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Abstract

Adversarial Transferability is an intriguing property – adversarial perturbation
crafted against one model is also effective against another model, while these mod-
els are from different model families or training processes. To better protect ML
systems against adversarial attacks, several questions are raised: what are the suffi-
cient conditions for adversarial transferability and how to bound it? Is there a way
to reduce the adversarial transferability in order to improve the robustness of an
ensemble ML model? To answer these questions, in this work we first theoretically
analyze and outline sufficient conditions for adversarial transferability between
models; then propose a practical algorithm to reduce the transferability between
base models within an ensemble to improve its robustness. Our theoretical analysis
shows that only promoting the orthogonality between gradients of base models is
not enough to ensure low transferability; in the meantime, the model smoothness is
an important factor to control the transferability. We also provide the lower and
upper bounds of adversarial transferability under certain conditions. Inspired by
our theoretical analysis, we propose an effective Transferability Reduced Smooth
(TRS) ensemble training strategy to train a robust ensemble with low transferability
by enforcing both gradient orthogonality and model smoothness between base mod-
els. We conduct extensive experiments on TRS and compare with 6 state-of-the-art
ensemble baselines against 8 whitebox attacks on different datasets, demonstrating
that the proposed TRS outperforms all baselines significantly.

1 Introduction

Machine learning systems, especially those based on deep neural networks (DNNs), have been widely
applied in numerous applications [27, 18, 46, 10]. However, recent studies show that DNNs are
vulnerable to adversarial examples, which are able to mislead DNNs by adding small magnitude of
perturbations to the original instances [47, 17, 54, 52]. Several attack strategies have been proposed
so far to generate such adversarial examples in both digital and physical environments [36, 32, 51,
53, 15, 28]. Intriguingly, though most attacks require access to the target models (whitebox attacks),
several studies show that adversarial examples generated against one model are able to transferably
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attack another target model with high probability, giving rise to blackbox attacks [39, 41, 31, 30, 57].
This property of adversarial transferability poses great threat to DNNs.

Some work have been conducted to understand adversarial transferability [48, 33, 12]. However,
a rigorous theoretical analysis or explanation for transferability is still lacking in the literature. In
addition, although developing robust ensemble models to limit transferability shows great potential
towards practical robust learning systems, only empirical observations have been made in this line
of research [38, 23, 56]. Can we deepen our theoretical understanding on transferability? Can we
take advantage of rigorous theoretical understanding to reduce the adversarial transferability and
therefore generate robust ensemble ML models?

Decision Boundary 1

Decision Boundary 2

Decision Boundary 1

Decision Boundary 2

Feature 1 Feature 1

Fe
at

ur
e 

2

Fe
at

ur
e 

2

(a) Orthogonal but Not Smooth (b) Orthogonal and Smooth

Figure 1: An illustration of the relationship be-
tween adversarial transferability, gradient orthog-
onality, and model smoothness. (a) Gradient or-
thogonality alone cannot minimize transferabil-
ity as the decision boundaries between two clas-
sifiers can be arbitrarily close yet orthogonal al-
most everywhere; (b) Gradient orthogonality with
model smoothness provides a stronger guarantee
on model diversity, as our theorems will show.

In this paper, we focus on these two questions. From
the theoretical side, we are interested in the sufficient
conditions under which the adversarial transferabil-
ity can be lower bounded and upper bounded. Our
theoretical arguments provides the first theoretical
interpretation for the sufficient conditions of trans-
ferability. Intuitively, as illustrated in Figure 1, we
show that the commonly used gradient orthogonality
(low cosine similarity) between learning models [12]
cannot directly imply low adversarial transferability;
on the other hand, orthogonal and smoothed models
would limit the transferability. In particular, we prove
that the gradient similarity and model smoothness are
the key factors that both contribute to the adversarial
transferability, and smooth models with orthogonal
gradients can guarantee low transferability.

Under an empirical lens, inspired by our theoretical
analysis, we propose a simple yet effective approach,
Transferability Reduced Smooth (TRS) ensemble to
limit adversarial transferability between base models
within an ensemble and therefore improve its robustness. In particular, we reduce the loss gradient
similarity between models as well as enforce the smoothness of models to introduce global model
orthogonality.

We conduct extensive experiments to evaluate TRS in terms of the model robustness against different
strong white-box and blackbox attacks following the robustness evaluation procedures [5, 6, 49],
as well as its ability to limit transferability across the base models. We compare the proposed
TRS with existing state-of-the-art baseline ensemble approaches such as ADP [38], GAL [23],
and DVERGE [56] on MNIST, CIFAR-10, and CIFAR-100 datasets, and we show that (1) TRS
achieves the state-of-the-art ensemble robustness, outperforming others by a large margin; (2) TRS
achieves efficient training; (3) TRS effectively reduces the transferability among base models within
an ensemble which indicates its robustness against whitebox and blackbox attacks; (4) Both loss
terms in TRS contribute to the ensemble robustness by constraining different sufficient conditions of
adversarial transferability.

