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ABSTRACT

Current large language models (LLMs) evaluations overlook that measured LLM
performance is produced on a full evaluation system, including many indispens-
able components, such as workloads, prompting methods, decoding parameters,
and the supporting software—hardware stack. Without an explicit, controlled spec-
ification of the evaluation system, attributing performance differences to the model
itself is unreliable. Our experiments reveal that uncontrolled testing may lead to
accuracy variations of up to 70%. To address this urgent issue, we introduce LLM
evaluatology, a principled methodology that reduces the evaluation problem to ac-
curately attributing the outcomes to the effect of the evaluated LLM, which is a
high-dimensional causal-attribution problem. Empirical results demonstrate that
LLM evaluatology not only enhances interpretability and causal validity, but also
yields evaluations that are more robust, reproducible, and trustworthy than pre-
vailing benchmarks.

1 INTRODUCTION

Current LLM evaluation practices are fragmented and ad-hoc, spanning standardized test—style
benchmarks (Hendrycks et al.l |2020; [Huang et al., [2023; Rein et al.; Suzgun et al. [2023; |AIME|
2025), human preference—based benchmarks (Chiang et al.; (OpenCompass, 2025; Xu et al., [2023)),
and dynamic or continuously refreshed benchmarks (Jain et al.; [Jimenez et al.; White et al.; Zhu
et al.;|[Li et al.). Yet all largely treat the model in isolation, neglecting that measured performance
arises from the entire evaluation system, including workloads, prompts, decoding, and even the
software—hardware stack. In reality, LLM evaluation is inherently a high-dimensional problem, as
these interacting components jointly shape outcomes and complicate attribution. As recent studies
show, results can vary sharply with dataset artifacts (Long et al., 2024; [Liu et al.| [2025), prompt
formatting (He et al., 2024), decoding strategies (Shi et al., [2024)), or annotator biases (Das et al.,
2024). But such analyses remain piecemeal, each targeting a single component without quantifying
their combined impact or enabling principled attribution. What is missing is a rigorous methodology
that disentangles intrinsic model capability from confounding influences and establishes a reliable
foundation for evaluation.

Even under a fully specified evaluation system, LLMs differ fundamentally from traditional single-
task or deterministic systems such as conventional algorithms or CPUs. For CPUs, workloads in
domains like desktop computing or high-performance computing exhibit well-characterized pat-
terns, allowing evaluation to focus on representative hotspots while treating less common cases as
secondary. In contrast, LLM workloads are effectively open-ended: each user can define new tasks
across languages, domains, and usage styles. Some tasks resemble those seen during training, oth-
ers require analogical transformation from familiar patterns, and yet others are entirely novel. This
diversity eliminates the notion of a single “typical” workload, making isolated evaluation on a few
canonical examples insufficient. Here we adopt the term “workload” from CPU benchmarking, us-
ing it to denote a question or instance within a benchmark that the LLM is required to solve. In
addition, LLMs may produce fluent responses without genuine reasoning or knowledge, so-called
hallucinations, meaning that correctly solving one instance does not guarantee mastery of the under-
lying skill. Consequently, reliable evaluation must consider multiple task variations, from familiar
to analogical to novel, in order to disentangle true capability from surface-level correctness. Inter-
preting performance and attributing capability is therefore both a high-dimensional and a content-
sensitive challenge, further amplified by the confounding inherent in the evaluation system.
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This paper introduces LLM evaluatology (Fig.[I)), a principled methodology for the rigorous evalu-
ation of LLMs based on Evaluatology (Zhan, 2024; |Zhan et al., [2024). At its core, we construct a
Minimal Evaluation System (MES), which explicitly defines the evaluated object (e.g., standalone
LLM or LLM service), the indispensable components influencing performance, and the evalua-
tion conditions (the configuration space formed by admissible settings of these components). By
providing a well-defined, controllable system, MES enables systematic exploration of the evalu-
ation configuration space, capturing how different components jointly affect performance and al-
lowing accurate attribution of model capabilities — a solution to the high-dimensional nature of
LLM evaluation. To address content sensitivity, we further extend MES into an Augmented MES
(A-MES), which transforms existing workloads and generates new instances along semantically re-
lated themes. This approach ensures evaluation coverage across three workload layers: workloads
the model is likely to have seen, workloads requiring analogical transformation, and entirely novel
workloads, thereby mitigating the risks of superficial correctness and hallucination. A-MES offers a
structured, reproducible, and automatable framework that disentangles intrinsic model competence
from confounding influences while accommodating the diversity and dynamism of real-world user
interactions.

Our experiments reveal several important findings. First, by constructing A-MES, we observe that
the accuracy of Doubao varies dramatically with configuration, ranging from 0 to 0.8, highlighting
the substantial impact of evaluation settings. Notably, Doubao-1.5-pro ranks first under MES but
drops to sixth under A-MES, with a significant gap from the top model, indicating limited gener-
alization ability. Within the Qwen series, we find that the smaller model ranks higher under MES
but is surpassed by the larger model under A-MES, suggesting that A-MES provides a more faithful
reflection of scaling properties. By contrast, DeepSeek-V3 consistently achieves strong accura-
cies across all MES and A-MES scenarios, demonstrating the strongest robustness among the tested
models. Second, leveraging analysis of variance (ANOVA), xgboost, and linear models, we quantify
the impact of each component on model accuracy. All components show measurable influence, with
Question Format and COT emerging as the most sensitive, followed by max_tokens, Shot, and Multi
Turn. Furthermore, models exhibit heterogeneous sensitivity to languages: for example, DeepSeek-
V3 is most sensitive to Arabic, where its accuracy reaches the lowest among all languages tested.
Finally, we validate that our proposed LLM evaluatology provides the closest approximation to the
accuracy ground truth, significantly outperforming traditional single-configuration evaluations in
reliability and robustness.
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Figure 1: LLM Evaluatology: Measured performance arises from an Augmented Minimal Evalu-
ation System (A-MES), which enables disentangling intrinsic model capability from confounding
influences. Here, the evaluation object is defined as the LLM service, comprising the LLM and its
underlying systems. When evaluating a standalone LLM, the underlying systems are instead treated
as part of the evaluation conditions (EC).

2 RELATED WORK

Broadly, existing benchmarks can be grouped into the following three categories. Standardized
test—style benchmarks present problems in the form of test questions, with model outputs compared
against reference answers. Representative examples include MMLU (Hendrycks et al.l 2020) and
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its extensions MMLU-Pro (Wang et al.l [2024b) and MMLU-Redux (Gema et al., 2025)), as well as
C-Eval (Huang et al.l 2023) and CMMLU (L1 et al., 2024) in the Chinese context. GPQA (Rein
et al.) targets graduate-level science, while other datasets focus on specific capabilities such as
reasoning (BBH (Suzgun et al., [2023)), HellaSwag (Zellers et al.| [2019), Winogrande (Sakaguchi
et al.}2021)), mathematics (GSM8K (Cobbe et al.,[2021), MATH (Hendrycks et al.), AIME (AIME}
2023))), coding (HumanEval (Chen et al.,|2021)), MBPP (Austin et al.,2021)), Aider-polyglot (Aider,
2025)), MultiPL-E (Cassano et al.| 2023))), long-context understanding (L-Eval (An et al., [2024),
LongBench (Bai et al., 2024), coBench (Zhang et al.| 2024a), HELMET (Yen et al., [2025))), safety
(SafetyBench (Zhang et al., [2024b), Toxigen (Hartvigsen et al.| 2022)), instruction-following (IFE-
val (Zhou et al.|[2023), Multi-Challenge (Sirdeshmukh et al.|2025))), and multimodality (MMBench
(L1u et al., 2024), MMMU (Yue et al., 2024)), MathVista (Lu et al.)).

Human preference—based benchmarks evaluate models in interactive settings, collecting user judg-
ments instead of relying on fixed test sets. Chatbot Arena (Chiang et al.) is the most prominent ex-
ample, where pairwise votes are aggregated via Elo ratings. CompassArena (OpenCompass, [2025)
apply similar designs in the Chinese context.

Dynamic or continuously refreshed benchmarks aim to avoid data contamination by relying on
newly released or procedurally generated tasks. Examples include LiveCodeBench (Jain et al.)
(recent programming contests), SWE-bench (Jimenez et al.) (GitHub issues and PRs), LiveBench
(White et al.) (rolling monthly refresh), DyVal (Zhu et al.) (procedural reasoning via DAGs), and
Arena-Hard (Li et al.) (real-time crowdsourced challenges).

Table 1: Evaluation Settings on Different Benchmarks (Lang. = Language, Format = Question
Format, Para. = Question Paraphrase, M-turn = Multi Turn, Temp. = temperature, PP = pres-
ence_penalty, MaxTok = max_tokens, ori = original, y = yes, n = no)

Model Lang. Format Para. Shot coT M-turn Temp. top-_p PP MaxTok

MMLU English ori n 0/3/5 y/n n 0.0/0.3/0.5/0.6/0.7 0.8/0.95 0/1.5 1024/8192/32768
AIME English ori n 0 y/n n 0.0/0.6/0.7 0.8/0.95 0/1.5 8192/32768/38912
GPQA English ori n 0/5 y/n n 0.4/0.5/0.6/0.7 0.8/0.95 0/1.5 1024/8192/32768
MATH English ori n 0/8 y/n n 0.0/0.6/0.7 0.8/0.95 0/1.5 8192/32768
SWE-bench English ori n 0 y/n n 0.0/0.8 0.95 X 8192/16384
IFEval English ori n 0 y/n n 0.0/0.6/0.7 0.8/0.95 0,1.5 8192/16384
Arena-Hard English ori n 0 y/n n 0.0/0.6/0.7 0.8/0.95 0/1.5 8192/32768
Human Eval English ori n 0 y/n n 0.3 0.95 X 8192/32768

3 MOTIVATION

The flaw of existing LLM evaluation methodology. Existing LLM benchmarks define workload
formats and scoring rules, but leave crucial indispensable components uncontrolled, e.g., decoding
parameters and prompting methods. As a result, reported evaluation outcomes often do not allow
a direct comparison of model differences and may conflate intrinsic capability with arbitrary com-
ponent settings. To make this issue concrete, we systematically reviewed major benchmarks and
compiled a taxonomy of which components are explicitly defined and which are left open (Table[T).
Strikingly, many widely used benchmarks, including AIME, specify only a subset of variables while
leaving key components underspecified. To quantify the implications, we reconstructed the AIME
evaluation space by enumerating plausible settings of uncontrolled components (e.g., COT, temper-
ature, top-p, presence penalty, max tokens), yielding 162 distinct evaluation conditions. Accuracy
under these conditions varied by as much as 70% across settings, and the distributions often diverged
substantially from the single numbers reported in technical documentation. On some models, the
median relative change between our measured accuracy and the accuracy reported in the technical
report reached as high as 50%(see Figure [2). Comparable inconsistencies are evident in MMLU
(Appendix [A.2)) and other flagship benchmarks, suggesting that the problem is not dataset-specific
but structural across current LLM evaluation methodologies. These findings reveal a fundamen-
tal flaw in current practice: a benchmark score is often not a property of the model alone but of
the loosely specified evaluation system surrounding it. Without principled control over these con-
founding components, evaluation becomes unstable, attribution unreliable, and comparisons across
models misleading.

