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ABSTRACT

Existing benchmarks fail to capture a crucial aspect of intelligence: physical reason-
ing, the integrated ability to combine domain knowledge, symbolic reasoning, and
understanding of real-world constraints. To address this gap, we introduce PHYX:
the first large-scale benchmark designed to assess models’ capacity for physics-
grounded reasoning in visual scenarios. PHYX includes 3K meticulously curated
multimodal questions spanning 6 reasoning types across 25 sub-domains and 6
core physics domains: thermodynamics, electromagnetism, mechanics, modern
physics, optics, and wave & acoustics. In our comprehensive evaluation, even state-
of-the-art models struggle significantly with physical reasoning. GPT-o4-mini,
Gemini-2.5-Pro, and GPT-5 achieve only 45.8%, 62.4%, and 65.2% accuracy
respectively—performance gaps exceeding 10% compared to human experts. Our
analysis exposes critical limitations in current models: over-reliance on memorized
disciplinary knowledge, excessive dependence on mathematical formulations, and
surface-level visual pattern matching rather than genuine physical understanding.
We provide in-depth analysis through fine-grained statistics, detailed case studies,
and multiple evaluation paradigms to thoroughly examine physical reasoning ca-
pabilities. To ensure reproducibility, we implement an evaluation protocol based
on widely-used toolkits such as VLMEvalKit and lmms-eval, enabling one-click
evaluation. All source code and data are available on our anonymous repository:
anonymous.4open.science.

1 INTRODUCTION

Physics is the most fundamental and all-inclusive of the sciences.

– Richard Feynman

State-of-the-art models (Guo et al., 2025; OpenAI, 2024b; Team, 2025) can now basically solve
Olympiad-level mathematical problems with human-competitive accuracy on benchmarks including
AIME (MAA, 2024), GPQA (Rein et al., 2024), MATH-500 (Hendrycks et al., 2021), Olympiad-
Bench (He et al., 2024), etc. Emerging multimodal large language models (MLLMs) like GPT-
4o (OpenAI, 2024a) further offer promising pathways by combining visual understanding with
reasoning capabilities. Recent advances in multimodal foundation models have spurred the de-
velopment of benchmarks assessing disciplinary knowledge (Yue et al., 2024) and mathematical
problems (Wang et al., 2024a; Zhang et al., 2024; Lu et al.). However, these evaluations overlook a
critical dimension of machine intelligence: physical reasoning, the ability to integrate disciplinary
knowledge, symbolic operations, and understanding of real-world constraints.

To address these gaps, we present PHYX, the first large-scale benchmark designed for evaluating
physics-based reasoning via multimodal problem-solving with three core innovations: (1) 3,000
newly collected questions with realistic physical scenarios requiring integrated visual analysis and
causal reasoning, (2) Expert-validated data design covering six fundamental physics domains with
representative examples illustrated in Figure 2, and six distinct physical reasoning types, (3) Strict
unified three-step evaluation protocols account for varying instruction-following capabilities across
models and enable accurate assessment of reasoning. Each scenario undergoes rigorous validation by
physics Ph.D. students to ensure scientific accuracy while eliminating dataset bias.

In addition to MLLMs, our benchmark supports evaluating LLMs by translating the images into text
descriptions, thereby enabling an assessment of LLMs on these visually-grounded tasks. Our evalua-
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Figure 1: Accuracies of three leading MLLMs, two leading LLM and human performance on our
proposed PHYX across 6 physical reasoning types and 6 domains.

Figure 2: Sampled PHYX examples from each domain.

tion of 16 foundation models reveals an unprecedented capability gap: While the worst-performance
group of physics undergraduates and graduates achieves 75.6% accuracy, the best-performing MLLM
(GPT-5) scores only 65.2%. This 10-point performance chasm persists across all physics domains,
most notably in Modern Physics (human 86.7% vs. model 56.5%) and Wave/Acoustics (human
86.7% vs. model 71.0%), as shown in Figure 1.

These results expose three critical shortcomings in current multimodal reasoning frameworks: (1)
Visual reasoning errors (39.6%) indicate that models frequently misinterpret visual context, un-
derscoring their limited capability in extracting and reasoning from physical scenarios. (2) The
inconsistent performance across input variations: Full-Text, Text-DeRedundancy, and Text-Minimal,
demonstrates that MLLMs remain overly dependent on textual descriptions, failing to effectively
leverage visual input for reasoning. (3) Comparing physical reasoning performance to mathematical
reasoning benchmarks such as MathVerse (Lu et al.) and MATH-V (Wang et al., 2024a) reveals that
physical reasoning poses significantly greater challenges, highlighting a critical need for improved
integration of abstract concepts and real-world knowledge. PHYX thus provides both a toolkit for
model improvement and a roadmap for developing physically-grounded AI systems.

Our contributions can be summarized as follows: Novel Benchmark Design: We introduce PHYX,
the first large-scale benchmark for evaluating the reasoning capabilities in the physical world for
both multi-modal models and language models. Curated by experts, it spans 25 fine-grained domains
and 6 reasoning types with realistic scenarios. Versatile Evaluation Framework: PHYX supports
versatile evaluation frameworks, including assessment formats (multiple-choice vs. open-ended)

2
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Figure 3: Comparison with existing benchmarks. Realistic refers to the extent to which the dataset
contains visually realistic physical scenarios. Size indicates the number of physics questions with
images in multimodal benchmarks or total physics questions in text-only benchmarks. For evaluation
methods, R: rule-based, M: model-based. For question type, OE: Open-ended, MC: Multiple-choice,
FB: Fill-in-the-blank, J: Judgement. In comparison, PHYX leads in all aspects.

Figure 4: Existing benchmarks that contain physics questions suffer from information redundancy
and abstract representation. In contrast, de-redundancy in PHYX increases the difficulty, as models
can perceive concepts from ONE modality only. Additionally, realistic visuals challenges models to
accurately apply physical laws.

and hierarchical answer judge (rule-based and model-based). It also seamlessly integrates with
mainstream toolkits (e.g., VLMEvalKit, lmms-eval) for reproducible benchmarking. Critical Insights
on Reasoning: We provide granular performance analysis and reveal some interesting observations,
which sheds light on the design of the future models that jointly consider the disciplinary knowledge,
symbolic operations, and real-world constraints for physical reasoning.

