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Abstract

Recently, the pretrain-finetune paradigm has001
become a cornerstone in various deep learn-002
ing areas. While in general the pre-trained003
model would promote both effectiveness and ef-004
ficiency of downstream tasks fine-tuning, stud-005
ies have shown that not all knowledge acquired006
during pre-training is beneficial. Some of the007
knowledge may actually bring detrimental ef-008
fects to the fine-tuning tasks, which is also009
known as negative transfer. To address this010
problem, graceful forgetting has emerged as011
a promising approach. The core principle of012
graceful forgetting is to enhance the learning013
plasticity of the target task by selectively dis-014
carding irrelevant knowledge. However, this015
approach remains underexplored in the con-016
text of generative language models, and it is017
often challenging to migrate existing forget-018
ting algorithms to these models due to archi-019
tecture incompatibility. To bridge this gap,020
in this paper we propose a novel framework,021
Learning With Forgetting (LWF), to achieve022
graceful forgetting in generative language mod-023
els. With Fisher Information Matrix weight-024
ing the intended parameter updates, LWF com-025
putes forgetting confidence to evaluate self-026
generated knowledge regarding the forgetting027
task, and consequently, knowledge with high028
confidence is periodically unlearned during029
fine-tuning. Our experiments demonstrate that,030
although thoroughly uncovering the mecha-031
nisms of knowledge interaction remains chal-032
lenging in pre-trained language models, apply-033
ing graceful forgetting can contribute to en-034
hanced fine-tuning performance.035

1 Introduction036

In recent years, the pretrain-finetune paradigm has037

emerged as a dominant framework across natural038

language processing (NLP) tasks and various other039

domains (Zhou et al., 2023). This approach in-040

volves pre-training the model on large-scale cor-041

pora and subsequently fine-tuning it on smaller,042

task-specific datasets to adapt to downstream ap- 043

plications. Its effectiveness has been evidenced by 044

the success of prominent pre-trained models such 045

as BERT (Devlin et al., 2019), GPT (Brown et al., 046

2020), and T5 (Raffel et al., 2020). And these mod- 047

els have become the backbone of many state-of- 048

the-art AI applications (OpenAI, 2023; Rombach 049

et al., 2022). 050

Despite offering compelling benefits such as 051

data efficiency and reusability, this well-established 052

paradigm continues to face a long-standing and 053

prevalent issue, negative transfer, which surfaces 054

in a new guise. While the typical interpretation of 055

negative transfer in transfer learning refers to the 056

performance degradation when learning conflicting 057

tasks simultaneously or sequentially, its manifesta- 058

tion in the context of the pretrain-finetune paradigm 059

takes on a different form, the negative contribu- 060

tion of some pre-trained knowledge to the target 061

fine-tuning task (Zhang et al., 2023). This problem 062

highlights a critical limitation of vanilla fine-tuning: 063

treating all pre-trained knowledge indiscriminately 064

is not always the optimal practice. 065

To address this issue, a promising approach is to 066

suppress the influence of potentially harmful knowl- 067

edge, a strategy known as graceful forgetting (or 068

active forgetting). Originating in neuroscience, this 069

concept describes a memory mechanism in biolog- 070

ical intelligence where the ability to acquire new 071

knowledge is enhanced by selective elimination 072

of irrelevant or outdated information (Anderson 073

and Hulbert, 2021). Recent advances have demon- 074

strated the feasibility of emulating this mechanism 075

in machine learning models (Zhou et al., 2022; 076

D’Oro et al., 2023), leading to its adoption in var- 077

ious studies aimed at enhancing learning plastic- 078

ity (Wang et al., 2021; Chen et al., 2023; Liang and 079

Li, 2023; Shen et al., 2024). 080

However, most existing graceful forgetting meth- 081

ods are either tailored to vision tasks or designed 082

for non-autoregressive models, making their ef- 083
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forts incompatible or less effective when migrating084

