Multichallenge: A realis-
tic multi-turn conversation evaluation benchmark challenging to frontier llms. arXiv preprint
arXiv:2501.17399, 2025.

12

https://opencompass.org.cn/arena

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. In ACL (Findings), 2023.

Chenxi Wang, Lei Wang, Wanling Gao, Yikang Yang, Yutong Zhou, and Jianfeng Zhan. Achieving
consistent and comparable cpu evaluation outcomes. arXiv preprint arXiv:2411.08494, 2024a.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging multi-
task language understanding benchmark. Advances in Neural Information Processing Systems,
37:95266–95290, 2024b.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Benjamin Feuer, Siddhartha Jain, Ravid
Shwartz-Ziv, Neel Jain, Khalid Saifullah, Sreemanti Dey, et al. Livebench: A challenging,
contamination-limited llm benchmark. In The Thirteenth International Conference on Learning
Representations.

Liang Xu, Anqi Li, Lei Zhu, Hang Xue, Changtai Zhu, Kangkang Zhao, Haonan He, Xuanwei
Zhang, Qiyue Kang, and Zhenzhong Lan. Superclue: A comprehensive chinese large language
model benchmark. arXiv preprint arXiv:2307.15020, 2023.

Zhengxin Yang, Wanling Gao, Chunjie Luo, Lei Wang, and Jianfeng Zhan. Quality at the tail.
CoRR, abs/2212.13925, 2022. doi: 10.48550/ARXIV.2212.13925. URL https://doi.org/
10.48550/arXiv.2212.13925.

Howard Yen, Tianyu Gao, Minmin Hou, Ke Ding, Daniel Fleischer, Peter Izsak, Moshe Wasserblat,
and Danqi Chen. Helmet: How to evaluate long-context language models effectively and thor-
oughly. International Conference on Learning Representations (ICLR), 2025.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multi-
modal understanding and reasoning benchmark for expert agi. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9556–9567, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019.

Jianfeng Zhan. A short summary of evaluatology: The science and engineering of evaluation, 2024.

Jianfeng Zhan, Lei Wang, Wanling Gao, Hongxiao Li, Chenxi Wang, Yunyou Huang, Yatao Li,
Zhengxin Yang, Guoxin Kang, Chunjie Luo, et al. Evaluatology: The science and engineering of
evaluation. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 4(1):100162,
2024.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Khai Hao, Xu Han,
Zhen Leng Thai, Shuo Wang, Zhiyuan Liu, et al. ∞bench: Extending long context evaluation
beyond 100k tokens. arXiv preprint arXiv:2402.13718, 2024a.

Zhexin Zhang, Leqi Lei, Lindong Wu, Rui Sun, Yongkang Huang, Chong Long, Xiao Liu, Xuanyu
Lei, Jie Tang, and Minlie Huang. Safetybench: Evaluating the safety of large language models.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 15537–15553, 2024b.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny
Zhou, and Le Hou. Instruction-following evaluation for large language models. arXiv preprint
arXiv:2311.07911, 2023.

Kaijie Zhu, Jiaao Chen, Jindong Wang, Neil Zhenqiang Gong, Diyi Yang, and Xing Xie. Dyval:
Dynamic evaluation of large language models for reasoning tasks. In The Twelfth International
Conference on Learning Representations.

13

https://doi.org/10.48550/arXiv.2212.13925
https://doi.org/10.48550/arXiv.2212.13925

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the manuscript preparation, we leveraged large language models (LLMs) to assist in refining
and polishing the text. Specifically, the LLM was used to improve sentence clarity and enhance
linguistic fluency, while all scientific content, reasoning, and results were independently authored
and verified by the researchers. This approach facilitated more concise and readable presentation
without affecting the technical accuracy.

A.2 EVALUATION SETTING ON DIFFERENT BENCHMARKS

Table 5: Evaluation Settings Reported in Technical Reports of Different LLMs. (Lang. = Language,
Q-type = Question type, Para. = Paraphrase, M-turn = Multi turn, Temp. = Temperature, PP =
presence penalty, MaxTok = max tokens)

(a) Evaluation Settings on AIME’2024
Model Lang. Q-type Para. Shot COT M-turn Temp. top p PP MaxTok

DeepSeek-R1 english origin origin 0 yes x 0.6 0.95 x 32768
DeepSeek-V3 english origin origin x x x 0.7 x x 8192
Kimi K2 english origin origin x no x 0.0 fixed x 8192
Kimi K1.5 english origin origin x yes x x x x x
Qwen2 Not evaluated on AIME
Qwen2.5 Not evaluated on AIME
Qwen3 english origin origin x no x 0.7 0.8 1.5 32768
GPT-4 Not evaluated on AIME
GPT-4.1 english origin origin x x x x x x x
GPT-5 Not evaluated on AIME
Claude Opus 4 Not evaluated on AIME
Mistral Small3.1 Not evaluated on AIME
Mistral Medium3 Not evaluated on AIME
Mistral Large2 Not evaluated on AIME

(b) Evaluation Settings on MMLU

Model Lang. Q-type Para. Shot COT M-turn Temp. top p PP MaxTok

DeepSeek-R1 english origin origin 0 yes x 0.5 x x 1024
DeepSeek-V3 english origin origin 0 yes x 0.5 x x 1024
Kimi K2 english origin origin x no x 0.0 fixed x 8192
Kimi K1.5 english origin origin x yes x x x x x
Qwen2 english origin origin 5 x x x x x x
Qwen2.5 english origin origin 5 x x x x x x
Qwen3 english origin origin 5 x x x x x x
GPT-4 multiple origin origin 5/3 no x x x x x
GPT-4.1 multiple origin origin x x x x x x x
GPT-5 Not evaluated on MMLU
Claude Opus 4 multiple origin origin x yes/no x x x x x
Mistral Small3.1 english origin origin x x x x x x x
Mistral Medium3 Not evaluated on MMLU
Mistral Large2 multiple origin origin x x x x x x x

(c) Evaluation Settings on GPQA

Model Lang. Q-type Para. Shot COT M-turn Temp. top p PP MaxTok

DeepSeek-R1 english origin origin 0 yes x 0.5 x x 1024
DeepSeek-V3 english origin origin 0 yes x 0.5 x x 1024
Kimi K2 english origin origin x no x 0.0 fixed x 8192
Kimi K1.5 english origin origin x yes x x x x x
Qwen2 english origin origin x x x x x x x
Qwen2.5 english origin origin x x x x x x x
Qwen3 english origin origin x yes/no x 0.6/0.7 0.95/0.8 0/1.5 32768
GPT-4 Not evaluated on GPQA
GPT-4.1 english origin origin x x x x x x x
GPT-5 english origin origin x 0/1 x x x x x
Claude Opus 4 english origin origin x 0/1 x x x x x
Mistral Small3.1 english origin origin x x x x x x x
Mistral Medium3 english origin origin 5 1 x x x x x
Mistral Large2 Not evaluated on GPQA

