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Abstract

Graph Contrastive Learning (GCL) has shown superior performance in representa-
tion learning in graph-structured data. Despite their success, most existing GCL
methods rely on prefabricated graph augmentation and homophily assumptions.
Thus, they fail to generalize well to heterophilic graphs where connected nodes
may have different class labels and dissimilar features. In this paper, we study
the problem of conducting contrastive learning on homophilic and heterophilic
graphs. We find that we can achieve promising performance simply by considering
an asymmetric view of the neighboring nodes. The resulting simple algorithm,
Asymmetric Contrastive Learning for Graphs (GraphACL), is easy to implement
and does not rely on graph augmentations and homophily assumptions. We pro-
vide theoretical and empirical evidence that GraphACL can capture one-hop local
neighborhood information and two-hop monophily similarity, which are both im-
portant for modeling heterophilic graphs. Experimental results show that the simple
GraphACL significantly outperforms state-of-the-art graph contrastive learning and
self-supervised learning methods on homophilic and heterophilic graphs. The code
of GraphACL is available at https://github.com/tengxiaol/GraphACL.

1 Introduction

Contrastive learning has emerged as a promising regime for unsupervised vision representation
learning without using annotated labeled data [1l]. Recently, graph contrastive learning (GCL) has also
been introduced to graph-structured data due to the lack of task-specific node labels [2} 13} 14} 15 |6} [7].
GCL has achieved competitive (or even better) performance on many downstream tasks on graphs
compared to its counterparts trained with annotated ground-truth labels [[7} 8]

Generally, existing GCL methods can be categorized into two categories. The first contrastive
scheme [9, 10, [11} [12] reconstructs the local network structure (i.e., observed edges) to align with
traditional network-embedding objectives [13| [14]]. Specifically, this scheme treats one-hop or
random-walk local neighboring nodes of the target node as positive examples and non-neighboring
nodes as negative samples. It then employs contrastive loss functions to minimize the representation
distance of positive pairs and maximize the distance of negative pairs [[10]. The key motivation behind
this scheme is the explicit homophily assumption that semantically similar nodes are more likely to
be linked than dissimilar ones. Thus, connected nodes should have similar representations in the
latent space. However, in heterophilic graphs, connected nodes are not necessarily from the same
semantic class [[15}[16], and should not be simply pulled together in the latent space. This scheme
empirically faces issues with performance in graphs exhibiting heterophily [[17} [18]].

The second graph contrastive scheme involves graph augmentations [3}, 4} |5, 16| [7]]. Specifically,
it constructs two views through stochastic graph augmentation and then learns representations by
contrasting these views based on the information maximization principle [[19]. A positive node
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pair consists of two views resulting from stochastic data augmentation of the same node, while
a negative pair might consist of two views of different nodes [8]]. This scheme is built based on
the idea that augmentations can preserve the semantic nature of samples, i.e. augmented nodes
have consistent semantic labels with the same original nodes. However, recent work has shown
that graph augmentation methods struggle to achieve good performance on heterophilic graphs [[18]]
as they still implicitly rely on homophily [20]. Studies have shown that stochastic augmentation
primarily captures the common low-frequency information between two views, while neglecting
the high-frequency one [20] (also see Appendix [C.4). The latter is known to be more crucial for
heterophilic graphs [21}22]]. Given that heterophilic graphs are prevalent across various real-world
domains [16} 23], a fundamental and open question naturally arises: What kind of contrastive learning
objectives can learn robust node representations on both homophilic and heterophilic graphs?

This work is the first to address the aforemen-
tioned question without relying on augmenta-
tions and homophily assumptions. Instead, we
take into account two more generalized insights,
as depicted in Figure[l] (i) Even in heterophilic

graphs, two nodes of the same semantic class
often share a similar one-hop neighborhood con- (a) Homophily (b) Heterophily

text [24, 18.]' Thus, capturing this heterophilic Figure 1: The graphs of pure homophily and pure het-
one-hop neighborhood context can lead to more  erophily, where color denotes the semantic class. For
discriminative node representations. (ii) While  both graphs, nodes with a similar one-hop neighborhood
homophily might be minimal or non-existent in  context have similar semantic classes and two-hop simi-
heterophilic graphs, another frequently observed larities still exist even without the one-hop homophily.
phenomenon in real-world graphs is monophily [25]]. Monophily describes situations in real-world
graphs where the attributes of a node’s friends are likely to be similar to the attributes of that node’s
other friends [25]]. Put another way, “monophily” essentially induces similarities between two-hop
neighbors. As noted by [25,126], the two-hop similarities brought about by monophily can persist
even in the total absence of any one-hop similarities that might be suggested by homophily.

To support our motivations, we provide statistics of homophily, two-hop monophily ratios, and
neighborhood similarities of various graphs in the real-world in Appendix [C] As shown in these
statistics, homophilic and heterophilic graphs in the real-world exhibit relatively strong neighborhood
similarity calculated based on one-hop neighborhoods compared to homophily. In cases where
homophily is weak or non-existent, monophily has been shown to still hold in real-world graphs.

