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ABSTRACT

Time series forecasting has historically been a key area of academic research and
industrial applications. As deep learning develops, the major research method-
ologies of time series forecasting can be divided into two categories, i.e., iterative
and direct methods. In the iterative methods, since a small amount of error is pro-
duced at each time step, the recursive structure can potentially lead to large error
accumulations over longer forecasting horizons. Although the direct methods can
avoid this puzzle involved in the iterative methods, it faces abuse of conditional
independence among time points. This impractical assumption can also lead to
biased models. To solve these challenges, we propose a direct approach for multi-
horizon probabilistic forecasting, which can effectively characterize the depen-
dence across future horizons. Specifically, we consider the multi-horizon target
as a random vector. The direction of the vector embodies the temporal depen-
dence, and the length of the vector measures the overall scale across each horizon.
Therefore, we respectively apply the von Mises-Fisher (VMF) distribution and
the truncated normal distribution to characterize the angle and the magnitude of
the target vector in our model. We evaluate the performance of our framework
on three benchmarks. Extensive results demonstrate the superiority of our frame-
work over six state-of-the-art methods and show the remarkable versatility and
extensibility for different time series forecasting tasks.

1 INTRODUCTION

Time series forecasting has historically been a key area of academic research and industrial appli-
cations, such as climate modeling (Mudelsee, 2019), biological sciences (Stoffer & Ombao, 2012),
medicine (Topol, 2019), detail decision making (Böse et al., 2017), and finance (Andersen et al.,
2005). The common requirement of time series forecasting is measuring the uncertainty of the
output by predicting its probability distribution, which is termed “probabilistic forecasting”. In ad-
dition, the practical use of probabilistic forecasting generally requires forecasting more than one
step, i.e., multi-horizon forecasting. For example, in retail, multi-horizon probabilistic forecasting is
used for optimal inventory management, staff scheduling, and topology planning (Simchi-Levi et al.,
2008); in finance, it is used to prevent sudden flow abnormalities (Balbás et al., 2005). Modern ma-
chine learning methods have been proposed for multi-horizon probabilistic forecasting, which can
be divided into iterative and direct methods as follows.

Iterative approaches typically make use of autoregressive deep learning architectures, which pro-
duce multi-horizon forecasts by recursively feeding samples of the target into future time steps.
Iterative approaches generally make use of the “chain rule” in the training stage, which decom-
poses p(yT+1:T+H |y0:T ,x) as

∏T+H
t=T+1 p(yt|y0:t−1,x) (Sutskever et al., 2014), where y0:T =

(y0, y1, . . . , yT )
T denotes a slice of the time series and x represents some external features. Due

to the chain rule, iterative approaches transform the estimation of p(yT+1:T+H |y0:T ,x) into a one-
step-ahead prediction in the training stage and feed the prediction of yt−1 back as ground truth to
forecast yt. However, as pointed out in (Bengio et al., 2015; Lamb et al., 2016; Wen et al., 2017),
the discrepancy between actual data and estimates during prediction can lead to error accumulation.
Since a small amount of error is produced at each time step, the recursive structure of iterative meth-
ods can potentially lead to large error accumulations over long forecasting horizons. Therefore, the
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iterative approaches are less robust and might lead to a biased model (Chevillon, 2007; Taieb &
Atiya, 2016).

For the direct methods (Wen et al., 2017; Lim et al., 2021; Fan et al., 2019), they can alleviate the
above-mentioned issues involved in iterative methods, which can directly forecast all targets by us-
ing all available inputs. They typically use sequence-to-sequence architecture, a type of network
structure mapping sequences directly to sequences. These methods commonly choose the quan-
tile loss function as the training objective. They try to jointly minimize the quantile loss at each
future horizon, where a decoder structure propagates encoded historical information and processes
external features that can be acquired in advance. However, minimizing a loss function at each
horizon, which is equivalent to transforming p(yT+1:T+H |y0:T ,x) into

∏H
h=1 p(yT+h|y0:T ,x), is

somewhat abuse of conditional independence. The discrepancy between p(yT+1:T+H |y0:T ,x) and∏H
h=1 p(yT+h|y0:T ,x, h) can also lead to biased models.