(d) Evaluation Settings on MATH

Model Lang. Q-type Para. Shot COT M-turn Temp. top p PP MaxTok

DeepSeek-R1 english origin origin 0/8 yes/no x 0 x x 32768
DeepSeek-V3 english origin origin 0/8 yes/no x 0 x x 8192
Kimi K2 english origin origin x no x 0.0 fixed x 8192
Kimi K1.5 english origin origin x yes x x x x x
Qwen2 english origin origin x x x x x x x
Qwen2.5 english origin origin x x x x x x x
Qwen3 english origin origin x yes/no x 0.6/0.7 0.95/0.8 0/1.5 32768
GPT-4 Not evaluated on MATH
GPT-4.1 Not evaluated on MATH
GPT-5 Not evaluated on MATH
Claude Opus 4 Not evaluated on MATH
Mistral Small3.1 english origin origin x x x x x x x
Mistral Medium3 english origin origin 0 0 x x x x x
Mistral Large2 english origin origin 0 0 x x x x x

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(e) Evaluation Settings on SWE-bench

Model Lang. Q-type Para. Shot COT M-turn Temp. top p PP MaxTok

DeepSeek-R1 english origin origin x x x 0.8 x x x
DeepSeek-V3 english origin origin x x x 0.8 x x x
Kimi K2 english origin origin x no x 0.0 fixed x 8192/16384
Kimi K1.5 Not evaluated on SWE-bench
Qwen2 Not evaluated on SWE-bench
Qwen2.5(pre) Not evaluated on SWE-bench
Qwen3(pre) Not evaluated on SWE-bench
GPT-4 Not evaluated on SWE-bench
GPT-4.1 english origin origin x x x x x x x
GPT-5 english origin origin x 0/1 x x x x x
Claude Opus 4 english origin origin x 0/1 x x 0.95 x x
Mistral Small3.1 Not evaluated on SWE-bench
Mistral Medium3 Not evaluated on SWE-bench
Mistral Large2 Not evaluated on SWE-bench

(f) Evaluation Settings on IFEval

Model Lang. Q-type Para. Shot COT M-turn Temp. top p PP MaxTok

DeepSeek-R1 english origin origin 0 0 0 x x x x
DeepSeek-V3 english origin origin 0 0 0 x x x x
Kimi K2 english origin origin x no x 0.0 fixed x 8192
Kimi K1.5 english origin origin x yes x x x x x
Qwen2 english origin origin x x x x x x x
Qwen2.5 english origin origin x x x x x x x
Qwen3 english origin origin x yes/no x 0.6/0.7 0.95/0.8 0/1.5 32768
GPT-4 Not evaluated on IFEval
GPT-4.1 english origin origin x x x x x x x
GPT-5 Not evaluated on IFEval
Claude Opus 4 Not evaluated on IFEval
Mistral Small3.1 Not evaluated on IFEval
Mistral Medium3 english origin origin 0 0 x x x x x
Mistral Large2 Not evaluated on IFEval

(g) Evaluation Settings on Arena-Hard

Model Lang. Q-type Para. Shot COT M-turn Temp. top p PP MaxTok

DeepSeek-R1 english origin origin 0 0 0 config default default user-set
DeepSeek-V3 english origin origin 0 0 0 config default default user-set
Kimi K2 english origin origin x no x 0.0 fixed x 8192
Kimi K1.5 Not evaluated on Arena-Hard
Qwen2 english origin origin x x x x x x x
Qwen2.5 english origin origin x x x x x x x
Qwen3 english origin origin x yes/no x 0.6/0.7 0.95/0.8 0/1.5 32768
GPT-4 Not evaluated on Arena-Hard
GPT-4.1 Not evaluated on Arena-Hard
GPT-5 Not evaluated on Arena-Hard
Claude Opus 4 Not evaluated on Arena-Hard
Mistral Small3.1 Not evaluated on Arena-Hard
Mistral Medium3 Not evaluated on Arena-Hard
Mistral Large2 english origin origin x x x x x x x

(h) Evaluation Settings on HumanEval

Model Lang. Q-type Para. Shot COT M-turn Temp. top p PP MaxTok

DeepSeek-R1 english origin origin 0 0 0 varied 0.95 x 32768
DeepSeek-V3 english origin origin 0 0 0 varied 0.95 x 8192
Kimi K2 Not evaluated on HumanEval
Kimi K1.5 english origin origin x yes x x x x x
Qwen2 english origin origin x x x x x x x
Qwen2.5 english origin origin x x x x x x x
Qwen3 Not evaluated on HumanEval
GPT-4 english origin origin 0 0 x 0.3 x x x
GPT-4.1 Not evaluated on HumanEval
GPT-5 Not evaluated on HumanEval
Claude Opus 4 Not evaluated on HumanEval
Mistral Small3.1 english origin origin x x x x x x x
Mistral Medium3 english origin origin 0 0 x x x x x
Mistral Large2 english origin origin x x x x x x x

A.3 A-MES CONSTRUCTION PIPELINE

Analogical: Distractor Insertion

For distractor insertion, we define three explicit, controllable categories of redundancy and imple-
ment all instances via LLM prompting. To ensure that the inserted distractors strictly follow our
predefined specifications, we empirically test several candidate LLMs and choose the one that most
consistently adheres to these constraints (GPT-5). This selection is made solely to guarantee trans-
formation fidelity rather than to compare model capabilities. For each item to be transformed, the
chosen LLM is invoked through an API and, guided by our structured prompts, automatically pro-
duces and inserts the required redundant content. The concrete implementation is as follows.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

(1) Context-irrelevant redundancy.

• Provide the LLM with an example containing an original question and a version with added
context-irrelevant redundancy.

• Instruct the LLM to insert one sentence at a random position that is completely unrelated to the
target question.

Algorithm 1 Context-irrelevant redundancy insertion
1: function INSERTCONTEXTIRRELEVANTDISTRACTOR(problem text)
2: EXAMPLE PAIR← (orig example, example with irrelevant context)
3: PROMPT ← BUILDPROMPTIRRELEVANT(EXAMPLE PAIR, problem text)
4: RESPONSE ← LLM CALL(PROMPT)
5: transformed text← PARSETRANSFORMEDPROBLEM(RESPONSE)
6: if not BASICSANITYCHECK(problem text, transformed text) then
7: return FAILURE
8: end if
9: return transformed text

10: end function

(2) Context-relevant, explanatory redundancy.

• Provide the LLM with an example of an original question and a version with added explanatory
redundancy.

• Instruct the LLM to insert a redundant sentence at a random position in each target question that
explains a concept already appearing in the target question.

Algorithm 2 Context-relevant explanatory redundancy insertion
1: function INSERTEXPLANATORYDISTRACTOR(problem text)
2: EXAMPLE PAIR← (orig example, example with explanatory sentence)
3: PROMPT ← BUILDPROMPTEXPLANATORY(EXAMPLE PAIR, problem text)
4: RESPONSE ← LLM CALL(PROMPT)
5: transformed text← PARSETRANSFORMEDPROBLEM(RESPONSE)
6: if not BASICSANITYCHECK(problem text, transformed text) then
7: return FAILURE
8: end if
9: return transformed text

10: end function

(3) Context-relevant, misleading redundancy.

• Provide the LLM with an example containing an original question and a version with added mis-
leading but logically related redundancy.

• Supply the model with the correct answer and several correct solution approaches, and instruct it
to avoid directly hinting at these correct strategies when crafting the misleading cue. The official
answer and solution approaches are provided by the user, and providing solution approaches is
optional.