In this work, we focus on exploiting the above insights to design new objectives for better node repre-
sentations on both homophilic and heterophilic graphs. We propose a simple yet effective framework
termed as graph asymmetric contrastive learning (GraphACL) for better node representation learning.
Essentially, we are faced with the challenge of simultaneously capturing the one-hop neighborhood
context and monophily in the contrastive objective. To solve this challenge, we consider each node
to play two roles: the node itself (identity representation) and specific “neighbors” of other nodes
(context representation), and thus should be treated differently. GraphACL trains the node identity
representation by predicting the context representation of one-hop neighbors through an asymmetric
predictor. Intuitively, by enforcing identity representations of two-hop neighbors to reconstruct the
same context representation of the same central nodes, GraphACL implicitly makes representations
of two-hop neighbors similar and captures the one-hop neighborhood context (Figure [2)).

Our primary technical contributions are: (1) We propose a simple, effective, and intuitive graph
contrastive learning approach which captures one-hop neighborhood context and two-hop monophily
similarities in a simple asymmetric learning framework. (2) We theoretically analyze the learning
behavior and prove that GraphACL is guaranteed to yield good node representations for both
homophilic and heterophilic graphs. (3) Empirically, we corroborate the effectiveness of GraphACL
on 15 graph benchmarks. The results demonstrate that GraphACL can significantly outperform
previous GCL methods. The surprising effectiveness of GraphACL shows that in the context of GCL,
simpler methods have been underexplored in favor of more elaborate algorithmic contributions.

2 Related Work

Graph Contrastive Learning. Contrastive methods are central to traditional network-embedding
methods [27, 13} [14], but have recently been applied in graph self-supervised learning [9} 28| [10].
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Figure 2: An illustration of various design motivations. (a) The heterophilic graph where the color
denotes node’s semantic class. (b) Contrastive objectives with the homophily assumption encourage
one-hop neighbors to have similar representations. GraphACL simply encourages the node to predict
its neighbors, which can implicitly capture neighborhood context (c) and two-hop monophily (d).

The key motivation behind them is the explicit homophily assumption that connected nodes belong
to the same class and, thus, should be treated as positive pairs in contrastive learning. However,
real-world graphs do not always obey the homophily assumption [16]], limiting their applicability to
heterophilic graphs [18]]. Recently, many GCL algorithms with augmentations [2} 3} 14} |5} 6} |29] have
been proposed. However, [20] recently proved that GCL with augmentations attempts to manipulate
the encoder to capture low-frequency information instead of the high-frequency part and suffers
performance degradation in heterophilic graphs [18]]. In contrast, we propose a simple asymmetric
contrastive learning framework for graphs without augmentations and homophily assumption.

Heterophilic Graphs. There are many heterophilic graphs in the real world that exhibit nonho-
mophilic properties, such as transaction [30,[31]], ecological food [32] and molecular networks [[15],
where the linked nodes have different characteristics and different class labels. Various graph neural
networks (GNNs) [33) 15 211134} 135) 23}, 136, 137]] have been proposed to achieve higher performance
in low homophily settings. They focus on designing advanced GNN architectures and consider the
semi-supervised setting with labels. In contrast, we focus on designing the contrastive learning
algorithm without labels, not on specific GNN architectures. Recently, DSSL [18]] and HGRL [29]]
have been proposed to conduct self-supervised learning on nonhomophilous graphs by capturing
global and high-order information. Specifically, HGRL is based on graph augmentation, and DSSL
works by assuming a graph generation process, which may not always hold true for real-world graphs.
In contrast, our work provides a novel perspective on graph contrastive learning, which does not
make any assumptions about the generation process or rely on any augmentations.

3 Preliminaries

Notations and Problem. Let G = (V, £) be a input graph, where V = {v1, ..., vy} is the set of |V
nodes and & is the set of edges. Let X = [x1,Xa,- -+ ,X)y|] € RIVIXP= pe the node attribute matrix,
where x; is the D,-dimensional feature vector of v;. Each edge ¢; ; € £ denotes a link between node
v; and v;. The graph structure can be denoted by an adjacency matrix A € [0, 1] VIXIVI with A ;=1
ife; ; € £, otherwise A; ; = 0. We denote the normalized adjacency matrix A = D~ 1/2AD1/2
where D is the diagonal degree matrix. Let L = I — A be the symmetric normalized graph Laplacian
matrix. We also define the unweighted two-hop graph G, whose adjacency matrix is Ag. (Ag); =1
if there exists j such that e;; € £ and e;;, € €. The input graph G can be denoted as a tuple of
matrices G = (X, A). Our goal is to learn a GNN encoder fp parameterized by 6, such that the
representation of node v: v = fo(G)[v] € RP, can perform well for downstream tasks.