2 THE PHYX BENCHMARK

2.1 OVERVIEW OF PHYX

We introduce PHYX, a novel benchmark meticulously curated to assess the physical reasoning
capabilities of foundation models. PHYX consists of 3,000 visually-grounded physics questions,
meticulously curated to cover six distinct physics domains including Mechanics (550), Electromag-
netism (550), Thermodynamics (500), Wave/Acoustics (500), Optics (500), and Modern Physics (400).
Each problem in PHYX is centered around realistic physical scenarios to robustly assess the model’s
ability to reason the physical world. Detailed data statistics are summarized in Table 1, with repre-
sentative question examples from each domains illustrated in Figure 2. To enable a comprehensive
assessment, each question within PHYX has been categorized into six well-defined physical reasoning
types: Physical Model Grounding Reasoning, Spatial Relation Reasoning, Multi-Formula Reasoning,
Implicit Condition Reasoning, Numerical Reasoning, and Predictive Reasoning. Detailed definitions
and illustrative examples of these reasoning types are provided in Appendix F.4.
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Table 1: Key Statistics of PHYX.

Statistic Number

Total new questions 6,000
- Multiple-choice questions 3,000 (50.0%)
- Open-ended questions 3,000 (50.0%)

Unique number of images 3,000
Unique number of questions 3,000

Maximum description length 288
Maximum question length 119
Maximum option length 46
Average description length 48.3
Average question length 14.6
Average option length 11.2

Figure 5: Fine-grained Distribution of PHYX.

Through its carefully curated structure and extensive coverage of diverse reasoning dimensions,
PHYX represents a robust resource for systematically benchmarking and advancing the capabilities
of foundation models in realistic physical reasoning tasks.

2.2 DATA CURATION PROCESS

Data Collection. To ensure high-quality data, we design a four-stage data collection process. Firstly,
we conducted an in-depth survey of core physics disciplines to determine the coverage of our
benchmark. We selected diverse physics domains and subfields, and defined a set of reasoning types.
Secondly, we recruited a team of graduate students in STEM fields to serve as expert annotators.
Annotators are instructed to comply with copyright and licensing rules by avoiding content from
sources that restrict copying or redistribution. To mitigate potential data contamination in foundation
models, they are advised to select questions for which answers are not immediately available alongside
the problem, such as those found in separate materials or at the end of textbooks. Then, each open-
ended question is required to be converted into a multiple-choice version, and vice versa. We also
constructed three parallel versions of each question: (1) the original version; (2) a concise version
where redundant textual information—those duplicated by the corresponding image—was removed;
and (3) a question-only version that retains only the core question. Lastly, to support evaluation of
LLMs, we used GPT-4o to generate descriptive captions for each image, aim to summarize the visual
content in a self-contained textual form. This data curation process results in a diverse collection of
3,300 questions from various sources. The detailed annotation protocol is in Appendix I.

Data Quality Control. To further control the quality of our data, we perform a three-stage data
cleaning process. First, we detect potentially duplicated questions by analyzing lexical overlap,
followed by manual review from physics Ph.D. students to confirm and remove duplicates. Then, we
filter out the shortest 10% of questions based on their textual length. This rigorous process plays a
crucial role in maintaining the quality and difficulty of PHYX.

2.3 KEY DIFFERENCE COMPARED TO EXISTING BENCHMARKS

Compared with Scientific Knowledge Benchmarks. From Figure 3, science benchmarks like
MMMU (Yue et al., 2024) cover broad disciplinary QA but lack focus on physical reasoning. These
benchmarks often rely on basic understanding of disciplinary knowledge, with tasks that prioritize
simple factual recall. In contrast, PHYX demands integration of visual cues with implicit physical
laws, requiring models to perform context-driven inference. This targeted design evaluates multimodal
reasoning about the physical world, exposing gaps in models’ ability to handle scientific challenges.

Compared with Mathematical Reasoning Benchmarks. Mathematical reasoning benchmarks,
such as MathVista (Lu et al.), MathVerse (Zhang et al., 2024), and MATH-V (Wang et al., 2024a),
focus on logical deduction with clear expressions and explicit conditions, representing a subset of
the challenges in physical reasoning. Physical reasoning extends beyond these by requiring models
to model real-world contexts, identify implicit conditions from visual cues (e.g., Figure 6), and
integrate the application of physical laws with symbolic logic, which are key capabilities absent in
purely mathematical tasks. This makes PHYX a more comprehensive test of multimodal reasoning,
capturing the complexity of real-world physics problems.
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Table 2: Accuracy scores on the testmini subset of PHYX. The highest and the second highest scores
of models in each setting are respectively highlighted in blue and red.

Models Full-Text Text-DeRedundancy Text-Minimal

Open-Ended Multi-Choice Open-Ended Multi-Choice Open-Ended Multi-Choice

Random Choice - 25 - 25 - 25
Human Expert (Worst) - - 75.6 - - -
Human Expert (Medium) - - 77.8 - - -
Human Expert (Best) - - 78.9 - - -

Multimodal Large Language Models

Claude3.7-Sonnet 44.4 65.8 42.2 64.5 17.2 41.6
Claude3.5-Sonnet 40.2 62.6 39.0 63.5 17.0 43.5
Claude3.5-Haiku 7.9 37.0 13.6 37.5 5.5 31.7
GPT-5 66.4 90.9 65.2 88.3 29.6 64.1
GPT-o4-mini 49.0 87.9 45.8 86.9 24.1 62.6
GPT-4o 33.9 61.0 32.5 57.6 14.3 43.8
Gemini-2.5-Pro 65.0 74.1 62.4 74.1 28.4 54.0
InternVL3-78B 35.9 45.6 33.1 46.9 14.8 40.5
QVQ-72B-Preview 17.5 40.0 17.2 40.9 7.6 33.1
Yi-VL-34B 3.5 34.8 3.4 34.1 1.9 34.1
InternVL3-14B 9.0 46.9 7.9 47.5 5.1 45.9
InternVL3-8B 6.3 45.5 6.5 44.9 4.6 44.0
MiniCPM-o-8B 7.1 31.8 7.2 31.6 3.2 34.2
LLaVA-OneVision-7B 7.2 37.7 5.7 37.3 2.7 38.0
DeepSeek-VL2-4.5B 11.4 28.2 10.2 27.8 4.7 27.3
Kimi-VL-A3B-Instruct-2.8B 15.6 37.1 15.4 38.7 8.1 39.3
Kimi-VL-A3B-Thinking-2.8B 15.3 34.4 15.8 33.2 7.4 27.0

Large Language Models

DeepSeek-R1 51.8 63.1 51.2 62.9 22.2 43.6
DeepSeek-V3 40.7 70.8 36.3 67.5 16.2 49.9
GPT-o3-mini 36.9 78.5 31.5 76.9 14.3 56.2
Qwen3-4B 29.6 49.2 27.5 48.4 12.1 41.8
Qwen3-8B 32.2 50.4 31.6 48.8 13.0 37.2
Qwen3-14B 35.3 57.2 33.3 56.5 13.6 44.4