Taking all the aforementioned challenges into account, we propose a direct approach for multi-
horizon probabilistic forecasting which can effectively capture the characteristics of the dependence
across future horizons. We consider the multi-horizon target yT+1:T+H as a random vector in an H-
dimension vector space. When there exists a certain dependence mechanism among yT+h (1 ≤ h ≤
H), yT+1:T+H is likely to be distributed around a specific direction. The direction of yT+1:T+H

can be defined by the cosine of its angles relative to the orthonormal basis {eh}Hh=1
1 of the vector

space, which is an H-dimension unit-vector defined as(
⟨yT+1:T+H , e1⟩
||yT+1:T+H ||2

, . . . ,
⟨yT+1:T+H , eH⟩
||yT+1:T+H ||2

)T

,

where ⟨, ⟩ denotes the inner product and ||yT+1:T+H ||2 =
√∑H

h=1 y
2
T+h denotes the Euclidean

norm of yT+1:T+H . Therefore, we apply the von Mises-Fisher (VMF) distribution, which is a prob-
ability distribution on the surface of a unit-sphere, to characterize the distribution of the direction
of yT+1:T+H . Once the direction of yT+1:T+H is learned, and suppose ||yT+1:T+H ||2 is given,
the forecast can be made by multiplying ||yT+1:T+H ||2 with its direction. Hence, we normalize
yT+1:T+H by dividing its length and adopt a prior distribution on ||yT+1:T+H ||2 to obtain a com-
plete tractable likelihood function. Recall that the direction of yT+1:T+H is defined via angles,
and its length is determined by the scale of each yT+h, the similarity measurement of the atten-
tion module involved in our model is correspondingly modified, which is capable of evaluating the
joint similarity between angles and scales, namely the “Angle&Scale” similarity. The key features
of our method are to preserve the temporal dependence, or as we explained before, the angles of
yT+1:T+H , and automatically project ||yT+1:T+H ||2 to each yT+h to estimate its scale. We sum-
marize these features as “angle-preserving” and “auto-scaling”, where auto-scaling is important for
handling data with different magnitudes (Salinas et al., 2019). One remaining challenge is opti-
mizing the likelihood function due to the Bessel function, an essential part of VMF distribution
and commonly leading to underflow problems(Kumar & Tsvetkov, 2018). Without the sacrifice of
accuracy, we estimate and alternatively optimize the upper bound of the Bessel function.

Our contributions are three folds: (1) We propose a probabilistic forecasting model (VMFTrans-
former) based on Transformer and VMF distribution, which captures the temporal dependence of
multi-horizon targets. We also demonstrate our model’s performance is state-of-the-art on real-
world datasets; (2) We design a novel similarity measurement termed “Angle&Scale” similarity for
the attention module; (3) We present a more efficient optimization method for the Bessel function in
the VMF distribution without the sacrifice of accuracy.

2 RELATED WORK

Time Series Forecasting. Recent time series forecasting models based on deep learning (e.g.,
recurrent and convolutional neural networks) (Salinas et al., 2019; Rangapuram et al., 2018; Wen
et al., 2017) provide a data-driven manner to deal with time series forecasting tasks and achieve great
accuracy in most application fields. Due to complex dependencies over time of recurrent networks
and the limits of convolutional filters, these methods have difficulties in modeling long-term and
complex relations in the time series data.

1eh = (0, . . . , 1, . . . , 0), the h-th element is 1 while the rest are 0.
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Figure 1: Illustration of how a multi-horizon target can be viewed as a high-dimensional random
vector and how the VMF distribution is applied to describe its distribution. As shown in Figure 1.a,
the example shows when performing a 3-step forecasting, the target can be packed together into a
3-dimensional vector (yt, yt+1, yt+2) where its direction is a unit-vector, i.e. (cosα, cosβ, cos γ),
determined by its angles relative to the orthonormal basis {e1, e2, e3} in Figure 1.b. When there
exists dependency among yt, yt+1, and yt+2, the random vector (yt, yt+1, yt+2) is likely to be
distributed around a certain direction, described by the VMF distribution for random vectors on
unit-sphere in Figure 1.c. The scale or length of (yt, yt+1, yt+2) is equivalent to sphere radius,
whose distribution is described by the Truncated Normal Distribution in Figure 1.c. A forecast can
be made by multiplying a direction generated from the estimated VMF distribution with a length
generated from the estimated Truncated Normal Distribution.