Homophily Ratio. Typically, the graph homophily ratio [33) [15] is defined as the fraction of
edges connecting nodes with the same labels, i.e., H(G) = | {(u,v) : (u,v) € E Ayu =y } |/[E].
Homophily Graphs have high edge homophily ratio #(G) — 1, while heterophilic graphs (i.e.,
low/weak homophily) correspond to small edge homophily ratio H(G) — 0 [L5}[16].

GCL with Representation Smoothing. This paradigm [13} 9} 28| [12] ensures that local neighboring
nodes have similar representations and has also been shown to be equivalent to factorizing graph
proximity [38]. Despite minor differences, the objective for this paradigm can be expressed as:

exp(vTu/T)
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Here v, u and v _ are the projected node representations by fy(G) of nodes v, u and v_, respectively.
T is the temperature hyper-parameter. Typically, A/(v) is the positive sample set containing one-hop
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(a) GCL with Representation Smoothing (b) GCL with Augmented Views (c) Graph Asymmetric Contrastive Learning
Figure 3: Tllustration of existing contrastive schemes and GraphACL. (a) forces neighboring nodes to have
similar representations based on the homophily assumption. (b) augments the graph and learns the augment-
invariant representations of the same node. Our GraphACL in (c) simply reconstructs the neighborhood signal of

each node based on an asymmetric predictor without relying on the homophily assumption and augmentation.

local neighborhoods of node v, and V_ is the negative sample set that can be randomly sampled from
the node space V or sampled proportionally to the power 3/4 of the degree of the node [[14]. Figure
(a) illustrates this contrastive learning scheme with this explicit homophily assumption.

GCL with Augmented Views. This paradigm [4, 20} 39, 3] learns representations by contrasting
views based on stochastic augmentations. Specifically, for node v, its representation in one augmented
view is learned to be close to the representation of the same node v from the other augmented view and
far away from the representations of negative samples from other nodes. Given two augmentations G
and G, extracted from original graph G in a predefined way, the contrastive objective is as follows:

1 exp(v' - v?/7)
v V| ZvGV o8 exp (vl -v2/T)+ >0, o exp(vi-v_/7) @
Here v = f3(G1)[v] and v? = fy(Gs)[v] are projected representations of node v from two

augmented views. V_ is the set of negative samples of v from the inter- or intra-view [39]. Inspired
by BYOL [40], non-contrastive BGRL [5} 41] predicts the target augmented view of the nodes:
Ly =—1/[V|>,cpz' - v?/||lz!||[|v?]|, where z' = g, (v!) is the prediction of the representation
from the target augmented view. An illustration for this scheme is presented in Figure 3] (b).

4 Simple Asymmetric Contrastive Learning of Graphs

In this section, we elaborate on our GraphACL. The key idea behind GraphACL is encouraging the
encoder to learn representations by simultaneously capturing one-hop neighborhood context and
two-hop monophily, which generalizes the homophily assumption for modeling both homophilic
and heterophilic graphs. Specifically, GraphACL introduces an additional predictor g, which maps
the graph G to node representations that can predict the one-hop neighborhood context from the
representation of the central node as shown in Figure[3](c). Importantly, unlike previous contrastive
schemes, which force neighboring nodes to have similar representations, GraphACL directly predicts
the original neighborhood signal of each node through an asymmetric design induced by a predictor.
This simple asymmetric design allows neighboring nodes to have different representations but still
can capture the one-hop neighborhood context and two-hop monophily as illustrated in Figure 2]

4.1 Graph Asymmetric Contrastive Learning

Based on the above motivation, for each node v, we first propose to learn its representation by
capturing its one-hop neighborhood signal. A natural idea of capturing the neighborhood signal is
learning the representations of v that can well predict the original features of v’s neighbors, i.e., x,,
of neighbor u. However, the original features are typically noisy and high-dimensional [42]. To
solve this issue, we cast the prediction problem in the representation space, i.e., the representation of
the central node should be predictive of representations of its neighbors. Specifically, we adopt the
following simple prediction loss induced by an asymmetric predictor on neighbors:

_1 1 —ul?
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where v = fp(G)[v] and u = fy(G)[u] are representations, and g, () is a introduced predictor which
maps the latent representation v to reconstruct the neighbor’s representation u. Intuitively, in this
case, each node is treated as a specific neighbor “context”, and nodes with similar distributions over
the neighbor "context" are assumed to be similar. Here, we utilize only one single simple g to predict
representations of all v’s neighbors and empirically find that it works very well.