Compared with Physics-related Benchmarks Existing benchmarks (e.g., PHYBench (Qiu et al.,
2025), UGPhysics (Xu et al., 2025a), OlympiadBench (He et al., 2024)) prioritize text-based problems
or schematic visuals, limiting their assessment of multimodal reasoning. In detail, PHYBench’s
problems and UGPhysics’s questions rely heavily on textual descriptions, while OlympiadBench’s
problems use simplified diagrams, as shown in Figure 4. These benchmarks mainly test disciplinary
knowledge but overlook the integration of visual perception with implicit physical constraints. PHYX
bridges these gaps by embedding high-fidelity visual scenarios that require models to decode complex
visual cues, infer context-specific physical laws and then reason about problems. Additionally, PHYX
mandates equal reliance on both modalities with information de-redundancy, providing a rigorous
evaluation of professional-level physical reasoning in MLLMs.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

The testmini Subset. PHYX comprises 3,000 high-quality visual physics problems and 18,000
corresponding test instances. To streamline evaluation, we extract a smaller representative subset
named testmini including 1,000 problems and 6,000 instances. The construction of testmini involved
a proportional random sampling strategy across different physics domains of PHYX. The quantitative
evaluations in all subsequent experiments were conducted on this testmini subset, while the full set of
results on all 3,000 problems are provided in Appendix E.

Baselines. We include random choice as a naive baseline, and we recruit 15 undergraduate and
graduate physics students to represent the expert performance baseline, each student was tasked
with completing 18 questions. The students were divided into three groups of five, and the results
of each group are reported separately. Then, we conduct experiments on (a) Reasoning MLLMs:
Gemini-2.5-Pro (Team, 2025), GPT-5 (OpenAI, 2025c), GPT-o4-mini (OpenAI, 2025b), Claude-3.7-
Sonnet (claude, 2025), QVQ-Preview (Team, 2024), LLaVA-OneVision (Li et al., 2024), MiniCPM-
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Table 3: Average scores by model across different domains of physics with Open-Ended Text-
DeRedundancy questions. The highest and the second highest scores of models in each domain are
respectively highlighted in each setting in red and blue.

Models Overall Mechanics Electro-
magnetism

Thermo-
dynamics

Waves &
Acoustics Optics Modern

Physics

Human Expert (Worst) 75.6 76.5 60.0 66.7 86.7 69.2 86.7
Human Expert (Medium) 77.8 94.1 53.3 60.0 93.3 76.9 86.7
Human Expert (Best) 78.9 76.5 86.7 73.3 86.7 69.2 86.7

Multimodal Large Language Models

Claude3.7-Sonnet 42.2 58.2 36.7 31.5 46.7 44.6 35.2
Claude3.5-Sonnet 39.0 53.5 27.8 33.3 49.7 35.5 3.9
Claude3.5-Haiku 13.6 18.8 8.9 11.5 18.8 12.0 11.5
GPT-5 65.2 80.2 57.4 55.2 71.0 63.3 56.5
GPT-o4-mini 45.8 52.3 43.2 41.8 52.7 44.0 40.6
GPT-4o 32.5 45.9 24.3 26.1 53.9 23.5 21.2
Gemini-2.5-Pro 62.4 77.6 59.2 61.8 64.8 57.2 53.3
InternVL3-78B 33.1 48.8 27.2 25.5 43.0 28.9 24.8
QVQ-72B-Preview 17.2 31.7 11.2 10.9 20.0 12.0 16.9
Yi-VL-34B 3.4 1.8 3.5 4.8 2.4 4.2 3.6
InternVL3-14B 7.9 12.4 8.9 4.2 8.5 4.8 8.5
InternVL3-8B 6.5 10.6 6.5 3.6 4.9 6.6 6.7
MiniCPM-o-8B 7.2 11.8 6.5 6.1 7.3 6.0 5.5
LLaVA-OneVision-7B 5.7 10.6 4.1 6.1 7.3 3.0 3.0
DeepSeek-VL2-4.5B 10.2 16.5 7.1 10.3 13.3 9.0 4.8
Kimi-VL-A3B-Instruct-2.8B 15.4 20.6 10.1 13.3 20.0 16.2 12.1
Kimi-VL-A3B-Thinking-2.8B 15.8 25.9 15.4 7.9 20.6 13.3 11.5

Large Language Models

DeepSeek-R1 51.2 71.8 53.2 41.8 53.9 39.8 46.1
DeepSeek-V3 36.3 52.9 39.6 28.5 36.4 28.9 30.9
GPT-o3-mini 31.5 41.8 24.9 23.6 32.1 33.7 32.7
Qwen3-4B 27.5 42.9 23.7 21.2 35.8 21.1 20.0
Qwen3-8B 31.6 51.2 26.6 19.4 37.0 29.5 25.5
Qwen3-14B 33.3 52.9 30.8 18.2 40.0 27.1 30.3

o (Yao et al., 2024), Kimi-VL-A3B-Thinking (Team et al., 2025), (b) General MLLMs: GPT-4o (Ope-
nAI, 2024a), Claude-3.5-Sonnet (claude, 2024b), Claude-3.5-Haiku (claude, 2024a), InternVL3 (Zhu
et al., 2025), Yi-VL (Young et al., 2024), Kimi-VL-A3B-Instruct (Team et al., 2025), (c) LLMs:
GPT-o3-mini (OpenAI, 2025a), DeepSeek-R1 (Guo et al., 2025), DeepSeek-V3 (DeepSeek-AI, 2025),
Qwen3 (Yang et al., 2025), augmented with image captions generated by GPT-4o.

3.2 EVALUATION PROTOCOLS

Our evaluation is conducted with Chain-of-Thought (CoT) prompting to assess the reasoning capa-
bility of models. For both open-ended (OE) and multiple-choice (MC) questions, the instruction-
following capabilities of models can vary significantly. To this end, we design a universal evaluation
pipeline for all recent LLMs and MLLMs with different instruction-following capabilities:

Step 1. Prediction Generation. Initially, the models generate predictions given the input query,
which incorporates different problem descriptions according to the specific settings, the question, and
the image, using the template defined in Appendix G.1.

Step 2. Answer Extraction. The raw predictions often contain reasoning steps, explanations, or
irrelevant conversational filler. To precisely extract the definitive answer from these raw outputs, we
separately employ rule-based answer extraction strategies, which are detailed in Appendix G.2.

Step 3. Answer Judgment. For OE questions, the next step is comparing the extracted answer
against the ground truth. Given that answers in OE physics questions can be expressed in myriad
ways, we propose an evaluation mechanism using an LLM, such as DeepSeek-V3 (DeepSeek-AI,
2025), as a judge, using the template defined in Appendix G.3. We feeds the answer extracted and the
ground truth to an LLM multiple times and checks if an LLM succeed in all attempts. A preliminary
study of 200 examples shows that DeepSeek-V3 can judge the answer with more than 99% accuracy
with an affordable cost. For MC questions, we first attempt to directly match the option letter. If it
fails, we then use an LLM as a judge, using the template for OE questions.
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An annulus of charge density σ, 
inner radius aaa, and outer radius b 
lies in the xy-plane centered at the 
origin. A particle of mass 1.00 g and 
charge 1.00μC is placed at the 
origin. If slightly nudged, it moves 
along the z-axis.