to generative language models. This discrepancy085

primarily stems from the ambiguous knowledge086

boundaries inherent in language generation, which087

significantly complicate the identification of ex-088

plicit and granular inter-task correlations (Pruk-089

sachatkun et al., 2020).090

To address this gap, in this paper we investigate091

the graceful forgetting in generative language mod-092

els. The central question guiding our study is: can093

generative language models achieve more effec-094

tive fine-tuning by gracefully forgetting unneces-095

sary knowledge? To answer this question, we pro-096

pose a framework called Learning with Forgetting097

(LWF) to enable graceful forgetting in generative098

language models. Beginning from addressing the099

inaccessibility of pre-trained data, LWF leverages100

the inherent capabilities of generative models by101

expressing knowledge related to the forgetting task102

through self-generated texts. Furthermore, given103

the difficulty of identifying task-level correlations,104

LWF computes a data-wise forgetting confidence105

for each input by weighting the intended param-106

eter updates with the Fisher Information Matrix.107

Based on this metric, LWF selects high-confidence108

data points and integrates machine unlearning tech-109

niques to periodically remove associated knowl-110

edge during the fine-tuning process.111

To the best of our knowledge, LWF represents112

the first systematic exploration of graceful forget-113

ting in generative language models. Through exten-114

sive experiments and analyses, we demonstrate the115

feasibility of improving fine-tuning performance116

through graceful forgetting. Hopefully, our empiri-117

cal findings will contribute to a better understand-118

ing of this emerging topic and offer inspiration for119

future investigation and innovation.120

2 Related Work121

In this section, we provide an overview of how the122

critical concepts in our work are interpreted and123

applied across a broader research landscape, and124

analyze their commonalities and distinctions.125

2.1 Negative Transfer126

Negative transfer is a prevalent issue across mul-127

tiple fields, with its interpretation and definition128

often varying depending on the context.129

In Multi-Task Learning (MTL), negative transfer130

refers to the performance degradation caused by131

mutual interference among conflicting tasks (Go132

et al., 2023). While the primary objective of MTL 133

is to learn multiple tasks simultaneously, methods 134

aimed at mitigating negative transfer typically fo- 135

cus on quantifying inter-task relationships using 136

sophisticated metrics like gradient directions (Jiang 137

et al., 2023; Riemer et al., 2019) or signal-to-noise 138

ratio (Go et al., 2023). Based on these metrics, 139

tasks can be clustered into separate groups (Ramesh 140

and Chaudhari, 2022) to reduce learning conflicts. 141

In the MTL context, strategies that involve sacrific- 142

ing part of the model’s capacity, such as forgetting, 143

are typically not regarded as appropriate solutions. 144

Another related domain is Continual Learning 145

(CL), where different tasks are learned sequentially. 146

In CL, negative transfer is bi-directional: it can re- 147

fer to the interference of previously acquired knowl- 148

edge with the learning of new tasks, or to the for- 149

getting of past knowledge caused by learning new 150

ones (Karakida and Akaho, 2022). While most CL 151

methods focus on maintaining memory stability 152

when learning new tasks (Kirkpatrick et al., 2017; 153

Schwarz et al., 2018), recent studies have high- 154

lighted that this stability often comes at the cost of 155

reduced learning plasticity. In response, these ap- 156

proaches actively weaken the preservation strength 157

of past memory, seeking a balance between mem- 158

ory stability and learning plasticity (Liang and Li, 159

2023; Wang et al., 2021; Schwarz et al., 2018), 160

which can be seen as an implicit form of forgetting. 161

In our context, the pretrain-finetune paradigm, 162

negative transfer denotes the detrimental influence 163

of certain pre-trained knowledge on the target fine- 164

tuning task. A distinguishing characteristic of nega- 165

tive transfer in this paradigm is that the pre-training 166

data is typically inaccessible during fine-tuning, 167

which renders many countermeasures used in MTL 168

and CL ineffective or inapplicable. 169

2.2 Graceful Forgetting 170

In many domains, forgetting is traditionally viewed 171

as an undesirable phenomenon, reflecting a failure 172

to retain previously acquired knowledge. This con- 173

cern is particularly prominent in CL, where one of 174

the primary objectives is to overcome catastrophic 175

forgetting (Kirkpatrick et al., 2017). 176

However, recent studies have argued that striving 177

for an omniscient model may be impractical due 178

to limited model capacity and inevitable knowl- 179

edge conflicts (Zhou et al., 2022; D’Oro et al., 180

2023). Drawing inspiration from neuroscience (An- 181

derson and Hulbert, 2021), an increasing number 182

of studies have explored the potential of improving 183
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learning plasticity through actively forgetting irrel-184

evant or outdated knowledge. In the context of CL,185

Wang et al. (2021) proposed a synaptic expansion-186

convergence mechanism to selectively forget pre-187

served knowledge. Liang and Li (2023) realized188

controllable learning plasticity through gradient189

projection. In the context of fine-tuning, Chen et al.190

(2019) and Shen et al. (2024) incorporate model191

structural shrinkage regulation to enable implicit192

forgetting. While most of these methods were ini-193

tially designed for image classification tasks, Chen194

et al. (2023) extended graceful forgetting to lan-195

guage models, improving multi-lingual learning196

during pre-training.197

Despite these efforts, existing graceful forgetting198

approaches are either inapplicable or significantly199

less effective when adapted to the fine-tuning of200

generative language models.201

2.3 Machine Unlearning202

Machine unlearning is a vibrantly investigated203

topic studying removing specific data, patterns,204

or knowledge from trained models (Yao et al.,205

2023). In the context of generative language mod-206

els, unlearning is usually applied to aligning lan-207

guage models with human values, such as pro-208

tecting user privacy (Patil et al., 2024), remov-209

ing harmful contents (Liu et al., 2024), and re-210

ducing hallucination (Yao et al., 2023). A vari-211

ety of unlearning strategies have been proposed212

for generative language models, including gradient213

ascent (Jang et al., 2023), localization-informed214

unlearning (Jang et al., 2023), influence function-215

based methods (Jia et al., 2024), and so on. While216

current generative language model unlearning re-217

search primarily focuses on eradicating undesirable218

behaviors, our work repurposes unlearning as a219

mechanism to achieve graceful forgetting, thereby220

enhancing the plasticity of fine-tuning. In essence,221

we leverage unlearning for better learning.222

3 Methodology223

In this section, we detail the implementation of224

our framework for graceful forgetting in genera-225

tive language models, Learning With Forgetting226

(LWF). It consists of three components: eliciting227

self-knowledge, evaluating forgetting confidence,228

and periodically unlearning. Fig 1 illustrates the229

overview. For the sake of convenience in exposi-230

tion, we use D𝐿 to represent the learning task and231

D𝐹 to denote the forgetting task. It is important to232

note, however, that the framework is task quantity- 233

agnostic, which will be elaborated in Section 4. 234

3.1 Eliciting Self-Knowledge 235

The first step in forgetting specific knowledge is to 236

acquire its representation. However, as discussed 237

in Sec 2.1, the pre-training corpus is typically in- 238

accessible in practice, making it uncertain whether 239

D𝐹 can adequately represent the model’s knowl- 240

edge. To address this issue, we exploit the inherent 241

characteristics of generative language models as an 242

alternative: leveraging self-generated data. Specif- 243

ically, we input the prompts (e.g., questions or in- 244

structions) from D𝐹 into the base model M𝑏𝑎𝑠𝑒 245

and collect its responses to form the unlearning 246

dataset, which we donate as D𝑠𝑒𝑙 𝑓 . This approach 247

also enables LWF to utilize unlabeled datasets. 248

3.2 Evaluating Forgetting Confidence 249

Not all kinds of knowledge forgetting contribute 250

positively to model adaptation. To ensure that for- 251

getting improves, rather than degrades, fine-tuning 252

performance, we propose a confidence metric to 253

evaluate the safety of unlearning specific knowl- 254

edge. Considering the semantic richness of natural 255

language, a task-level metric proves insufficiently 256

nuanced (Pruksachatkun et al., 2020). Therefore, 257

we define the forgetting confidence at the individual 258

data point level, enabling fine-grained assessment 259

of what should be forgotten. 260

For a generated text 𝑥 in D𝑠𝑒𝑙 𝑓 , the posteriori 261

𝑃(D𝐿 |𝑥) intuitively reflects to what extent D𝐿 262

and 𝑥 are synergistic. The lower 𝑃(D𝐿 |𝑥) is, the 263

more likely 𝑥 is conflicted with D𝑠𝑒𝑙 𝑓 . Consid- 264

ering 𝑃(D𝐿 |𝑥) is computationally intractable, we 265

use 𝑃(D𝐿 |𝜃∗(𝑥)) as a surrogate, where 266

𝜃∗(𝑥) = arg max
𝜃

𝑃(𝜃 |𝑥) (1) 267

Since only the relative value is required, we can 268

use 𝑃(𝜃∗(𝑥) |D𝐿) to represent 𝑃(D𝐿 |𝜃∗(𝑥)), as the 269

two are positively proportional according to the 270

Bayes’ Theorem. Based on this, we define the 271

forgetting confidence as: 272

𝐹𝐶 (𝑥) ∝ − log 𝑃(𝜃∗(𝑥) |D𝐿) (2) 273

Following prior works (Kirkpatrick et al., 274

2017; Wang et al., 2021), we assume 𝑃(𝜃 |D𝐿) 275

as a Gaussian distribution centered at 𝜃∗
𝐿

= 276

arg max
𝜃

𝑃(𝜃 |DL), and this distribution can be ap- 277

proximated using a second-order Taylor expansion 278
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Prompts:  How
do living things
have children?