The challenges of using Evaluatology for LLM evaluation. Zhan et al. conceptualize evaluation
as constructing a minimal system that integrates the evaluation object with indispensable compo-
nents while considering user requirements (Zhan, [2024;|/Zhan et al.;, 2024). Wang et al. illustrate this
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approach for CPUs, where a Minimal Evaluation System (MES) isolates CPU behavior from con-
founding components (Wang et al., 2024a). However, extending Evaluatology to LLLMs presents a
qualitatively deeper challenge than in the case of CPUs or other deterministic systems. For such con-
ventional artifacts, workloads can be reasonably characterized and stabilized: standardized bench-
marks capture dominant usage scenarios and once confounders are controlled, evaluation outcomes
largely reflect intrinsic system differences. By contrast, LLM workloads are inherently open-ended
and socially constructed, shaped by heterogeneous users, diverse linguistic and cultural contexts,
and the continual emergence of novel use cases. In this setting, even the “unit of evaluation” be-
comes unstable: what qualifies as mainstream, extrapolative, or atypical shifts across communities
and over time. To illustrate, consider the following problem from AIME: “Let A, B, C, and D be
points on the hyperbola % - % = 1 such that ABCD is a thombus whose diagonals intersect at
the origin. Find the greatest real number that is less than BD? for all such rhombi.” When eval-
uated on nine LLMs including deepseek, doubao, gpt series, moonshot, mistral, qwen series, etc.,

five were able to solve this original (seen)
workload correctly. However, after perform- 0.7 —
ing analogical transformations through insert-
ing distractor: “In a geometric study, we often
encounter various shapes and their properties.
Also, the concept of symmetry plays an impor-
tant role in analyzing the relationships between
different geometric figures. Let A, B, C, and D

be points on the hyperbola ”26—; — g—i = 1 such that
ABCD is a thombus whose diagonals intersect
at the origin. Find the greatest real number that
is less than B.D? for all such rhombi.”’, none of
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these models produced correct solutions. This
striking contrast illustrates why A-MES is es-
sential: performance on a single workload can
be misleading, as models may succeed on prob-
lems they have effectively memorized yet fail

Figure 2: Accuracy deviations on AIME when
evaluating with identical workloads across 162
combinations of component settings (COT, tem-
perature, top-p, presence penalty, and max to-
kens).

when the same reasoning must be applied under
slightly altered conditions.

4 LLM EVALUATOLOGY

LLM evaluatology consists of three essential steps: (1) defining MES, (2) defining A-MES, and (3)
evaluating MES/A-MES and attributing evaluation outcomes.

4.1 DEFINING MINIMAL EVALUATION SYSTEM (MES)

We define the Minimal Evaluation System (MES) for LLM evaluation as the smallest independently
runnable system that includes the evaluated object and all indispensable components that materially
affect the evaluation outcome. The evaluated object O is not limited to a bare LLM; it can also
encompass the broader deployed LLM service that fuses the model with its supporting software and
hardware stack. For example, when evaluating through an API, the LLM and its underlying systems
should be treated as an inseparable whole, whereas for locally deployed open-source models, the
surrounding system environment may either be incorporated into O or explicitly modeled as part of
the other indispensable components. Thus, the first step of defining MES is to rigorously define the
evaluated object.

The second step in defining MES is to identify the indispensable components that shape evaluation
outcomes and to establish their value ranges, collectively denoted as evaluation conditions (EC).
We organize EC into three layers, covering workload, prompting method, and decoding param-
eters, which together yield 10 key factors (C1—C1g). Workload captures data-related variations,
including Language, Question Format, and Question Paraphrase (C;—C'3). Note that Question Para-
phrase is introduced as a key component to mitigate hallucination and data contamination, referring
to reformulating questions without altering their semantics or correct answers. Prompting method
accounts for interaction styles, namely Shot, COT(chain-of-thought), and Multi Turn (Cy—Cp). De-
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Table 2: Evaluation Conditions: Indispensable Components and Value Ranges

Variable Value Range

Language Chinese, English, Japanese, Arabic, French, Russian
Question Format Multiple-choice, Fill-in-the-blank
Question Paraphrase Yes, No

Shot Yes, No

CcoT Yes, No

Multi Turn Yes, No

temperature 0.0, 1.0,2.0

top_p 0.2,0.6,1.0

presence_penalty -0.5,0.5,1.5

max_tokens 10, 100, 4000

coding parameters represent inference controls, including temperature, top_p, presence_penalty, and
max_tokens (C7—C1g). Each component is instantiated with representative values to balance cover-
age of real-world variability against configuration space tractability. The indispensable components
and their value ranges are summarized in Table[2] with both components and their value ranges con-
figurable based on the evaluation object and user-defined requirements. Each MES instance is then
specified as M ES = EC x O, ensuring that performance measurements are attributed correctly
while systematically controlling for confounding factors introduced by indispensable components.

4.2 CONSTRUCTING AUGMENTED MES (A-MES)

To further overcome the limitations of traditional evaluation, we extend MES into an augmented
form (A-MES) by expanding the workload subspace. Specifically, an MES is defined as EC' x O,
where the evaluation conditions factorize as EC' = W (workload) x P(prompting_methods) x
D(decoding_parameters). We do augmentation in workload 7/ and leave the non-workload EC
components P and D unchanged when building A-MES. Thus A-MES = O x ECy4, with EC4 =
Wa x Px D, Wy = A(W). A() is the augmentation operator that expands the original workload
W into an enriched workload W 4. Practically, A(TV) is constructed by partitioning and extending
items from the original workload into three purpose-built categories—original (seen), analogical
transformation (transformed), and novel (newly-synthesized) workloads—as shown in Fig. [3}

In our implementation, the latter two categories of augmented workloads are constructed through
five systematically defined, script-driven transformation pipelines including: three analogical (dis-
tractor insertion, numeric substitution, conditional recomposition) and two novel (recent-source
adaptation and conceptual synthesis) pipelines. For each pipeline, we fix general prompts and
scaffolding, and then run the entire process automatically through LLM API calls (e.g., GPT-5),
lightweight verification scripts and other auxiliary tooling. This setup scales to large workloads
and produces diverse variants, without any per-item manual rewriting or hand-crafting of individ-
ual problems. Below we outline the overall automatic transformation process; detailed procedures,
transformation examples, and algorithmic pseudocode are provided in Appendix [A.3]

(1) Analogical Pipelines

* Distractor Insertion. Distractor insertion augments an original question by adding redundant
sentences at a random position. We systematically divide redundant information into three cat-
egories: (i) context-irrelevant redundancy that is completely unrelated to the problem content;
(ii) context-relevant explanatory redundancy that explains concepts already appearing in the
problem; and (iii) context-relevant misleading redundancy that is logically related to the prob-
lem but deliberately nudges the solver toward an incorrect strategy. By providing the LLM with
transformation examples, the correct answer, and (optionally) solution steps, all three types of
redundancy are generated via similar structured prompts and automatically inserted at random
positions in the problem statement. We empirically evaluated multiple candidate LLMs for
this task and selected the one that most consistently respects these constraints, GPT-5, as our
transformation executor.

e Numeric Substitutions. Numeric substitution augments a problem by systematically perturb-
ing its key numerical parameters. We leverage the correct answer, solution sketches, and in-
formation from a pre-built formula library to prompt the LLM to generate a Python solver that
explicitly parameterizes the key numbers in the problem. We then execute this solver locally
and, if any error or mismatch is detected, feed the error messages back to the LLM for iterative
refinement until the code passes verification. Once a reliable solver is obtained, we automat-
ically sample new parameters within a predefined range and invoke the solver to compute the
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corresponding new answers, thereby creating a family of numeric variants without manually
editing each instance or recomputing answers by hand.

* Conditional Recomposition Conditional recomposition augments a problem by constructing
“inverse” variants where the original answer is treated as a given condition and some of the
original conditions become the new target quantities. We first prompt the LLM to identify
which conditions and target quantities can be interchanged, and then, following a procedure
similar to numeric substitutions, use a large language model to generate a Python solver that
explicitly parameterizes the key numerical quantities in the problem. The solver is iteratively
refined until it passes verification. Once a verified solver is obtained, we perturb the new
input conditions within a reasonable range and automatically generate multiple “conditionally
recomposed” variants of the original problem.

(2) Novel Pipelines

* Recent-source Adaptation Recent-source adaptation augments a problem by aligning it with
thematically similar questions drawn from recent real-world exams. Given an original problem,
we first use an LLM to extract its core knowledge points. We then query a public exam-question
repository, indexed by year, region, subject, and knowledge point, to retrieve recent (e.g., 2025)
exam questions that match these knowledge points. The retrieved questions are subsequently
paraphrased via LLM, and can optionally be further transformed using the three analogical
pipelines described above. In this way, we obtain recent-source adapted problems that remain
aligned with the original item at the knowledge-point level while being entirely new instances.

* Conceptual Synthesis Conceptual synthesis augments a problem by generating conceptual
questions that target the underlying concepts. Based on authoritative textbooks in PDF form,
we build a structured knowledge base in which each concept is associated with its definitions,
theorems, phenomena, and canonical examples extracted from the textbooks. For a given prob-
lem, we use an LLM to identify its primary knowledge points and retrieve the corresponding
concept entries from the knowledge base. If the corresponding concept entries is missing, we
trigger a textbooks crawling and parsing step to expand the knowledge base and try again.
We then prompt the LLM to synthesize new conceptual questions grounded in these entries,
yielding problems that probe conceptual understanding underlying the origin item.

/ Same solution Augmented Workload Semantically \
stratedy related themes
. cond 1 rec 5 o = ———2
Analogical um:‘. " Original Recent-source adaptation Novel
Transformation Workload| — Numeric substitution Workload Workload
_>
= -
Distractor insertion Concept synthesis /
Find the largest possible real part of Find the largest possible real part of Given that the complex number z
(100+112i)z+(60+144i)/z, where z is (75+1171)z+(90+144i)/z, where z is a satisfies i-z+(1+1)=3i-2, if w=i"i-iz,
Ka complex number with |zj=4 complex number with |zj=4 compute |z|+[w+1| /

Figure 3: Augment the original workload into analogical transformation and novel workloads.

4.3 EVALUATING ON A-MES AND ATTRIBUTING EVALUATION OUTCOMES

MES samples from the full space defined by 10 variables, whereas A-MES starts from this same
space and, for each question within a benchmark, applies all seven mechanisms to construct the
full space of augmented variants, filtering out transformation attempts that fail (e.g., numeric sub-
stitutions or conditional recomposition without a stable solver). Evaluation then samples directly
from this augmentation space, ensuring that no invalid transformations are ever selected; the small
number of discarded variants has negligible impact on overall coverage or robustness.