Recently, Transformers (Vaswani et al., 2017) based on self-attention mechanism (Fan et al., 2019)
show promising performance in time series forecasting (Li et al., 2020; Wu et al., 2021; Zhou
et al., 2021; Kitaev et al., 2020). Considering the dependencies of each time point in a sequence,
Transformer-based methods (Li et al., 2020) are proposed by assigning different importance to the
different time points. Progresses have been made in reducing the computation complexity of the
self-attention and enhancing the capacity of information extraction of the Encoder-Decoder struc-
ture(Zhou et al., 2021; Wu et al., 2021; Kitaev et al., 2020). In addition, Matrix factorization meth-
ods (Yu et al., 2016) and Bayesian methods that share information via hierarchical priors (Chapados,
2014) are used to learn multiple related time series by leveraging hierarchical structure (Hyndman
et al., 2011). Despite the empirically extraordinary performance, these iterative and direct methods
are all still facing the mentioned challenges in Introduction.

von Mises-Fisher (VMF) distribution. The von Mises Fisher Distribution (VMF) is an important
isotropic distribution for directional data that have direction as well as magnitude, such as gene
expression data, wind current directions, or measurements taken from compasses (Dhillon & Sra,
2003). The von Mises–Fisher distribution is a probability distribution on directions in Rp. It can be
regarded as a distribution on the (p−1)-sphere of unit radius, which is on the surface of the D-ball of
unit radius. If p = 2, the distribution reduces to the von Mises distribution on the circle. Recently,
it has been successfully used in numerous machine learning tasks, such as unsupervised learning
(Banerjee et al., 2005; Gopal & Yang, 2014), supervised learning (Scott et al., 2021), contrastive
learning (Wang & Isola, 2020), natural language processing (Kumar & Tsvetkov, 2018), computer
vision (Hasnat et al., 2017; Zhang et al., 2021), and so on. Our work is the first to introduce the von
Mises-Fisher distribution to the time series forecasting task.

3 METHODOLOGY

The core idea of this work is to consider a multi-horizon target as a vector in a high-dimensional
space, where its direction or angle relative to the orthonormal basis characterizes the dependence
structure, and its length is determined by the scale of the targets at each horizon. Therefore, per-
forming probabilistic forecasting requires first evaluating the probability distribution of directions.
For this purpose, we appeal to the VMF distribution. Recall that the VMF distribution only applies
to vectors distributed on a unit sphere; we, therefore, adopt a probability distribution on the length
of the vector representing the multi-horizon target. We choose the truncated normal distribution for
vector length, which turns out to be a prior distribution. We visualize this idea in Figure 1.
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The rest of this section is organized into four subsections. We first derive the objective function
for model training and introduce the attention module to suit our proposed objective function. We
then propose a training trick to increase the stability of gradient descent while presenting a random
sampling method for performing probabilistic forecasts.

3.1 OBJECTIVE FUNCTION

This section derives the log-likelihood function for maximum likelihood estimation (MLE) at the
training stage.
VMF Distribution. The VMF distribution is a probability distribution on the surface of a unit-
sphere. For a d dimensional random unit vector y = (y1, . . . , yd)

T ( ||y||2 = 1), the probability
density function of VMF distribution is defined as

p(y;µ, κ) = Cd(κ) exp(κµ
T × y), (1)

where µ denotes the mean direction (||µ||2 = 1), and κ denotes the concentration parameter. In
other words, µ locates the most likely direction of y = (y1, . . . , yd)

T , and κ controls the divergence
of y = (y1, . . . , yd)

T from µ. The greater the value of κ, the stronger concentration of y =
(y1, . . . , yd)

T around µ. The normalization constant Cd(κ) in Equation equation 1 is defined as

Cd(κ) =
κd/2−1

(2πd/2)Id/2−1(κ)
,

where Id/2−1(κ)
2 is the modified Bessel function of the first kind.

Conditional Density Function. Let σ denote the length of the multi-horizon target, i.e.
||yT+1:T+H ||2 = σ, based on Equation equation 1, we define the conditional probability density
function of yT+1:T+H as

p(yT+1:T+H |σ;µ, κ) = CH(κ) exp
(
κµT × yT+1:T+H

σ

)
. (2)

Prior on σ. We introduce a prior distribution on the scale parameter σ to make Equation equation 2
tractable. For explicitness, we choose the truncated normal distribution (Burkardt, 2014). The
truncated normal distribution is an extension of the normal distribution, which compress the range
of a random variable from (−∞,+∞) into an open interval (a, b) (−∞ ≤ a < b ≤ +∞). A
truncated normal distribution is determined by four parameters m, γ, a, b. The parameters m, γ
denote the location and shape parameters, respectively, while a, b denote the lower and upper bound
of the random variable. In our case, a = 0 and b = +∞. Technically,

p(σ2;m, γ) =
exp

[
− (σ−m)2

2γ2

]
√
2πγ

[
1− Φ

(
−m

γ

)] , (3)

where Φ(·) denotes the cumulative distribution function of the standard normal distribution.
Likelihood Function. Let T denote the set of all forecast times selected for generating training
data, and I denote the set of indices of time series, the H-horizon targets at time t (t ∈ T ) of the
i-th time series (i ∈ I) is then yi

t+1:t+H , where yi
a:b = (yia, y

i
a+1, . . . , y

i
b)