Living things have
children by having
babies. 

she read 12 + 2*12
= 36 pages. Today,
she wants ......

Living things have
children by having
babies. 

Living things have
children by having
babies.    FC=0.12

stomach doesn't
cause sick FC=0.32

stomach doesn't
cause sick FC=0.32

For every  samples
learned from , one sample
from  will be unlearned

she read 12 + 2*12
= 36 pages. Today,
she wants ......

Step 1

Eliciting Self-knoledge
Step 2

Evaluating Forgetting Confidence

Only input prompts
in dataset  to
the base model

Dataset 
contains the self-
generated texts

For each datapoint
, compute

the forgetting
confidence 
with respect to the
target 

Form  with the
subset of  that
has higher values

Step 3

Periodically Unlearning

Figure 1: The overview of the LWF framework. Given the forgetting task D𝐹 and learning task D𝐿 , LWF first
constructs D𝑠𝑒𝑙 𝑓 through self-generated texts to represent the knowledge regarding the forgetting task. Then, with
the Fisher Information Matrix 𝐹𝐿 and the optimal parameters of the learning task approximated from D𝐿 , LWF
calculates forgetting confidence for each data point in D𝑠𝑒𝑙 𝑓 . Finally, data points with high forgetting confidence
are selected for unlearning, represented by D𝑈 . The unlearning process is integrated into the fine-tuning process of
D𝐿 and is executed periodically at intervals of 𝑁𝑢.

around 𝜃∗
𝐿

:279

log 𝑃(𝜃 |D𝐿) ≈ −1
2
(𝜃 − 𝜃∗𝐿)𝑇

( 𝜕
2 log 𝑃(𝜃 |D𝐿)

𝜕2𝜃
|𝜃∗

𝐿
) (𝜃 − 𝜃∗𝐿)

(3)280

In practice, we integrate Equation 2 with Equa-281

tion 3 and use a single-step update from the base282

model to represent 𝜃∗(𝑥), thereby reducing compu-283

tational costs:284

𝐹𝐶 (𝑥) = 1
2

∑︁
𝑖

𝐹𝐿,𝑖 (𝜃𝑏𝑎𝑠𝑒,𝑖 − 𝛼
𝑑L(𝑥)
𝑑𝜃𝑖

− 𝜃∗𝐿,𝑖)2

(4)285

𝐹𝐿 represents the Fisher Information Matrix286

(FIM), which is the negative expectation of the Hes-287

sian Matrix in Equation 3. The parameters of the288

base model are represented by 𝜃𝑏𝑎𝑠𝑒, while L(𝑥)289

refers to the cross-entropy loss of 𝑥. 𝛼 controls the290

length of the single-step update. The 𝜃∗
𝐿

is obtained291

by training the base model on D𝐿 .292

Intuitively, Equation 4 measures the conflict be-293

tween 𝑥 and D𝐿 by evaluating the alignment be-294

tween the intended parameter update induced by 𝑥295

and the target 𝜃∗
𝐿

. The FIM 𝐹𝐿 serves as a weight-296

ing mechanism that captures the relative impor-297

tance of each parameter.298

3.3 Periodically Unlearning 299

With the forgetting confidence 𝐹𝐶 (𝑥), we select a 300

subset D𝑈 from D𝑠𝑒𝑙 𝑓 for unlearning, consisting 301

of the top 1
𝑁𝑢

fraction of samples with the highest 302

confidence scores. However, due to the well-known 303

instability of machine unlearning (Yao et al., 2023; 304

Liu et al., 2024), simply unlearning D𝑈 may not 305

yield consistent improvements. Particularly since 306

the selected data are only potentially, rather than 307

definitively, conflicting with the target task. 308

To mitigate the instability introduced by unlearn- 309

ing, we adopt a "periodically unlearning" strategy. 310

Specifically, we perform learning on D𝐿 and un- 311

learning on D𝑈 simultaneously, while maintaining 312

a fixed interval 𝑁𝑢 between consecutive unlearning 313

sessions. For example, if the interval 𝑁𝑢 = 7, then 314

for every 7 data points learned from D𝐿 , one data 315

point from D𝑈 will be unlearned. 316

We use Gradient Ascent as our unlearning al- 317

gorithm, which merely involves negating the loss 318

function. Specifically, for a periodic batch X = 319

{𝑥𝑙1, . . . , 𝑥
𝑙
𝑁𝑢

, 𝑥𝑢} where {𝑥𝑙1, . . . , 𝑥
𝑙
𝑁𝑢

} ⊂ D𝐿 and 320

𝑥𝑢 ∈ D𝑈 , the loss can be written as: 321

L𝑝𝑢 (X) =
∑︁

𝑥∈{𝑥𝑙1,...,𝑥
𝑙
𝑁𝑢

}

L(𝑥) − 𝛽L(𝑥𝑢) (5) 322

where L is the sft loss and 𝛽 is the unlearning rate. 323
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4 Experiments324