Contributions. In this paper, we make the first attempt towards theoretical understanding of adver-
sarial transferability, and provide practical approach for developing robust ML ensembles.
(1) We provide a general theoretical analysis framework for adversarial transferability. We prove

the lower and upper bounds of adversarial transferability. Both bounds show that the gradient
similarity and model smoothness are the key factors contributing to the adversarial transferability,
and smooth models with orthogonal gradients can guarantee low transferability.

(2) We propose a simple yet effective approach TRS to train a robust ensemble by jointly reducing
the loss gradient similarity between base models and enforcing the model smoothness. The code
is publicly available2.

(3) We conduct extensive experiments to evaluate TRS in terms of model robustness under different
attack settings, showing that TRS achieves the state-of-the-art ensemble robustness and outper-
forms other baselines by a large margin. We also conduct ablation studies to further understand
the contribution of different loss terms and verify our theoretical findings.

2https://github.com/AI-secure/Transferability-Reduced-Smooth-Ensemble

2

https://github.com/AI-secure/Transferability-Reduced-Smooth-Ensemble


Related Work

The adversarial transferability between different ML models is an intriguing research direction.
Papernot et al. [40] explored the limitation of adversarial examples and showed that, while some
instances are more difficult to manipulate than the others, these adversarial examples usually transfer
from one model to another. Demontis et al. [12] later analyzed transferability for both evasion and
poisoning attacks. Tramèr et al. [48] empirically investigated the subspace of adversarial examples that
enables transferability between different models: though their results provide a non-zero probability
guarantee on the transferability, they did not quantify the probability of adversarial transferability.

Leveraging the transferability, different blackbox attacks have been proposed [41, 28, 15, 9]. To
defend against these transferability based attacks, Pang et al. [38] proposed a class entropy based
adaptive diversity promoting approach to enhance the ML ensemble robustness. Recently, Yang
et al. [56] proposed DVERGE, a robust ensemble training approach that diversifies the non-robust
features of base models via an adversarial training objective function. However, these approaches
do not provide theoretical justification for adversarial transferability, and there is still room to
improve the ML ensemble robustness based on in-depth understanding on the sufficient conditions of
transferability. In this paper, we aim to provide a theoretical understanding of transferability, and
empirically compare the proposed robust ML ensemble inspired by our theoretical analysis with
existing approaches to push for a tighter empirical upper bound for the ensemble robustness.

2 Transferability of Adversarial Perturbation

In this section, we first introduce preliminaries, and then provide the upper and lower bounds of
adversarial transferability by connecting adversarial transferability with different characteristics of
models theoretically, which, in the next section, will allow us to explicitly minimize transferability by
enforcing (or rewarding) certain properties of models.

Notations. We consider neural networks for classification tasks. Assume there are C classes, and let
X be the input space of the model with Y = {1, 2, . . . , C} the set of prediction classes (i.e., labels).
We model the neural network by a mapping function F : X → Y . We will study the transferability
between two models F and G. For brevity, hereinafter we mainly show the derived notations for
F and notations for G are similar. Let the benign data (x, y) follow an unknown distribution D
supported on (X ,Y), and PX denote the marginal distribution on X .

For a given input x ∈ X , the classification model F first predicts the confidence score for each label
y ∈ Y , denoted as fy(x). These confidence scores sum up to 1, i.e.,

∑
y∈Y fy(x) = 1,∀x ∈ X . The

model F will predicts the label with highest confidence score: F(x) = argmaxy∈Y fy(x).

For modelF , there is usually a model-dependent loss function `F : X×Y → R+, which is the compo-
sition of a differentiable training loss (e.g., cross-entropy loss) ` and the model’s confidence score f(·):
`F (x, y) := `(f(x), y), (x, y) ∈ (X ,Y). We further assume that F(x) = argminy∈Y `F (x, y), i.e.,
the model predicts the label with minimum loss. This holds for common training losses.

In this paper, by default we will focus on models that are well-trained on the benign dataset, and such
models are the most commonly encountered in practice, so their robustness is paramount. This means
we will focus on the low risk classifiers, which we will formally define in Section 2.1.

How should we define an adversarial attack? For the threat model, we consider the attacker that
adds an `p norm bounded perturbation to data instance x ∈ X . In practice, there are two types of
attacks, untargeted attacks and targeted attacks. The definition of adversarial transferability is slightly
different under these attacks [33], and we consider both in our analysis.
Definition 1 (Adversarial Attack). Given an input x ∈ X with true label y ∈ Y , F(x) = y. (1) An
untargeted attack crafts AU (x) = x+ δ to maximize `F (x+ δ, y) where ‖δ‖p ≤ ε. (2) A targeted
attack with target label yt ∈ Y crafts AT (x) = x+ δ to minimize `F (x+ δ, yt) where ‖δ‖p ≤ ε.