Given the exponentially large space of workload, prompting methods, and decoding parameters, ex-
haustive testing is generally infeasible. Evaluation on MES/A-MES balances the trade-off between
evaluation accuracy and evaluation cost by systematically sampling the configuration space of evalu-
ation conditions under a joint convergence- and LLN-based stopping rule. Specifically, we generate
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the full list of configurations once and shuffle it with a fixed random seed. This single globally
shuffled list is then shared across all models and workloads. For any given model and benchmark,
use a sample size IV by selecting the first /N configurations from this global list, without any further
re-shuffling. We process this shuffled list sequentially in fixed-size batches (e.g., 10). After every
batch, we recompute the running mean accuracy over all configurations seen so far, together with
the corresponding 95% confidence interval. We stop sampling when two conditions are satisfied
simultaneously: (i) the absolute changes in the running mean accuracy for the last three updates are
all smaller than 0.002, and (ii) the length of the 95% confidence interval is smaller than 0.06. The
number of configurations evaluated when these criteria are first satisfied is denoted Nq,y. After con-
vergence, we further apply a simple Law of Large Numbers—based estimation: using the empirical
variance of the current results, we compute the minimal sample size required to achieve the desired
error tolerance and confidence level, obtaining an LLN-based sample size Nypn. If Ny is larger
than Nony, we continue sampling along the same shuffled order until /Vy ;N configurations have been
evaluated; otherwise, we stop at Ngony. Combining the convergence criterion with the LLN-based
check ensures that our sample sizes are both empirically stable and theoretically justified.

The sampled evaluation conditions are then used to test the evaluation object, yielding performance
outcomes under diverse settings. The final reported evaluation score for each model is then the mean
performance over the sampled instances, together with 95% and 99% confidence intervals, providing
a stable summary metric that balances comprehensiveness with practical efficiency. One approach
to isolate component effects is to use equivalent evaluation conditions, where all component settings
are held constant except for the factor of interest; differences in measured performance can thus be
attributed directly to that component, effectively mitigating confounding. An alternative and com-
plementary approach is to apply ANOVA (analysis of variance) across the sampled configurations,
quantifying the proportion of performance variance explained by each component and enabling sys-
tematic attribution of effects. Together, these strategies provide both controlled and statistical means
to disentangle intrinsic model capability from the influence of evaluation conditions.

5 EVALUATION

In this section, we evaluate the proposed methodology using mainstream LLMs that are publicly
accessible, including deepseek-v3, doubao-1.5-pro-32k, gpt-3.5, gpt-4.1, moonshot-v1-8k, mistral-
large, mistral-medium, qwen-plus and qwen2.5-32b-instruct. We have three targets. 1) Demonstrate
the necessity of constructing MES and A-MES for LLM evaluation by varying the settings of each
indispensable component within MES and A-MES. 2) Quantify the contribution of each indispens-
able component to overall performance variance and identify the key components affecting LLM
behavior using ANOVA. 3) Compare LLM evaluatology with traditional LLM evaluation methods
and show how it enables accurate attribution of performance differences to specific components.

For online testing, we primarily access the models through their official APIs; however, since the
official API for Deepseek v3 has been discontinued, we instead use the API provided by a third-
party server deployment. This study employs several widely used and representative benchmark
datasets—MMLU, GPQA, and AIME—as the basis for evaluation. Note that due to the page limit,
the results of MMLU and GPQA are listed in Appendix[A.4] MMLU covers 57 subjects and contains
a large collection of multiple-choice questions, widely used to assess models’ general knowledge
and reasoning abilities. GPQA consists of 448 challenging multiple-choice questions developed and
validated by experts in biology, physics, and chemistry, designed to evaluate Al models’ reasoning
ability on complex scientific problems. AIME is a highly selective U.S. high school mathematics
competition, well known for its challenging problems that test deep mathematical reasoning. It is
worth noting that our methodology is not tied to any specific benchmark and can be applied to the
evaluation of any LLM.

5.1 THE NECESSITY OF CONSTRUCTING MES AND A-MES

This section demonstrates that LLMs exhibit significant performance variations across different
MES and A-MES configurations, thereby underscoring the inadequacy of single-configuration eval-
uations in accurately capturing their true capabilities.
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Table 3: Performance Rankings of LLMs (deepseek = deepseek-v3, doubao = doubao-1.5-pro-32k,
mistrallL = mistral-large, mistralM = mistral-medium, kimi = moonshot-v1-8k, qwenP = qwen-plus)

Type 1. 2 3 4 5 6 7 8 9

Original deepseek(0.4) gpt4.1(0.07)  doubao(0) gpt3.5(0) mistralL(0) mistralM(0)  kimi(0) qwenP(0) qwen2.5(0)
A-MES deepseek(0.45) qwenP(0.43)  mistrall(0.38) gpt4.1(0.37) mistralM(0.36) doubao(0.34) qwen2.5(0.26) kimi(0.18) gpt3.5(0.13)
MES doubao(0.25) deepseek(0.21) qwen2.5(0.21) mistrall.(0.20) mistralM(0.20) qwenP(0.18) gpt4.1(0.16)  gpt3.5(0.10)  kimi(0.08)

Note: Models are sorted alphabetically by name when accuracy equals zero.

In the MES experiments, we conducted 500 random samplings without replacement from the MES
configuration space described in Section[d.1] The specific components and their corresponding value
ranges are summarized in Table|2] We determined 500 as a conservative sample-size upper bound
by combining a convergence-based stopping rule with LLN-guided estimates.

In the A-MES experiments, to verify the effectiveness of the Augmented Minimal Evaluation System
(A-MES) proposed in Section and comprehensively evaluate the performance of LLMs across
diverse task scenarios, we conducted a comparative analysis of their performance on two types of
datasets: the original AIME workload and four augmented workloads derived from this original
workload. For the analogical transformation workload, we employed two specific methods: the first
involves inserting redundant information into the stem of the original question, information that is
irrelevant to the problem-solving logic and methods yet consistent with the question scenario, to
interfere with the output results of LLMs; The second method involves numeric substitutions. For
novel (newly-synthesized) workloads, this study designs two core strategies: the first is a knowledge
point-based question generation strategy, which specifically generates new tasks based on the core
knowledge points covered in the original questions and combined with the conceptual system and
expression paradigm of relevant textbook chapters; The second is an adaptation and transformation
strategy based on college entrance examination (gaokao) questions, which involves selecting the
latest gaokao questions that match the target knowledge points and generating new tasks by adjusting
the scenario of the question, questioning logic, and other aspects.

The experimental results of this study are presented in Figure ] As shown in Figure [d significant
variations in accuracy trends are observed across different models and configuration spaces. For
instance, the accuracy of the deepseek-v3 model fluctuates within a range of 0 to 0.78 under MES
experiments, and from 0.23 to 0.7 under A-MES experiments. As shown in Table [3| we have also
generated performance rankings for large models based on the original workload, MES workload,
and A-MES workload. For the MES and A-MES scenarios, we employ their average accuracy as
the performance metric for the LLMs. It is crucial to note that when the accuracy is zero, we sort
the models alphabetically based on their names. Drawing insights from the rankings, we observe
three key conclusions: first, the original evaluation methodology demonstrates limited effectiveness
in benchmarking large language models (LLMs) due to its inability to distinguish performance be-
yond two models achieving non-zero accuracy scores; second, DeepSeek consistently outperforms
all competing models across diverse evaluation conditions, underscoring its robustness and supe-
rior generalization capabilities; third, model performance rankings exhibit contextual sensitivity,
as evidenced by Doubao’s inferior performance relative to DeepSeek in both Original and A-MES
workloads, yet its top-ranking achievement in MES, thereby highlighting the non-transitive nature
of LLM performance across varying task formulations and data distributions.
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Table 4: ANOVA results on DeepSeek-V3 (sorted by effect size in descending order)

Factor Effect Size n2 p-value
Question Format 0.399643 0.000
Question Format - COT 0.161394 0.000
CcoT 0.080156 0.000
max_tokens 0.028099 0.000
Question Format - Shot 0.011101 0.000
Language - Question Format 0.008178 0.006
COT - max_tokens 0.006721 0.010
Language - COT 0.004345 0.038
Multi Turn - max_tokens 0.003841 0.050
Language 0.003841 0.046
Shot - max_tokens 0.003669 0.046
Question Format - max_tokens 0.002687 0.100
Language - Multi Turn 0.002600 0.066
temperature - top_p 0.002082 0.178
Question Format - Multi Turn 0.001321 0.244

5.2 QUANTIFY THE CONTRIBUTION OF EACH INDISPENSABLE COMPONENT TO OVERALL
PERFORMANCE VARIANCE

In LLM evaluation, a key challenge lies in effectively evaluating the contribution of each compo-
nents illustrated in Fig. [T|to overall performance variance. Given the enormous number of possible
EC configuration combinations, exhaustively testing every configuration is computationally infea-
sible. To address this, we selected a limited number of experimental points from the full space,
allowing us to systematically and evenly examine the effects of multiple components and their lev-
els on performance with significantly fewer trials. This design reduces experimental cost while
maintaining scientific rigor and representativeness.

To quantify the proportion of performance variance explained by each MES component, we adopted
an analysis of variance (ANOVA) approach. Specifically, for component C;—C1g, we selected two
levels (“high” and “low”) within their respective ranges, with these ranges given in Table[2] thereby
constructing a subspace of size 2'© = 1024. For the Language component, we selected Chinese
and English, while for three-valued components we used their maximum and minimum values.
Within this subspace, variance decomposition was used to quantify the contributions of different
components and their interactions to variations in accuracy. Moreover, we employed a permutation
test to evaluate statistical significance, enabling a more robust assessment of component importance
without relying on additional distributional assumptions. This procedure yields both the relative
importance and the statistical significance of all components.

Taking the DeepSeek-V3 model as an example, Table [ reports the main effects and two-way in-
teractions that significantly influence its accuracy on the AIME’24 benchmark, with the complete
ANOVA results provided in Appendix Overall, Question type, COT, max_tokens, and their
interactions with other components exhibit the most significant effects. Shot, Multi turn, and Lan-
guage also show significant effects, while the remaining components have only limited impact.

Consistent patterns were observed across other LLMs (see Appendix [A.5). Using p < 0.05 as
the significance threshold, we found that the main effects of Question format and COT, or their
interactions with other components, were consistently significant across all LLMs. Furthermore,
max_tokens, Shot, and Multi turn also reached significance for the vast majority of models. In ad-
dition to these five core components, Language, top_p, and temperature were significant for some
models. It is worth noting that for the remaining two components, Question Paraphrase and pres-
ence_penalty, the p-values did not meet the significance threshold, but reached 0.19 and 0.16, re-
spectively, on GPT-4.1. This suggests that they may exert some influence on model performance,
although the evidence is not sufficient for a definitive conclusion.

5.3 COMPARE LLM EVALUATOLOGY WITH TRADITIONAL LLM EVALUATION METHODS
AND ATTRIBUTE THE PERFORMANCE DIFFERENCES TO SPECIFIC COMPONENTS

This section demonstrates that evaluating models under a single configuration fails to capture their
true capabilities, while LLM evaluatology not only yields results in strong agreement with the
ground truth, but also attributes the performance differences to specific components.

Based on the randomly sampled data collected from the complete configuration space spanned by
the components in Table 2] we estimated the overall average accuracies of different models on the
same benchmark using their 95% and 99% confidence intervals. As illustrated in Figure Sa we
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Figure 5: Comparison of LLM Evaluatology and Traditional Method on AIME

report the performance of different models on AIME’2024, where the purple dots denote the test
results under the commonly adopted default setting, using the original workloads without optimized
prompting methods and with default decoding parameters. It can be observed that the purple dots
are far from the confidence intervals (interval estimation of the population mean) obtained through
random sampling, showing that evaluating a model under a single configuration is unreliable. Note
that accuracy values of 0 in Figure [5a]are not due to missing data, but to the high difficulty of AIME
problems, which are challenging even for human contestants.