4.1 Setup325

4.1.1 Datasets326

To evaluate the effectiveness of LWF, we apply327

our method to domain-specific question-answering328

tasks. This choice is motivated by the well-329

established evaluation metrics (i.e., accuracy) and330

the relatively clear delineation of knowledge bound-331

aries across domains. We further discuss task gen-332

eralizability in Appendix C.333

We select five datasets spanning diverse domains:334

gsm8k (Cobbe et al., 2021) for mathematical rea-335

soning; qasc (Khot et al., 2020) for elementary336

science; sst5 (Socher et al., 2013) for sentiment337

classification; dental, a subset of MedMCQA (Pal338

et al., 2022) focusing on dental knowledge; and339

psychol, a subset of MMLU (Hendrycks et al.,340

2021) covering psychology.341

4.1.2 Implementation Details342

We utilize Llama3.2-1B (Touvron et al., 2023) as343

the base model for all experiments. To elicit self-344

knowledge, we use a 3-shot prompt concatenated345

with the input question, employ a greedy decod-346

ing strategy, and constrain the maximum number347

of generated tokens to 256. When computing the348

forgetting confidence, we set the one step update349

coefficient 𝛼 to 1e-2 (as defined in Equation 4). To350

maintain the coherence of batch gradient descent351

during periodically unlearning, we combine D𝐿352

and D𝑈 by incorporating one data point from D𝑈353

for every 𝑁𝑢 data points from D𝐿 . The training354

process uses a batch size of 4, a learning rate of355

1e-5, and spans in total one epoch. 𝑁𝑢 is set to 7,356

and 𝛽 (as defined in Equation 5) is either 0.1 or357

0.05, depending on forgetting tasks. All training358

procedures are carried out on eight NVIDIA RTX359

4090 GPUs with full parameter tuning. For more360

details please refer to Appendix A.361

4.2 Results on Question Answering362

Table 1 shows the results on question-answering363

tasks. Each column corresponds to a distinct learn-364

ing task, and each row represents a forgetting sce-365

nario. The first row, labeled none, indicates vanilla366

fine-tuning without forgetting, while the last row,367

labeled mixed, denotes a forgetting setting compris-368

ing all datasets except the learning one. As we note369

that previous forgetting methods for fine-tuning,370

such as BSS (Chen et al., 2019) and SRS(Shen371

et al., 2024), are significantly less effective when372

gsm8k qasc sst5 dental psychol

none 19.71 42.98 49.55 36.87 46.42

gsm8k - +4.03% +2.83% +1.46% +6.33%
qasc +5.38% - +2.54% -4.53% +5.54%
sst5 +2.67% +3.02% - +0.22% +0.41%

dental +10.40% +5.28% +2.10% - +1.59%
psychol +1.17% +2.00% +1.27% -4.10% -

mixed +6.95% +5.54% +2.10% +1.46% +7.93%

Table 1: Results on domain-specific question answering.
Each column shares the same learning task and the rows
represent different forgetting tasks. All percentages are
calculated based on none.

gsm8k qasc sst5 dental psychol

none 56.56 68.36 55.52 49.39 80.00

gsm8k - +5.37% +0.97% +0.78% +2.06%
qasc +1.61% - +0.74% -3.06% +0.46%
sst5 +7.37% +2.68% - +0.00% +2.75%

dental +1.20% +1.26% +1.30% - +0.91%
psychol +1.47% +4.42% +0.24% -0.14% -

mixed +4.56% +7.90% +1.06% +0.78% +1.60%

Table 2: Results on domain-specific question answering
with a larger language model.

migrating to generative language models, we only 373

include their performance in Appendix D. 374

As shown in the results, in most cases, LWF im- 375

proves performance on the learning task compared 376

to vanilla fine-tuning. Exceptions occur when learn- 377

ing dental while forgetting qasc or psychol, which 378

we believe is attributed to the low forgetting con- 379

fidence of self-generated samples. This is further 380

evidenced by the results of the mixed, where consis- 381

tent improvements across all learning tasks suggest 382

that combining diverse forgetting datasets increases 383

the pool of high-confidence candidates, thereby en- 384

hancing the likelihood of performance gains. The 385

mixed setting is also recommended in practice for 386

stable effectiveness. 387

We also examine the side effects of LWF, i.e., 388

its impact on datasets that are neither part of the 389

learning task nor the forgetting task. Details are 390

discussed in Appendix B. 391

4.3 Scalability Analysis 392

A natural question is that, would LWF be less ef- 393

fective in a larger generative language model since 394

the increased model parameters are better capa- 395

ble of accommodating conflicting knowledge? In 396

response, we apply LWF to a larger model, Llama3- 397

8B. The results are shown in Table 2. 398

As we can see, LWF can still improve fine-tuning 399
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Figure 2: Distribution of accuracy changes between two
filtering strategies. The 𝑦-axis represents distribution
density. All percentages are calculated based on vanilla
fine-tuning.

performance in most cases. While the magnitude400

of relative improvement has declined overall, this401

trend is partly due to the stronger baseline perfor-402

mance of the larger model. Notably, the insights403

about unlearning settings gained from the smaller404

model generalize well to the larger one: the mixed405

setting is still the best choice to achieve stable ef-406

fectiveness.407

4.4 Analysis on Forgetting Confidence408

A central component of LWF is the computation409

of forgetting confidence, which estimates the likeli-410

hood that forgetting a specific data point will ben-411

efit the learning task. While we propose a com-412

putable metric 𝐹𝐶 (𝑥) (in Sec 3.2), it involves ap-413

proximations and does not provide an exact map-414

ping between gradient updates and performance415

outcomes. As a result, 𝐹𝐶 (𝑥) should be viewed416

as a heuristic rather than an absolute measure. In417

practice, we also observe that unlearning data with418

relatively low 𝐹𝐶 does not necessarily lead to per-419

formance degradation.420

To gain deeper statistical insight into the role of421

forgetting confidence, we design an ablation study422

using an inverse filtering strategy: selecting data423

D𝐹 gsm8k qasc sst5 dental psychol

none 19.71 42.98 49.55 36.87 46.42

gsm8k - -65.6% +0.5% -0.8% -9.9%
qasc +5.0% - +0.4% -7.4% +3.6%
sst5 +4.3% +7.8% - -3.5% +9.1%

dental -8.5% -26.6% +1.2% - +0.0%
psychol -6.5% -8.3% -21.7% -4.9% -

mixed -3.5% -73.9% +2.3% +0.8% -7.9%

Table 3: Results of ahead unlearning, ablation study for
periodically unlearning, where unlearning is completed
before fine-tuning.

D𝐹 gsm8k qasc sst5 dental psychol

none 19.71 42.98 49.55 36.87 46.42

gsm8k - -12.6% -0.1% -4.9% +10.3%
qasc -8.8% - +3.9% -2.0% +7.7%
sst5 -8.8% -10.8% - -4.3% +3.6%

dental -6.5% -6.9% +1.8% - +7.5%
psychol -5.0% -13.1% +2.1% -2.7% -

mixed -6.5% -10.1% -0.5% -4.9% +9.5%

Table 4: Results of randomly unlearning, ablation study
for periodically unlearning, where unlearning is ran-
domly executed during fine-tuning.

with the lowest forgetting confidence. For each 424

learning task, we compute the percentage change 425

in accuracy relative to vanilla fine-tuning, across 426

all forgetting tasks. To increase the sample size, 427

we aggregate results over four unlearning rates: 428

𝛽 ∈ {0.05, 0.10, 0.20, 0.25}. 429

Fig 2 shows the distribution of accuracy changes 430

under the two filtering strategies. The red region 431

corresponds to unlearning data with the highest 432

𝐹𝐶, while the blue region represents unlearning 433

data with the lowest. The 𝑥-axis indicates the per- 434

centage change in accuracy relative to vanilla fine- 435

tuning. As shown, unlearning high-𝐹𝐶 data gen- 436

erally outperforms the alternative in two aspects: 437

higher average performance gain and greater stabil- 438

ity. Specifically, high-𝐹𝐶 unlearning yields smaller 439

variance and narrower overall range, whereas un- 440

learning low-𝐹𝐶 data leads to more volatile out- 441

comes, including severe performance drops in ex- 442

treme cases. In summary, prioritizing data with 443

high forgetting confidence results in consistently 444

better and more robust performance, making it a 445

more reliable strategy in practice. 446
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Figure 3: Accuracy change percentage of the forgetting
task across different learning-forgetting combinations.
Percentages are computed based on vanilla fine-tuning.