In this definition, ε is a pre-defined attack radius that limits the power of the attacker. We may refer
to {δ : ‖δ‖p ≤ ε} as the perturbation ball. The goal of the untargeted attack is to maximize the loss
of the target model against its true label y. The goal of the targeted attack is to minimize the loss
towards its adversarial target label yt.

How do we formally define that an attack is effective?
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Definition 2 ((α,F)-Effective Attack). Consider a input x ∈ X with true label y ∈ Y . An attack is
(α,F )-effective in untargeted scenario if Pr (F(AU (x)) 6= y) ≥ 1− α. An attack is (α,F )-effective
in targeted scenario (with class target yt) if Pr (F(AT (x)) = yt) ≥ 1− α.

This definition captures the requirement that an adversarial instance generated by an effective attack
strategy is able to mislead the target classification model (e.g. F) with certain probability (1− α).
The smaller the α is, the more effective the attack is. In practice, this implies that on a finite sample
of targets, the attack success is frequent but not absolute. Note that the definition is general for both
whitebox [1, 12, 5] and blackbox attacks [42, 4].

2.1 Model Characteristics

Given two modelsF and G, what are the characteristics ofF and G that have impact on transferability
under a given attack strategy? Intuitively, the more similar these two classifers are, the larger the
transferability would be. However, how can we define “similar” and how can we rigorously connect
it to transferability? To answer these questions, we will first define the risk and empirical risk for a
given model to measure its performance on benign test data. Then, as the DNNs are differentiable,
we will define model similarity based on their gradients. We will then derive the lower and upper
bounds of adversarial transferability based on the defined model risk and similarity measures.
Definition 3 (Risk and Empirical Risk). For a given model F , we let `F be its model-dependent
loss function. Its risk is defined as ηF = Pr (F(x) 6= y); and its empirical risk is defined as
ξF = E [`F (x, y)].

The risk represents the model’s error rate on benign test data, while the empirical risk is a non-negative
value that also indicates the inaccuracy. For both of them, higher value means worse performance on
the benign test data. The difference is that, the risk has more intuitive meaning, while the empirical
risk is differentiable and is actually used during model training.
Definition 4 (Loss Gradient Similarity). The lower loss gradient similarity S and upper loss gradient
similarity S between two differentiable loss functions `F and `G is defined as:

S(`F , `G) = inf
x∈X ,y∈Y

∇x`F (x, y) · ∇x`G(x, y)
‖∇x`F (x, y)‖2 · ‖∇x`G(x, y)‖2

,S(`F , `G) = sup
x∈X ,y∈Y

∇x`F (x, y) · ∇x`G(x, y)
‖∇x`F (x, y)‖2 · ‖∇x`G(x, y)‖2

.

The S(`F , `G) (S(`F , `G)) is the minimum (maximum) cosine similarity between the gradients of
the two loss functions for an input x drawn from X with any label y ∈ Y . Besides the loss gradient
similarity, in our analysis we will also show that the model smoothness is another key characteristic
of ML models that affects the model transferability.

Definition 5. We call a model F β-smooth if sup
x1,x2∈X ,y∈Y

‖∇x`F (x1, y)−∇x`F (x2, y)‖2
‖x1 − x2‖2

≤ β.

This smoothness definition is commonly used in deep learning theory and optimization literature [3, 2],
and is also named curvature bounds in certified robustness literature [44]. It could be interpreted as
the Lipschitz bound for the model’s loss function gradient. We remark that larger β indicates that the
model is less smoother, while smaller β means the model is smoother. Particularly, when β = 0, the
model is linear in the input space X .

2.2 Definition of Adversarial Transferability

Based on the model characteristics we explored above, next we will ask: Given two models, what is
the natural and precise definition of adversarial transferability?

Definition 6 (Transferability). Consider an adversarial instance AU (x) or AT (x) constructed
against a surrogate model F . With a given benign input x ∈ X , The transferability Tr between F
and a target model G is defined as follows (adversarial target yt ∈ Y):

• Untargeted: Tr(F ,G, x) = I[F(x) = G(x) = y ∧ F(AU (x)) 6= y ∧ G(AU (x)) 6= y].

• Targeted: Tr(F ,G, x, yt) = I[F(x) = G(x) = y ∧ F(AT (x)) = G(AT (x)) = yt].

Here we define the transferability at instance level, showing several conditions are required to satisfy
for a transferable instance. For the untargeted attack, it requires that: (1) both the surrogate model
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and target model make correct prediction on the benign input; and (2) both of them make incorrect
predictions on the adversarial inputAU (x). The AU (x) is generated via the untargeted attack against
the surrogate model F . For the targeted attack, it requires that: (1) both the surrogate and target
model make correct prediction on benign input; and (2) both output the adversarial target yt ∈ Y on
the adversarial input AT (x). The AT (x) is crafted against the surrogate model F . The predicates
themselves do not require AU and AT to be explicitly constructed against the surrogate model F .
It will be implied by attack effectiveness (Definition 2) on F in theorem statements. Note that the
definition here is a predicate for a specific input x, and in the following analysis we will mainly use
its distributional version: Pr (Tr(F ,G, x) = 1) and Pr (Tr(F ,G, x, yt) = 1).