 What will be its ultimate speed?Q:
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An annulus of charge density σ, 
inner radius a, and outer radius 
b lies in the xy-plane centered 
at the origin. A particle of mass 
1.00 g and charge 1.00μC is 
placed at the origin. If slightly 
nudged, it moves along the z-
axis.
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Figure 6: An real example of reasoning trajectory based on GPT-4o and the comparison of required
capabilities when solving physical and mathematical problems.

3.3 MAIN RESULTS

In this section, we present a comprehensive comparison of LLMs and MLLMs on the PHYX
benchmark, detailed in Table 2 and Table 3. Our key findings can be summarized as follows:

Challenging Nature of PHYX. PHYX presents significant challenges for current models. Notably,
even the worst human experts achieve accuracy of 75.6%, significantly outperforming all the models
included in our comparative analysis. This disparity demonstrates an existing gap between human
expertise and current model capabilities, reflecting the demanding standards inherent in PHYX.

Question Format as a Determinant of Model Discriminability. The result reveals that multiple-
choice questions reduce the performance gap across models, enabling weaker models to rely on
surface-level cues. In contrast, open-ended questions demand genuine reasoning and precise answer
generation, leading to greater differentiation between models. This suggests that the open-ended
format provides higher discriminative power when evaluating multimodal reasoning capabilities.

Domain-specific Variability in Multimodal Reasoning. As shown in Table 3, in domains such as
Waves/Acoustics and Mechanics, which typically include natural images and questions requiring
relatively less reasoning, models tend to achieve higher performance. Conversely, in domains such as
Thermodynamics and Modern Physics, where tasks frequently demand intricate visual perception
and multi-step reasoning, models performance is generally lower.

Reasoning-oriented Models Perform Better. Leading reasoning-oriented models such as GPT-
o4-mini and DeepSeek-R1 achieve accuracies of 45.8% and 51.2%, respectively, significantly out-
performing general-purpose models like GPT-4o and Claude3.7-Sonnet. The results highlight the
advantage of models specifically optimized for reasoning tasks, suggesting that architectural and
training differences play a key role in bridging the multimodal reasoning gap.

3.4 DISCUSSION

Mathematical Reasoning Is Not Enough. Comparing GPT-4o’s performance on PHYX to its
previously reported results on MathVista (63.8%) and MATH-V (63.8%), we observe substantially
lower accuracy in physical reasoning tasks, underscoring that these tasks present challenges that
go beyond mathematical abstraction. As shown in Figure 6, unlike mathematics problems, where
symbolic manipulation and abstraction are often sufficient, physical reasoning requires models to
decode implicit conditions in the problem statement (e.g., interpreting “smooth surface” as implying
zero friction), ground physical laws in concrete visual and material contexts (e.g., recognizing
whether a wooden block will float or whether a surface is rough or smooth), and maintain internal
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Figure 7: The error distribution over 90 annotated errors with a typical visual reasoning error, which
is easy for humans but challenging for GPT-4o. More examples can be found in the Appendix H.

consistency across reasoning chains, since the laws of physics remain invariant regardless of the
reasoning trajectory. This tight integration of perception, abstraction, and dynamic simulation makes
physical reasoning qualitatively more demanding, revealing a fundamental barrier that current LLMs
and MLLMs have yet to overcome.

Impact of Redundancy Removal on Models. We observe that most MLLMs exhibit performance
degradation under the Text-DeRedundancy setting, reflecting that most MLLMs are built upon a
powerful language model backbone, and thus tend to over-rely on textual information while under-
utilizing visual input. However, certain models (e.g., Claude 3.5-Haiku) benefit from redundancy
removal, which aligns with recent findings (Li et al., 2025; Mao et al., 2025) that imperfect cross-
modal alignment can introduce noisy or conflicting signals. In such cases, redundant textual cues
exacerbate alignment issues, and their removal clarifies multimodal inputs. Notably, this effect is
unique to MLLMs and does not occur in pure-text LLMs, further suggesting that the root cause lies
in cross-modal fusion rather than general reasoning ability.

MLLMs’ Physical Reasoning Relies More on Text. Our experiments show a clear performance
gradient across the three input variations: Full-Text, Text-DeRedundancy, and Text-Minimal, with
decreasing accuracy in that order. This indicates that most MLLMs rely heavily on detailed textual
descriptions, highlighting their limited ability to reason purely from visual context.

Competitive LLMs Highlight Limitations in Multimodal Fusion. Despite lacking direct visual
input, LLMs such as DeepSeek-R1 and GPT-o3-mini perform competitively with most multimodal
models. The strong performance of LLMs suggests that, in many cases, the caption provides sufficient
visual context for reasoning. This highlights both the impressive generalization capabilities of LLMs
and the current limitations of MLLMs in leveraging raw visual signals for physical reasoning.

3.5 ERROR ANALYSIS

To dive into the reasoning capabilities and limitations of models, we meticulously inspected 96
randomly sampled incorrect predictions and performed an in-depth analysis based on GPT-4o. The
objectives of this analysis were twofold: to identify current model weaknesses and to guide future
enhancements in model design and training. The distribution of these errors is illustrated in Figure 7,
and a comprehensive case study of 30 notable cases is included in Appendix H.

Reasoning Errors (53.2%) encompass both visual and textual reasoning failures. While visual
reasoning errors typically arise from incorrect extraction, spatial relationships, or reasoning based
on visual information (e.g., misreading the voltage in Appendix 8), textual reasoning errors are
characterized by misinterpretation of textual content, such as overlooking explicit conditions (e.g.,
ignoring the instruction to neglect friction in Appendix 4). Furthermore, our analysis reveals three
deeper challenges in multimodal reasoning:

- Context Switching. Rapidly transitioning between textual and visual modalities can cause models
to lose focus or misinterpret key data. Prior work (Zhang et al., 2025; Li et al., 2025) confirms that
modality switching introduces significant cognitive load, leading to unstable attention, misalignment
in cross-modal representations, and disrupted reasoning chains, especially in tasks requiring deep
integration of visual and textual information.

8
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Figure 8: Both are relative motion problems, easy for human experts. Left: Error case from PHYX
with realistic images, which introduce visual noise and make reasoning harder. Right: Correct case
from concurrent work SeePhys (Xiang et al., 2025), where schematics image simplify perception.

- Cross-Modal Reasoning Difficulty. Models often struggle to deeply integrate visual and textual
modalities, particularly when fine-grained visual cues must align with detailed textual descriptions.
Existing studies (Mao et al., 2025; Yue et al., 2024) highlight that current fusion strategies frequently
yield superficial alignment, limiting cross-modal reasoning.