• Instruct the model to insert a redundant sentence that nudges the reader toward an incorrect strat-
egy or line of reasoning, without explicitly revealing that it is “misleading” or “distracting”.

Algorithm 3 Context-relevant misleading redundancy insertion
1: function INSERTMISLEADINGDISTRACTOR(problem text, answer gold, solution sketches)
2: EXAMPLE PAIR← (orig example, example with misleading sentence)
3: PROMPT ← BUILDPROMPTMISLEADING(example pair = EXAMPLE PAIR, target problem = prob-

lem text, answer gold = answer gold, solution sketches = solution sketches)
4: RESPONSE← LLM CALL(PROMPT)
5: transformed text← PARSETRANSFORMEDPROBLEM(RESPONSE)
6: if not BASICSANITYCHECK(problem text, transformed text) then
7: return FAILURE
8: end if
9: return transformed text

10: end function

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

In practice, the selected LLM produces variations that are more diverse and linguistically natural
than manual editing. In particular, its context-relevant misleading redundancies tend to hint at in-
correct heuristics in a more subtle way than hand-written versions, while still strictly adhering to the
predefined category constraints. The entire process involves no per-item manual editing. The three
examples of redundancy for three types generated by the above procedure are illustrated as follows:

1. Context-irrelevant redundancy example:

The weather today seems quite pleasant, and it might be a great day for a picnic.
Find the number of triples of nonnegative integers (a, b, c) satisfying a+ b+ c =
300 and a2b+ a2c+ b2a+ b2c+ c2a+ c2b = 6,000,000.

Here, the weather is entirely unrelated to the math content.

2. Context-relevant, explanatory redundancy example:

There exist real numbers x and y, both greater than 1, such that logx(y
x) =

logy
(
x4y

)
= 10. A logarithm is a way to express how many times a base must be

multiplied by itself to get a certain number. Find xy.

The added sentence explains the notion of a logarithm while leaving the underlying problem un-
changed.

3. Context-relevant, misleading redundancy example:

Alice and Bob play the following game. A stack of n tokens lies before them. The
players take turns with Alice going first. On each turn, the player removes either
1 token or 4 tokens from the stack. Many players adopt a greedy approach here:
always take 4 whenever possible to shorten the game and restrict the opponent’s
replies. Whoever removes the last token wins. Find the number of positive in-
tegers n less than or equal to 2024 for which there exists a strategy for Bob that
guarantees that Bob will win the game regardless of Alice’s play.

The extra sentence about the “greedy approach” is logically related to the game but suggests a flawed
strategy, intentionally nudging the solver toward an incorrect line of reasoning.

Analogical: Numeric Substitutions

For numeric substitutions, we use a uniform pipeline built around LLM-generated Python solvers
and automatic verification scripts, rather than manually changing a few numbers:

• We first call an LLM to extract the primary knowledge points tested by the original problem,
and query a pre-constructed formula library indexed by knowledge point to retrieve potentially
relevant formulas.

• We feed the original problem, its official answer, the retrieved formulas, and (where available)
multiple correct solution sketches into the LLM. The official answer and solution sketches are
provided by the user, and providing solution sketches is optional.

• The LLM is prompted to:
– analyze the problem’s solution strategy, using the provided solution sketches when available;
– write a Python solution program where problem-specific numbers are extracted as explicit vari-

ables with reasonable value ranges.
• We then ask another LLM to inspect the generated Python code and verify that it implements

a general computational procedure for solving the problem, rather than relying on hard-coded
instance-specific outputs or trivial pattern matching.

• We import the LLM-generated Python code as a local module and call its solve() function with
the original numeric values as inputs, checking whether the resulting output matches the official
answer.

• If the code fails (wrong answer or runtime error), we return the error message and incorrect output
to the LLM, asking it to refine the code; we repeat this refinement–verification loop for up to five
attempts and keep the Python code if it passes on the original instance.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

After obtaining a correct solver, we automatically sample new numeric configurations within the
validated ranges to generate analogical variants of the same underlying problem.

This “knowledge-point extraction → formula retrieval → analyze → code → verify → resample”
pipeline is identical across all problems.

Algorithm 4 Numeric substitutions
1: function BUILDNUMERICSOLVER(problem text, answer gold, solution sketches, max iter = 5, max refine

= 5)
2: knowledge points← LLM EXTRACTKNOWLEDGEPOINTS(problem text)
3: retrieved formulas← RETRIEVE FORMULAS(knowledge points)
4: history← EMPTY LIST
5: for iter = 1 to max iter do
6: PROMPT← BUILDPROMPTCODEGEN(problem text,answer gold,solution sketches,retrieved formulas)
7: APPEND(history, (PROMPT, NONE))
8: (CODE, param, value ranges)← LLM CALL(PROMPT)
9: is hard code← LLM HARD CODE CHECK(CODE)

10: if is hard code then
11: continue
12: end if
13: for refine step = 0 to max refine do
14: (output, error)← RUN PYTHON(CODE, input = param.value)
15: APPEND(history, (CODE, (output, error)))
16: if error = NONE and VERIFY(output, answer gold) then
17: return (CODE, param, value ranges)
18: end if
19: if refine step = max refine then
20: break
21: end if
22: PROMPT refine← BUILDPROMPTCODEREFINE(problem text, answer gold, history)
23: (CODE, param, value ranges)← LLM CALL(PROMPT refine)
24: end for
25: end for
26: return FAILURE
27: end function
28: function GENERATENUMERICVARIANTS(problem text, answer gold, solution sketches)
29: (solver code, param, param ranges) ← BUILDNUMERICSOLVER(problem text, answer gold, solu-

tion sketches)
30: if solver code = FAILURE then
31: return NONE
32: end if
33: new param← SAMPLE(param ranges)
34: new problem text← INSTANTIATENUMERICPROBLEMTEXT(problem text, param, new param)
35: (output, error)← RUN PYTHON(solver code, input = new param)
36: new answer gold← output
37: return (new problem text, new answer gold)
38: end function

An example of numeric substitutions is given as follows.

• Original:

Find the largest possible real part of (75 + 117i)z + 96+144i
z where z is a complex

number with |z| = 4. A common shortcut is to take z to be a positive real number, since
for a fixed modulus the real part is often largest when the argument of z is zero.

• Numeric variant:

Find the largest possible real part of (100 + 112i)z + 60+144i
z where z is a complex

number with |z| = 4. A common shortcut is to take z to be a positive real number, since
for a fixed modulus the real part is often largest when the argument of z is zero.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Analogical: Conditional Recompositions

For conditional recompositions, we again adopt a general and automatable pipeline built around
LLM-generated Python solvers and automatic verification scripts, rather than manually rewriting
statements:

• We first call an LLM to extract the primary knowledge points tested by the original question,
and query a pre-constructed formula library indexed by knowledge point to retrieve potentially
relevant formulas.

• We feed the original problem, its official answer, the retrieved formulas, and (where available)
multiple correct solution sketches into the LLM. The official answer and solution sketches are
provided by the user, and providing solution sketches is optional.