This simple prediction objective in Equation () can preserve local neighborhood distribution in
representations without homophily assumption since we do not directly enforce v and u to be
similar to each other. To prevent g, from degenerating to the identity function, we consider the
representations of central node v and the one-hop neighbor u come from two decoupled encoders:
v = fo(G)[v] and u = f¢(G)[u], where fy is the online identity encoder and f¢ is the preference
target encoder. Importantly, the gradient of the loss in Equation (3)) is only used to update the online
encoder fp, while being blocked in the target encoder f¢ as shown in Figure (c). The weights of
the target network £ are updated using the exponential moving average of online network weights 6:
&+ A+ (1 — N)f where A € [0, 1] is the target decay rate. An intuitive illustration for using two
encoders is that each node typically plays two roles: the node itself and a specific context of other
nodes, corresponding to separated notions of node identity and node preference in real-world graphs.
The key principle of decoupled encoders is to allow the identity representation of a node to be more
possibly different from the identity representation with which the node prefers to link.

The simple objective in Equation (3] can capture the one-hop neighborhood context without relying
on the homophily assumption or requiring graph augmentation as shown in Figure[2](c). This matches
our first motivation in the introduction part. Another remaining problem is why optimizing this simple
objective helps capturing 2-hop node similarity, i.e., monophily. Consider a pair of 2-hop neighbors v
and us which both neighbor on the same node u. Intuitively, by enforcing v and us to reconstruct
the same context representation of neighborhood u, we implicitly make their representations similar.
Thus, the 2-hop neighbors serve as positive pairs that will be implicitly aligned as shown in Figure 2]
(d). We formally prove this intuition in Theorem [2]in our following theoretical analysis.

We note that some contrastive objectives based on augmentations such as BGRL [5]] and BYOL [40]
also utilize a predictor as shown in Figure 2 (b). However, the idea behind our loss in Equation (3]
differs significantly from them. Specifically, they rely on data augmentations, and are built based
on the idea that the augmentation can preserve the semantic nature of samples, i.e., the augmented
samples have consistent semantic labels with the original ones. Nevertheless, unlike images, it
is theoretically difficult to design graph augmentations without changing the semantic nature of
nodes [7] and augmentations tend to capture homophily [20, [18]. In contrast, the simple loss in
Equation (3 does not rely on augmentations but directly considers modeling one-hop neighborhood
distribution. We theoretically prove that our GraphACL maximizes the mutual information between
representations and one-hop neighborhood context, and captures two-hop monophily in § 5]

Although this simple neighborhood prediction objective can capture both one-hop neighborhood pat-
tern and two-hop monophily, it may result in a collapsed and trivial encoder: all node representations
degenerate to a the same single vector on the hypersphere. The main reason is that the prediction
loss operates in a fully flexible latent space, and it can be minimized when the encoder produces
a constant representation for all nodes. To address this issue, we introduce an explicit uniformity
regularization to further enhance the representation diversity. Specifically, we add the following
explicit regularization on representation uniformity into Equation (3)):
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where v = fp(G)[v] and v_ = fy(G)[v_]. Here, we consider the representations of negative
samples v_ coming from the same online encoder as central sample. This uniformity loss is typically
approximated by randomly sampling K negative samples v_. Intuitively, minimizing this term will
push all node representations away from each other and alleviate the representation collapse issue.

Graph Asymmetric Contrastive Loss. Directly combining Equations (3) and (@) arrives at a loss
function: Lcom = Lpre + Luni. However, minimizing this combination loss is an ill-posed problem,
it approaches —oo as we can simply scale the norm of representations to reduce the loss. Even if
the representations are normalized, minimizing Ly still leads to a relatively poor performance as
shown in our experiments. To address this issue, we instead minimize an upper bound of Lcom,
which results in the following simple objective of GraphACL (see Appendix for details):

_ 1 1 exp(p'u/7)
La= V] ZUEV [NV (v)] Zue/\f(v) log exp (pTu/T) + ZU_GV exp (VTV, /T) ’ )

Here prediction p = g4(v) with v = fp(G)[v], representations u = f¢(G)[u] and v_ = fo(G)[v_].
L 4 is a simple generalization of the graph contrastive loss with representation smoothing in Equa-
tion (1)) from symmetric view to an asymmetric view. Note that when the predictor g, becomes the



identity function, £ 4 degenerates to the GCL loss Lg. We demonstrate in extensive experiments that
such asymmetric framework via a simple predictor helps achieve better downstream performance on
both homophilic and heterophilic graphs than many GCL methods with prefabricated augmentations.

5 Theoretical Analysis

In this section, we provide theoretical understandings of GraphACL. We show that our simple
GraphACL can simultaneously capture one-hop neighborhood context and two-hop monophily, which
are important for heterophilic graphs. We also establish theoretical guarantees for the downstream
performance of the learned representations. All proofs can be found in Appendix B}

Notations. We denote the random variable of node representations as V, and define the mean
representations from the one-hop neighborhoods of node v as z = ﬁ > e N (w) W This means that
the representation z profiles the one-hop neighborhood pattern of node v. Since two nodes of the same
semantic class tend to share similar neighborhood patterns in real-worlds, z can be viewed sampled
from Z|Y ~ N (zy,I) where Y is the latent semantic class indicating the one-hop pattern of v.
Given the above, we first demonstrate the rationality of GraphACL in capturing one-hop patterns:

Theorem 1. Minimizing GraphACL’s objective in Equation () with exponential moving average is
equivalent to maximizing mutual information between representation V' and the one-hop pattern Y :

Laz HV]Y) = H(V) = =I(V;Y). (6)
Theorem [I] indicates that minimizing GraphACL loss in Equation (3)) promotes maximizing the

mutual information I(V;Y") between representations and one-hop neighborhood context. Next, we
theoretically verify that our GraphACL can capture intuition about the two-hop monophily similarity.