- Visual Realism Challenge. As illustrated in Figure 8, unlike other benchmarks that primarily
employ abstract line drawings or schematic sketches, our dataset contains realistic images. This
realism significantly increases perceptual and reasoning difficulty: models must construct an abstract
physical problem from a noisy, unstructured visual input rather than relying on simplified shapes.

Lack of Knowledge (38.5%) reflects GPT-4o’s incomplete understanding of physical domain
knowledge. As shown in Appendix 25, the model lacks the fundamental knowledge. Specifically,
it ignores that the slower speed in the liver requires a correction when estimating depth from the
reflection geometry, leading to an overestimated result.

Calculation Error (8.3%) refer to mistakes in arithmetic operations, formula application, or unit
conversions. These errors indicate that the model has grasped the physical context and relevant
concepts but fails in the final step of numerical computation.

4 RELATED WORK

Multi-modal Large Language Models. Multi-modal large language models (MLLMs) (OpenAI,
2025b; Team, 2025) have shown great potential and achieved excellent visual understanding by
integrating visual and textual data across a wide range of multimodal tasks. Recent advances in
LLMs have motivated efforts (Wei et al., 2022; Ouyang et al., 2022) to explore MLLM reasoning.
Despite such achievements, it remains unclear whether these models truly possess advanced reasoning
abilities, especially in the physical area that is closer to the real world. To bridge this gap and evaluate
the physical reasoning capabilities of MLLMs, we introduce PHYX, a multimodal benchmark to
evaluate the real reasoning ability of recent advanced MLLMs in physics.

MLLM Benchmarks. Recently, several MLLM scientific benchmark (Yue et al., 2024; Wang et al.,
2024b; He et al., 2024; Huang et al., 2024; Zhang et al., 2025; Hao et al., 2025) have also been
proposed. For example, PhysReason (Zhang et al., 2025) includes a multimodal subset of 972 physics
problems with figures to evaluate the MLLMs. EMMA (Hao et al., 2025) comprises 2,788 problems
covering various scientific areas such as mathematics, physics, and coding. However, all of these
benchmarks contain only a small subset of data in physics, which still cannot fully evaluate MLLM’s
ability on physical reasoning. More related works are discussed in Appendix D.

5 CONCLUSION

Existing benchmarks have overlooked the critical task of physical reasoning, which requires integrat-
ing domain knowledge, symbolic reasoning, and real-world constraints. To address this, we present
PHYX, the first large-scale benchmark for evaluating physical reasoning in multimodal, visually
grounded scenarios. Through rigorous evaluation, we reveal that state-of-the-art models exhibit
significant limitations in physical reasoning. Our findings highlight the urgent need for future models
to improve deep physical reasoning over surface-level associations.

9
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A THE USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we used a Large Language Model (LLM) solely to assist with minor
language polishing and improvements in readability. The LLM did not contribute to research ideation,
analysis, or substantive writing. All scientific content and conclusions are entirely the responsibility
of the authors.

B REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our results. All code, scripts, and dataset
used in this work are available in an anonymous repository anonymous.4open.science. Detailed
descriptions of the benchmark setup, data collection, and preprocessing procedures are provided in
Section 3 of the main text and in Appendix G. With these resources, all reported results can be fully
reproduced.

C ETHICS STATEMENT

Legal Compliance. All questions included in PHYX are sourced from publicly accessible materials.
During data collection, annotators are instructed to strictly follow the copyright and licensing terms
of the original platforms. Any content from sources that prohibit reuse or redistribution MUST be
explicitly excluded. PHYX is a non-commercial project, and its usage aligns with the principles
outlined in Fair Use §107: "the fair use of a copyrighted work, including such use by ...... scholarship,
or research, is not an infringement of copyright", where fair use is determined by "the purpose
and character of the use, including whether such use is of a commercial nature or is for nonprofit
educational purposes" and "the effect of the use upon the potential market for or value of the
copyrighted work."

Dataset Intended Usage and License. The full details of the PHYX dataset are presented in this
paper, and both the PHYX and code for reproducing results will be made publicly available. The
PHYX dataset is not supposed to be used to train models for cheating. The primary goal is to support
the research community in benchmarking and advancing physical reasoning in LLMs and MLLMs.
We take full responsibility for any rights violation that may arise. Both the PHYX data and our
open-source code are released under the MIT license.

D MORE RELATED WORK

Several LLM benchmarks (Hendrycks et al.; Sun et al., 2024; Rein et al., 2024; Austin et al.,
2021; Zhou et al., 2023) have been proposed to evaluate LLM’s ability on various aspects. Among
these works, the most related one is PHYBench (Qiu et al., 2025), which also focuses in the
physic reasoning area. Although evaluating the same discipline, their scope remains narrow since it
includes only a small number of questions, making it insufficient to fully assess a model’s reasoning
capabilities. Furthermore, PHYBench concentrates exclusively on evaluating through text. However,
in real-world scenarios, solving physics problems also requires visual perception and interpretation.
Concurrently, three related efforts (Wang et al., 2025; Xiang et al., 2025; Xu et al., 2025b) have
emerged. While sharing a similar motivation, these benchmarks rely on schematic images that
simplify visual perception. In contrast, our dataset leverages realistic images, which introduce visual
noise and thereby make the reasoning process more challenging and closer to real-world conditions.

E MORE EXPERIMENTAL RESULTS

Table 4 reports the accuracy scores of the leading MLLM (GPT-4o) on the full test subset. The
minor differences between overall scores on the test subset and the testmini subset, suggest that the
testmini subset effectively mirrors the test subset, serving as a valuable evaluation subset for model
development, especially for those who have limited computing resources.
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Table 4: Accuracy scores by GPT-4o across different domains of physics with open-ended text
de-redundancy questions on the test subset and testmini subset of PHYX.

GPT-4o Overall Mechanics Electro-
magnetism

Thermo-
dynamics

Waves &
Acoustics Optics Modern

Physics

testmini 32.5 45.9 24.3 26.1 53.9 23.5 21.2
test 34.0 45.8 37.1 20.0 38.2 27.2 34.3

F MORE DATASET DETAILS

F.1 QUESTION DISTRIBUTION

All questions in PHYX are written in English. Figure 9 presents the distribution of word counts of
questions in the Text-DeRedundancy setting, demonstrating the variation in question lengths. The
similarity between the median and average word counts suggests a roughly symmetrical distribution.

F.2 INTRODUCTION OF DOMAIN AND SUBFIELD

As shown in Table 5, PHYX covers 6 core domains and 25 subdomains.