4.5 Abaltion on Periodically unlearning447

To alleviate the vulnerability of machine unlearn-448

ing, we propose the periodically unlearning strat-449

egy to stabilize the training process. In this section,450

we conduct an ablation study to demonstrate that451

periodically unlearning is the most effective strat-452

egy for integrating learning and unlearning.453

We compare two alternative unlearning strate-454

gies. The first performs unlearning entirely before455

the learning process, which we refer to as ahead456

unlearning. The second interleaves unlearning457

steps randomly during training, termed randomly458

unlearning. For fairness, all three strategies, in-459

cluding periodically unlearning, maintain the same460

ratio of learning to unlearning samples.461

Table 3 and Table 4 present the results of ahead462

unlearning and randomly unlearning respectively.463

As we can see, both strategies are generally much464

less effective than periodically unlearning (Ta-465

ble 1), with most learning-forgetting combinations466

resulting in performance degradation. Notably,467

ahead unlearning exhibits several extremely detri-468

mental cases, primarily attributed to the unintended469

disruption to foundational pre-trained knowledge470

caused by premature unlearning steps. If such crit-471

ical knowledge is compromised, the subsequent472

fine-tuning process may suffer severe performance473

loss. In conclusion, the interleaved learning and474

unlearning combination is better than conducting475

them separately, and switching them periodically476

is superior to randomly.477

4.6 Analysis on the Forgotten Task478

In this section, we analyze the forgetting task to479

investigate how model performance on it evolves480

Figure 4: Cosine similarity between the outputs of for-
getting tasks generated by the vanilla fine-tuned model
and LWF resulting model. Values are multiplied by 100.

Figure 5: TTR change percentage of the forgetting task
across different learning-forgetting combinations. Per-
centages are computed based on vanilla fine-tuning.

before and after the deployment of LWF. While it 481

may seem intuitive that the model’s knowledge 482

regarding the forgetting task would be largely 483

erased, the empirical findings are more compli- 484

cated. Fig 3 presents a heatmap showing the per- 485

centage change in accuracy on the forgetting tasks 486

relative to vanilla fine-tuning. As shown, although 487

there is a general decline in accuracy across most 488

learning-forgetting combinations, the magnitude 489

of degradation varies considerably. In approxi- 490

mately half of the cases, accuracy drops nearly 491

100%, while in others, the decrease is relatively 492

minor, particularly when either the learning task or 493

the forgetting task involves dental or psychol. 494

Additionally, we noticed that the accuracy alone 495

merely reflects whether the final answer is correct, 496

which is insufficient to fully capture the nuanced 497

changes in the generated outputs of generative mod- 498

els. To gain deeper insights, we further analyze the 499
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semantic shifts in the responses. Specifically, we500

use SimCSE model 1 (Gao et al., 2021) to obtain501

the sentence vectors of the responses generated by502

the vanilla fine-tuned model and LWF model when503

answering the same forgetting task questions.We504

then compute the cosine similarity between the re-505

sulting sentence embeddings to quantify the degree506

of semantic change. Results are presented in Fig 4.507

Given that a cosine similarity score above 80%508

is typically required to confidently assert semantic509

similarity between two sentences, the results in-510

dicate that most learning-forgetting combinations511

exhibit substantial semantic changes. Notably, the512

cases where similarity approaches or exceeds this513

threshold largely coincide with those showing min-514

imal accuracy drops, i.e., combinations involving515

the dental or psychol. We believe this phenomenon516

may be attributed to that dental and psychol are517

inherently more complex than the other tasks. Ac-518

quiring or forgetting these domains likely requires519

engagement with richer, more structured knowl-520

edge, which in turn makes them more resistant to521

severe forgetting.522

We also evaluate changes in lexical diversity, as523

shown in Fig 5, where Type Token Ratio (TTR) is524

the metric. Similar to the trends observed in ac-525

curacy changes, the TTR experiences a significant526

decline in most combinations, and the cases main-527

taining high accuracy and semantic similarity also528

largely preserve their lexical diversity.529

4.7 Multi-Task Learning530

In this section, we examine the performance of531

LWF in multi-task learning scenarios. Specifi-532

cally, we treat one of the five datasets as the for-533

getting task and use the remaining four as learning534

tasks. To mitigate catastrophic forgetting of ear-535

lier tasks, we train on a balanced mixture of all536

learning datasets. Fig 6 compares the overall multi-537

task accuracy between LWF and vanilla fine-tuning.538

As we can see, while not all individual learning539

task gets improved, LWF outperforms vanilla fine-540

tuning in general.541

These results highlight the complexity of multi-542

task learning. Although LWF enables overall per-543

formance gains through controlled forgetting, the544

interactions among learning tasks are non-trivial.545

Improvements in some tasks may come at the ex-546

pense of others.547

1https://huggingface.co/princeton-nlp/unsup-simcse-bert-
base-uncased

Figure 6: Accuracy results in the multi-task learning
setting. Labeled below each subplot are the forgetting
task and learning tasks.