Figure [5b] further presents, on AIME’ 2024, the accuracy differences between two models under the
default configuration, together with the 95% and 99% confidence intervals constructed from accu-
racy differences observed across sampled equivalent evaluation configurations. In 10 cases, the con-
fidence intervals and the default accuracy differences fall on opposite sides of the zero line, revealing
contradictions in the conclusions regarding model superiority. For instance, the 99% confidence in-
terval for the mean accuracy difference between Doubao-1.5-pro and GPT-4.1 lies entirely above
the zero line, implying that overall Doubao-1.5-pro outperforms GPT-4.1. However, if one were
to rely on the result of a single experiment under the default configuration, the accuracy difference
would fall below the zero line, leading instead to the opposite conclusion that GPT-4.1 outperforms
Doubao-1.5-pro. This “conclusion reversal” highlights the limitations of relying solely on single-
configuration testing. More detailed results on additional benchmarks including MMLU and GPQA
can be found in the Appendix.

Furthermore, we selected the five most influential components for a cost-efficient accuracy test on
each LLM, based on the ANOVA data in Section @ We then constructed the configuration sub-
space restricted to these components and conducted exhaustive testing within this subspace. The
mean performance obtained was taken as a “restricted-space ground truth.” As shown by the red di-
amond in Figure[5a] for all models, this reference truth fell within the confidence intervals estimated
from random sampling, thereby demonstrating both the validity and the robustness of the proposed
LLM evaluatology method.

6 CONCLUSION

LLM Evaluatology establishes a principled methodology for assessing LLMs through an Augmented
Minimal Evaluation System (A-MES), explicitly accounting for both intrinsic model capabilities and
the many confounding components that shape observed performance, thereby enabling accurate at-
tribution of performance differences to their true sources. Our analysis reveals that meaningful eval-
uation of LLMs requires careful consideration of both workload heterogeneity and the vast space of
evaluation condition (EC) configurations. We advocate for the adoption of evaluatology as a foun-
dational paradigm, encouraging the community to develop richer workload augmentation strategies
and robust evaluation practices that mirror the complexity of actual deployment scenarios.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

During the manuscript preparation, we leveraged large language models (LLMs) to assist in refining
and polishing the text. Specifically, the LLM was used to improve sentence clarity and enhance
linguistic fluency, while all scientific content, reasoning, and results were independently authored
and verified by the researchers. This approach facilitated more concise and readable presentation
without affecting the technical accuracy.

A.2 EVALUATION SETTING ON DIFFERENT BENCHMARKS

Table 5: Evaluation Settings Reported in Technical Reports of Different LLMs. (Lang. = Language,
Q-type = Question type, Para. = Paraphrase, M-turn = Multi turn, Temp. = Temperature, PP =
presence_penalty, MaxTok = max_tokens)

(a) Evaluation Settings on AIME’2024

Model Lang. Q-type  Para. Shot COT  M-turn  Temp. topp PP MaxTok
DeepSeek-R1 english  origin origin 0 yes X 0.6 0.95 X 32768
DeepSeek-V3 english  origin origin - x X X 0.7 X X 8192
Kimi K2 english  origin origin  x no X 0.0 fixed X 8192
Kimi K1.5 english  origin origin  x yes X X X X X
Qwen2 Not evaluated on AIME

Qwen2.5 Not evaluated on AIME

Qwen3 english  origin origin  x no X 0.8 1.5 32768
GPT-4 Not evaluated on AIME

GPT-4.1 english  origin origin  x X X X X X X
GPT-5 Not evaluated on AIME

Claude Opus 4 Not evaluated on AIME

Mistral Small3.1 Not evaluated on AIME

Mistral Medium3 Not evaluated on AIME

Mistral Large2 Not evaluated on AIME

(b) Evaluation Settings on MMLU

Model Lang. Q-type Para. Shot coTr M-turn Temp. top-p PP MaxTok
DeepSeek-R1 english origin origin 0 yes X 0.5 X X 1024
DeepSeek-V3 english origin origin 0 yes X 0.5 X X 1024
Kimi K2 english origin origin X no X 0.0 fixed X 8192
Kimi K1.5 english origin origin X yes X X X X X
Qwen2 english origin origin 5 X X X X X X
Qwen2.5 english origin origin 5 X X X X X X
Qwen3 english origin origin 5 X X X X X X
GPT-4 multiple origin origin 5/3 no X X X X X
GPT-4.1 multiple origin origin X X X X X X X
GPT-5 Not evaluated on MMLU
Claude Opus 4 multiple origin origin X yes/no X X X X X
Mistral Small3.1 english origin origin X X X X X X X
Mistral Medium3 Not evaluated on MMLU
Mistral Large2 multiple origin origin X X X X X X X

(c) Evaluation Settings on GPQA
Model Lang. Q-type Para. Shot CcoT M-turn Temp. top-p PP MaxTok
DeepSeek-R1 english origin origin 0 yes X 0.5 X X 1024
DeepSeek-V3 english origin origin 0 yes X 0.5 X X 1024
Kimi K2 english origin origin X no X 0.0 fixed X 8192
Kimi K1.5 english origin origin X yes X X X X X
Qwen2 english origin origin X X X X X X X
Qwen2.5 english origin origin X X X X X X X
Qwen3 english origin origin X yes/no X 0.6/0.7 0.95/0.8 0/1.5 32768
GPT-4 Not evaluated on GPQA
GPT-4.1 english origin origin X X X X X X X
GPT-5 english origin origin X 0/1 X X X X X
Claude Opus 4 english origin origin X 0/1 X X X X X
Mistral Small3.1 english origin origin X X X X X X X
Mistral Medium3 english origin origin 5 1 X X X X X
Mistral Large2 Not evaluated on GPQA

(d) Evaluation Settings on MATH
Model Lang. Q-type Para. Shot coT M-turn Temp. top-p PP MaxTok
DeepSeek-R1 english origin origin 0/8 yes/no X 0 X X 32768
DeepSeek-V3 english origin origin 0/8 yes/no X 0 X X 8192
Kimi K2 english origin origin X no X 0.0 fixed X 8192
Kimi K1.5 english origin origin X yes X X X X X
Qwen2 english origin origin X X X X X X X
Qwen2.5 english origin origin X X X X X X X
Qwen3 english origin origin X yes/no X 0.6/0.7 0.95/0.8 0/1.5 32768
GPT-4 Not evaluated on MATH
GPT-4.1 Not evaluated on MATH
GPT-5 Not evaluated on MATH
Claude Opus 4 Not evaluated on MATH
Mistral Small3.1 english origin origin X X X X X X X
Mistral Medium3 english origin origin 0 0 X X X X X
Mistral Large2 english origin origin 0 0 X X X X X
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(e) Evaluation Settings on SWE-bench

Model Lang. Q-type Para. Shot coTr M-turn Temp. top-p PP MaxTok
DeepSeek-R1 english origin origin X X X 0.8 X X X
DeepSeek-V3 english origin origin X X X 0.8 X X X
Kimi K2 english origin origin X no X 0.0 fixed X 8192/16384
Kimi K1.5 Not evaluated on SWE-bench
Qwen2 Not evaluated on SWE-bench
Qwen2.5(pre) Not evaluated on SWE-bench
Qwen3(pre) Not evaluated on SWE-bench
GPT-4 Not evaluated on SWE-bench
GPT-4.1 english origin origin X X X X X X X
GPT-5 english origin origin X 0/1 X X X X X
Claude Opus 4 english origin origin X 0/1 X X 0.95 X X
Mistral Small3.1 Not evaluated on SWE-bench
Mistral Medium3 Not evaluated on SWE-bench
Mistral Large2 Not evaluated on SWE-bench

(f) Evaluation Settings on IFEval
Model Lang. Q-type Para. Shot coT M-turn Temp. top_p PP MaxTok
DeepSeek-R1 english origin origin 0 0 0 X X X X
DeepSeek-V3 english origin origin 0 0 0 X X X X
Kimi K2 english origin origin X no X 0.0 fixed X 8192
Kimi K1.5 english origin origin X yes X X X X X
Qwen2 english origin origin X X X X X X X
Qwen2.5 english origin origin X X X X X X X
Qwen3 english origin origin X yes/no X 0.6/0.7 0.95/0.8 0/1.5 32768
GPT-4 Not evaluated on IFEval
GPT-4.1 english origin origin X X X X X X X
GPT-5 Not evaluated on IFEval
Claude Opus 4 Not evaluated on IFEval
Mistral Small3.1 Not evaluated on IFEval
Mistral Medium3 english origin origin 0 0 X X X X X
Mistral Large2 Not evaluated on IFEval

(g) Evaluation Settings on Arena-Hard
Model Lang. Q-type Para. Shot coT M-turn Temp. top-p PP MaxTok
DeepSeek-R1 english origin origin 0 0 0 config default default user-set
DeepSeek-V3 english origin origin 0 0 0 config default default user-set
Kimi K2 english origin origin X no X 0.0 fixed X 8192
Kimi K1.5 Not evaluated on Arena-Hard
Qwen2 english origin origin X X X X X X X
Qwen2.5 english origin origin X X X X X X X
Qwen3 english origin origin X yes/no X 0.6/0.7 0.95/0.8 0/1.5 32768
GPT-4 Not evaluated on Arena-Hard
GPT-4.1 Not evaluated on Arena-Hard
GPT-5 Not evaluated on Arena-Hard
Claude Opus 4 Not evaluated on Arena-Hard
Mistral Small3.1 Not evaluated on Arena-Hard
Mistral Medium3 Not evaluated on Arena-Hard
Mistral Large2 english origin origin X X X X X X X
(h) Evaluation Settings on HumanEval

Model Lang. Q-type Para. Shot CcoT M-turn Temp. top-p PP MaxTok
DeepSeek-R1 english origin origin 0 0 0 varied 0.95 X 32768
DeepSeek-V3 english origin origin 0 0 0 varied 0.95 X 8192
Kimi K2 Not evaluated on HumanEval
Kimi K1.5 english origin origin X yes X X X X X
Qwen2 english origin origin X X X X X X X
Qwen2.5 english origin origin X X X X X X X
Qwen3 Not evaluated on HumanEval
GPT-4 english origin origin 0 0 X 0.3 X X X
GPT-4.1 Not evaluated on HumanEval
GPT-5 Not evaluated on HumanEval
Claude Opus 4 Not evaluated on HumanEval
Mistral Small3.1 english origin origin X X X X X X X
Mistral Medium3 english origin origin 0 0 X X X X X
Mistral Large2 english origin origin X X X X X X X

A.3 A-MES CONSTRUCTION PIPELINE

Analogical: Distractor Insertion

For distractor insertion, we define three explicit, controllable categories of redundancy and imple-
ment all instances via LLM prompting. To ensure that the inserted distractors strictly follow our
predefined specifications, we empirically test several candidate LLMs and choose the one that most
consistently adheres to these constraints (GPT-5). This selection is made solely to guarantee trans-
formation fidelity rather than to compare model capabilities. For each item to be transformed, the
chosen LLM is invoked through an API and, guided by our structured prompts, automatically pro-
duces and inserts the required redundant content. The concrete implementation is as follows.

15



Under review as a conference paper at ICLR 2026

(1) Context-irrelevant redundancy.

* Provide the LLM with an example containing an original question and a version with added
context-irrelevant redundancy.

* Instruct the LLM to insert one sentence at a random position that is completely unrelated to the
target question.