2.3 Lower Bound of Adversarial Transferability

Based on the general definition of transferability, in this section we will analyze how to lower bound
the transferability for targeted attack. The analysis for untargeted attack has a similar form and is
deferred to Theorem 3 in Appendix A.
Theorem 1 (Lower Bound on Targeted Attack Transferability). Assume both models F and G are
β-smooth. Let AT be an (α,F)-effective targeted attack with perturbation ball ‖δ‖2 ≤ ε and target
label yt ∈ Y . The transferabiity can be lower bounded by

Pr (Tr(F ,G, x, yt) = 1) ≥ (1−α)−(ηF+ηG)−
ε(1 + α) + cF (1− α)

cG + ε
−ε(1− α)

cG + ε

√
2− 2S(`F , `G),

where

cF = max
x∈X

min
y∈Y

`F (AT (x), y)− `F (x, yt) + βε2/2

‖∇x`F (x, yt)‖2
, cG = min

x∈X

min
y∈Y

`G(AT (x), y)− `G(x, yt)− βε2/2

‖∇x`G(x, yt)‖2
.

Here ηF , ηG are the risks of models F and G respectively.

We defer the complete proof in Appendix C. In the proof, we first use a Taylor expansion to introduce
the gradient terms, then relate the dot product with cosine similarity of the loss gradients, and finally
use Markov’s inequality to derive the misclassification probability of G to complete the proof.

Implications. In Theorem 1, the only term which correlates both F and G is S(`F , `G), while all
other terms depend on individual models F or G. Thus, we study the relation between S(`F , `G) and
Pr (Tr(F ,G, x, yt) = 1).

Note that since β is small compared with the perturbation radius ε and the gradient magnitude
‖∇x`G‖2 in the denominator is relatively large, the quantity cG is small. Moreover, 1 − α is
large since the attack is typically effective against F . Thus, Pr (Tr(F ,G, x, yt) = 1) has the form
C − k

√
1− S(`F , `G), where C and k are both positive constants. We can easily observe the

positive correlation between the loss gradients similarity S(`F , `G), and lower bound of adversarial
transferability Pr (Tr(F ,G, x, yt) = 1).

In the meantime, note that when β increases (i.e., model becomes less smooth), in the transferability
lower bound C − k

√
1− S(`F , `G), the C decreases and k increase. As a result, the lower bounds

in Theorem 1 decreases, which implies that when model becomes less smoother (i.e., β becomes
larger), the transferability lower bounds become looser for both targeted and untargeted attacks. In
other words, when the model becomes smoother, the correlation between loss gradients similarity
and lower bound of transferability becomes stronger, which motivates us to constrain the model
smoothness to increase the effect of limiting loss gradients similarity.

In addition to the `p-bounded attacks, we also derive a transferability lower bound for general attacks
whose magnitude is bounded by total variance distance of data distributions. We defer the detail
analysis and discussion to Appendix B.

2.4 Upper Bound of Adversarial Transferability

We next aim to upper bound the adversarial transferability. The upper bound for target attack is
shown below; and the one for untargeted attack has a similar form in Theorem 4 in Appendix A.
Theorem 2 (Upper Bound on Targeted Attack Transferability). Assume both models F and G are
β-smooth with gradient magnitude bounded by B, i.e., ‖∇x`F (x, y)‖ ≤ B and ‖∇x`G(x, y)‖ ≤ B
for any x ∈ X , y ∈ Y . LetAT be an (α,F)-effective targeted attack with perturbation ball ‖δ‖2 ≤ ε
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and target label yt ∈ Y . When the attack radius ε is small such that `min−εB
(
1 +

√
1+S(`F ,`G)

2

)
−

βε2 > 0, the transferability can be upper bounded by

Pr (Tr(F ,G, x, yt) = 1) ≤ ξF + ξG

`min − εB
(
1 +

√
1+S(`F ,`G)

2

)
− βε2

,

where `min = min
x∈X

(`F (x, yt), `G(x, yt)). Here ξF and ξG are the empirical risks of models F and G
respectively, defined relative to a differentiable loss.

We defer the complete proof to Appendix D. In the proof, we first take a Taylor expansion on the loss
function at (x, y), then use the fact that the attack direction will be dissimilar with at least one of the
model gradients to upper bound the transferability probability.