5 Conclusion 548

In this paper, we propose a novel framework, Learn- 549

ing With Forgetting (LWF), to achieve graceful 550

forgetting in generative language models. LWF 551

addresses the inaccessibility of pre-trained data 552

by leveraging self-generated knowledge, calculates 553

forgetting confidence for each data point by weight- 554

ing the intended parameter update with Fisher In- 555

formation Matrix, and employs gradient ascent to 556

periodically unlearn high-confidence data during 557

fine-tuning. Empirical results on domain-specific 558

question-answering tasks demonstrate the effective- 559

ness of LWF. Furthermore, we conduct extensive 560

experiments to analyze the contribution of each 561

component of LWF, the effects of forgetting spe- 562

cific tasks, and the framework’s performance in 563

learning or forgetting multiple tasks. While fully 564

elucidating the mechanisms of inter-task interac- 565

tions and achieving optimal graceful forgetting still 566

need great effort, we hope our work provides valu- 567

able insights into this emerging area and inspires 568

future research endeavors. 569
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Limitation570

As the first framework for graceful forgetting in571

generative language models, LWF has several lim-572

itations that warrant further investigation. First,573

our proposed forgetting confidence relies on an574

analysis of intended parameter updates to select575

unlearning data. While empirical results demon-576

strate its statistical effectiveness, its performance577

may degrade when the pool of candidate forgetting578

data is limited. Given that quantifying interactions579

among training examples remains a long-standing580

challenge in knowledge transfer, we expect future581

research to yield more precise and robust metrics582

for measuring forgetting confidence.583

Additionally, computing forgetting confidence584

introduces computational overhead, primarily due585

to gradient calculations required for each forget-586

ting sample. As a result, the additional time cost is587

approximately equivalent to one full training epoch588

on D𝑠𝑒𝑙 𝑓 . Considering our method is designed589

for task-specific fine-tuning, rather than large-scale590

pre-training, the additional overhead can be accept-591

able in most cases.592
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A More Implementation Details784

Table 5, Table 6, Table 7, Table 8, and Table 9785

present the few-shot CoT prompts designed for786

each dataset, which are utilized during both the787

self-knowledge elicitation and evaluation stages.788

As illustrated in the prompts, answers are formatted789

with the phrase ’The answer is’ to facilitate the790

convenience of extracting answers. Any model791

output that deviates from this format is considered792

incorrect. In cases where multiple occurrences793

of ’The answer is’ appear in the output, the first794

instance is treated as the definitive answer.795

B Side Effect796

Altough in Sec 4 we have verified that LWF can797

improve target fine-tuning task by sacrificing the798

unlearning task, it is unknown how this procedure799

will influence unintended tasks that are neither part800

of the learning task nor the forgetting task (for801

simplicity we denote them as side-tasks). In this802

section, we discuss the side effects of LWF.803

Firstly, we notice a superficial forgetting prob-804

lem, which happens between gsm8k and other four805

datasets. Specifically, while all five datasets used in806

our experiments are question-answering datasets,807

gsm8k is a free-form numerical QA dataset but808

the other four are multiple-choice QA datasets (see809

examples in Table 5 and Table 6). We observed810

that this format discrepancy can lead to significant811

performance degradation on side-taks when gsm8k812

is the learning task and the other datasets are the813

forgetting tasks. By analyzing the model’s out-814

puts, we identified that the model trained under815

this setting often fails to generate answers in the816

multiple-choice format. An illustration is provided817

in Table 10. As it shows, although the rationale por-818

tion of the output appears coherent, the resulting819

model fails to select a valid option at the end of its820

response.821

This superficial forgetting suggests that, when822

applying LWF, the model tends to focus on the823

most superficial pattern differences to distinguish824

the learning task from the forgetting task. There-825

fore, to mitigate extreme side effects, it is better826

to ensure that there are no overly superficial for-827

mat differences between the learning and forgetting828

tasks in practice.829

Apart from the superficial forgetting issue intro-830

duced by gsm8k, we also compute the average accu-831

racy of side-tasks on combinations of the other four832

datasets, and compare it to that of the vanilla fine-833

tuned model. Table 11 shows the results, where 834

each column represents the learning task and the 835

row indicates the forgetting task. As observed, the 836

side effects vary depending on the specific learning- 837

forgetting combinations. In general, the impact is 838

much milder when learning complex tasks like psy- 839

chol and dental. 840

C Task Generalizability 841

In Sec. 4, we evaluate the effectiveness of LWF on 842

the domain-specific question-answering task. This 843

is primarily motivated by its well-established eval- 844

uation metrics and delineated knowledge bound- 845

aries, which help isolate the impact of graceful 846

forgetting by minimizing confounding variables. 847

Additionally, to examine the task generalizability, 848

we conducted experiments in two other settings, 849

both related to the multi-lingual capability of gen- 850

erative language models. 851

First, we apply LWF to machine translation 852

tasks, We selected four language datasets–German 853

(DE), French (FR), Turkish (TR), and Chinese 854

(ZH)–from the WMT (Kocmi et al., 2022) corpus 855

to evaluate the model’s ability to translate from En- 856

glish into those languages. BLEU (Papineni et al., 857

2002) and BERTScore-F1 (Zhang et al., 2020) are 858

used as evaluation metrics. As Table 12 shows, 859

while LWF continues to yield performance gains 860

in most cases, the extent of these improvements 861

is considerably less pronounced compared to QA 862

tasks. In addition, the results reflected by the two 863

metrics are not entirely consistent, which is mainly 864

due to the incompleteness of evaluation metrics in 865

machine translation tasks. 866

The second experiment was conducted on the 867

multi-lingual QA task. Specifically, we applied 868

LWF to the gsm8k dataset across five different lan- 869

guages: English (EN), Italian (IT), Chinese (ZH), 870

Spanish (ES), and Turkish (TR). From results pre- 871

sented in Table 13, we observed an interesting phe- 872

nomenon: aside from the mixed approach, which 873

consistently improves performance across all lan- 874

guages, the results are all positive when learning 875

English with forgetting other languages, and vice 876

versa. However, when the combination does not in- 877

volve English, the outcomes are predominantly neg- 878

ative. We hypothesize that this phenomenon may 879

stem from the disproportionate volume of English 880

data used during the model’s pre-training, which 881

help stabilize LWF’s performance when English is 882

involved. 883
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Question: There are 15 trees in the grove. Grove workers will plant trees in the grove today. After they are done, there
will be 21 trees. How many trees did the grove workers plant today? Let’s think step by step.
Answer: We start with 15 trees. Later we have 21 trees. The difference must be the number of trees they planted. So, they
must have planted 21 - 15 = 6 trees. The answer is 6.
Question: If there are 3 cars in the parking lot and 2 more cars arrive, how many cars are in the parking lot? Let’s think
step by step.
Answer: There are 3 cars in the parking lot already. 2 more arrive. Now there are 3 + 2 = 5 cars. The answer is 5.
Question: Leah had 32 chocolates and her sister had 42. If they ate 35, how many pieces do they have left in total? Let’s
think step by step.
Answer: Leah had 32 chocolates and Leah’s sister had 42. That means there were originally 32 + 42 = 74 chocolates. 35
have been eaten. So in total they still have 74 - 35 = 39 chocolates. The answer is 39.

Table 5: Few-shot prompts for gsm8k.