Theorem 2. Let N> (v) denote the set of two-hop neighbors of v. Minimizing the GraphACL objective
in Equation Q) is approximately minimizing the following alignment loss between two-hop neighbors:

1 1 1 2
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where L is the L-bi-Lipschitz constant of gy: ¥(v1,va), 1/L ||v1 — v Hg < |lgo(v1) — go(va)?
The above theorem shows that minimizing the GraphACL objective implies a small alignment loss of
two-hop neighbors. Thus, GraphACL not only captures the one-hop neighborhood pattern, but also
the two-hop monophily implicitly, i.e., encouraging a large similarity between two-hop neighbors.

Next, we theoretically show that the learned representations can achieve better downstream perfor-
mance. We evaluate the representation by its performance on a multi-class classification task using
the mean classifier [43] [44] 43]]. Specifically, we consider the classifier py (v) = arg max W,
where v = f5(G)[v] and W € RE*P is the weight of the linear classification head. The yy, row
of W is the mean g, of representations of nodes with the label y: p, = E,|y[v]. For simplicity,
we assume that the node classes are balanced but our results can be easily extended to unbalanced
settings by considering a label shift term as shown in the domain adaptation literature [46].

Theorem 3. Let hy = H(G2) be the homophily ratio of the two-hop graph Gs. Suppose that the
downstream task is the M-categorical linear classification and the class is balanced. Then, Vq € the
hypothesis class with ¢ = g o f, the upper bound for the classification error on the optimal v* is :

P (yo # pw(v")) < AM*(ALLa(g) + (1 — ha)) + const. ®)
This theorem says that the downstream error on representations is bounded by GraphACL loss and
homophily ratio ho of the two-hop graph G, i.e, monophily. Specifically, a larger monophily ratio hs

would provably imply a smaller downstream classification error. Prior work [[15] and the statistics of
real-world graphs in Appendix [C|show that although the one-hop graph may be heterophily-dominant,

the two-hop graph will always be homophily-dominant (ﬁg is large). This theorem reveals why the
simple GraphACL enjoys good performance on both homophilic and heterophilic graphs.

6 Experiments

6.1 Experimental Settings

Datasets and Splits. We conduct experiments on both homophilic and heterophilic graphs. For
heterophilic graphs, we adopt Wisconsin, Cornell, Texas [33]], Actor, Squirrel, Crocodile, and



Table 1: Node classification accuracy (%) on heterophilic and homophilic graphs. The best and
second best performance under each dataset are marked with boldface and underline, respectively.

Method LINE VGAE DGI GCA CCA-SSG BGRL L-GCL HGRL DSSL SP-GCL GraphACL

Squirrel 38.92+1.58 29.1321.16| 26.44x1.12 48.09:021 | 46.76:036 36.22x1.97 52.94+0.88 | 48.31x065 40.51x038 52.10:0.67 | 54.05:0.13
Chameleon | 48.59:1.17 42.65x1.27 | 60.27:0.70 63.6620.32 | 62.41x022 64.86+0.63 68.74:0.49 | 65.82x0.61 66.15:032 65.28:053 | 69.12:0.24
Crocodile [42.21+1.12 45.72+1.53 | 51.25:051 60.7320.28 | 56.77+039 53.87x0.65 60.18:043 | 61.87+045 62.98:0.51 61.72:021| 66.17x0.24

Actor 27.55:032 26.99:1.56 | 28.30:0.76 28.77+029 | 27.82:0.60 28.80:0.54 32.55:1.18 | 27.95:030 28.15:031 28.94:0.69 | 30.03:0.13
Wisconsin |37.45:251 55.67+1.37 | 55.21+1.02 59.55:0.81 | 58.46+096 51.23+1.17 65.28:0.52 | 63.90+0.58 62.25:055 60.12+039 | 69.22+0.40
Cornell 43.68+2.17 48.73+4.1945.3316.11 52.311.09| 52.17=1.04 50.332229 52.11£2.37[51.78+1.03 53.15:1.28 52.29+1.21| 59.33:1.48
Texas 48.69:139 50.27x2.21 | 58.53+2.98 52.92:0.46 | 59.89+078 52.77+1.98 60.68+1.18 | 61.83x0.71 62.11+1.53 59.81+1.33 | 71.08:0.34