• The LLM is prompted to:
– identify the key conditions and the target quantity;
– determine whether some of these conditions and the target can be interchanged—i.e., whether

knowing the original answer allows us to infer some of the original conditions (an invertible
relationship).

• When such an invertible relationship exists, the LLM is asked to write a Python solution program
for the recomposed problem, where the original target now appears as an input condition and (a
subset of) the original conditions become the new target.

• We then ask another LLM to inspect the generated Python code and verify that it implements
a general computational procedure for solving the problem, rather than relying on hard-coded
instance-specific outputs or trivial pattern matching.

• We import the LLM-generated Python code as a local module and call its solve() function,
plugging the original answer value into the new “condition” slot and checking whether the returned
output correctly recovers the original condition values.

• Any discrepancy or runtime error is fed back to the LLM for iterative refinement, just as in the
numeric substitutions pipeline. We repeat this refinement–verification loop for up to five attempts
and keep the Python code if it passes on the instance.

Once a correct solver for the recomposed version is obtained, we can further vary the new input
variables within reasonable ranges to generate additional condition-recomposed variants.

This “knowledge-point extraction → formula retrieval → analyze → code → verify → resample”
pipeline is identical across all problems.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Algorithm 5 Conditional recompositions
1: function BUILDRECOMPOSEDSOLVER(problem text, answer gold, solution sketches, max iter = 5,

max refine = 5)
2: knowledge points← LLM EXTRACTKNOWLEDGEPOINTS(problem text)
3: retrieved formulas← RETRIEVE FORMULAS(knowledge points)
4: history← EMPTY LIST
5: ANALYSIS PROMPT ← BUILDPROMPTINVERTIBLEANALYSIS(problem text, answer gold, solu-

tion sketches, retrieved formulas)
6: ANALYSIS RESPONSE← LLM CALL(ANALYSIS PROMPT)
7: (invertible, cond as unknown, target as given, recomposed problem text) ← PARSEINVERT-

IBLESTRUCTURE(ANALYSIS RESPONSE)
8: if invertible = FALSE then
9: return FAILURE

10: end if
11: for iter = 1 to max iter do
12: PROMPT ← BUILDPROMPTRECOMPOSEDCODEGEN(origin problem text = problem text,

new problem text = recomposed problem text, origin answer gold = answer gold, new answer gold
= cond as unknown.original values, solution sketches = solution sketches, retrieved formulas = re-
trieved formulas)

13: APPEND(history, (PROMPT, NONE))
14: (CODE, value ranges)← LLM CALL(PROMPT)
15: is hard code← LLM HARD CODE CHECK(CODE)
16: if is hard code then
17: continue
18: end if
19: for refine step = 0 to max refine do
20: (output, error)← RUN PYTHON(CODE, input = answer gold)
21: APPEND(history, (CODE, (output, error)))
22: if error = NONE and VERIFY(output, cond as unknown.original values) then
23: return (CODE,cond as unknown,target as given,value ranges,recomposed problem text)
24: end if
25: if refine step = max refine then
26: break
27: end if
28: PROMPT refine ← BUILDPROMPTRECOMPOSEDCODEREFINE(problem text = recom-

posed problem text, answer gold = cond as unknown.original values, history = history)
29: (CODE, value ranges)← LLM CALL(PROMPT refine)
30: end for
31: end for
32: return FAILURE
33: end function
34: function GENERATERECOMPOSEDVARIANTS(problem text, answer gold, solution sketches)
35: (solver code, cond as unknown, target as given, value ranges, recomposed problem text) ← BUIL-

DRECOMPOSEDSOLVER(problem text, answer gold, solution sketches)
36: if solver code = FAILURE then
37: return NONE
38: end if
39: new param← SAMPLE(value ranges)
40: new problem text ← INSTANTIATERECOMPOSEDPROBLEMTEXT(recomposed problem text, tar-

get as given, new param)
41: (output, error)← RUN PYTHON(solver code, input = new param)
42: new answer gold← output
43: return (new problem text, new answer gold)
44: end function

An example of conditional recompositions is given as follows.

• Original:
Rectangles ABCD and EFGH are drawn such that D,E,C, F are collinear. Also,
A,D,H,G all lie on a circle. If BC = 16, AB = 107, FG = 17, and EF = 184,
what is the length of CE?

• Conditional recomposition:

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Rectangles ABCD and EFGH are drawn such that D,E,C, F are collinear. Also,
A,D,H,G all lie on a circle. If BC = 16, AB = 107, CE = 104, and EF = 184,
what is the length of FG?

Novel: recent-source adaptation

In the “novel” branch, the first mechanism is recent-source adaptation, which is also fully scriptable:

1. We first use an LLM to extract the primary knowledge points tested by a given source problem.
2. We query open-access repositories of centralized exam questions that index items by region,

year, subject, and knowledge point, and crawl the most recent 2025 exam problems matching the
extracted knowledge points.

3. The retrieved problems are paraphrased by the LLM and can be further transformed using the
three analogical methods (redundancy insertion, numeric substitution, and conditional recompo-
sition).

This yields a set of new, recent-source problems that are structurally aligned at the knowledge level
but clearly distinct in surface form and provenance. The entire workflow is driven by scripts and
general prompts, without hand-curating individual items.

Algorithm 6 Recent-Source Adaptation
1: function RECENTSOURCEADAPTATION(problem text, metadata, K)
2: KP PROMPT ← BUILDPROMPTEXTRACTKNOWLEDGEPOINTS(problem text, metadata)
3: KP RESPONSE← LLM CALL(KP PROMPT)
4: KPs← PARSEKNOWLEDGEPOINTS(KP RESPONSE)
5: if KPs = NONE then
6: return NONE
7: end if
8: year range← {2025}
9: candidate item ← RETRIEVE EXAMS(knowledge points = KPs, year range = year range, sub-

ject = metadata.subject)
10: if candidate item = NONE then
11: return NONE
12: end if
13: PARA PROMPT← BUILDPROMPTPARAPHRASE(candidate item.text, candidate item.answer gold, KPs)
14: PARA RESPONSE← LLM CALL(PARA PROMPT)
15: paraphrased item← PARSEPARAPHRASEDPROBLEM(PARA RESPONSE)
16: adapted item← {
17: text : paraphrased item.text,
18: answer : candidate item.answer gold,
19: KPs : KPs,
20: provenance : {
21: source exam : candidate item.metadata,
22: transform : “paraphrase”
23: }
24: }
25: return adapted item
26: end function

For example, one recent-source adaptation question generated for the concept of logarithms is:

Given 2log2 a = 3 and log5 5
b = 2, find a− b

Novel: conceptual synthesis

The second “novel” mechanism is conceptual synthesis from authoritative textbooks. We first crawl
a large collection of authoritative textbooks across different subjects from the web, and then use the
LLM API’s built-in functionality for parsing local PDF files to extract their content. Based on the

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

extracted content, we build a structured knowledge base in which each concept is associated with
definitions, properties, theorems, phenomena, and canonical examples extracted from the textbooks.

1. Given a problem to be augmented, we use an LLM to identify its main knowledge points, and
then retrieve the corresponding entries from the structured knowledge base. If the subject-specific
knowledge base is missing, we trigger the textbook crawling and parsing step to expand the
knowledge base, and then retrieve the corresponding entries from it.