Implications. In Theorem 2, we observe that along with the increase of S(`F , `G), the denominator
decreases and henceforth the upper bound increases. Therefore, S(`F , `G)—upper loss gradient
similarity and the upper bound of transferability probability is positively correlated. This tendency is
the same as that in the lower bound. Note that α does not appear in upper bounds since only completely
successful attacks (α = 0%) needs to be considered here to upper bound the transferability.

Meanwhile, when the model becomes smoother (i.e., β decreases), the transferability upper bound
decreases and becomes tighter. This implication again motivates us to constrain the model smoothness.
We further observe that smaller magnitude of gradient, i.e., B, also helps to tighten the upper bound.
We will regularize both B and β to increase the effect of constraining loss gradients similarity.

Note that the lower bound and upper bound jointly show smaller β leads to a reduced gap be-
tween lower and upper bounds and thus a stronger correlation between loss gradients similarity and
transferabiltiy. Therefore, it is important to both constrain gradient similarity and increase model
smoothness (decrease β) to reduce model transferability and improve ensemble robustness.

3 Improving Ensemble Robustness via Transferability Minimization
Motivated by our theoretical analysis, we propose a lightweight yet effective robust ensemble training
approach, Transferability Reduced Smooth (TRS), to reduce the transferability among base models
by enforcing low loss gradient similarity and model smoothness at the same time.

3.1 TRS Regularizer
In practice, it is challenging to directly regularize the model smoothness. Luckily, inspired from
deep learning theory and optimization [14, 37, 45], succinct `2 regularization on the gradient terms
‖∇x`F‖2 and ‖∇x`G‖2 can reduce the magnitude of gradients and thus improve model smoothness.
For example, for common neural networks, the smoothness can be upper bounded via bounding the
`2 magnitude of gradients [45, Corollary 4]. An intuitive explanation is that, the `2 regularization
on the gradient terms reduces the magnitude of model’s weights, thus limits its changing rate when
non-linear activation functions are applied to the neural network model. However, we find that
directly regularizing the loss gradient magnitude with `2 norm is not enough, since a vanilla `2
regularizer such as ‖∇x`F‖2 will only focus on the local region at data point x, while it is required
to ensure the model smoothness over a large decision region to control the adversarial transferability
based on our theoretical analysis.

To address this challenge, we propose a min-max framework to regularize the “support” instance x̂
with “worst” smoothness in the neighborhood region of data point x, which results in the following
model smoothness loss:

Lsmooth(F ,G, x, δ) = max
‖x̂−x‖∞≤δ

‖∇x̂`F‖2 + ‖∇x̂`G‖2 (1)

where δ refers to the radius of the `∞ ball around instance x within which we aim to ensure the
model to be smooth. In practice, we leverage projection gradient descent optimization to search
for support instances x̂ for optimization. This model smoothness loss can be viewed as promoting
margin-wise smoothness, i.e., improving the margin between nonsmooth decision boundaries and data
point x. Another option is to promote point-wise smoothness that only requires the loss landscape
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at data point x itself to be smooth. We compare the ensemble robustness of the proposed min-max
framework which promotes the margin-wise smoothness with the naïve baseline which directly
applies `2 regularization on each model loss gradient terms to promote the point-wise smoothness
(i.e. Cos-`2) in Section 4.

Given trained “smoothed" base models, we also decrease the model loss gradient similarity to
reduce the overall adversarial transferability between base models. Among various metrics which
measure the similarity between the loss gradients of base model F and G, we find that the vanilla
cosine similarity metric, which is also used in [23], may lead to certain concerns. By minimizing the
cosine similarity between∇x`F and∇x`G , the optimal case implies∇x`F = −∇x`G , which means
two models have contradictory (rather than diverse) performance on instance x and thus results in
turbulent model functionality. Considering this challenge, we leverage the absolute value of cosine
similarity between ∇x`F and ∇x`G as similarity loss Lsim and its optimal case implies orthogonal
loss gradient vectors. For simplification, we will always use the absolute value of the gradient cosine
similarity as the indicator of gradient similarity in our later description and evaluation.

Based on our theoretical analysis and particularly the model loss gradient similarity and model
smoothness optimization above, we propose TRS regularizer for model pair (F ,G) on input x as:

LTRS(F ,G, x, δ) = λa · Lsim + λb · Lsmooth

= λa ·
∣∣∣∣ (∇x`F )>(∇x`G)
‖∇x`F‖2 · ‖∇x`G‖2

∣∣∣∣+ λb ·
[

max
‖x̂−x‖∞≤δ

‖∇x̂`F‖2 + ‖∇x̂`G‖2
]
.

Here ∇x`F and ∇x`G refer to the loss gradient vectors of base models F and G on input x, and
λa, λb the weight balancing parameters.

In Section 4, backed up by extensive empirical evaluation, we will systematically show that the local
min-max training and the absolute value of the cosine similarity between the model loss gradients
significantly improve the ensemble model robustness with negligible performance drop on benign
accuracy, as well as reduce the adversarial transferability among base models.