Algorithm 1 Context-irrelevant redundancy insertion

1: function INSERTCONTEXTIRRELEVANTDISTRACTOR(problem _text)

2: EXAMPLE_PAIR <+ (orig_example, example_with_irrelevant_context)

3 PROMPT < BUILDPROMPTIRRELEVANT(EX AM PLE_PAIR, problem _text)
4 RESPONSE + LLM_CALL(PROMPT)

5: trans formed_text < PARSETRANSFORMEDPROBLEM(RESPON SE)

6: if not BASICSANITYCHECK(problem_text, trans formed_text) then
7 return FAILURE
8 end if
9 return trans formed_text
0:

10: end function

(2) Context-relevant, explanatory redundancy.

* Provide the LLM with an example of an original question and a version with added explanatory
redundancy.

* Instruct the LLM to insert a redundant sentence at a random position in each target question that
explains a concept already appearing in the target question.

Algorithm 2 Context-relevant explanatory redundancy insertion

1: function INSERTEXPLANATORY DISTRACTOR (problem _text)

2: EXAMPLE_PAIR < (orig-example, example_with_explanatory_sentence)

3: PROMPT <+ BUILDPROMPTEXPLANATORY(EXAM PLE_PAIR, problem_text)
4 RESPONSE «+ LLM_CALL(PROMPT)

5: trans formed_text < PARSETRANSFORMEDPROBLEM(RESPON SE)

6: if not BASICSANITY CHECK(problem_text, trans formed_text) then

7: return FAILURE

8 end if

9: return trans formed_text
10: end function

(3) Context-relevant, misleading redundancy.

* Provide the LLM with an example containing an original question and a version with added mis-
leading but logically related redundancy.

* Supply the model with the correct answer and several correct solution approaches, and instruct it
to avoid directly hinting at these correct strategies when crafting the misleading cue. The official
answer and solution approaches are provided by the user, and providing solution approaches is
optional.

* Instruct the model to insert a redundant sentence that nudges the reader toward an incorrect strat-
egy or line of reasoning, without explicitly revealing that it is “misleading” or “distracting”.

Algorithm 3 Context-relevant misleading redundancy insertion

1: function INSERTMISLEADINGDISTRACTOR(problem_text, answer_gold, solution_sketches)

2: EXAMPLE_PAIR < (orig_example, example_with_misleading _sentence)

3: PROMPT < BUILDPROMPTMISLEADING(example_pair = EXAMPLE_PAIR, target_problem = prob-
lem_text, answer_gold = answer_gold, solution_sketches = solution_sketches)

4: RESPONSE < LLM_CALL(PROMPT)

5 transformed_text < PARSETRANSFORMEDPROBLEM(RESPONSE)

6: if not BASICSANITY CHECK(problem_text, transformed _text) then

7: return FAILURE

8: end if

9 return transformed_text

0

10: end function
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In practice, the selected LLM produces variations that are more diverse and linguistically natural
than manual editing. In particular, its context-relevant misleading redundancies tend to hint at in-
correct heuristics in a more subtle way than hand-written versions, while still strictly adhering to the
predefined category constraints. The entire process involves no per-item manual editing. The three
examples of redundancy for three types generated by the above procedure are illustrated as follows:

1. Context-irrelevant redundancy example:

The weather today seems quite pleasant, and it might be a great day for a picnic.
Find the number of triples of nonnegative integers (a, b, ¢) satisfying a + b + ¢ =
300 and a?b + a%c + b%a + b2c + c*a + ¢2b = 6,000,000.

Here, the weather is entirely unrelated to the math content.

2. Context-relevant, explanatory redundancy example:

There exist real numbers = and y, both greater than 1, such that log, (y*) =
log,, (1;4'9) = 10. A logarithm is a way to express how many times a base must be
multiplied by itself to get a certain number. Find zy.

The added sentence explains the notion of a logarithm while leaving the underlying problem un-
changed.

3. Context-relevant, misleading redundancy example:

Alice and Bob play the following game. A stack of n tokens lies before them. The
players take turns with Alice going first. On each turn, the player removes either
1 token or 4 tokens from the stack. Many players adopt a greedy approach here:
always take 4 whenever possible to shorten the game and restrict the opponent’s
replies. Whoever removes the last token wins. Find the number of positive in-
tegers n less than or equal to 2024 for which there exists a strategy for Bob that
guarantees that Bob will win the game regardless of Alice’s play.

The extra sentence about the “greedy approach” is logically related to the game but suggests a flawed
strategy, intentionally nudging the solver toward an incorrect line of reasoning.

Analogical: Numeric Substitutions

For numeric substitutions, we use a uniform pipeline built around LLM-generated Python solvers
and automatic verification scripts, rather than manually changing a few numbers:

We first call an LLM to extract the primary knowledge points tested by the original problem,

and query a pre-constructed formula library indexed by knowledge point to retrieve potentially

relevant formulas.

We feed the original problem, its official answer, the retrieved formulas, and (where available)

multiple correct solution sketches into the LLM. The official answer and solution sketches are

provided by the user, and providing solution sketches is optional.

The LLM is prompted to:

— analyze the problem’s solution strategy, using the provided solution sketches when available;

— write a Python solution program where problem-specific numbers are extracted as explicit vari-
ables with reasonable value ranges.

We then ask another LLM to inspect the generated Python code and verify that it implements

a general computational procedure for solving the problem, rather than relying on hard-coded

instance-specific outputs or trivial pattern matching.

We import the LLM-generated Python code as a local module and call its solve () function with

the original numeric values as inputs, checking whether the resulting output matches the official

answer.

If the code fails (wrong answer or runtime error), we return the error message and incorrect output

to the LLM, asking it to refine the code; we repeat this refinement—verification loop for up to five

attempts and keep the Python code if it passes on the original instance.
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After obtaining a correct solver, we automatically sample new numeric configurations within the
validated ranges to generate analogical variants of the same underlying problem.

This “knowledge-point extraction — formula retrieval — analyze — code — verify — resample”
pipeline is identical across all problems.

Algorithm 4 Numeric substitutions

1:
2:
3:
4
5:
6:
7
8

9:

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:

function BUILDNUMERICSOLVER(problem_text, answer_gold, solution_sketches, max_iter = 5, max_refine
=5)

knowledge_points < LLM_EXTRACTKNOWLEDGEPOINTS(problem _text)

retrieved_formulas < RETRIEVE_FORMULAS (knowledge_points)

history < EMPTY _LIST

for iter = 1 to max_iter do

PROMPT < BUILDPROMPTCODEGEN(problem_text,answer_gold,solution_sketches,retrieved_formulas)

APPEND (history, (PROMPT, NONE))
(CODE, param, value_ranges) < LLM_CALL(PROMPT)
is_hard_code <~ LLM_HARD_CODE_CHECK(CODE)
if is_hard_code then
continue
end if
for refine_step = 0 to max_refine do
(output, error) < RUN_PYTHON(CODE, input = param.value)
APPEND (history, (CODE, (output, error)))
if error = NONE and VERIFY (output, answer_gold) then
return (CODE, param, value_ranges)
end if
if refine_step = max_refine then
break
end if
PROMPT _refine <— BUILDPROMPTCODEREFINE(problem_text, answer_gold, history)
(CODE, param, value_ranges) +— LLM_CALL(PROMPT _refine)
end for
end for
return FAILURE
end function
function GENERATENUMERIC VARIANTS (problem _text, answer_gold, solution_sketches)
(solver_code, param, param_ranges) <— BUILDNUMERICSOLVER(problem_text, answer_gold, solu-
tion_sketches)
if solver_code = FAILURE then
return NONE
end if
new_param <— SAMPLE(param_ranges)
new_problem_text <— INSTANTIATENUMERICPROBLEMTEXT(problem_text, param, new _param)
(output, error) < RUN_PYTHON(solver_code, input = new_param)
new_answer_gold < output
return (new_problem_text, new_answer_gold)

: end function

An example of numeric substitutions is given as follows.

* Original:

Find the largest possible real part of (75 + 117i)z + 20£144% where z is a complex
number with |z| = 4. A common shortcut is to take z to be a positive real number, since
for a fixed modulus the real part is often largest when the argument of z is zero.

* Numeric variant:

Find the largest possible real part of (100 + 112i)z + w where z is a complex
number with |z| = 4. A common shortcut is to take z to be a positive real number, since
for a fixed modulus the real part is often largest when the argument of z is zero.
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Analogical: Conditional Recompositions

For conditional recompositions, we again adopt a general and automatable pipeline built around
LLM-generated Python solvers and automatic verification scripts, rather than manually rewriting
statements:

We first call an LLM to extract the primary knowledge points tested by the original question,
and query a pre-constructed formula library indexed by knowledge point to retrieve potentially
relevant formulas.

We feed the original problem, its official answer, the retrieved formulas, and (where available)

multiple correct solution sketches into the LLM. The official answer and solution sketches are

provided by the user, and providing solution sketches is optional.

The LLM is prompted to:

— identify the key conditions and the target quantity;

— determine whether some of these conditions and the target can be interchanged—i.e., whether
knowing the original answer allows us to infer some of the original conditions (an invertible
relationship).

When such an invertible relationship exists, the LLM is asked to write a Python solution program

for the recomposed problem, where the original target now appears as an input condition and (a

subset of) the original conditions become the new target.

We then ask another LLM to inspect the generated Python code and verify that it implements

a general computational procedure for solving the problem, rather than relying on hard-coded

instance-specific outputs or trivial pattern matching.

We import the LLM-generated Python code as a local module and call its solve () function,

plugging the original answer value into the new “condition” slot and checking whether the returned

output correctly recovers the original condition values.

Any discrepancy or runtime error is fed back to the LLM for iterative refinement, just as in the

numeric substitutions pipeline. We repeat this refinement—verification loop for up to five attempts

and keep the Python code if it passes on the instance.

Once a correct solver for the recomposed version is obtained, we can further vary the new input
variables within reasonable ranges to generate additional condition-recomposed variants.