Mechanics. Mechanics is the branch of physics concerned with the motion of objects and the forces
that cause or change this motion. It encompasses both classical mechanics and key subfields such
as Kinematics (e.g., velocity, acceleration, free fall), Dynamics (e.g., Newton’s laws, force analysis,
friction), Work and Energy (e.g., work-energy theorem, mechanical energy conservation), Momentum
and Collisions (e.g., conservation of momentum, elastic and inelastic collisions), Rotational Motion
(e.g., torque, angular acceleration, moment of inertia), and Statics (e.g., torque balance, structural
analysis). Mechanics lays the groundwork for much of physics, enabling the understanding of how
and why objects move or remain at rest in various physical systems.

Electromagnetism. Electromagnetism explores the interactions between electric charges and mag-
netic fields. It includes the subfields of Electrostatics (e.g., Coulomb’s law, electric fields and
potential), Electric Circuits (e.g., Ohm’s law, circuit analysis, RC circuits), Magnetism (e.g., magnetic
fields, Lorentz force, Ampère’s law), Electromagnetic Induction (e.g., Faraday’s law, Lenz’s law,
inductance), and optionally Maxwell’s Equations and Electromagnetic Waves for advanced topics.
This domain underpins much of modern technology, including electric circuits, motors, and wireless
transmission.

Thermodynamics. Thermodynamics is the study of heat, energy, and their transformations. Its
subtopics include Temperature and Heat Transfer (e.g., conduction, convection, radiation), Specific
Heat and Calorimetry (e.g., phase changes, heat calculations), Laws of Thermodynamics (e.g., energy
conservation, entropy), and Ideal Gases and Kinetic Theory (e.g., gas laws, internal energy, pressure).
This domain is central to engines, thermal systems, and understanding natural processes.

Wave/Acoustics. This domain investigates wave behavior and sound phenomena. Core subfields
include Wave Properties (e.g., speed, frequency, wavelength, interference), Sound (e.g., pitch,
loudness, Doppler effect, standing waves), and Resonance and Harmonics (e.g., resonant frequencies,
vibrations in strings and air columns). These concepts are crucial in fields ranging from acoustics to
telecommunications.

Optics. Optics studies the behavior and properties of light. It includes Geometrical Optics (e.g., re-
flection, refraction, lens imaging, total internal reflection), Wave Optics (e.g., interference, diffraction,
polarization), and Optical Instruments (e.g., microscopes, telescopes, image formation). Optics has
broad applications in imaging, vision science, and photonics.

Modern Physics. Modern Physics addresses phenomena beyond the scope of classical mechanics. Its
key subfields include Relativity (e.g., time dilation, mass-energy equivalence), Quantum Phenomena
(e.g., photoelectric effect, atomic models), Nuclear Physics (e.g., radioactivity, nuclear reactions,
mass defect), and optionally Particle Physics (e.g., elementary particles, the Standard Model). These
topics form the theoretical basis of contemporary physics and technology.
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Figure 9: The distribution of the number of words per question in PHYX.

Domain Subfields
Optics Optical Instrument, Wave Optics, and Geometrical Optics

Electromagnetism Electromagnetic Wave, Electric Circuits, Magnetism, Electromagnetic
Induction, and Electrostatics

Mechanics Momentum and Collisions, Work and Energy, Statics, Dynamics, Rela-
tional Motion, and Kinematics.

Wave/Acoustics Sound, Resonance and Harmonics, and Wave Properties

Thermodynamics Specific Heat and Calorimetry, Temperature and Heat Transfer, Ideal
Gases and Kinetic Theory, and Laws of Thermodynamics

Modern Physics Particle Physics, Nuclear Physics, Relativity, and Quantum Phenomena

Table 5: Subfields included in each domain in PHYX.

F.3 IMAGES BY DOMAINS

In this section, we present example images from the physics problems in PHYX. Figure 10, Figure 11,
Figure 12, Figure 13, Figure 14 and Figure 15 show images from problems under the categories
of Mechanics, Electromagnetism, Thermodynamics, Wave/Acoustics, Optics, and Modern Physics,
respectively.

We observe that the images in our dataset are highly realistic, often depicting concrete physical
scenarios rather than stylized or abstract illustrations. While they are not real-world photographs,
these visuals are grounded in plausible physical settings. This realism provides essential context for
physical reasoning and helps bridge the gap between abstract physics principles and their real-world
manifestations.

Across domains, the visual characteristics vary in alignment with the nature of the physical concepts.
Despite their domain-specific variations, a unifying theme across all categories is the consistent use of
realistic and context-rich imagery, which provides essential grounding for physical interpretation and
distinguishes our benchmark from other datasets with overly synthetic or schematic visual content.

F.4 PHYSICAL REASONING DEFINITION

Six physical reasoning types are defined in Table 6.

G MORE EVALUATION DETAILS

We conduct all experiments on NVIDIA A100 80G GPUs.
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Mechanics

Figure 10: Examples of the visual context for the Mechanics domain.
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Electromagnetism

Figure 11: Examples of the visual context for the Electromagnetism domain.
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Thermodynamics

Figure 12: Examples of the visual context for the Thermodynamics domain.
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Wave/Acoustics

Figure 13: Examples of the visual context for the Wave/Acoustics domain.
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Optics

Figure 14: Examples of the visual context for the Optics domain.
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Modern Physic

Figure 15: Examples of the visual context for the Modern Physics domain.
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CoT Prompting for Generating Answer

Please answer the question with step by step reasoning.

Figure 16: CoT prompting for generating answer.

Rule-based Answer Extraction (MC)

def MetaPhyX_process_line_MC(line): 
    ret = {}  

    answers = str(line['answer'])  

    ret["index"] = line["index"] 
    ret['gt'] = answers 
    ret['pred'] = line['prediction'].strip()  

    pattern = r'\b(?:correct|answer|option|Answer|Option|
Correct)\b[\s\S]*?([A-D])' 
    match = re.search(pattern, ret['pred'])

Figure 17: Rule-based answer extraction strategy for MC questions.

G.1 COT PROMPTING FOR GENERATING ANSWER

The CoT prompting for generating answer is shown in Figure 16.

G.2 RULE-BASED ANSWER EXTRACTION

The rule-based answer extraction strategies for MC and OE questions are shown in Figure 17 and
Figure 18, respectively.

G.3 PROMPT FOR ANSWER JUDGE

The prompt for answer judge is shown in Figure 19.

G.4 PROMPT FOR CAPTION GENERATION

The prompt for caption generation is shown in Figure 20

G.5 PROMPT FOR REASONING TYPE LABELING

The prompt for reasoning type labeling is shown in Figure 21 and Figure 22
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Rule-based Answer Extraction (OE)

def MetaPhyX_process_line(line): 
    ret = {}  

    answers = str(line['answer'])  

    ret["index"] = line["index"] 
    ret['gt'] = answers 
    ret['pred'] = line['prediction'].strip()  

    pattern = r'\b(?:final\s+answer|
correct\s+answer)\b[^:：]*[:：]\s*(.*?)(?=\n\n\n|\Z)' 
    flags = re.IGNORECASE | re.DOTALL 
    match = re.search(pattern, ret['pred'], flags=flags)

Figure 18: Rule-based answer extraction strategy for OE questions.