3.2 TRS Training
We integrate the proposed TRS regularizer with the standard ensemble training loss, such as Ensemble
Cross-Entropy (ECE) loss, to maintain both ensemble model’s classification utility and robustness by
varying the balancing parameter λa and λb. Specifically, for an ensemble model consisting of N base
models {Fi}Ni=1, given an input (x, y), our final training loss train is defined as:

Ltrain =
1

N

N∑
i=1

LCE(Fi(x), y) +
2

N(N − 1)

N∑
i=1

N∑
j=i+1

LTRS(Fi,Fj , x, δ)

where LCE(Fi(x), y) refers to the cross-entropy loss between Fi(x), the output vector of model Fi
given x, and the ground-truth label y. The weight of LTRS regularizer could be adjusted by the tuning
λa and λb internally. We present one-epoch training pseudo code in Algorithm 1 of Appendix F. The
detailed hyper-parameter setting and training criterion are discussed in Appendix F.

4 Experimental Evaluation
In this section, we evaluate the robustness of the proposed TRS-ensemble model under both strong
whitebox attacks, as well as blackbox attacks considering the gradient obfuscation concern [1]. We
compare TRS with six state-of-the-art ensemble approaches. In addition, we evaluate the adversarial
transferability among base models within an ensemble and empirically show that the TRS regularizer
can indeed reduce transferability effectively. We also conduct extensive ablation studies to explore
the effectiveness of different loss terms in TRS, as well as visualize the trained decision boundaries
of different ensemble models to provide intuition on the model properties. We open source the code3

and provide a large-scale benchmark.

4.1 Experimental Setup
Datasets. We conduct our experiments on widely-used image datasets including hand-written dataset
MNIST [29]; and colourful image datasets CIFAR-10 and CIFAR-100 [26].

3https://github.com/AI-secure/Transferability-Reduced-Smooth-Ensemble
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Table 1: Robust accuracy(%) of different ensembles against whitebox attacks on MNIST/CIFAR-10. “para.”
refers to the attack parameter (ε is the `∞ perturbation budget for the attack and c the constant to balance
the attack stealthiness and effectiveness). The first 6 methods are baseline ensembles, and the last 3 columns
(Cos-only, Cos-`2, TRS) the variants of TRS-ensemble.

MNIST para. AdaBoost GradientBoost CKAE ADP GAL DVERGE Cos-only Cos-`2 TRS
ε = 0.1 70.2 73.2 72.6 71.7 35.7 95.8 66.2 91.2 95.6FGSM
ε = 0.2 39.4 34.2 42.5 20.0 7.8 91.6 30.7 72.5 91.7

BIM (50) ε = 0.1 2.6 2.4 4.2 7.7 4.6 74.9 0.4 76.2 93.3
ε = 0.15 0.0 0.2 0.4 0.1 2.5 47.7 0.0 47.9 85.7
ε = 0.1 1.9 1.5 1.4 4.5 4.1 69.2 0.0 73.4 93.0PGD (50)
ε = 0.15 0.0 0.0 0.5 1.0 0.6 28.8 0.0 30.2 85.1

MIM (50) ε = 0.1 1.9 1.6 1.2 13.8 0.8 75.3 0.4 74.1 92.9
ε = 0.15 0.0 0.1 0.3 1.0 0.2 44.6 0.0 35.5 85.1
c = 0.1 81.2 80.5 83.4 97.9 97.4 97.3 85.6 89.2 98.1CW
c = 1.0 66.3 65.8 69.5 90.1 68.3 79.2 58.6 54.4 92.6

EAD c = 5.0 0.2 0.1 0.1 2.2 0.2 0.0 4.1 6.9 23.3
c = 10.0 0.0 0.0 0.0 0.0 0.2 0.0 0.5 0.8 1.4
ε = 0.1 0.5 0.2 0.5 2.1 1.9 65.4 0.0 70.6 92.1APGD-DLR
ε = 0.15 0.0 0.0 0.1 0.5 0.2 27.4 0.0 26.3 83.4

APGD-CE ε = 0.1 0.2 0.2 0.1 1.4 1.2 63.2 0.0 69.8 91.7
ε = 0.15 0.0 0.0 0.1 0.4 0.2 26.1 0.0 25.4 82.8

CIFAR-10 para. AdaBoost GradientBoost CKAE ADP GAL DVERGE Cos-only Cos-`2 TRS
ε = 0.02 28.2 30.4 34.1 58.8 19.2 63.8 56.1 35.8 44.2FGSM
ε = 0.04 15.4 15.2 18.5 39.4 12.6 53.4 35.0 25.9 24.9