This “knowledge-point extraction — formula retrieval — analyze — code — verify — resample”
pipeline is identical across all problems.
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Algorithm 5 Conditional recompositions

—_

: function BUILDRECOMPOSEDSOLVER(problem_text, answer_gold, solution_sketches, max_iter = 5,
max_refine = 5)

knowledge_points < LLM_EXTRACTKNOWLEDGEPOINTS(problem_text)

retrieved_formulas < RETRIEVE_FORMULAS (knowledge_points)

history < EMPTY _LIST

ANALYSIS_PROMPT < BUILDPROMPTINVERTIBLEANALYSIS(problem_text, answer_gold, solu-
tion_sketches, retrieved formulas)

6: ANALYSIS_RESPONSE <— LLM_CALL(ANALYSIS_PROMPT)
7: (invertible, cond_as_unknown, target_as_given, recomposed_problem_text) <  PARSEINVERT-
IBLESTRUCTURE(ANALYSIS_RESPONSE)
8: if invertible = FALSE then
9: return FAILURE
10: end if
11: for iter = 1 to max_iter do
12: PROMPT < BUILDPROMPTRECOMPOSEDCODEGEN(origin_problem_text = problem_text,

new_problem_text = recomposed_problem_text, origin_answer_gold = answer_gold, new_answer_gold
= cond_as_unknown.original_values, solution_sketches = solution_sketches, retrieved _formulas = re-

trieved_formulas)
13: APPEND (history, (PROMPT, NONE))
14: (CODE, value_ranges) <— LLM_CALL(PROMPT)
15: is_hard_code < LLM_HARD_CODE_CHECK(CODE)
16: if is_hard_code then
17: continue
18: end if
19: for refine_step = 0 to max_refine do
20: (output, error) <~ RUN_PYTHON(CODE, input = answer_gold)
21: APPEND (history, (CODE, (output, error)))
22: if error = NONE and VERIFY (output, cond_as_unknown.original _values) then
23: return (CODE,cond_as_unknown,target_as_given,value_ranges,recomposed_problem_text)
24: end if
25: if refine_step = max_refine then
26: break
27: end if
28: PROMPT _refine < BUILDPROMPTRECOMPOSEDCODEREFINE(problem_text = recom-
posed_problem _text, answer_gold = cond_as_unknown.original_values, history = history)
29: (CODE, value_ranges) < LLM_CALL(PROMPT _refine)
30: end for
31: end for
32: return FAILURE

33: end function
34: function GENERATERECOMPOSEDVARIANTS(problem_text, answer_gold, solution_sketches)

35: (solver_code, cond_as_unknown, target_as_given, value_ranges, recomposed_problem_text) < BUIL-
DRECOMPOSEDSOLVER(problem_text, answer_gold, solution_sketches)

36: if solver_code = FAILURE then

37: return NONE

38: end if

39: new_param <— SAMPLE(value_ranges)

40: new_problem_text <— INSTANTIATERECOMPOSEDPROBLEMTEXT(recomposed_problem_text, tar-

get_as_given, new_param)
41: (output, error) < RUN_PYTHON(solver_code, input = new_param)
42: new_answer_gold <— output
43: return (new_problem_text, new_answer_gold)
44: end function

An example of conditional recompositions is given as follows.
* Original:

Rectangles ABC'D and EFGH are drawn such that D, E, C| F are collinear. Also,
A,D,H,G all lie on a circle. If BC = 16, AB = 107, FG = 17, and EF = 184,
what is the length of CE?

* Conditional recomposition:
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Rectangles ABC'D and EFGH are drawn such that D, E, C| F are collinear. Also,
A,D,H,G all lie on a circle. If BC' = 16, AB = 107, CE = 104, and EF = 184,
what is the length of F'G?

Novel: recent-source adaptation
In the “novel” branch, the first mechanism is recent-source adaptation, which is also fully scriptable:

1. We first use an LLM to extract the primary knowledge points tested by a given source problem.

2. We query open-access repositories of centralized exam questions that index items by region,
year, subject, and knowledge point, and crawl the most recent 2025 exam problems matching the
extracted knowledge points.

3. The retrieved problems are paraphrased by the LLM and can be further transformed using the
three analogical methods (redundancy insertion, numeric substitution, and conditional recompo-
sition).

This yields a set of new, recent-source problems that are structurally aligned at the knowledge level
but clearly distinct in surface form and provenance. The entire workflow is driven by scripts and
general prompts, without hand-curating individual items.

Algorithm 6 Recent-Source Adaptation

1: function RECENTSOURCEADAPTATION(problem_text, metadata, K)

2: KP_PROMPT < BUILDPROMPTEXTRACTKNOWLEDGEPOINTS(problem_text, metadata)

3: KP_RESPONSE <+ LLM_CALL(KP_PROMPT)

4: KPs < PARSEKNOWLEDGEPOINTS(KP_RESPONSE)

S: if KPs = NONE then

6: return NONE

7: end if

8: year_range < {2025}

9: candidate_item <— RETRIEVE_EXAMS (knowledge_points = KPs, year_range = year_range, sub-
ject = metadata.subject)

10: if candidate_item = NONE then

11: return NONE

12: end if

13: PARA_PROMPT <— BUILDPROMPTPARAPHRASE(candidate_item.text, candidate _item.answer_gold, KPs)

14: PARA_RESPONSE < LLM_CALL(PARA_PROMPT)
15: paraphrased_item <— PARSEPARAPHRASEDPROBLEM(PARA _RESPONSE)
16: adapted_item <— {

17: text : paraphrased_item.text,

18: answer : candidate_item.answer_gold,

19: KPs : KPs,

20: provenance : {

21: source_exam : candidate_item.metadata,
22: transform : “paraphrase”

23: }

24

25: return adapted_item

26: end function

For example, one recent-source adaptation question generated for the concept of logarithms is:

Given 2!°62¢ = 3 and log; 5 = 2, find a — b

Novel: conceptual synthesis

The second “novel” mechanism is conceptual synthesis from authoritative textbooks. We first crawl
a large collection of authoritative textbooks across different subjects from the web, and then use the
LLM API’s built-in functionality for parsing local PDF files to extract their content. Based on the

21



Under review as a conference paper at ICLR 2026

extracted content, we build a structured knowledge base in which each concept is associated with
definitions, properties, theorems, phenomena, and canonical examples extracted from the textbooks.

1.

Given a problem to be augmented, we use an LLM to identify its main knowledge points, and
then retrieve the corresponding entries from the structured knowledge base. If the subject-specific
knowledge base is missing, we trigger the textbook crawling and parsing step to expand the
knowledge base, and then retrieve the corresponding entries from it.

Conditioned on these entries, the LLM is prompted to generate new conceptual questions target-
ing the underlying knowledge points, rather than copying any existing problem.

This pipeline turns textbook content into fresh conceptual questions that align with the original topic
but are novel in form and focus.

Algorithm 7 Conceptual Synthesis

1 function CONCEPTUALS YNTHESIS(problem_text, metadata)

21:
22:
23:
24

KP_PROMPT < BUILDPROMPTEXTRACTKNOWLEDGEPOINTS(problem_text, metadata)
KP_RESPONSE < LLM_CALL(KP_-PROMPT)
KPs < PARSEKNOWLEDGEPOINTS(KP_RESPONSE)
if KPs = NONE then
return NONE
end if
kb_entry <— RETRIEVE_KB_ENTRY (knowledge_points = KPs, subject = metadata.subject)
if kb_entry = NONE then
CRAWL_AND_PARSE_TEXTBOOKS (knowledge_points = KPs, subject = metadata.subject)
kb_entry <— RETRIEVE_KB_ENTRY (knowledge_points = KPs, subject = metadata.subject)
if kb_entry = NONE then
return NONE
end if
end if
GEN_PROMPT <+ BUILDPROMPTCONCEPTUALQUESTIONGENERATION(kb_entry, KPs)
GEN_RESPONSE <+~ LLM_CALL(GEN_PROMPT)
raw_item <— PARSEGENERATEDCONCEPTUALQUESTIONS(GEN_RESPONSE)
conceptual_item < {
text : raw_item.text,
answer : raw_item.answer,
KPs : KPs

}

return conceptual_item

25: end function

For example, one conceptual-synthesis question generated for the concept of logarithms is:

What kind of mathematical idea/method turns exponentiation and multiplication
into multiplication and addition?
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A.4 RESULTS ON MMLU, GPQA

Accuracy and Confidence Intervals for LLM Groups
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Figure 6: Accuracy confidence intervals of different LLMs on MMLU
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Figure 7: Accuracy confidence intervals of different LLMs on GPQA
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A.5 ANOVA ANALYSIS RESULTS ON DIFFERENT LLMS

Table 6: Complete ANOVA results on LLMs (sorted by effect size in descending order)

(a) Complete ANOVA results on DeepSeek-V3

(b) Complete ANOVA results on Doubao-1.5-pro-32k

Factor Effect Size 172 p-value Factor Effect Size 172 p-value
Question Format 0.399643 0.000 Question Format 0.467626 0.000
Question Format-COT 0.161394 0.000 Question Format-COT 0.259657 0.000
COT 0.080156 0.000 COT 0.130549 0.000
max-tokens 0.028099 0.000 max_-tokens 0.009192 0.002
Question Format-Shot 0.011101 0.000 COT-max-tokens 0.008943 0.006
Language-Question Format 0.008178 0.006 max_-tokens-presence_penalty 0.000671 0.388
COT-max-tokens 0.006721 0.010 Shot 0.000638 0.408
Language-COT 0.004345 0.038 Shot-Multi Turn 0.000605 0.424
Multi Turn-max-tokens 0.003841 0.050 Question Paraphrase-max_tokens 0.000502 0.466
Language 0.003841 0.046 Multi Turn 0.000473 0.466
Shot-max_tokens 0.003669 0.046 Multi Turn-max_tokens 0.000464 0.472
Question Format-max_tokens 0.002687 0.100 Language-temperature 0.000455 0.468
Language-Multi Turn 0.002600 0.066 COT-Multi Turn 0.000427 0.496
temperature-top_p 0.002082 0.178 Question Format-Shot 0.000400 0.546
Question Format-Multi Turn 0.001321 0.244 Question Format-max_tokens 0.000392 0.538
Question Paraphrase 0.001240 0.252 temperature 0.000392 0.534
Question Format-temperature 0.001201 0.262 Question Format-temperature 0.000358 0.530
Shot-temperature 0.000926 0.326 Question Paraphrase-presence_penalty 0.000349 0.552
Multi Turn 0.000793 0.364 Language-top_p 0.000326 0.584
temperature 0.000587 0.396 temperature-top_p 0.000326 0.588
COT-Multi Turn 0.000587 0.466 Language-presence_penalty 0.000310 0.578
COT-top-p 0.000573 0.482 Language-Multi Turn 0.000295 0.562
Language-Shot 0.000534 0.466 Multi Turn-presence_penalty 0.000272 0.604
presence_penalty 0.000435 0.488 Language-COT 0.000265 0.586
Question Format-Question Paraphrase 0.000411 0.562 Shot-COT 0.000224 0.628
Question Paraphrase-max_tokens 0.000207 0.626 Question Paraphrase-top_p 0.000205 0.642
Language-Question Paraphrase 0.000198 0.660 Question Format-Multi Turn 0.000158 0.704
Shot-COT 0.000161 0.646 COT-presence_penalty 0.000147 0.696
COT-temperature 0.000140 0.698 max_-tokens-top_p 0.000147 0.674
Language-max_tokens 0.000140 0.712 presence_penalty 0.000117 0.730
COT-presence_penalty 0.000140 0.668 temperature-max-tokens 0.000108 0.740
Shot 0.000134 0.706 Question Format-presence_penalty 0.000090 0.764
Question Format-presence_penalty 0.000133 0.708 Question Format-Question Paraphrase 0.000067 0.792
Shot-top_p 0.000109 0.736 Question Paraphrase 0.000054 0.836
max_-tokens-presence_penalty 0.000092 0.768 Shot-top_p 0.000047 0.818
max_tokens-top_p 0.000086 0.790 Shot-presence_penalty 0.000047 0.792
top-p 0.000058 0.812 Language 0.000045 0.814
Shot-Multi Turn 0.000054 0.802 Language-Question Paraphrase 0.000044 0.840
temperature-max_tokens 0.000038 0.836 Multi Turn-temperature 0.000036 0.832
Language-presence_penalty 0.000035 0.854 COT-top-p 0.000036 0.854
top_p-presence_penalty 0.000032 0.902 COT-temperature 0.000034 0.834
Multi Turn-temperature 0.000029 0.874 Language-Shot 0.000034 0.850
Multi Turn-top_p 0.000026 0.884 Shot-max_tokens 0.000024 0.864
Question Paraphrase-top_p 0.000018 0.898 temperature-presence_penalty 0.000015 0.906
temperature-presence_penalty 0.000013 0.902 top-p-presence_penalty 0.000013 0.902
Question Paraphrase-presence_penalty 0.000011 0.910 Question Paraphrase-COT 0.000007 0.908
Language-top_p 0.000008 0.942 Language-Question Format 0.000002 0.956
Question Paraphrase-Shot 0.000006 0.930 Question Paraphrase-temperature 0.000001 0.960
Multi Turn-presence_penalty 0.000004 0.946 Shot-temperature 0.000001 0.962
Language-temperature 0.000004 0.940 Question Paraphrase-Multi Turn 0.000001 0.966
Question Format-top_p 0.000003 0.962 Language-max_tokens 0.000001 0.970
Question Paraphrase-Multi Turn 0.000003 0.972 Question Paraphrase-Shot 0.000001 0.980
Shot-presence_penalty 0.000001 0.966 top-p 0.000001 0.970
Question Paraphrase-COT 0.000001 0.996 Question Format-top_p 0.000000 0.984
Question Paraphrase-temperature 0.000000 0.994 Multi Turn-top-p 0.000000 0.992
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(c) Complete ANOVA results on GPT-3.5