T denotes a slice of the
i-th time series. Combining Equation equation 2 and equation 3, we can obtain the joint probability
of the target set Y = {yi

t+1:t+H : t ∈ T , i ∈ I}, which is

p(Y ; Ω) =
∏
i∈I

∏
t∈T

p
(
y
i
t+1:t+H |σi

t;µ
i
t, κ

i
t

)
p(σ

i
t;m

i
t, γ

i
t)

=
∏
i∈I

∏
t∈T

CH(κ
i
t) exp

(
κ
i
t(µ

i
t)

T ×
yt+1:t+H

||yt+1:t+H ||2

) exp

{
−
[
||yi

t+1:t+H ||2−mi
t

]2
2(γi

t)
2

}
√
2πγi

t

[
1 − Φ

(
−mi

t
γi
t

)] , (4)

where Ω = {{µi
t, κ

i
t,m

i
t, γ

i
t} : t ∈ T , i ∈ I}, and σi

t = ||yi
t+1:t+H ||2.

2In(z) is defined as (z/2)n
∑+∞

k=0
(z/2)2k

k!Γ(n+k+1)
, where Γ(·) is the Gamma function.
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Let Θ denote the parameters of a neural network, and µ, κ,m, γ be functions of the network output
given Θ, the history yi

0:t, and external features xi. Based on Equation equation 4, the likelihood
function of the model parameters Θ, is derived as follows:

L(Θ) =
∏
i∈I

∏
t∈T

CH(κ(Θ,yi
0:t,x

i))

exp

{
− [||yi

t+1:t+H ||2−m(Θ,yi
0:t,x

i)]
2

2γ2(Θ,yi
0:t,x

i)

}
√
2πγ(Θ,yi

0:t,x
i)
{
1− Φ

[
−m(Θ,yi

0:t,x
i)

γ(Θ,yi
0:t,x

i)

]} . (5)

Objective Function for MLE. The log-likelihood function is obtained by taking the logarithm of
Equation equation 6 as

l(Θ) = Cl−
∑
i∈I

∑
t∈T

[(
H

2
− 1

)
log κ(Θ,y

i
0:t,x

i
) − log IH/2−1(κ(Θ,y

i
0:t,x

i
))

]
+
∑
i∈I

∑
t∈T

κ(Θ,y
i
0:t,x

i
)µ

T
(Θ,y

i
0:t,x

i
) ×

yi
t+1:t+H

||yi
t+1:t+H ||2

−
∑
i∈I

∑
t∈T

[
||yi

t+1:t+H ||2 − m(Θ,yi
0:t,x

i)
]2

2γ(Θ,yi
0:t,x

i)
−
∑
i∈I

∑
t∈T

{
log γ(Θ,y

i
0:t,x

i
) + log

[
1 − Φ

(
−

m(Θ,yi
0:t,x

i)

γ(Θ,yi
0:t,x

i)

)]}
,

(6)

where Cl represents the constant term. The training object is to maximize Equation equation 6 with
respect to Θ, or equivalently, minimize the inverse −l(Θ).

3.2 MODEL

Transformer. The seq2seq architecture is based on the Transformer (Li et al., 2020; Vaswani et al.,
2017). The Transformer adopts an encoder-decoder structure and captures both long- and short-term
dependencies via the multi-head self-attention mechanism.
Model Output. Let h denote the output of the decoder. We apply a fully-connected layer to h to
obtain µ.

µ = Wµh+ bµ.

For κ,m, γ, we apply a fully-connected layer with soft-plus activation to ensure positivity. Specifi-
cally,
κ = log(1 + exp(wκh+ bκ)),m = log(1 + exp(wmh+ bm)), γ = log(1 + exp(wγh+ bγ)).

Self-Attention. A self-attention function is to map a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors (Vaswani et al., 2017). In order to compute
the attention function on a set of queries simultaneously, all queries are usually packed into a query
matrix Q. The keys and values are also packed into matrices K and V respectively(Vaswani et al.,
2017).