BIM (50) ε = 0.01 4.2 4.4 5.1 13.8 13.0 39.1 0.0 17.1 50.6
ε = 0.02 0.2 0.1 0.2 0.9 2.5 13.0 0.0 1.2 15.8
ε = 0.01 2.1 1.9 1.9 9.0 8.3 37.1 0.0 15.7 50.5PGD (50)
ε = 0.02 0.0 0.0 0.2 0.1 0.6 10.5 0.0 0.5 15.1

MIM (50) ε = 0.01 2.3 1.9 2.0 18.7 10.3 40.7 0.0 18.1 51.5
ε = 0.02 0.1 0.0 0.1 1.7 0.8 14.4 0.0 0.5 17.2
c = 0.01 36.2 35.2 35.4 55.8 66.3 75.1 36.6 67.3 77.2CW
c = 0.1 18.4 26.2 23.0 25.9 28.3 57.4 17.6 30.7 58.1

EAD c = 1.0 0.2 0.0 0.0 9.0 0.0 0.2 0.0 0.0 11.7
c = 5.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
ε = 0.01 1.2 0.9 1.1 5.5 2.2 37.6 0.0 16.1 50.2APGD-DLR
ε = 0.02 0.0 0.0 0.0 0.2 0.0 10.2 0.0 0.5 15.1

APGD-CE ε = 0.01 0.9 0.2 0.4 3.9 1.6 37.5 0.0 15.9 48.6
ε = 0.02 0.0 0.0 0.0 0.1 0.0 10.2 0.0 0.5 15.0

Baseline ensemble approaches. We mainly consider the standard ensemble, as well as the state-of-
the-art robust ensemble methods that claim to be resilient against adversarial attacks. Specifically, we
consider the following baseline ensemble methods which aim to promote the diversity between base
models: AdaBoost [19]; GradientBoost [16]; CKAE [25]; ADP [38]; GAL [23]; DVERGE [56].
The detailed description about these approaches are in Appendix E. DVERGE, which has achieved
the state-of-the-art ensemble robustness to our best knowledge, serves as the strongest baseline.

Whitebox robustness evaluation. We consider the following adversarial attacks to measure en-
sembles’ whitebox robustness: Fast Gradient Sign Method (FGSM) [17]; Basic Iterative Method
(BIM) [34]; Momentum Iterative Method (MIM); Projected Gradient Descent (PGD); Auto-PGD
(APGD); Carlini & Wanger Attack (CW); Elastic-net Attack (EAD) [8], and we leave the detailed
description and parameter configuration of these attacks in Appendix E. We use Robust Accuracy as
our evaluation metric for the whitebox setting, defined as the ratio of correctly predicted adversarial
examples generated by different attacks among the whole test dataset.

Blackbox robustness evaluation. We also conduct blackbox robustness analysis in our evaluation
since recent studies have shown that robust models which obfuscate gradients could still be fragile
under blackbox attacks [1]. In the blackbox attack setting, we assume the attacker has no knowledge
about the target ensemble, including the model architecture and parameters. In this case, the attacker
is only able to craft adversarial examples based on several surrogate models and transfer them to
the target victim ensemble. We follow the same blackbox attack evaluation setting in [56]: We
choose three ensembles consisting of 3, 5, 8 base models which are trained with standard Ensemble
Cross-Entropy (ECE) loss as our surrogate models. We apply 50-steps PGD attack with three random
starts and two different loss functions (CrossEntropy and CW loss) on each surrogate model to
generate adversarial instances (i.e. for each instance we will have 18 attack attempts). For each
instance, among these attack attempts, as long as there is one that can successfully attack the victim
model, we will count it as a successful attack. In this case, we use Robust Accuracy as our evaluation
metric, defined as the number of unsuccessful attack attempts divided by the number of all attacks.
We also consider additional three strong blackbox attacks targeting on reducing transferability (i.e.,
ILA [21], DI2-SGSM [55], IRA [50]) in Appendix J, which leads to similar observations.
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Figure 2: Robust accuracy under blackbox attacks with different `∞ perturbation budget ε. (Left): MNIST;
(Right): CIFAR-10.

4.2 Experimental Results

In this section, we present both whitebox and blackbox robustness evaluation results, examine the
adversarial transferability, and explore the impacts of different loss terms in TRS. Furthermore,
in Appendix I.1, we visualize the decision boundary; in Appendix I.2, we show results of further
improving the robustness of the TRS ensemble by integrating adversarial training; in Appendix I.3,
we study the impacts of each of the regularization term Lsim and Lsmooth; in Appendix I.4, we show
the convergence of robust accuracy under large attack iterations to demonstrate the robustness stability
of TRS ensemble; in Appendix I.5, we analyze the trade-off between the training cost and robustness
of TRS by varying PGD step size and the total number of steps within Lsmooth approximation.