(d) Complete ANOVA results on GPT-4.1

Effect Size (n2)

Effect Size (n2)

Factor p-value Factor p-value

Question Format 0.417428 0.000000 Question Format 0.289086 0.000000
Question Format-COT 0.199209 0.000000 Question Format-COT 0.180162 0.000000
CcoT 0.199208 0.000000 COT-max_tokens 0.054845 0.000000
temperature 0.006046 0.016000 max_tokens 0.053399 0.000000
Question Format-temperature 0.005781 0.020000 0.027181 0.000000
Shot-Multi Turn 0.005715 0.010000 temperature-top_p 0.006685 0.010000
Shot-COT 0.005651 0.026000 Question Format-Shot 0.006529 0.030000
max_tokens 0.005396 0.024000 temperature 0.005619 0.016000
Question Format-max_tokens 0.004434 0.044000 Shot 0.004963 0.028000
temperature-top_p 0.004320 0.052000 max_tokens-top_p 0.004019 0.044000
top-p 0.003119 0.074000 Language-max-tokens 0.003907 0.062000
Question Format-top_p 0.002570 0.104000 Question Format-temperature 0.003732 0.072000
COT-max-tokens 0.001773 0.170000 top-p 0.003364 0.098000
Question Format-Shot 0.000853 0.344000 temperature-max-tokens 0.002990 0.140000
COT-Multi Turn 0.000828 0.352000 Question Paraphrase-Shot 0.002362 0.160000
Language-Multi Turn 0.000779 0.364000 Question Paraphrase-presence_penalty 0.001939 0.194000
Language 0.000687 0.428000 Shot-Multi Turn 0.001842 0.194000
Language-Question Format 0.000600 0.484000 COT-temperature 0.001708 0.230000
COT-top-p 0.000443 0.496000 Shot-COT 0.001589 0.290000
COT-temperature 0.000425 0.508000 Language-COT 0.001517 0.246000
COT-presence_penalty 0.000408 0.508000 COT-presence_penalty 0.001406 0.276000
Question Paraphrase-Multi Turn 0.000407 0.534000 Question Format-max_tokens 0.001360 0.306000
Question Paraphrase-COT 0.000391 0.506000 temperature-presence_penalty 0.001284 0.292000
Shot 0.000296 0.578000 Language-Shot 0.001276 0.262000
Shot-temperature 0.000281 0.598000 Language-Question Paraphrase 0.001188 0.324000
Language-Shot 0.000253 0.598000 presence_penalty 0.001184 0.362000
max_tokens-presence_penalty 0.000201 0.628000 COT-top-p 0.001183 0.300000
Question Paraphrase-top_p 0.000177 0.696000 COT-Multi Turn 0.001037 0.376000
Shot-max_tokens 0.000135 0.720000 Multi Turn-max_tokens 0.000988 0.376000
Language-top_p 0.000115 0.690000 Shot-top_p 0.000754 0.422000
Question Paraphrase-presence_penalty 0.000115 0.714000 Question Paraphrase-max_tokens 0.000703 0.438000
Language-temperature 0.000106 0.750000 Multi Turn-top_p 0.000367 0.574000
Language-max_tokens 0.000106 0.740000 Question Format-presence_penalty 0.000348 0.584000
Shot-presence_penalty 0.000089 0.786000 Question Format-Question Paraphrase 0.000333 0.584000
Multi Turn-temperature 0.000081 0.784000 Language-presence_penalty 0.000329 0.586000
Language-COT 0.000074 0.766000 max-tokens-presence_penalty 0.000324 0.600000
Multi Turn-presence_penalty 0.000074 0.788000 top-p-presence_penalty 0.000253 0.618000
Question Format-Question Paraphrase 0.000067 0.776000 Shot-presence_penalty 0.000192 0.702000
Question Paraphrase 0.000053 0.808000 Shot-max_tokens 0.000164 0.724000
Question Format-Multi Turn 0.000047 0.826000 Question Paraphrase 0.000146 0.746000
presence_penalty 0.000047 0.854000 Question Format-top_p 0.000134 0.728000
temperature-max-tokens 0.000036 0.858000 Shot-temperature 0.000133 0.724000
Question Paraphrase-max_tokens 0.000036 0.854000 Question Format-Multi Turn 0.000132 0.718000
temperature-presence_penalty 0.000031 0.884000 Question Paraphrase-top_p 0.000065 0.798000
Language-Question Paraphrase 0.000027 0.858000 Multi Turn-presence_penalty 0.000055 0.828000
Question Format-presence_penalty 0.000027 0.900000 Language-top_p 0.000023 0.896000
Question Paraphrase-temperature 0.000027 0.882000 Language-Question Format 0.000022 0.910000
Multi Turn 0.000018 0.872000 Multi Turn-temperature 0.000020 0.886000
Multi Turn-max_tokens 0.000009 0.916000 Question Paraphrase-temperature 0.000010 0.922000
Question Paraphrase-Shot 0.000009 0.920000 Language-Multi Turn 0.000009 0.906000
Multi Turn-top_p 0.000007 0.942000 Question Paraphrase-COT 0.000009 0.922000
top_p-presence_penalty 0.000007 0.948000 Question Paraphrase-Multi Turn 0.000005 0.918000
Shot-top_p 0.000007 0.942000 Language 0.000001 0.964000
Language-presence_penalty 0.000002 0.970000 Multi Turn 0.000000 0.996000
max_tokens-top_p 0.000000 0.978000 Language-temperature 0.000000 0.998000
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(e) Complete ANOVA results on Qwen2.5

(f) Complete ANOVA results on Qwen Plus

Effect Size (n2)

Effect Size (n2)

Factor p-value Factor p-value
Question Format 0.454352 0.000000 Question Format 0.302717 0.000000
Question Format-COT 0.204235 0.000000 Question Format-COT 0.259678 0.000000
CoT 0.200224 0.000000 CoT 0.098747 0.000000
Question Format-Shot 0.009265 0.000000 Shot 0.047447 0.000000
ot 0.007983 0.008000 Question Format-Shot 0.042448 0.000000
Shot-COT 0.006715 0.002000 Shot-COT 0.024956 0.000000
Multi Turn 0.003717 0.046000 COT-max_tokens 0.016596 0.000000
Question Format-Multi Turn 0.003657 0.052000 max_tokens 0.016280 0.000000
max_tokens 0.002764 0.080000 Language 0.005019 0.024000
Language-Question Format 0.002585 0.128000 Language-Question Format 0.003272 0.060000
COT-max-tokens 0.001865 0.164000 temperature-top-p 0.002324 0.112000
Language 0.001720 0.196000 Multi Turn-max-tokens 0.001979 0.154000
COT-Multi Turn 0.001540 0.214000 Question Format-temperature 0.001662 0.202000
Multi Turn-max_-tokens 0.001110 0.322000 top-p 0.001282 0.250000
Question Format-max_tokens 0.000922 0.292000 Language-Shot 0.000991 0.296000
Language-COT 0.000848 0.382000 Question Paraphrase-Multi Turn 0.000877 0.320000
Question Paraphrase-presence_penalty 0.000710 0.400000 COT-temperature 0.000822 0.368000
Language-Multi Turn 0.000538 0.478000 Multi Turn 0.000736 0.428000
temperature 0.000430 0.444000 Question Format-Question Paraphrase 0.000654 0.458000
Shot-temperature 0.000380 0.534000 temperature 0.000608 0.412000
Question Format-temperature 0.000371 0.550000 Language-COT 0.000519 0.472000
Language-Question Paraphrase 0.000343 0.550000 Shot-Multi Turn 0.000438 0.512000
temperature-presence_penalty 0.000334 0.566000 Multi Turn-presence_penalty 0.000400 0.512000
Language-temperature 0.000290 0.602000 Shot-presence_penalty 0.000375 0.496000
top-p 0.000257 0.600000 Question Format-top_p 0.000275 0.604000
max_tokens-top_p 0.000242 0.618000 COT-Multi Turn 0.000245 0.612000
Shot-Multi Turn 0.000234 0.654000 Question Format-max_tokens 0.000226 0.648000
COT-temperature 0.000219 0.660000 Question Format-Multi Turn 0.000166 0.708000
Question Format-Question Paraphrase 0.000165 0.674000 Multi Turn-temperature 0.000135 0.724000
Question Paraphrase-top_p 0.000165 0.672000 max_tokens-presence_penalty 0.000128 0.690000
Language-max_tokens 0.000165 0.674000 top_p-presence_penalty 0.000102 0.752000
Question Paraphrase 0.000118 0.742000 Question Paraphrase-Shot 0.000101 0.746000
Language-top_p 0.000107 0.760000 COT-top-p 0.000090 0.758000
temperature-top_p 0.000107 0.724000 Language-presence_penalty 0.000084 0.792000
Multi Turn-presence_penalty 0.000083 0.762000 Language-max_tokens 0.000073 0.762000
max-tokens-presence_penalty 0.000075 0.784000 temperature-presence_penalty 0.000058 0.786000
Shot-max_tokens 0.000062 0.770000 Language-Multi Turn 0.000058 0.806000
presence_penalty 0.000051 0.830000 Question Paraphrase-top_p 0.000058 0.814000
Question Format-top_p 0.000038 0.824000 Language-temperature 0.000049 0.816000
top-p-presence_penalty 0.000038 0.830000 Shot-top_p 0.000037 0.838000
Multi Turn-temperature 0.000029 0.856000 Question Paraphrase 0.000033 0.864000
Question Paraphrase-temperature 0.000027 0.882000 Shot-temperature 0.000033 0.860000
COT-presence_penalty 0.000022 0.846000 Language-top_p 0.000029 0.850000
Multi Turn-top-p 0.000022 0.882000 Question Paraphrase-max_tokens 0.000023 0.862000
Question Format-presence_penalty 0.000022 0.866000 Question Paraphrase-presence_penalty 0.000015 0.902000
Language-presence_penalty 0.000012 0.912000 Question Paraphrase-temperature 0.000015 0.904000
temperature-max-tokens 0.000012 0.918000 Multi Turn-top_p 0.000015 0.924000
Question Paraphrase-Multi Turn 0.000009 0.942000 Shot-max_tokens 0.000013 0.898000
Language-Shot 0.000007 0.926000 COT-presence_penalty 0.000013 0.918000
Question Paraphrase-Shot 0.000005 0.928000 Question Format-presence_penalty 0.000005 0.946000
COT-top.p 0.000003 0.954000 temperature-max _tokens 0.000002 0.970000
Shot-presence_penalty 0.000002 0.960000 presence_penalty 0.000002 0.960000
Shot-top_p 0.000001 0.982000 max_tokens-top_p 0.000002 0.970000
Question Paraphrase-COT 0.000000 0.984000 Question Paraphrase-COT 0.000001 0.978000
Question Paraphrase-max_tokens 0.000000 0.990000 Language-Question Paraphrase 0.000000 0.994000