Roman 55.42+087 50.89:096 | 63.71:0.63 65.79+0.75 | 67.35:061 68.66+0.39 69.74:053 | 71.84:0.41 71.70+0.54 70.88:035 | 74.91x0.28
Arxiv-year |33.21x0.13 35.11x025 | 39.26+0.72 42.96+039 | 37.38+0.41 43.02:062 43.92:052 |43.71x054 45.80:057 44.11x035 | 47.2120.39

Cora 68.25:031 76.30:021| 82.30:0.60 82.93x042 | 84.00:0.40 82.70:0.60 84.00:0.35 | 82.52:031 83.51x042 83.16:0.13 | 84.20+0.31
Citeseer 43.92:051 66.80+0.23 | 71.80£0.70 72.19:031| 73.10z030 71.100.80 73.260.50 | 71.05:0.49 73.20:051 71.96+042| 73.63:0.22
Pubmed 66.29:0.60 75.80+0.40 | 76.8020.60 80.79x0.45 | 81.00:040 79.60:0.50 81.82:0.50|79.83x0.31 81.25:031 79.16:073 | 82.02:0.15
Computer |86.50:0.21 85.80+0.31 | 83.95:0.47 87.85+0.31| 88.74028 89.69+0.37 88.72:042 | 88.53+0.18 89.24:023 89.68:0.19| 89.80:0.25
Photo 89.82:020 91.50:020|91.61x022 91.70+0.10 | 93.1420.14 92.90:030 93.15:0.47 | 92.85:038 93.102032 92.49:031| 93.31x0.19
Arxiv 65.22:030 66.40£020|70.32:025 69.37+020| 71.212020 71.64:0.24 71.33:020 | 68.55:038 69.87047 68.25:022 | 71.72x0.26

Chameleon [33)47]. We also use two large heterophilic graphs proposed recently: Roman-empire
(Roman) [48]] and arXiv-year [[16] (~170k) nodes. For homophilic graphs, we adopt three citation
graphs: Cora, Citeseer and Pubmed [49,|50]], and two co-purchase graphs: Computer and Photo [15,51].
We further include a large-scale homophilic graph Ogbn-Arxiv (Arxiv) [52]. For all datasets, we
use the public and standard splits used by cited papers. Detailed descriptions, splits, and one-hop
homophily and two-hop monophily statistics of datasets are given in the Appendix [C.1]

Baselines. We compare GraphACL with a traditional network embedding method: LINE [14]],
and the recent state-of-the-art self-supervised learning methods: VGAE [9], DGI [2], GCA [4],
Local (L)-GCL [12], HGRL [29], BGRL [5]], CCA-SSG [6], SP-GCL [53]], and DSSL [18]. The
descriptions and implementation details of baselines are given in Appendix [C.2}

Evaluation Protocol. We utilize node and graph classification and node clustering to evaluate the
quality of the representation. For classification, we follow the standard linear evaluation protocol [2].
We train a linear classifier on top of the frozen representation and report the test accuracy. For node
clustering, we perform k-means clustering on the obtained representations and set the number of
clusters to the number of ground truth classes and report the normalized mutual information [54].

Setup. For all methods, we use a standard GCN model [49] as the encoder. We randomly initialize
the model parameters and use the Adam optimizer to train the encoder. We run experiments with
ten random seeds and report the average performance and standard deviation. For fair comparison,
for all methods, we select the best configuration of hyperparameters only based on accuracy on the
validation set. For baselines that did not report results in part of datasets or do not use standard public
data splits 18, [29], we reproduce the results using the official code of the authors. More details on
the implementation and the hyperparameter search space can be found in Appendix [C.3]

6.2 Overall Performance Comparison

Table ] reports the average node classification accuracy on both heterophilic and homophilic graphs.
We provide the graph classification and node clustering results in Appenxi [C.6]and [C.5] respectively,
showing that GraphACL can also effectively adapt to various downstream tasks. Surprisingly, among
all methods, our simple GraphACL achieves the best performance in 14 of 15 data sets with various
homophily ratios, as shown in Table[I] Specifically, GraphACL achieves significant improvements on
most of the heterophilic datasets and comparable performance on homophilic graphs compared with
the second-best method. Specifically, GraphACL achieves 4.3% (Roman), 11.6% (Cornell), 14.4%
(Texas), 5.1% (Crocodile), and 3.1% (Arxiv-year) relative improvement over the second-best method.
We can observe that contrastive strategies (CCA-SSG, GCA, and BGRL) with augmentations can
not work well on heterophilic graphs compared to homophilic graphs. This verifies that they still
implicitly leverage homophily. In contrast, GraphACL does not need augmentations, and we attribute
our significant improvement to modeling the one-hop neighborhood context and two-hop monophily.