2. Conditioned on these entries, the LLM is prompted to generate new conceptual questions target-
ing the underlying knowledge points, rather than copying any existing problem.

This pipeline turns textbook content into fresh conceptual questions that align with the original topic
but are novel in form and focus.

Algorithm 7 Conceptual Synthesis
1: function CONCEPTUALSYNTHESIS(problem text, metadata)
2: KP PROMPT ← BUILDPROMPTEXTRACTKNOWLEDGEPOINTS(problem text, metadata)
3: KP RESPONSE← LLM CALL(KP PROMPT)
4: KPs← PARSEKNOWLEDGEPOINTS(KP RESPONSE)
5: if KPs = NONE then
6: return NONE
7: end if
8: kb entry← RETRIEVE KB ENTRY(knowledge points = KPs, subject = metadata.subject)
9: if kb entry = NONE then

10: CRAWL AND PARSE TEXTBOOKS(knowledge points = KPs, subject = metadata.subject)
11: kb entry← RETRIEVE KB ENTRY(knowledge points = KPs, subject = metadata.subject)
12: if kb entry = NONE then
13: return NONE
14: end if
15: end if
16: GEN PROMPT ← BUILDPROMPTCONCEPTUALQUESTIONGENERATION(kb entry, KPs)
17: GEN RESPONSE← LLM CALL(GEN PROMPT)
18: raw item← PARSEGENERATEDCONCEPTUALQUESTIONS(GEN RESPONSE)
19: conceptual item← {
20: text : raw item.text,
21: answer : raw item.answer,
22: KPs : KPs
23: }
24: return conceptual item
25: end function

For example, one conceptual-synthesis question generated for the concept of logarithms is:

What kind of mathematical idea/method turns exponentiation and multiplication
into multiplication and addition?

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

A.4 RESULTS ON MMLU, GPQA

Figure 6: Accuracy confidence intervals of different LLMs on MMLU

deepseek
doubao kimi

qwen25
qwen

LLM

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Accuracy and Confidence Intervals for LLM Groups

Mean
Default
95% Confidence Intervals
99% Confidence Intervals

Figure 7: Accuracy confidence intervals of different LLMs on GPQA

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

A.5 ANOVA ANALYSIS RESULTS ON DIFFERENT LLMS

Table 6: Complete ANOVA results on LLMs (sorted by effect size in descending order)

(a) Complete ANOVA results on DeepSeek-V3

Factor Effect Size η2 p-value

Question Format 0.399643 0.000
Question Format-COT 0.161394 0.000
COT 0.080156 0.000
max tokens 0.028099 0.000
Question Format-Shot 0.011101 0.000
Language-Question Format 0.008178 0.006
COT-max tokens 0.006721 0.010
Language-COT 0.004345 0.038
Multi Turn-max tokens 0.003841 0.050
Language 0.003841 0.046
Shot-max tokens 0.003669 0.046
Question Format-max tokens 0.002687 0.100
Language-Multi Turn 0.002600 0.066
temperature-top p 0.002082 0.178
Question Format-Multi Turn 0.001321 0.244
Question Paraphrase 0.001240 0.252
Question Format-temperature 0.001201 0.262
Shot-temperature 0.000926 0.326
Multi Turn 0.000793 0.364
temperature 0.000587 0.396
COT-Multi Turn 0.000587 0.466
COT-top p 0.000573 0.482
Language-Shot 0.000534 0.466
presence penalty 0.000435 0.488
Question Format-Question Paraphrase 0.000411 0.562
Question Paraphrase-max tokens 0.000207 0.626
Language-Question Paraphrase 0.000198 0.660
Shot-COT 0.000161 0.646
COT-temperature 0.000140 0.698
Language-max tokens 0.000140 0.712
COT-presence penalty 0.000140 0.668
Shot 0.000134 0.706
Question Format-presence penalty 0.000133 0.708
Shot-top p 0.000109 0.736
max tokens-presence penalty 0.000092 0.768
max tokens-top p 0.000086 0.790
top p 0.000058 0.812
Shot-Multi Turn 0.000054 0.802
temperature-max tokens 0.000038 0.836
Language-presence penalty 0.000035 0.854
top p-presence penalty 0.000032 0.902
Multi Turn-temperature 0.000029 0.874
Multi Turn-top p 0.000026 0.884
Question Paraphrase-top p 0.000018 0.898
temperature-presence penalty 0.000013 0.902
Question Paraphrase-presence penalty 0.000011 0.910
Language-top p 0.000008 0.942
Question Paraphrase-Shot 0.000006 0.930
Multi Turn-presence penalty 0.000004 0.946
Language-temperature 0.000004 0.940
Question Format-top p 0.000003 0.962
Question Paraphrase-Multi Turn 0.000003 0.972
Shot-presence penalty 0.000001 0.966
Question Paraphrase-COT 0.000001 0.996
Question Paraphrase-temperature 0.000000 0.994

(b) Complete ANOVA results on Doubao-1.5-pro-32k

Factor Effect Size η2 p-value

Question Format 0.467626 0.000
Question Format-COT 0.259657 0.000
COT 0.130549 0.000
max tokens 0.009192 0.002
COT-max tokens 0.008943 0.006
max tokens-presence penalty 0.000671 0.388
Shot 0.000638 0.408
Shot-Multi Turn 0.000605 0.424
Question Paraphrase-max tokens 0.000502 0.466
Multi Turn 0.000473 0.466
Multi Turn-max tokens 0.000464 0.472
Language-temperature 0.000455 0.468
COT-Multi Turn 0.000427 0.496
Question Format-Shot 0.000400 0.546
Question Format-max tokens 0.000392 0.538
temperature 0.000392 0.534
Question Format-temperature 0.000358 0.530
Question Paraphrase-presence penalty 0.000349 0.552
Language-top p 0.000326 0.584
temperature-top p 0.000326 0.588
Language-presence penalty 0.000310 0.578
Language-Multi Turn 0.000295 0.562
Multi Turn-presence penalty 0.000272 0.604
Language-COT 0.000265 0.586
Shot-COT 0.000224 0.628
Question Paraphrase-top p 0.000205 0.642
Question Format-Multi Turn 0.000158 0.704
COT-presence penalty 0.000147 0.696
max tokens-top p 0.000147 0.674
presence penalty 0.000117 0.730
temperature-max tokens 0.000108 0.740
Question Format-presence penalty 0.000090 0.764
Question Format-Question Paraphrase 0.000067 0.792
Question Paraphrase 0.000054 0.836
Shot-top p 0.000047 0.818
Shot-presence penalty 0.000047 0.792
Language 0.000045 0.814
Language-Question Paraphrase 0.000044 0.840
Multi Turn-temperature 0.000036 0.832
COT-top p 0.000036 0.854
COT-temperature 0.000034 0.834
Language-Shot 0.000034 0.850
Shot-max tokens 0.000024 0.864
temperature-presence penalty 0.000015 0.906
top p-presence penalty 0.000013 0.902
Question Paraphrase-COT 0.000007 0.908
Language-Question Format 0.000002 0.956
Question Paraphrase-temperature 0.000001 0.960
Shot-temperature 0.000001 0.962
Question Paraphrase-Multi Turn 0.000001 0.966
Language-max tokens 0.000001 0.970
Question Paraphrase-Shot 0.000001 0.980
top p 0.000001 0.970
Question Format-top p 0.000000 0.984
Multi Turn-top p 0.000000 0.992