Question: What type of water formation is formed by clouds? (A) pearls (B) streams (C) shells (D) diamonds (E) rain (F)
beads (G) cooled (H) liquid Let’s think step by step.
Answer: Beads of water are formed by water vapor condensing. Clouds are made of water vapor. Beads of water can be
formed by clouds. The answer is (F).
Question: Removing what from food will preserve it? (A) flavor (B) body water (C) heat energy (D) color (E) Water (F)
Bodily water (G) moisture (H) ingredients Let’s think step by step.
Answer: Dehydrating food is used for preserving food. Dehydration preserves foods by removing moisture. Removing
moisture from food preserves it. The answer is (G).
Question: Reproduction is the process by which living things what? (A) Most plants (B) allow growth (C) spread flower
seeds (D) have wide set eyes (E) members of their own species (F) have birthing hips (G) have quiet laughter (H) give
birth to babies Let’s think step by step.
Answer: Reproduction is the process by which living things give rise to offspring. Whenever it starts to give birth, it
gives birth up to two to four babies offspring. Reproduction is the process by which living things give birth to babies. The
answer is (H).

Table 6: Few-shot prompts for qasc.

Question: What is the emotional attitude reflected in the sentence: "in his first stab at the form , jacquot takes a slightly
anarchic approach that works only sporadically ."? (A) very negative (B) negative (C) neutral (D) positive (E) very positive
Let’s think step by step:
Answer: The phrase "first stab" suggests this is an initial attempt, which can imply inexperience but also experimentation.
"Slightly anarchic approach" does have a mild negative connotation with "anarchic," but it’s softened by "slightly." "Works
only sporadically" indicates mixed results. It doesn’t work consistently, but it does work sometimes, which isn’t entirely
negative. Given these considerations, while there are elements that lean towards a negative interpretation, the overall tone
of the sentence is not strongly positive or negative. So the emotional attitude is neutral. The answer is (C)
Question: What is the emotional attitude reflected in the sentence: "one long string of cliches."? (A) very negative (B)
negative (C) neutral (D) positive (E) very positive Let’s think step by step:
Answer: The phrase "one long string" suggests an extended or continuous sequence, which in this context implies that
there are many instances of something undesirable. The term "cliches" refers to expressions or elements that have been
overused to the point of losing their original impact, freshness, or appeal. It generally carries a negative connotation
because it indicates a lack of originality or creativity. Considering these points, the sentence does not contain any positive
words or phrases and is clearly pointing out a flaw or criticism. Therefore, the emotional attitude reflected in the sentence is
negative. Since it’s a straightforward criticism without strong intensifiers (like "extremely" or "utterly"), we can conclude
that the most fitting emotional attitude is negative. The answer is (B)
Question: What is the emotional attitude reflected in the sentence: "although laced with humor and a few fanciful touches,
the film is a refreshingly serious look at young women."? (A) very negative (B) negative (C) neutral (D) positive (E) very
positive Let’s think step by step:
Answer: The word "although" introduces a concession, acknowledging that the film contains elements of humor and some
imaginative aspects ("fanciful touches"). This part suggests that there are positive qualities present in the film. The main
clause uses the term "refreshingly," which conveys a positive and invigorating experience. It indicates that the seriousness
of the film’s approach to its subject matter is not only appreciated but also seen as something new or different from
what might be expected. The focus on "young women" being treated seriously adds depth to the evaluation. It implies
that the film offers a thoughtful and mature perspective on its subject, which can be seen as commendable. Given these
considerations, the overall tone of the sentence is appreciative and positive. The use of "refreshingly" especially signals a
positive emotional response to the film’s treatment of its subject. However, since the positivity is moderate and not overly
enthusiastic or exuberant, the most fitting emotional attitude is positive. The answer is (D).

Table 7: Few-shot prompts for sst5.
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Question: Resistance to lateral shifting or anteroposterior shifting is called as:? (A) Retention. (B) Stability. (C) Support.
(D) None. Let’s think step by step:
Answer: The question is asking about the term used to describe resistance to lateral (side-to-side) or anteroposterior
(front-to-back) shifting. Retention generally refers to the ability to hold or keep something in place. In dentistry, for
example, it refers to the resistance of a dental prosthesis to displacement in a vertical direction. Stability refers to the
resistance to movement, particularly lateral or anteroposterior shifting. It is the ability of an object or structure to maintain
its position when subjected to forces. Support refers to the ability to bear weight or hold something up, but it does not
specifically refer to resistance to shifting. Based on the definitions, stability is the term that specifically refers to resistance
to lateral or anteroposterior shifting. The answer is (B).
Question: Tannerella forsythia is a ? (A) Nonmotile, gram-negative obligate anaerobe (B) Motile, gram-negative obligate
anaerobe (C) Nonmotile, gram-negative obligate aerobe (D) Motile, gram-negative obligate aerobe Let’s think step by step:
Answer: Tannerella forsythia is a bacterium associated with periodontal disease. It is known to thrive in environments
with little to no oxygen. Tannerella forsythia is nonmotile, meaning it does not have structures like flagella to move on
its own. It is a gram-negative bacterium, which means it has a thin peptidoglycan layer and an outer membrane. It is an
obligate anaerobe, meaning it cannot survive in the presence of oxygen and requires an oxygen-free environment to grow.
So, it is a nonmotile, gram-negative obligate anaerobe. The answer is (A).
Question: Which of the following bacteria is not a primary colonizer:? (A) Streptococci. (B) Actinomyces. (C)
F.nucleatum. (D) None. Let’s think step by step:
Answer: Primary colonizers are the first bacteria to adhere to the tooth surface and form dental plaque. They are typically
gram-positive bacteria, such as Streptococci and Actinomyces. Fusobacterium nucleatum is not a primary colonizer. It is a
secondary colonizer that adheres to the primary colonizers and helps bridge the gap between early and late colonizers. The
answer is (C).

Table 8: Few-shot prompts for dental.