6.3 Ablation Study and Sensitivity Analysis

Ablation Study. We conduct an ablation study in Table[2]to validate our motivation and design, with
the following three ablations: (i) directly minimize the combination loss Lcom, (ii) Removing the
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Figure 4: The effect of representation dimension, and the pair-wise similarities of randomly sampled
node pairs, one-hop and two-hop neighbors. More results are provided in Appendix [C.10]

asymmetric encoder architecture, (iii) Removing the uniformity loss with negative samples. We also
test the combination (ii) & (iii) by removing both asymmetric architecture and uniformity loss. First,
minimizing the ill-posed combination loss is a valid baseline, but can not achieve better performance
and is unstable with large standard deviations. We also find that the model without uniformity
loss (ablation (ii)) does not achieve the best in homophily graphs, although it does still serve as a
strong ablation. When each component is individually applied, the asymmetric architecture alone
achieves the very best performance in Cornell and arXiv-year. This confirms our motivation that the
asymmetric architecture is of more importance for modeling neighbors in heterophilic graphs where
connected nodes have different classes. The full model (last row) achieves the best performance,
demonstrating that our designed components are complementary to each other.

Representation Dimension. In Fig-

ure [] (a), we analyze the effect of ) ) ] )

the dimension of node representations. Table 2: Ablation studies on the node classification task.
We can observe that having a large Baseline Cora  Pubmed Cornell arXiv-year

dimension can generally lead to bet- (i) minimize Lcoar 83.0820.75 81.312092 58.10:2.89 45.79+0.62
(ii) w/o asymmetric encoder | 82.21x0.60 81.05:0.75 57.1320.13 45.3320.22

ter performanpg for both homophilic i) w/o uniformity loss | 81.39:020 80.56:035 57.875027 46.542028
and heterophilic graphs. Moreover, (i) & (iii) w/o both 80.85:065 77.055015 42.03x121 42.712020

we find that the dimension effect is  “GraphacL 84.204031 82.02:0.15 59.33:148 47.2120.39
more obvious in heterophilic graphs
compared to it in homophily graphs. This could be justified by our Theorems 3] which give the
lower bound and upper bound of GraphACL loss in terms of the homophily ratio. Specifically, since
the two-hop homophily ratio is still smaller in heterophilic graphs compared to homophilic graphs,
and a small downstream error requires a small loss. Thus, a large dimension can effectively reduce
the lower bound of the training loss and benefit the learning on heterophilic graphs. Training with
extremely large dimensions for some graphs may lead to a slight drop of performance as GraphACL
may suffer from the over-fitting issue, limiting its generalization performance.

Other Hyper-parameters. Figure [5|shows the performance with various decay rate A\. We observe
that (i) A plays an important role in GraphACL. Having a large A typically improves the model
performance; (ii) Instantaneously updating the target network, i.e., when A = 0, destabilizes training
and leads to poor performance. Thus, there is a trade-off between updating the target too often and
updating it too slowly. The temperature 7 and the number of negative samples K are not included
here since they are not directly relevant to our key motivation and have been employed and evaluated
in the recent works [55,[56]]. Thus, we provide corresponding results in Appendices[C.8]and[C.9]

6.4 Qualitative Analysis and Case Study

Similarity Visualization. Figures [4] (b) and (c) plot the distribution of pair-wise cosine similari-
ties of randomly sampled nodes, one-hop neighbor, and two-hop neighbor pairs based on learned
representations. We can observe that, for the homophilic graph, that is, Cora, nodes are forced to
have representations similar to those of their neighbors. GraphACL enlarges the similarities between
neighbor nodes compared to randomly sampled node pairs, demonstrating that GraphACL can well
preserve one-hop neighborhood contexts. Compared to the homophilic graph Cora, GraphACL
seeks to further pull the two-hop neighbor nodes together on the heterophilic graph, i.e., Squirrel.
This observation matches our motivation and analysis that GraphACL can effectively discover the
underlying two-hop monophily, which benefits the learning on heterophilic graphs. Figures [6](a) and
(b) show the cosine similarity between the v and prediction g,(v) for each node. We find that the
cosine similarities are typically smaller than 1, showing that the predictor g4 is not an identity matrix
after convergence. Moreover, we can observe that, compared to the homophilic graph Cora, the
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Figure 6: (a) and (b) show the similarity between representation v and prediction p. (c) and (d) show
case studies, where we randomly pick a node with the drastic neighborhood variations and visualize
its neighborhood. Node colors denote ground-truth labels. The size of the node is proportional to its
representation similarity to the central node denoted as star. See Appendix [C.TT]for more results.

similarities on the heterophilic graph Squirrel are smaller. This verifies that GraphACL automatically
differentiates node identity and context representations, which is important for heterophilic graphs.

Case Study. In Figures[6](c) and (d), we randomly sample the two-hop subgraph of a central node
and calculate the cosine similarity based on learned representations between the central node and
neighbor nodes. We can observe that GraphACL can successfully identify the node whose local
neighborhood patterns are similar to the central node on both homophilic and heterophilic graphs.
Additionally, our GraphACL can pull two-hop neighbor nodes, which share a similar semantic class
to the central nodes, instead of favoring nearby one-hop neighbor nodes. These observations endorse
our intuition that heterophilic graphs can not benefit much from one-hop neighbor nodes, and our
GraphACL can effectively capture the latent semantic information related to two-hop monophily.