The conventional attention function measures the similarities between queries and keys, which are
row vectors of Q and K respectively, by a ‘dot-product’ operation and feeds the similarities into
a softmax function to normalize the similarities summing to 1 (Vaswani et al., 2017). Afterward,
the output of the attention function is computed as the weighted average of the values, where the
weights are the outputs of the softmax function. We adopt the multi-head convolutional self-attention
mechanism, which has effectively enhanced awareness of local context, e.g. local shapes of time
series(Li et al., 2020).

We modify the similarity measurement between queries and keys to better suit our objective func-
tion. We measure the similarity between a query vector and a key vector by computing the cosine
of the angle between them and multiplying it with the difference between the length. For the rest of
this article, we refer to this similarity measurement as the “Angle&Scale” similarity. The softmax
function is then applied to obtain the weights of the values. Technically, for each time series i, let

zt+1:t+H = [yt ◦ xT
t+1 ◦ . . . ◦ xT

t+H ]T ∈ RH∗d+1, Zt = [z1:H , . . . , zt+1:t+H ]T ∈ R(t+1)×(H∗d+1)

where [· ◦ ·] represents concatenation, and xt ∈ Rd represents the known inputs. The self-attention
module first transforms Zt into the query matrices Q, key matrices K, and value matrices V via

Q = Zt ∗WQ = [q0, . . . ,qt]
T ∈ R(t+1)×dk ,K = Zt ∗WK = [k0, . . . ,kt]

T ∈ R(t+1)×dk ,

V = Zt ∗W V = [v0, . . . ,vt]
T ∈ R(t+1)×dv ,
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where WK , WQ and W V are learnable parameters, and the symbol ∗ represents the convolution
operation (Li et al., 2020). The similarity between qi and kj is defined as

si,j =
qT
i kj

||qi||2||kj ||2
× exp

[
− (||qi||2 − ||kj ||2)2

]
. (7)

It should be noted that in Equation equation 7, the difference between ||qi||2 and ||kj ||2 is passed
into a Gaussian kernel with a radial parameter of 1. This operation is to ensure the difference ranging
from 0 to 1, such that the magnitude of the cosine and difference would be at the same level.

Then, each row vector of the output matrices O = [o1, . . . ,ot]
T ∈ Rt×(dv+1), is defined as the

normalized weighted average of the row vectors of the value matrices V , concatenating its norm.
By Equation equation 8, we formalize this definition as

oi =

 ∑t
j=1 softmax(si,j)v

T
j

||
∑t

j=1 softmax(si,j)vT
j ||2

◦ ||
t∑

j=1

softmax(si,j)v
T
j ||2

 . (8)

3.3 TRAINING

The log-likelihood function is not directly differentiable because the Bessel function Id(x) cannot
be written in a closed form (Kumar & Tsvetkov, 2018; Davidson et al., 2018). In addition, opti-
mizing the Bessel function may cause an underflow problem when d is large or x is small (Kumar
& Tsvetkov, 2018). Therefore, we alternatively optimize the upper bound of the logarithm of the
Bessel function.
Bound of Bessel Function. We evaluate the lower and upper bounds of the logarithm of Id(x) and
summarize the result in Proposition 3.1, and the provide the proof in Appendix. We also visualize
the difference between the upper and lower bounds in Figure 4, which vividly illustrates the range
of the approximation error.
Proposition 3.1. Let Id(x) be the modified Bessel function of the first kind, and m = d−⌊d⌋, then

log (Im(κ)) +

⌊d⌋∑
v=1

log
κ

v + m − 1
2 +

√
(v + m + 1

2 )
2 + κ2)

< log (Id(x)) < log (Im(κ)) +

⌊d⌋∑
v=1

log
κ

v + m − 1 +
√

(v + m + 1)2 + κ2)

By Proposition 4, we use the following approximation of the logarithm of the Bessel function at the
training stage,

log (Id(κ)) ∼ log (Im(κ)) +

⌊d⌋∑
v=1

log
κ

v + m − 1 +
√

(v + m + 1)2 + κ2)
. (9)

3.4 PREDICTION

At the prediction stage, there is no closed-form solution for computing the quantiles of yi
T+1:T+H .