Question: Ani believes that her attitudes and behavior play a central role in what happens to her. Such a belief is likely to
be associated with? (A) a strong superego. (B) low self-esteem. (C) low self-efficacy. (D) an internal locus of control.
Let’s think step by step:
Answer: The question is asking about a psychological construct that aligns with the belief that one’s own actions and
attitudes influence life events. This is closely related to the concept of locus of control. Locus of control refers to the extent
to which individuals believe they can control events that affect them. There are two types: 1.Internal locus of control:
Individuals believe they have control over their lives through their actions and decisions; 2.External locus of control:
Individuals believe that external forces (e.g., luck, fate, or other people) control their lives. Ani’s belief that her attitudes
and behavior play a central role in what happens to her indicates an internal locus of control. She feels responsible for her
outcomes and believes her actions matter. The answer is (D).
Question: According to Caplan’s model of consultee-centered case consultation, the consultant is primarily interested in?
(A) identifying the causes and solutions of the client’s presenting problems (B) identifying and eliminating the causes of
the consultee’s difficulties in handling a problem (C) establishing a hierarchy of authority to enable effective decision
making (D) presenting a single, well-defined and unambiguous course of action for the consultant to overcome skills
deficits Let’s think step by step:
Answer: Caplan’s model of consultee-centered case consultation focuses on helping the consultee (e.g., a teacher, therapist,
or other professional) improve their ability to handle a specific case or problem. The consultant does not directly intervene
with the client but instead works with the consultee to address their difficulties in managing the situation. The primary
goal is to identify and address the consultee’s difficulties, which may stem from a lack of knowledge, skills, confidence, or
objectivity. The consultant helps the consultee overcome these issues so they can better handle the client’s problem. The
correct answer is (B), as Caplan’s model is primarily concerned with identifying and addressing the consultee’s difficulties
in handling a problem. The answer is (B).
Question: Pascale is interested in the processing strategies children use to learn new information. Pascale would best be
classified as what type of psychologist? (A) sociocultural (B) clinical (C) cognitive (D) behaviorist Let’s think step by
step:
Answer: The question is asking about the type of psychologist Pascale would be classified as, based on her interest in
processing strategies and learning. This aligns with the field of psychology that studies mental processes such as thinking,
memory, and learning. Sociocultural psychologists focus on how social and cultural factors influence behavior and mental
processes. While this could involve learning, it is not primarily about individual cognitive processing strategies. Clinical
psychologists focus on diagnosing and treating mental health disorders. This does not align with Pascale’s interest in
learning and processing strategies. Cognitive psychologists study mental processes such as thinking, memory, and learning.
This directly aligns with Pascale’s interest in how children process and learn new information. Behaviorists focus on
observable behaviors and how they are influenced by the environment. While learning is a part of behaviorism, it does not
emphasize internal processing strategies as cognitive psychology does. The answer is (C).

Table 9: Few-shot prompts for psychol.

13



Learning task: gsm8k Forgetting task: qasc

sst5: The phrase "no movement" suggests a lack of action or movement, which in this context implies a lack of interest or
enthusiasm. The term "yuks" is a slang term for laughter, which in this context carries a negative connotation because
it indicates a lack of seriousness or sincerity. The phrase "not much of anything" suggests a lack of substance or depth,
which in this context implies a lack of complexity or sophistication. Considering these points, the sentence does not
contain any positive words or phrases and is clearly pointing out a flaw or criticism. Therefore, the emotional attitude
reflected in the sentence is negative. Since it’s a straightforward criticism without strong intensifiers (like "extremely" or
"utterly"), we can conclude that the most fitting emotional attitude is negative. The answer is (6 - 2 - 2) = 2
dental: Heavy forces on periodontal ligament cause osteoclastic activity around the tooth, which results in the formation
of new bone around the tooth. This new bone helps to support the tooth and prevent further damage. The answer is (6 - 2 -
2) = 2
psychol: The heritability of a trait is the proportion of the trait’s variation that is due to genetic factors. In a population
with 100 individuals, the heritability of a trait is 100% - 25% = 75%. The answer is 75

Table 10: Cases of superficial forgetting.

qasc sst5 dental psychol

qasc - -14.93% -0.37% +1.00 %
sst5 -4.94% - -1.36% -1.85%

dental -1.45% +0.17% - -3.65%
psychol -17.43% -12.02% +4.80% -

Table 11: Average accuracy changes on side-tasks after
applying LWF. Percentages are calculated relative to
vanilla fine-tuning.

DE FR TR ZH
BLEU F1 BLEU F1 BLEU F1 BLEU F1

none 23.02 83.03 24.82 84.01 14.35 66.99 16.67 79.04

DE - - +0.12% -0.05% -0.42% +0.06% +0.00% +0.04%
FR +0.48% -0.02% - - +0.21% +0.24% +0.06% +0.05%
TR +0.26% +0.04% +0.00% +0.01% - - +0.18% +0.09%
ZH +0.13% +0.01% +0.40% +0.00% -0.07% +0.34% - -

Table 12: Results on machine translation. Each column
shares the same learning target language and the rows
represent different forgetting languages. All percentages
are calculated relative to none

EN IT ZH ES TR

none 19.71 6.67 9.78 7.81 9.10

EN - +6.90% +2.35% +3.84% +4.18%
IT +5.38% - -5.42% +1.92% -14.18%
ZH +2.69% -30.73% - -3.84% -9.23%
ES +0.41% -35.23% -6.24% - +5.05%
TR +6.95% -25.04% -8.49% -1.02% -

mixed +3.45% +25.04% +7.77% +10.63% +20.77%

Table 13: Results on multi-lingual question-answering.
All percentages are calculated relative to none.

gsm8k qasc sst5 dental psychol AVG.

vanilla-FT 19.71 42.98 49.55 36.87 46.42 39.12

BSS 20.39 44.28 49.73 35.51 44.77 38.94
SRS 17.36 40.28 50.50 35.05 46.61 37.96

LWF-mixed 21.08 45.36 50.59 37.41 50.10 40.91

Table 14: Accuracy results of two structural regulation
methods compared to vanilla fine-tuning and LWF under
mixed setting.

These two experiments inspire us that grace- 884

ful forgetting mechanisms may not transfer ho- 885

mogeneously across all NLP tasks. Effective per- 886

formance on complicated tasks may require task- 887

specific adaptations and rigorous per-task analysis. 888

D Structural Regulation Methods 889

As discussed in Section 2.1, structural regulation 890

methods such as BSS (Chen et al., 2019) and 891

SRS (Shen et al., 2024) are typical approaches 892

for mitigating negative transfer within the pretrain- 893

finetune paradigm. However, both of them have 894

only been evaluated on classification tasks. We 895

attempted to adapt them for generative language 896

models, and the results of our implementations 897

are presented in Table 14, along with vanilla fine- 898

tuning (vanilla-FT) and LWF (LWF-mixed). 899

As observed, the performance of BSS and SRS is 900

consistently inferior to LWF-mixed. In some cases, 901

these methods even result in negative changes com- 902

pared to vanilla-FT. We attribute this ineffective- 903

ness to architecture differences. Specifically, BSS 904

and SRS rely on operations applied to feature vec- 905

tors, whereas the hidden states in generative lan- 906

guage models are not inherently designed to rep- 907

resent sentence embeddings, the models for which 908

BSS and SRS were originally designed. 909
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