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

(c) Complete ANOVA results on GPT-3.5
Factor Effect Size (η2) p-value

Question Format 0.417428 0.000000
Question Format-COT 0.199209 0.000000
COT 0.199208 0.000000
temperature 0.006046 0.016000
Question Format-temperature 0.005781 0.020000
Shot-Multi Turn 0.005715 0.010000
Shot-COT 0.005651 0.026000
max tokens 0.005396 0.024000
Question Format-max tokens 0.004434 0.044000
temperature-top p 0.004320 0.052000
top p 0.003119 0.074000
Question Format-top p 0.002570 0.104000
COT-max tokens 0.001773 0.170000
Question Format-Shot 0.000853 0.344000
COT-Multi Turn 0.000828 0.352000
Language-Multi Turn 0.000779 0.364000
Language 0.000687 0.428000
Language-Question Format 0.000600 0.484000
COT-top p 0.000443 0.496000
COT-temperature 0.000425 0.508000
COT-presence penalty 0.000408 0.508000
Question Paraphrase-Multi Turn 0.000407 0.534000
Question Paraphrase-COT 0.000391 0.506000
Shot 0.000296 0.578000
Shot-temperature 0.000281 0.598000
Language-Shot 0.000253 0.598000
max tokens-presence penalty 0.000201 0.628000
Question Paraphrase-top p 0.000177 0.696000
Shot-max tokens 0.000135 0.720000
Language-top p 0.000115 0.690000
Question Paraphrase-presence penalty 0.000115 0.714000
Language-temperature 0.000106 0.750000
Language-max tokens 0.000106 0.740000
Shot-presence penalty 0.000089 0.786000
Multi Turn-temperature 0.000081 0.784000
Language-COT 0.000074 0.766000
Multi Turn-presence penalty 0.000074 0.788000
Question Format-Question Paraphrase 0.000067 0.776000
Question Paraphrase 0.000053 0.808000
Question Format-Multi Turn 0.000047 0.826000
presence penalty 0.000047 0.854000
temperature-max tokens 0.000036 0.858000
Question Paraphrase-max tokens 0.000036 0.854000
temperature-presence penalty 0.000031 0.884000
Language-Question Paraphrase 0.000027 0.858000
Question Format-presence penalty 0.000027 0.900000
Question Paraphrase-temperature 0.000027 0.882000
Multi Turn 0.000018 0.872000
Multi Turn-max tokens 0.000009 0.916000
Question Paraphrase-Shot 0.000009 0.920000
Multi Turn-top p 0.000007 0.942000
top p-presence penalty 0.000007 0.948000
Shot-top p 0.000007 0.942000
Language-presence penalty 0.000002 0.970000
max tokens-top p 0.000000 0.978000

(d) Complete ANOVA results on GPT-4.1
Factor Effect Size (η2) p-value

Question Format 0.289086 0.000000
Question Format-COT 0.180162 0.000000
COT-max tokens 0.054845 0.000000
max tokens 0.053399 0.000000
COT 0.027181 0.000000
temperature-top p 0.006685 0.010000
Question Format-Shot 0.006529 0.030000
temperature 0.005619 0.016000
Shot 0.004963 0.028000
max tokens-top p 0.004019 0.044000
Language-max tokens 0.003907 0.062000
Question Format-temperature 0.003732 0.072000
top p 0.003364 0.098000
temperature-max tokens 0.002990 0.140000
Question Paraphrase-Shot 0.002362 0.160000
Question Paraphrase-presence penalty 0.001939 0.194000
Shot-Multi Turn 0.001842 0.194000
COT-temperature 0.001708 0.230000
Shot-COT 0.001589 0.290000
Language-COT 0.001517 0.246000
COT-presence penalty 0.001406 0.276000
Question Format-max tokens 0.001360 0.306000
temperature-presence penalty 0.001284 0.292000
Language-Shot 0.001276 0.262000
Language-Question Paraphrase 0.001188 0.324000
presence penalty 0.001184 0.362000
COT-top p 0.001183 0.300000
COT-Multi Turn 0.001037 0.376000
Multi Turn-max tokens 0.000988 0.376000
Shot-top p 0.000754 0.422000
Question Paraphrase-max tokens 0.000703 0.438000
Multi Turn-top p 0.000367 0.574000
Question Format-presence penalty 0.000348 0.584000
Question Format-Question Paraphrase 0.000333 0.584000
Language-presence penalty 0.000329 0.586000
max tokens-presence penalty 0.000324 0.600000
top p-presence penalty 0.000253 0.618000
Shot-presence penalty 0.000192 0.702000
Shot-max tokens 0.000164 0.724000
Question Paraphrase 0.000146 0.746000
Question Format-top p 0.000134 0.728000
Shot-temperature 0.000133 0.724000
Question Format-Multi Turn 0.000132 0.718000
Question Paraphrase-top p 0.000065 0.798000
Multi Turn-presence penalty 0.000055 0.828000
Language-top p 0.000023 0.896000
Language-Question Format 0.000022 0.910000
Multi Turn-temperature 0.000020 0.886000
Question Paraphrase-temperature 0.000010 0.922000
Language-Multi Turn 0.000009 0.906000
Question Paraphrase-COT 0.000009 0.922000
Question Paraphrase-Multi Turn 0.000005 0.918000
Language 0.000001 0.964000
Multi Turn 0.000000 0.996000
Language-temperature 0.000000 0.998000

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

(e) Complete ANOVA results on Qwen2.5
Factor Effect Size (η2) p-value

Question Format 0.454352 0.000000
Question Format-COT 0.204235 0.000000
COT 0.200224 0.000000
Question Format-Shot 0.009265 0.000000
Shot 0.007983 0.008000
Shot-COT 0.006715 0.002000
Multi Turn 0.003717 0.046000
Question Format-Multi Turn 0.003657 0.052000
max tokens 0.002764 0.080000
Language-Question Format 0.002585 0.128000
COT-max tokens 0.001865 0.164000
Language 0.001720 0.196000
COT-Multi Turn 0.001540 0.214000
Multi Turn-max tokens 0.001110 0.322000
Question Format-max tokens 0.000922 0.292000
Language-COT 0.000848 0.382000
Question Paraphrase-presence penalty 0.000710 0.400000
Language-Multi Turn 0.000538 0.478000
temperature 0.000430 0.444000
Shot-temperature 0.000380 0.534000
Question Format-temperature 0.000371 0.550000
Language-Question Paraphrase 0.000343 0.550000
temperature-presence penalty 0.000334 0.566000
Language-temperature 0.000290 0.602000
top p 0.000257 0.600000
max tokens-top p 0.000242 0.618000
Shot-Multi Turn 0.000234 0.654000
COT-temperature 0.000219 0.660000
Question Format-Question Paraphrase 0.000165 0.674000
Question Paraphrase-top p 0.000165 0.672000
Language-max tokens 0.000165 0.674000
Question Paraphrase 0.000118 0.742000
Language-top p 0.000107 0.760000
temperature-top p 0.000107 0.724000
Multi Turn-presence penalty 0.000083 0.762000
max tokens-presence penalty 0.000075 0.784000
Shot-max tokens 0.000062 0.770000
presence penalty 0.000051 0.830000
Question Format-top p 0.000038 0.824000
top p-presence penalty 0.000038 0.830000
Multi Turn-temperature 0.000029 0.856000
Question Paraphrase-temperature 0.000027 0.882000
COT-presence penalty 0.000022 0.846000
Multi Turn-top p 0.000022 0.882000
Question Format-presence penalty 0.000022 0.866000
Language-presence penalty 0.000012 0.912000
temperature-max tokens 0.000012 0.918000
Question Paraphrase-Multi Turn 0.000009 0.942000
Language-Shot 0.000007 0.926000
Question Paraphrase-Shot 0.000005 0.928000
COT-top p 0.000003 0.954000
Shot-presence penalty 0.000002 0.960000
Shot-top p 0.000001 0.982000
Question Paraphrase-COT 0.000000 0.984000
Question Paraphrase-max tokens 0.000000 0.990000