We alternatively draw random samples from the probability density function of yi
T+1:T+H and

estimate each quantile empirically.
Random sampling. We first sample the scale parameter σ according to Equation equation 3 and
next, we draw a sample of yi

T+1:T+H according to Equation equation 2. Sampling yi
T+1:T+H

via Equation equation 2 is equivalent to first sampling a unit vector from a VMF distribution and
multiplying it by σ. An H-dimensional random unit vector y subjecting to a VMF distribution with
parameters µ, κ, can be decomposed as

y = µ+ v
√

(1− t2), (10)

where v is a uniformly distributed unit tangent at µ, and t ∈ [−1, 1] subjects to

p(t) =
(κ2 )

H
2 −1 exp(κt)(1− t2)

H−3
2

Γ
(
H−1
2

)
γ
(
1
2

)
IH−1

2
(κ)

(11)

Therefore, we respectively sample t and v, and construct a sample y by Equation equation 10. More
details on the decomposition defined by Equation equation 10 can be referred to in (Mardia & Jupp,
2009).
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4 EXPERIMENT

We analyze the approximation error of logarithm of Bessel function and evaluate the proposed meth-
ods on 3 datasets.

4.1 BESSEL FUNCTION APPROXIMATION ERROR

Figure 2: Upper (a) and lower (b) bounds of the logarithm of Bessel Function. The difference
between the upper and lower bounds is shown in (c).
We evaluate the approximation error of the logarithm of the Bessel function given by Equation
equation 9. We compute both the upper and lower bounds on a grid where κ ranges from 1× 10−7

to 100, and d ranges from 2 to 100. We plot the result in Figure 4. Besides, we observe that
the logarithm of the Bessel function is bounded in a range of (-2093.07, 97.77) on the grid. The
minimum and maximum values are achieved at (κ, d) = (1 × 10−10, 100) and (κ, d) = (100, 2)
respectively. Recall that the underflow problem usually appears when d is large (empirically larger
than 5) and κ is small; in our case, we avoid this problem via the approximation. Besides, the
difference between the upper and lower bounds ranges from 0 to 0.72, and on about 95.7% of all
grid points, the difference is smaller than 0.3. Since the absolute approximation error is smaller than
the difference, we subsequently conclude that the upper bound of the absolute approximation error
is smaller than 0.3.

Table 1: Comparison of q-risk of the VMFTransformer with competitive models on three public
datasets. The prediction length (horizon) is set to H=24 and H=168. Best results are marked in bold
(lower is better).

H=24 Electricity Solar energy Traffic
Model q=50 q=90 AVG q=50 q=90 AVG q=50 q=90 AVG
DeepAR 0.0734 0.0580 0.0657 0.4626 0.3097 0.3862 0.1526 0.1082 0.1304
FeedForward 0.0784 0.0433 0.0609 0.5341 0.3591 0.4466 0.2518 0.2011 0.2265
TFT 0.1107 0.0588 0.0848 0.4855 0.2471 0.3663 0.1981 0.1478 0.1730
Transformer 0.0789 0.0500 0.0645 0.5354 0.3502 0.4428 0.1644 0.1087 0.1366
Informer 0.1402 0.0729 0.1065 0.4722 0.2947 0.3834 0.6142 0.2947 0.4545
Autoformer 0.1224 0.0654 0.0939 0.2233 0.2113 0.2173 0.2157 0.1455 0.1806
VMFTransformer 0.0722 0.0427 0.0575 0.2125 0.1371 0.1748 0.1490 0.0935 0.1213
H=168 Electricity Solar energy Traffic
Model q=50 q=90 AVG q=50 q=90 AVG q=50 q=90 AVG
DeepAR 0.1464 0.0862 0.1163 0.5613 0.2349 0.3981 0.1553 0.1013 0.1283
FeedForward 0.1397 0.0730 0.1064 0.5891 0.2558 0.4224 0.2349 0.1360 0.1854
Transformer 0.1173 0.0670 0.0922 0.6319 0.3116 0.4717 0.1739 0.1063 0.1401
TFT 0.2243 0.1122 0.1682 0.6085 0.2030 0.4058 0.1514 0.1019 0.1267
Informer 0.1711 0.0749 0.1230 0.5434 0.2960 0.4197 0.7236 0.6800 0.7018
Autoformer 0.1342 0.0791 0.1066 0.2355 0.1589 0.1972 0.2559 0.1948 0.2254
VMFTransformer 0.0840 0.0598 0.0719 0.2318 0.1473 0.1896 0.1225 0.1099 0.1162

4.2 REAL-WORLD DATA EXPERIMENT

4.2.1 DATASET.

We evaluate the performance of VMFTransformer on three public datasets, which are electricity,
solar energy, and traffic. Electricity contains hourly time series of the electricity consumption of
370 customers ranging from 2012-01-01 to 2014-08-31 (Salinas et al., 2019). Solar energy, ranging
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from 2006-01-01 to 2006-08-31, consists of 137 5-minute solar power time series obtained from the
Monash Time Series Forecasting Repository (Godahewa et al., 2021). All solar power time series
are aggregated to 1-hour granularity. Traffic, also used in (Salinas et al., 2019), contains the hourly
measured occupancy rate, between 0 and 1, of 963 car lanes of San Francisco bay area freeways,
ranging from 2008-01-02 to 2008-06-22. We follow the standard protocol and split all datasets into
training, validation, and test sets in chronological order by the ratio of 7:1:2.