Whitebox robustness. Table 1 presents the Robust Accuracy of different ensembles against a range of
whitebox attacks on MNIST and CIFAR-10 dataset. We defer results on CIFAR-100 in Appendix K,
and measure the statistical stability of our reported robust accuracy in Appendix H. Results shows
that the proposed TRS ensemble outperforms other baselines including the state-of-the-art DVERGE
significantly, against a range of attacks and perturbation budgets, and such performance gap could
be even larger under stronger adversary attacks (e.g. PGD attack). We note that TRS ensemble is
slightly less robust than DVERGE under small perturbation with weak attack FGSM. We investigate
this based on the decision boundary analysis in Appendix I.1, and find that DVERGE tends to be
more robust along the gradient direction and thus more robust against weak attacks which only focus
on the gradient direction (e.g., FGSM); while TRS yields a smoother model along different directions
leading to more consistent predictions within a larger neighborhood of an input, and thus more
robust against strong iterative attacks (e.g., PGD). This may be due to that DVERGE is essentially
performing adversarial training for different base models and therefore it protects the adversarial
(gradient) direction, while TRS optimizes to train a smooth ensemble with diverse base models. We
also analyze the convergence of attack algorithms in Appendix I.4, showing that when the number of
attack iterations is large, both ADP and GAL ensemble achieve much lower robust accuracy against
such iterative attacks; while both DVERGE and TRS remain robust.

Blackbox robustness. Figure 2 shows the Robust Accuracy performance of TRS compared with
different baseline ensembles under different perturbation budget ε. As we can see, the TRS ensemble
achieves competitive robust accuracy with DVERGE when ε is very small, and TRS beats all the
baselines significantly when ε is large. Precisely speaking, TRS ensemble achieves over 85% robust
accuracy against transfer attack with ε = 0.4 on MNIST while the second-best ensemble (DVERGE)
only achieves 20.2%. Also on CIFAR-10, TRS ensemble achieves over 25% robust accuracy against
transfer attack when ε = 0.06, while all the other baseline ensembles achieve robust accuracy lower
than 6%. This implies that our proposed TRS ensemble has stronger generalization ability in terms
of robustness against large ε adversarial attacks compared with other ensembles. We also put more
details of the robust accuracy under blackbox attacks in Appendix G.

Adversarial transferability. Figure 3 shows the adversarial transferability matrix of different
ensembles against 50-steps PGD attack with ε = 0.3 for MNIST and ε = 0.04 for CIFAR-10. Cell
(i, j) where i 6= j represents the transfer attack success rate evaluated on j-th base model by using
the i-th base model as the surrogate model. Lower number in each cell indicates lower transferability
and thus potentially higher ensemble robustness. The diagonal cell (i, i) refers to i-th base model’s
attack success rate, which reflects the vulnerability of a single model. From these figures, we can see
that while base models show their vulnerabilities against adversarial attack, only DVERGE and TRS
ensemble could achieve low adversarial transferability among base models. We should also notice
that though GAL applied a similar gradient cosine similarity loss as our loss term Lsim, GAL still can
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Figure 3: Transferability analysis of PGD attack on MNIST (top) and CIFAR-10 (bottom). Each cell (i, j)
shows the attack success rate of i-th model on the adversarial examples generated against the j-th model. We
use ε = 0.3 for MNIST and ε = 0.04 for CIFAR-10.

not achieve low adversarial transferability due to the lack of model smoothness enforcement, which
is one of our key contributions in this paper.

Gradient similarity only vs. TRS. To further verify our theoretical analysis on the sufficient condi-
tion of transferability as model smoothness, we consider only applying similarity loss Lsim without
model smoothness loss Lsmooth in TRS (i.e. λb = 0). The result is shown as “Cos-only” method
of Table 1. We observe that the resulting whitebox robustness is much worse than standard TRS.
This matches our theoretical analysis that only minimizing the gradient similarity cannot guarantee
low adversarial transferability among base models and thus lead to low ensemble robustness. In
Appendix I.3, we investigate the impacts of Lsim and Lsmooth thoroughly, and we show that though
Lsmooth contribute slightly more, both terms are critical to the final ensemble robustness.

`2 regularizer only vs. Min-max model smoothing. To emphasis the importance of our proposed
min-max training loss on promoting the margin-wise model smoothness, we train a variant of TRS
ensemble Cos-`2, where we directly apply the `2 regularization on ‖∇x`F‖2 and ‖∇x`G‖2. The
results are shown as “Cos-`2” in Table 1. We observe that Cos-`2 achieves lower robustness accuracy
compared with TRS, which implies the necessity of regularizing the gradient magnitude on not only
the local training points but also their neighborhood regions to ensure overall model smoothness.

5 Conclusion

In this paper, we deliver an in-depth understanding of adversarial transferability. Theoretically, we
provide both lower and upper bounds on transferability which shows that smooth models together
with low loss gradient similarity guarantee low transferability. Inspired by our analysis, we propose
TRS ensemble training to empirically reduce transferability by reducing loss gradient similarity and
promoting model smoothness, yielding a significant improvement on ensemble robustness.
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