(f) Complete ANOVA results on Qwen Plus
Factor Effect Size (η2) p-value

Question Format 0.302717 0.000000
Question Format-COT 0.259678 0.000000
COT 0.098747 0.000000
Shot 0.047447 0.000000
Question Format-Shot 0.042448 0.000000
Shot-COT 0.024956 0.000000
COT-max tokens 0.016596 0.000000
max tokens 0.016280 0.000000
Language 0.005019 0.024000
Language-Question Format 0.003272 0.060000
temperature-top p 0.002324 0.112000
Multi Turn-max tokens 0.001979 0.154000
Question Format-temperature 0.001662 0.202000
top p 0.001282 0.250000
Language-Shot 0.000991 0.296000
Question Paraphrase-Multi Turn 0.000877 0.320000
COT-temperature 0.000822 0.368000
Multi Turn 0.000736 0.428000
Question Format-Question Paraphrase 0.000654 0.458000
temperature 0.000608 0.412000
Language-COT 0.000519 0.472000
Shot-Multi Turn 0.000438 0.512000
Multi Turn-presence penalty 0.000400 0.512000
Shot-presence penalty 0.000375 0.496000
Question Format-top p 0.000275 0.604000
COT-Multi Turn 0.000245 0.612000
Question Format-max tokens 0.000226 0.648000
Question Format-Multi Turn 0.000166 0.708000
Multi Turn-temperature 0.000135 0.724000
max tokens-presence penalty 0.000128 0.690000
top p-presence penalty 0.000102 0.752000
Question Paraphrase-Shot 0.000101 0.746000
COT-top p 0.000090 0.758000
Language-presence penalty 0.000084 0.792000
Language-max tokens 0.000073 0.762000
temperature-presence penalty 0.000058 0.786000
Language-Multi Turn 0.000058 0.806000
Question Paraphrase-top p 0.000058 0.814000
Language-temperature 0.000049 0.816000
Shot-top p 0.000037 0.838000
Question Paraphrase 0.000033 0.864000
Shot-temperature 0.000033 0.860000
Language-top p 0.000029 0.850000
Question Paraphrase-max tokens 0.000023 0.862000
Question Paraphrase-presence penalty 0.000015 0.902000
Question Paraphrase-temperature 0.000015 0.904000
Multi Turn-top p 0.000015 0.924000
Shot-max tokens 0.000013 0.898000
COT-presence penalty 0.000013 0.918000
Question Format-presence penalty 0.000005 0.946000
temperature-max tokens 0.000002 0.970000
presence penalty 0.000002 0.960000
max tokens-top p 0.000002 0.970000
Question Paraphrase-COT 0.000001 0.978000
Language-Question Paraphrase 0.000000 0.994000

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(g) Complete ANOVA results on Mistral Large
Factor Effect Size (η2) p-value

Question Format 0.406873 0.000000
Question Format-COT 0.268919 0.000000
COT 0.075852 0.000000
COT-max tokens 0.026017 0.000000
max tokens 0.025372 0.000000
Question Format-Multi Turn 0.004796 0.024000
Multi Turn 0.003609 0.058000
Question Format-Shot 0.003338 0.068000
COT-Multi Turn 0.002708 0.100000
Question Format-max tokens 0.001379 0.230000
Shot 0.001023 0.320000
Language-Question Format 0.001004 0.280000
Multi Turn-max tokens 0.000881 0.310000
Shot-Multi Turn 0.000830 0.368000
Language-Multi Turn 0.000766 0.372000
Language-COT 0.000765 0.356000
Question Format-Question Paraphrase 0.000644 0.414000
Multi Turn-presence penalty 0.000456 0.458000
Question Paraphrase 0.000364 0.550000
Question Paraphrase-presence penalty 0.000353 0.486000
max tokens-presence penalty 0.000272 0.620000
Shot-top p 0.000244 0.638000
Multi Turn-top p 0.000244 0.570000
Language-Question Paraphrase 0.000235 0.618000
Question Format-presence penalty 0.000227 0.604000
COT-temperature 0.000227 0.628000
Question Paraphrase-Shot 0.000193 0.658000
temperature 0.000185 0.644000
Shot-presence penalty 0.000178 0.650000
Question Format-temperature 0.000178 0.672000
Question Paraphrase-top p 0.000163 0.686000
Shot-max tokens 0.000163 0.682000
top p 0.000142 0.690000
Question Paraphrase-max tokens 0.000135 0.688000
Question Paraphrase-Multi Turn 0.000128 0.772000
max tokens-top p 0.000110 0.712000
Language 0.000109 0.736000
COT-presence penalty 0.000087 0.780000
Shot-temperature 0.000087 0.810000
Question Paraphrase-COT 0.000053 0.818000
top p-presence penalty 0.000049 0.824000
presence penalty 0.000038 0.836000
Language-temperature 0.000035 0.840000
Language-top p 0.000028 0.864000
temperature-max tokens 0.000017 0.884000
temperature-presence penalty 0.000015 0.884000
Multi Turn-temperature 0.000007 0.928000
temperature-top p 0.000006 0.928000
Question Paraphrase-temperature 0.000005 0.950000
COT-top p 0.000003 0.952000
Language-Shot 0.000003 0.944000
Question Format-top p 0.000002 0.952000
Language-max tokens 0.000002 0.950000
Language-presence penalty 0.000002 0.960000
Shot-COT 0.000000 0.998000