4.2.2 IMPLEMENTATION DETAILS AND BASELINES.

Our method is trained using the ADAM optimizer (Kingma & Ba, 2014) with an initial learning rate
of 10−3. The batch size is set to 256. The training process is early stopped within five epochs. All
experiments are implemented in PyTorch (Paszke et al., 2019).

We include a total number of 6 baseline methods. Specifically, we select four state-of- the-art
transformer-based models: Informer (Zhou et al., 2021), Autoformer (Wu et al., 2021), Tempo-
ral Fusion Transformer (TFT) (Lim et al., 2021), the original Transformer (Vaswani et al., 2017)(Li
et al., 2020), one RNN based method: DeepAR (Salinas et al., 2019), and one simple feed forward
neural network.

4.2.3 MAIN RESULTS.

We fix the input length as 168 and evaluate models with two prediction lengths: 24 and 168, corre-
sponding to one-day and one-week horizons, respectively. We use three metrics, i.e., mean absolute
error (MAE), mean squared error (MSE), and q-risk, to evaluate the performance of different meth-
ods. The first two measure the performance for forecasting the mean value, while the last quantifies
the accuracy of a quantile q of the predictive distribution (Salinas et al., 2019). We set q = 50 and
90 (Salinas et al., 2019).

We show in Table 1 and Table 2 that VMFTransformer achieves state-of-the-art performance. For
q-risk, as directed in Table 1, VMFTransformer performs best in almost every benchmark except for
one, which is q=90 and H=168 on the traffic dataset (Table 1). Still, the average q-risk is reduced
(8.29%) by VMFTransformer relative to the second-best model (TFT). For MAE and MSE, we
observe from Table 2 that VMFTransformer consistently outperforms all baselines.

Table 2: Comparison of MAE and MSE of the VMFTransformer with competitive models on three
public datasets. The prediction length (horizon) is set to H=24 and H=168. The best results are
marked in bold (lower is better).

H=24 Electricity Solar energy Traffic
Model MAE MSE AVG MAE MSE AVG MAE MSE AVG
DeepAR 0.0168 0.0188 0.0178 0.2619 0.3243 0.2931 0.1667 0.2042 0.1855
FeedForward 0.0153 0.0114 0.0133 0.3024 0.4213 0.3618 0.2751 0.3775 0.3263
TFT 0.0251 0.0363 0.0307 0.2749 0.3189 0.2969 0.2165 0.2912 0.2538
Transformer 0.0139 0.0144 0.0142 0.3031 0.4503 0.3767 0.1796 0.2050 0.1923
Informer 0.0845 0.0144 0.0494 0.2607 0.1824 0.2215 0.4620 0.6446 0.5533
Autoformer 0.1237 0.0253 0.0745 0.2106 0.1685 0.1895 0.2613 0.1542 0.2077
VMFTransformer 0.0116 0.0078 0.0097 0.2092 0.1334 0.1713 0.1334 0.1185 0.1259
H=168 Electricity Solar energy Traffic
Model MAE MSE AVG MAE MSE AVG MAE MSE AVG
DeepAR 0.0224 0.0301 0.0262 0.3077 0.3806 0.3442 0.1713 0.2115 0.1914
FeedForward 0.0211 0.0281 0.0246 0.3229 0.4122 0.3675 0.2590 0.2902 0.2746
TFT 0.0287 0.0469 0.0378 0.3336 0.5126 0.4231 0.1670 0.1952 0.1811
Transformer 0.0199 0.0296 0.0247 0.3464 0.4904 0.4184 0.1918 0.2081 0.2000
Informer 0.1461 0.0356 0.0908 0.2174 0.1562 0.1868 0.5591 0.8068 0.6829
Autoformer 0.1198 0.0242 0.0720 0.2785 0.1844 0.2314 0.2231 0.1747 0.1989
VMFTransformer 0.0128 0.0205 0.0167 0.2136 0.1390 0.1763 0.1390 0.1185 0.1288

4.2.4 ABLATION STUDIES.

We use the solar energy dataset for the ablation study.
Sensitivity to Sampling Size. Since the prediction is conducted by random sampling, we study
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Table 3: Comparison of the sensitivity of the VMFTransformer to the sampling size at the prediction
step. The prediction length (horizon) is set to H=24 and H=168. Sample size (S) is set to 100,
1000, 10000, and 100000. The best results are marked in bold (lower is better). The stability of
performance is measured by the average (AVG) divided by the standard deviation (STD).