Figure 19: Rule-based answer extraction strategy for OE questions.
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Prompt for Caption Generation


Describe the fine-grained content of the image or figure, including 
scenes, objects, relationships, and any text present.

Figure 20: Prompt template for caption generation.

Physical Reasoning Description
Physical Model

Grounding
Reasoning

This reasoning involves connecting the specific details of a problem descrip-
tion to fundamental physical concepts, laws, and idealized models. It’s the
process of identifying which area of physics is relevant and selecting the
appropriate simplified representations that allow the problem to be analyzed
using established physical principles and equations. Essentially, it translates
a real-world or described scenario into a solvable physics framework.

Spatial Relation
Reasoning

This focuses on understanding and manipulating the geometric and di-
rectional aspects of a physics problem. It involves visualizing the setup,
determining the positions, orientations, distances, angles, and relative move-
ments of objects. This often requires using coordinate systems, vectors
(including resolving them into components), and geometric principles.

Multi-Formula
Reasoning

This reasoning type is required when a problem cannot be solved using a
single physics equation. It involves identifying multiple relevant formulas
or principles and understanding how they interrelate. The process typically
involves using the output of one formula as the input for another, or setting
up and solving a system of simultaneous equations derived from different
physical laws.

Implicit Condition
Reasoning

This involves recognizing and utilizing information or constraints that are
not explicitly stated in the problem text but are implied by the context,
standard physics assumptions, or specific keywords. Examples include
understanding that "starts from rest" means the initial velocity is zero, a
"smooth" surface implies zero friction, a "light string" or "light pulley"
means its mass is negligible, or that an object reaching its maximum height
has a momentary vertical velocity of zero.

Numerical
Reasoning

This reasoning refers to problems where solving requires the application
of advanced mathematical methods beyond basic algebra and trigonometry.
This includes techniques such as calculus, solving differential equations
that model the system, vector calculus, Fourier analysis, linear algebra for
complex systems, or other higher-level mathematical procedures necessary
to manipulate the physical formulas and arrive at a solution. This applies
when the mathematical technique itself is a core part of solving the physics,
regardless of whether the final answer is purely numerical or symbolic.

Predictive Reasoning This involves using established physical laws and the initial conditions of
a system to forecast its future state or behavior. Based on the principles
governing the situation, you calculate or deduce what will happen after a
certain time or interaction. Examples include predicting the trajectory of
a projectile, the final temperature of a mixture after thermal equilibrium is
reached, or the velocity of objects after a collision.

Table 6: Definitions of six physical reasoning categories in PHYX.
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Prompt for Reasoning Type Labeling(1)

You are an expert AI assistant specializing in analyzing physics 
problems.**  

**Your Task:** 
Your goal is to carefully read the provided physics problem and 
identify the **zero, one, or two MOST critical/dominant** reasoning 
types required to solve it, based on the definitions below. Your 
primary task is selection and prioritization. Assign a **maximum of 
two** labels per problem.  

**Reasoning Type Definitions:**  

1.  **Physical Model Grounding Reasoning:** 
    * Explanation: Connecting problem details to physical concepts, 
laws, and idealized models (e.g., point mass, frictionless surface, 
ideal gas). Translating the scenario into a physics framework.  

2.  **Spatial Relation Reasoning:** 
    * Explanation: Understanding and manipulating geometric aspects 
(positions, angles, vectors, diagrams, coordinate systems).  

3.  **Multi-Formula Reasoning:** 
    * Explanation: Requiring the combination or sequential use of 
multiple distinct physics formulas or principles to find the solution.  

4.  **Implicit Condition Reasoning:** 
    * Explanation: Recognizing and using conditions not explicitly 
stated but implied by context or keywords (e.g., "starts from rest", 
"smooth surface", "maximum height").  

5.  **Numerical Reasoning:** (Revised Definition) 
    * **Explanation:** Requiring advanced mathematical methods beyond 
basic algebra/trigonometry (e.g., calculus - integration/
differentiation, solving differential equations, Fourier analysis) as a 
core part of manipulating physical formulas. Do *not* select this for 
basic algebra or substitutions.  

6.  **Predictive Reasoning:** 
    * Explanation: Using physical laws and initial conditions to 
forecast a future state or behavior (e.g., final velocity, trajectory, 
final temperature).  

Figure 21: Prompt for reasoning type labeling (1).

Prompt for Reasoning Type Labeling(2)

**Instructions:**  

1.  **Read and Analyze:** Carefully understand the problem and the 
likely steps/concepts needed for its solution. 
2.  **Identify Potential Types:** Determine which of the 6 reasoning 
types are involved in the solution process. 
3.  **Prioritize and Select:** From the potentially involved types, 
select **at most two** that are the **most critical, dominant, or 
uniquely challenging** aspects of solving this *particular* problem. 
    * Think about what makes the problem non-trivial. Is it complex 
geometry? Combining multiple physics laws? Recognizing hidden 
conditions? Needing calculus? 
    * If several types apply, choose the one or two that best represent 
the core difficulty or the essential nature of the solution process. 
    * If only one type truly stands out as the most essential 
characteristic, list only that one. 
    * If the problem is exceptionally simple or doesn't strongly fit 
any category as "most critical", output zero labels (`[]`). 
4.  **Output Format:** **CRITICAL:** Your entire response must consist 
*only* of a single Python-style list containing strings of the exact 
names for the selected zero, one, or two most critical reasoning types. 
Do **NOT** include any introductory text, explanations, labels, 
apologies, or any characters outside of the list itself. 
    * **Correct Format Example (Two Types):** `["Reasoning Type A", 
"Reasoning Type B"]` 
    * **Correct Format Example (One Type):** `["Reasoning Type C"]` 
    * **Correct Format Example (Zero Types):** `[]` 
    * **Incorrect Format Example:** `The most critical types are: 
["Reasoning Type A", "Reasoning Type B"]`  

**Example demonstrating the task (internal analysis, not part of the 
output):**  

* **Problem:** "A 2 kg block, initially at rest on a frictionless 
horizontal surface, is pulled by a constant horizontal force of 10 N. 
What is its velocity after it has traveled 5 meters?" 
* **(Internal Analysis:** Potential types involved: Grounding, Spatial 
(trivial here), Multi-Formula (F=ma then kinematics), Implicit ('at 
rest'), Predictive. Which are *most critical* (max 2)? Combining F=ma 
and kinematics (`Multi-Formula Reasoning`) is the core physics 
calculation. Recognizing 'at rest' (`Implicit Condition Reasoning`) is 
crucial for the setup. These seem most central.)* 
* **Required Output for this Example:** `["Multi-Formula Reasoning", 
"Implicit Condition Reasoning"]`  