26




Under review as a conference paper at ICLR 2026

(g) Complete ANOVA results on Mistral Large

(h) Complete ANOVA results on Mistral Medium

Effect Size (n2)

Effect Size (n2)

Factor p-value Factor p-value

Question Format 0.406873 0.000000 Question Format 0.430500 0.000000
Question Format-COT 0.268919 0.000000 Question Format-COT 0.274248 0.000000
CoT 0.075852 0.000000 CoT 0.105919 0.000000
COT-max_tokens 0.026017 0.000000 COT-max_tokens 0.013038 0.002000
max_tokens 0.025372 0.000000 max_tokens 0.012064 0.000000
Question Format-Multi Turn 0.004796 0.024000 Question Format-Multi Turn 0.007865 0.004000
Multi Turn 0.003609 0.058000 Multi Turn 0.005334 0.026000
Question Format-Shot 0.003338 0.068000 Shot 0.003097 0.064000
COT-Multi Turn 0.002708 0.100000 COT-Multi Turn 0.003001 0.090000
Question Format-max_tokens 0.001379 0.230000 Question Format-Shot 0.002782 0.086000
Shot 0.001023 0.320000 Multi Turn-max_-tokens 0.001354 0.252000
Language-Question Format 0.001004 0.280000 Shot-Multi Turn 0.000908 0.336000
Multi Turn-max_tokens 0.000881 0.310000 Language-Question Paraphrase 0.000891 0.378000
Shot-Multi Turn 0.000830 0.368000 Shot-COT 0.000636 0.434000
Language-Multi Turn 0.000766 0.372000 Question Paraphrase-top_p 0.000366 0.476000
Language-COT 0.000765 0.356000 Question Paraphrase-presence_penalty 0.000312 0.534000
Question Format-Question Paraphrase 0.000644 0.414000 Question Paraphrase-Multi Turn 0.000282 0.578000
Multi Turn-presence_penalty 0.000456 0.458000 Language 0.000254 0.626000
Question Paraphrase 0.000364 0.550000 max_tokens-presence_penalty 0.000227 0.650000
Question Paraphrase-presence_penalty 0.000353 0.486000 Language-Multi Turn 0.000219 0.656000
max_tokens-presence_penalty 0.000272 0.620000 Multi Turn-presence_penalty 0.000218 0.642000
Shot-top_p 0.000244 0.638000 Question Format-temperature 0.000178 0.682000
Multi Turn-top_p 0.000244 0.570000 Multi Turn-top_p 0.000163 0.672000
Language-Question Paraphrase 0.000235 0.618000 Language-COT 0.000163 0.690000
Question Format-presence_penalty 0.000227 0.604000 temperature-top_p 0.000148 0.698000
COT-temperature 0.000227 0.628000 Question Format-max_tokens 0.000128 0.672000
Question Paraphrase-Shot 0.000193 0.658000 Question Format-Question Paraphrase 0.000109 0.746000
temperature 0.000185 0.644000 Question Paraphrase-max_tokens 0.000103 0.754000
Shot-presence_penalty 0.000178 0.650000 COT-top.p 0.000091 0.750000
Question Format-temperature 0.000178 0.672000 COT-temperature 0.000081 0.764000
Question Paraphrase-top_p 0.000163 0.686000 Shot-temperature 0.000076 0.806000
Shot-max_tokens 0.000163 0.682000 top_p 0.000076 0.784000
top_p 0.000142 0.690000 Question Paraphrase-temperature 0.000076 0.758000
Question Paraphrase-max_tokens 0.000135 0.688000 Language-temperature 0.000061 0.798000
Question Paraphrase-Multi Turn 0.000128 0.772000 Question Format-presence_penalty 0.000053 0.806000
max-tokens-top_p 0.000110 0.712000 Shot-top_p 0.000048 0.808000
Language 0.000109 0.736000 Language-Shot 0.000044 0.832000
COT-presence_penalty 0.000087 0.780000 Shot-max_tokens 0.000044 0.814000
Shot-temperature 0.000087 0.810000 Question Paraphrase-COT 0.000037 0.854000
Question Paraphrase-COT 0.000053 0.818000 presence_penalty 0.000037 0.844000
top-p-presence_penalty 0.000049 0.824000 Question Paraphrase 0.000034 0.850000
presence_penalty 0.000038 0.836000 Language-top_p 0.000024 0.870000
Language-temperature 0.000035 0.840000 Language-presence_penalty 0.000022 0.874000
Language-top_p 0.000028 0.864000 Shot-presence_penalty 0.000019 0.888000
temperature-max_-tokens 0.000017 0.884000 temperature-presence_penalty 0.000014 0.910000
temperature-presence_penalty 0.000015 0.884000 Language-max_tokens 0.000008 0.920000
Multi Turn-temperature 0.000007 0.928000 Language-Question Format 0.000007 0.938000
temperature-top-p 0.000006 0.928000 Question Format-top_p 0.000005 0.942000
Question Paraphrase-temperature 0.000005 0.950000 temperature 0.000005 0.948000
COT-top-p 0.000003 0.952000 max_tokens-top_p 0.000004 0.958000
Language-Shot 0.000003 0.944000 Question Paraphrase-Shot 0.000003 0.956000
Question Format-top_p 0.000002 0.952000 Multi Turn-temperature 0.000001 0.972000
Language-max_tokens 0.000002 0.950000 temperature-max_tokens 0.000001 0.968000
Language-presence_penalty 0.000002 0.960000 COT-presence_penalty 0.000000 0.986000
Shot-COT 0.000000 0.998000 top_p-presence_penalty 0.000000 0.994000
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(i) Complete ANOVA results on Moonshot-v1

Factor Effect Size (172) p-value
Question Format 0.297180 0.000000
Question Format-COT 0.147641 0.000000
CcoT 0.130758 0.000000
Shot-COT 0.077565 0.000000
Question Format-Shot 0.042631 0.000000
Shot 0.038198 0.000000
COT-Multi Turn 0.018078 0.000000
Language-Shot 0.005572 0.016000
COT-max_tokens 0.002887 0.090000
Language-Multi Turn 0.002824 0.084000
Language 0.002702 0.110000
Question Format-Multi Turn 0.002700 0.106000
max_tokens 0.002409 0.118000
Language-Question Format 0.002297 0.108000
Multi Turn 0.002185 0.124000
Multi Turn-max_tokens 0.001677 0.166000
Question Format-max_tokens 0.000966 0.300000
Language-max_tokens 0.000930 0.356000
Shot-max_tokens 0.000861 0.380000
Language-Question Paraphrase 0.000793 0.360000
COT-presence_penalty 0.000402 0.494000
top-p-presence_penalty 0.000314 0.554000
Multi Turn-temperature 0.000274 0.578000
max_tokens-top_p 0.000219 0.662000
Shot-presence_penalty 0.000203 0.620000
top_p 0.000142 0.694000
Question Format-top_p 0.000128 0.742000
Question Paraphrase-max_tokens 0.000128 0.724000
Question Paraphrase-COT 0.000115 0.756000
Shot-temperature 0.000092 0.786000
max-tokens-presence_penalty 0.000081 0.770000
Shot-top_p 0.000081 0.792000
temperature-top_p 0.000081 0.776000
Question Paraphrase-Shot 0.000081 0.804000
Language-temperature 0.000081 0.782000
temperature-presence_penalty 0.000053 0.860000
Question Paraphrase-Multi Turn 0.000053 0.858000
Shot-Multi Turn 0.000045 0.812000
Question Format-temperature 0.000037 0.856000
COT-top_p 0.000037 0.866000
Question Paraphrase-presence_penalty 0.000037 0.882000
Multi Turn-presence_penalty 0.000037 0.872000
Question Format-presence_penalty 0.000030 0.878000
Question Paraphrase 0.000024 0.864000
Language-presence_penalty 0.000019 0.904000
Language-COT 0.000019 0.884000
Multi Turn-top_p 0.000014 0.922000
temperature-max_tokens 0.000002 0.958000
COT-temperature 0.000002 0.954000
Question Format-Question Paraphrase 0.000002 0.968000
Question Paraphrase-temperature 0.000001 0.966000
temperature 0.000001 0.970000
Language-top_p 0.000001 0.968000
presence_penalty 0.000000 0.992000
Question Paraphrase-top_p 0.000000 0.998000

A.6 LATENCY AND ACCURACY ANALYSIS OF LLMS

In this section, we analyze the relationships between the latency and accuracy of LLMs, as well
as between latency and hardware architectures, based on online evaluation. On one hand, we con-
duct online testing to assess the accuracy of LLMs under different configuration spaces in terms
of the “tail to quality” (Yang et al.l 2022) metric. Here, “tail to quality” refers to the ratio of the
number of tasks correctly completed within a specified threshold to the total number of tasks. Fig-
ure[8alillustrates the performance of various LLMs under the “Tail to Quality” metric, showing how
their quality scores evolve across different threshold values. Among the models, deepseek (green
curve) consistently demonstrates the highest quality across all thresholds, outperforming the others.
Doubao (blue curve) and qwen (gray curve) follow, with doubao approaching deepseek’s perfor-
mance at higher thresholds. Kimi (brown curve) and qwen25 (cyan curve) exhibit relatively lower
quality, though qwen25 shows rapid improvement at lower thresholds before plateauing. Overall,
the chart highlights deepseek’s superior capability in handling tail data, while qwen25’s growth in
quality becomes limited at higher thresholds.

On the other hand, following a similar approach as for accuracy, we obtain the 95% and 99% confi-
dence intervals for latency, as shown in Figure[8b] It can be seen that, for most models, latency and
accuracy on AIME’2024 are positively correlated. Notably, doubao-1.5-pro and gwen2.5 achieve
relatively low latency while maintaining high accuracy. In contrast, gpt-4.1 and qwen-plus exhibit
the opposite trend: they achieve lower accuracy despite higher latency.
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Figure 8: Relationship between inference accuracy and latency of LLMs in online testing

29



	Introduction
	Related Work
	Motivation
	LLM Evaluatology
	Defining Minimal Evaluation System (MES)
	Constructing Augmented MES (A-MES)
	Evaluating on A-MES and Attributing Evaluation Outcomes

	Evaluation
	The necessity of constructing MES and A-MES
	Quantify the contribution of each indispensable component to overall performance variance
	Compare LLM evaluatology with traditional LLM evaluation methods and Attribute the performance differences to specific components

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Evaluation setting on different benchmarks
	A-MES Construction Pipeline
	Results on MMLU, GPQA
	ANOVA analysis results on different LLMs
	Latency and Accuracy Analysis of LLMs