Samplesize 100 1000 10000 100000 AVG STD STD/AVG
H=24 MAE 0.2341 0.2339 0.2424 0.2368 0.2368 0.0040 0.0168

MSE 0.1846 0.1828 0.1995 0.1924 0.1898 0.0077 0.0406
50-loss 0.3243 0.3238 0.3370 0.3274 0.3281 0.0061 0.0187
90-loss 0.2435 0.2667 0.2490 0.2823 0.2604 0.0177 0.0678

H=168 MAE 0.2000 0.2014 0.2005 0.2002 0.2005 0.0006 0.0030
MSE 0.1303 0.1307 0.1286 0.1305 0.1300 0.0010 0.0077
50-loss 0.2830 0.2848 0.2834 0.2833 0.2836 0.0008 0.0028
90-loss 0.1733 0.1724 0.1749 0.1772 0.1744 0.0021 0.0118

Table 4: Comparison of similarity measurements of attention module. The best results are in bold
(lower is better).

Similarity Angle&Scale Dot-product
H=24 MAE 0.2339 0.2389

MSE 0.1828 0.1749
50-loss 0.3238 0.3317
90-loss 0.2667 0.2707

H=168 MAE 0.2014 0.2082
MSE 0.1307 0.1316
50-loss 0.2848 0.2950
90-loss 0.1724 0.2250

if the model performance is sensitive to sampling size. The sampling size (S) is set as 100, 1000,
10000, and 100000. In table 3, we show that the performance of VMFTransformer is relatively
stable, especially when the prediction length is 168 (STD/AVG<1.2%). When the prediction length
is short (24), S=1000 tends to show the optimal performance. Therefore, we recommend S=1000
for practical use.

Attention Module. We compare Angle&Scale similarity versus the original dot-product similarity
for the attention module. We set the prediction length at H=24 and H=168. Table 4 shows that the
Angle&Scale similarity outperforms the dot-product similarity in most cases (7 out of 8).
Time Complexity. Our Angle&Scale similarity requires more computation than the original dot-
product similarity. The popular Transformer-based methods such as Reformer, Informer, and Aut-
oformer have a theoretical time complexity of O(LlogL), while the vanilla Transformer is O(L2),
where L is the encoding length. The theoretical time complexity of our VMFTransformer is still
O(L2), which is the same as the vanilla Transformer.

5 CONCLUSION

We propose a probabilistic forecasting model termed VMFTransformer, which captures the tem-
poral dependence of multi-horizon targets. Extensive experiments demonstrate that our model’s
performance is state-of-the-art on public datasets. The novel similarity measurement termed the
“Angle&Scale” similarity is effective for multi-horizon time series forecasting.
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6 APPENDIX

Figure 3: Learning curve of VMFTransformer on Solar, where the x-axis corresponds to learning
steps and y-axis corresponds to training loss.

Table 5: Running time of different encoding length.
Encoding length Time (seconds)
12 85.352
48 122.309
72 249.441
120 444.464
168 1629.578
240 2699.469
360 6767.158

Table 6: Memory usage of different encoding length.
Encoding length Memory (Byte)
12 2498048
48 3061248
72 3462656
120 4314624
168 5248512
240 6776320
360 9700864
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Table 7: Comparison of similarity measurements of attention module for both VMF-Loss and MSE-
Loss. The best results are in bold (lower is better).

VMF-Loss
H Similarity Angle&Scale Dot-product

24

MAE 0.2339 0.2389
MSE 0.1828 0.1749
50-loss 0.3238 0.3317
90-loss 0.2667 0.2707

168

MAE 0.2014 0.2389
MSE 0.1307 0.1316
50-loss 0.2848 0.2950
90-loss 0.1724 0.2250

MSE-Loss
H Similarity Angle&Scale Dot-product

24

MAE 0.7389 0.7179
MSE 0.4792 0.5061
50-loss 0.5059 0.5010
90-loss 0.8153 0.8650

168

MAE 0.7179 0.7179
MSE 0.5075 0.5061
50-loss 0.5010 0.5010
90-loss 0.8631 0.8685

Figure 4: Comparison of metrics corresponding to different H (the x-axis) where H ranges from 1
to 720.
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