**Now, analyze the following physics problem:**  

--- Problem Start --- 

Figure 22: Prompt for reasoning type labeling (2).
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16 Wave/Acoustics 1: Correct Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
17 Wave/Acoustics 2: Correct Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
18 Wave/Acoustics 3: Visual Reasoning Error . . . . . . . . . . . . . . . . . . . . . . . . . 45
19 Wave/Acoustics 4: Text Reasoning Error . . . . . . . . . . . . . . . . . . . . . . . . . . 46
20 Wave/Acoustics 5: Lack of Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
21 Optics 1: Correct Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
22 Optics 2: Correct Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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26 Modern Physics 1: Correct Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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28 Modern Physics 3: Visual Reasoning Error . . . . . . . . . . . . . . . . . . . . . . . . . 55
29 Modern Physics 4: Text Reasoning Error . . . . . . . . . . . . . . . . . . . . . . . . . . 56
30 Modern Physics 5: Lack of Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Domain Correct Visual
Reasoning Error

Text
Reasoning Error

Lack of
Knowledge

Mechanics 1, 2 3 4 5
Electromagnetism 6, 7 8 9 10
Thermodynamics 11, 12 13 14 15
Wave/Acoustics 16, 17 18 19 20
Optics 21, 22 23 24 25
Modern Physics 26, 27 28 29 30

Table 7: Table index of case study figures by domains with associated error categories.
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Figure 1: A sample correct case of Mechanics.
Back to List of Figures | Back to Table Index

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 2: A sample correct case of Mechanics.
Back to List of Figures | Back to Table Index
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Figure 3: A sample error case of Mechanics. Error category: Visual Reasoning Error
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Figure 4: A sample error case of Mechanics. Error category: Text Reasoning Error
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Figure 5: A sample error case of Mechanics. Error category: Lack of Knowledge
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Figure 6: A sample correct case of Electromagnetism.
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Figure 7: A sample correct case of Electromagnetism.
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Figure 8: A sample error case of Electromagnetism. Error category: Visual Reasoning Error
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Figure 9: A sample error case of Electromagnetism. Error category: Text Reasoning Error
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Figure 10: A sample error case of Electromagnetism. Error category: Lack of Knowledge
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Figure 11: A sample correct case of Thermodynamics.
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Figure 12: A sample correct case of Thermodynamics.
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Figure 13: A sample error case of Thermodynamics. Error category: Visual Reasoning Error
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Figure 14: A sample error case of Thermodynamics. Error category: Text Reasoning Error
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Figure 15: A sample error case of Thermodynamics. Error category: Lack of Knowledge
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Figure 16: A sample correct case of Wave/Acoustics.
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Figure 17: A sample correct case of Wave/Acoustics.
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Figure 18: A sample error case of Wave/Acoustics. Error category: Visual Reasoning Error
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Figure 19: A sample error case of Wave/Acoustics. Error category: Text Reasoning Error
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Figure 20: A sample error case of Wave/Acoustics. Error category: Lack of Knowledge
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Figure 21: A sample correct case of Optics.
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Figure 22: A sample correct case of Optics.
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Figure 23: A sample error case of Optics. Error category: Visual Reasoning Error
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Figure 24: A sample error case of Optics. Error category: Text Reasoning Error
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Figure 25: A sample error case of Optics. Error category: Lack of Knowledge
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Figure 26: A sample correct case of Modern Physics.
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Figure 27: A sample correct case of Modern Physics.
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Figure 28: A sample error case of Modern Physics. Error category: Visual Reasoning Error
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Figure 29: A sample error case of Modern Physics. Error category: Text Reasoning Error
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Figure 30: A sample error case of Modern Physics. Error category: Lack of Knowledge
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I DATA ANNOTATION PROTOCOL

This document outlines a detailed procedure for annotating a dataset of physics questions that include
visual context.

I.1 DATA COLLECTION

Sources of Data. Data is collected from freely accessible online resources, textbooks, and other
materials. Annotators are instructed to use a wide range of sources rather than relying on just one.

Types of Questions:

• Multiple-Choice Questions: These consist of a question accompanied by four answer
options, with only one being correct. For each multiple-choice question, annotators are also
required to create a corresponding open-ended version of the same problem.

• Open-Ended Questions: These include formats such as short-answer and calculation-
based problems. Questions with excessively lengthy answers should be avoided. For each
open-ended question, a corresponding multiple-choice version should also be constructed.

Image Types. The annotators should find images with realistic physical senarios.

I.2 GENERAL GUIDELINES

• General Principles: Annotations should be accurate and uniform, and maintain a high level
of academic quality.

• Specific Instructions:
– All questions should be written in English.
– All questions must contain one physical image.
– All images in question should be realistic, in specific physical scenarios.
– The question should not be ambiguous and can be answered with one of the given

options or a short answer.
– Annotate all data fields, including the description, simplified description, question,

answer options, the correct answer, image, and domain.

I.3 DATA FORMAT AND STRUCTURE

• JSON File Format: The structured JSON format will include fields for index number,
description, simplified description, question, answer options, correct answer, and domain.

• Naming Conventions:
– Each collected sample will be stored on a single line in a JSONL file.
– Image files should follow a standard naming rule: {QuesNum}.png

• Interleaving Question with Images: The images should be inserted as a file path in the
question.

I.4 QUALITY CONTROL AND VALIDATION

• Annotators will cross-check each other’s work to ensure accuracy and compliance with the
annotation guidelines.

• Periodic reviews of randomly selected samples from the dataset will be carried out to
maintain consistent quality over time.

I.5 HANDLING AMBIGUITIES

Any ambiguous or unclear data entries should be marked for thorough review. Such questions will
be collectively discussed during team meetings to develop a consistent and standardized annotation
strategy.
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I.6 ETHICAL CONSIDERATIONS

• Copyright and Licensing: Annotators must strictly follow all applicable copyright and
licensing rules. Content from sources that restrict reproduction or redistribution will be
excluded without exception.

• Data Privacy: Upholding data privacy and ethical standards is essential. Annotators should
refrain from including any questions that involve personal or sensitive information.

I.7 DATA CONTAMINATION CONSIDERATIONS

When developing benchmarks for evaluating foundation models, it is crucial to account for the
potential risk of data contamination. To mitigate this, annotators should deliberately avoid simple
questions with widely available answers. Instead, they should prioritize selecting problems whose
solutions are embedded in less conspicuous places—such as in supplementary materials or at the end
of lengthy textbooks. This strategy helps ensure that the benchmark effectively challenges models to
demonstrate genuine comprehension and reasoning across complex and less accessible content.
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