(h) Complete ANOVA results on Mistral Medium
Factor Effect Size (η2) p-value

Question Format 0.430500 0.000000
Question Format-COT 0.274248 0.000000
COT 0.105919 0.000000
COT-max tokens 0.013038 0.002000
max tokens 0.012064 0.000000
Question Format-Multi Turn 0.007865 0.004000
Multi Turn 0.005334 0.026000
Shot 0.003097 0.064000
COT-Multi Turn 0.003001 0.090000
Question Format-Shot 0.002782 0.086000
Multi Turn-max tokens 0.001354 0.252000
Shot-Multi Turn 0.000908 0.336000
Language-Question Paraphrase 0.000891 0.378000
Shot-COT 0.000636 0.434000
Question Paraphrase-top p 0.000366 0.476000
Question Paraphrase-presence penalty 0.000312 0.534000
Question Paraphrase-Multi Turn 0.000282 0.578000
Language 0.000254 0.626000
max tokens-presence penalty 0.000227 0.650000
Language-Multi Turn 0.000219 0.656000
Multi Turn-presence penalty 0.000218 0.642000
Question Format-temperature 0.000178 0.682000
Multi Turn-top p 0.000163 0.672000
Language-COT 0.000163 0.690000
temperature-top p 0.000148 0.698000
Question Format-max tokens 0.000128 0.672000
Question Format-Question Paraphrase 0.000109 0.746000
Question Paraphrase-max tokens 0.000103 0.754000
COT-top p 0.000091 0.750000
COT-temperature 0.000081 0.764000
Shot-temperature 0.000076 0.806000
top p 0.000076 0.784000
Question Paraphrase-temperature 0.000076 0.758000
Language-temperature 0.000061 0.798000
Question Format-presence penalty 0.000053 0.806000
Shot-top p 0.000048 0.808000
Language-Shot 0.000044 0.832000
Shot-max tokens 0.000044 0.814000
Question Paraphrase-COT 0.000037 0.854000
presence penalty 0.000037 0.844000
Question Paraphrase 0.000034 0.850000
Language-top p 0.000024 0.870000
Language-presence penalty 0.000022 0.874000
Shot-presence penalty 0.000019 0.888000
temperature-presence penalty 0.000014 0.910000
Language-max tokens 0.000008 0.920000
Language-Question Format 0.000007 0.938000
Question Format-top p 0.000005 0.942000
temperature 0.000005 0.948000
max tokens-top p 0.000004 0.958000
Question Paraphrase-Shot 0.000003 0.956000
Multi Turn-temperature 0.000001 0.972000
temperature-max tokens 0.000001 0.968000
COT-presence penalty 0.000000 0.986000
top p-presence penalty 0.000000 0.994000

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

(i) Complete ANOVA results on Moonshot-v1

Factor Effect Size (η2) p-value

Question Format 0.297180 0.000000
Question Format-COT 0.147641 0.000000
COT 0.130758 0.000000
Shot-COT 0.077565 0.000000
Question Format-Shot 0.042631 0.000000
Shot 0.038198 0.000000
COT-Multi Turn 0.018078 0.000000
Language-Shot 0.005572 0.016000
COT-max tokens 0.002887 0.090000
Language-Multi Turn 0.002824 0.084000
Language 0.002702 0.110000
Question Format-Multi Turn 0.002700 0.106000
max tokens 0.002409 0.118000
Language-Question Format 0.002297 0.108000
Multi Turn 0.002185 0.124000
Multi Turn-max tokens 0.001677 0.166000
Question Format-max tokens 0.000966 0.300000
Language-max tokens 0.000930 0.356000
Shot-max tokens 0.000861 0.380000
Language-Question Paraphrase 0.000793 0.360000
COT-presence penalty 0.000402 0.494000
top p-presence penalty 0.000314 0.554000
Multi Turn-temperature 0.000274 0.578000
max tokens-top p 0.000219 0.662000
Shot-presence penalty 0.000203 0.620000
top p 0.000142 0.694000
Question Format-top p 0.000128 0.742000
Question Paraphrase-max tokens 0.000128 0.724000
Question Paraphrase-COT 0.000115 0.756000
Shot-temperature 0.000092 0.786000
max tokens-presence penalty 0.000081 0.770000
Shot-top p 0.000081 0.792000
temperature-top p 0.000081 0.776000
Question Paraphrase-Shot 0.000081 0.804000
Language-temperature 0.000081 0.782000
temperature-presence penalty 0.000053 0.860000
Question Paraphrase-Multi Turn 0.000053 0.858000
Shot-Multi Turn 0.000045 0.812000
Question Format-temperature 0.000037 0.856000
COT-top p 0.000037 0.866000
Question Paraphrase-presence penalty 0.000037 0.882000
Multi Turn-presence penalty 0.000037 0.872000
Question Format-presence penalty 0.000030 0.878000
Question Paraphrase 0.000024 0.864000
Language-presence penalty 0.000019 0.904000
Language-COT 0.000019 0.884000
Multi Turn-top p 0.000014 0.922000
temperature-max tokens 0.000002 0.958000
COT-temperature 0.000002 0.954000
Question Format-Question Paraphrase 0.000002 0.968000
Question Paraphrase-temperature 0.000001 0.966000
temperature 0.000001 0.970000
Language-top p 0.000001 0.968000
presence penalty 0.000000 0.992000
Question Paraphrase-top p 0.000000 0.998000

A.6 LATENCY AND ACCURACY ANALYSIS OF LLMS

In this section, we analyze the relationships between the latency and accuracy of LLMs, as well
as between latency and hardware architectures, based on online evaluation. On one hand, we con-
duct online testing to assess the accuracy of LLMs under different configuration spaces in terms
of the “tail to quality” (Yang et al., 2022) metric. Here, “tail to quality” refers to the ratio of the
number of tasks correctly completed within a specified threshold to the total number of tasks. Fig-
ure 8a illustrates the performance of various LLMs under the “Tail to Quality” metric, showing how
their quality scores evolve across different threshold values. Among the models, deepseek (green
curve) consistently demonstrates the highest quality across all thresholds, outperforming the others.
Doubao (blue curve) and qwen (gray curve) follow, with doubao approaching deepseek’s perfor-
mance at higher thresholds. Kimi (brown curve) and qwen25 (cyan curve) exhibit relatively lower
quality, though qwen25 shows rapid improvement at lower thresholds before plateauing. Overall,
the chart highlights deepseek’s superior capability in handling tail data, while qwen25’s growth in
quality becomes limited at higher thresholds.

On the other hand, following a similar approach as for accuracy, we obtain the 95% and 99% confi-
dence intervals for latency, as shown in Figure 8b. It can be seen that, for most models, latency and
accuracy on AIME’2024 are positively correlated. Notably, doubao-1.5-pro and qwen2.5 achieve
relatively low latency while maintaining high accuracy. In contrast, gpt-4.1 and qwen-plus exhibit
the opposite trend: they achieve lower accuracy despite higher latency.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60

Threshold

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Q
ua

lit
y

Models
doubao-1.5-pro-32k
deepseek-v3
moonshot-v1-8k
qwen-plus
qwen2.5-32b-instruct

(a) tail to quality of different LLMs (b) latency confidence intervals of different LLMs

Figure 8: Relationship between inference accuracy and latency of LLMs in online testing

29

	Introduction
	Related Work
	Motivation
	LLM Evaluatology
	Defining Minimal Evaluation System (MES)
	Constructing Augmented MES (A-MES)
	Evaluating on A-MES and Attributing Evaluation Outcomes

	Evaluation
	The necessity of constructing MES and A-MES
	Quantify the contribution of each indispensable component to overall performance variance
	Compare LLM evaluatology with traditional LLM evaluation methods and Attribute the performance differences to specific components

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Evaluation setting on different benchmarks
	A-MES Construction Pipeline
	Results on MMLU, GPQA
	ANOVA analysis results on different LLMs
	Latency and Accuracy Analysis of LLMs