7 Conclusions

We propose a simple contrastive learning framework named GraphACL for homophilic and het-
erophilic graphs. The key idea of GraphACL is to capture both a local neighborhood context of one
hop and a monophily similarity of two hops in one single objective. Specifically, we present a simple
asymmetric contrastive objective for node representation learning. We provide a theoretical under-
standing of GraphACL, which shows that GraphACL can explicitly maximize mutual information
between representations and one-hop neighborhood patterns. We show that GraphACL also implicitly
aligns the two-hop neighbors and enjoys a good downstream performance. Extensive experiments
on 15 graph benchmarks show that GraphACL significantly outperforms state-of-the-art methods.
We hope that the straightforward nature of our approach serves as a reminder to the community to
reevaluate simpler alternatives that may have been overlooked, thus inspiring future research.
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A The Omitted Details of GraphACL

A.1 The Loss of Graph Asymmetric Contrastive Learning

We provide details of the derivations of GraphACL in Equation (3)) and show that minimizing
GraphACL is approximately to minimize the combination of prediction and uniformity losses.
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where the symbol = indicates equality up to a multiplicative and/or additive constant. Here, we
utilize Jensen’s inequality in Equation (I0). Equation (TI) holds because p and u are both ¢o-
normalized. Given the above, we can conclude that minimizing GraphACL objective is approximately
to minimizing the combination of the prediction and uniformity losses.

o

o

[lo

B Proofs in Section 3]

B.1 Proof of Theorem[l

Theorem [I} Minimizing GraphACL’s objective in Equation (B) with exponential moving average is
equivalent to maximizing mutual information between representation V' and the one-hop pattern Y :

Loz HV]Y) =H(V) = =I(V;Y). (12)

Proof. According to the derivations in Appendix [A.1] we have:

1 1
Lp> mzvev N ()] ZueN(v) |V\ ZU oV Tv_
|V| Zvev lp— |N )| Zue/\/(u ||2 |V| Z GVZ |V — V- ||2 (13)
- mzvev Ip =2l - |V| i Z EVZ —-v_|3, (14)

where z = ﬁ D ue N(w) U is the mean representations from one-hop neighborhoods of node v.
Equation (T3) holds because that gradient of u is being blocked in the target encoder with exponential
moving average; thus it can be viewed as a constant that depends only on the target encoder but not the
variable fy. Since two nodes of the same semantic class tend to share similar one-hop neighborhood
patterns even in non-homophilous graphs, thus we can view the neighborhood representations z is

| o
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sampled from the conditional distribution given the pseudo label Y which indicates the one-hop
neighborhood pattern: Z|Y ~ N (zy, I). As demonstrated in [57]], we can interpret the first term as
a conditional cross-entropy between V' and another random variable Z whose conditional distribution
given the pseudo-label Y indicates the one-hop neighborhood pattern: Z|Y ~ N (zy, I):

1 c
B Dvey [P =2l £ HVIZIY) = HVIY) + Dien(VIIZIY) 2 HVIY),  (15)

where H (-) and Dk, (-) denote the entropy and KL-divergence, respectively. Minimizing the first
term in Equation is approximately minimizing H (V'|Y"). We then inspect the second term in
Equation (T4). As shown in [58,[57], the second term is close to the differential entropy estimator:

11
MMZUEV ZMV v —v_|3 < H(V). (16)

As a result, minimizing the loss of GraphACL can be seen as a proxy for maximizing the mutual
information between the representations V' and the pseudo-labels Y which indicates the neighborhood
patterns of one hop nodes. Thus, the proof is completed. O

B.2 Proof of Theorem 2|

Theorem Let N5 (v) denote the set of two-hop neighbors of v. Minimizing the GraphACL objective
in Equation Q) is approximately minimizing the following alignment loss between two-hop neighbors:

11 1
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where L is the L-bi-Lipschitz constant of gy: ¥(v1,va), 1/L ||vi — v Hg < |lge(v1) — gs(va) |
Proof. Given the derivations in Appendix [A.T] we have:

£a - ﬁ ZUEV % Zue./\/’(v) _p—Triu +log (exp (pTu/T) + Z exp (VT‘L/T) )

11 g¢ < T
" 9slV) o 18
=T Zvev W ] Zuemv T T Zvev IN )] Zuem yu ge(v),  (8)

where the last line holds because v € V: Y~y exp (v v_/7) > exp(v'v) = e > 1. To conduct

the proof, we first formulate the degree-related predictions and representations as two matrices: P and
U. Here, U,, = v/d, u is the u-th row of the matrix U € RVN*? and P, = \/d, - g4(V) is the v-th

row of the matrix P € RV*P_ Recall that the normalized adjacency matrix A D~ '/2AD1/?
where D is the diagonal degree matrix. With the above and Equation (I8]), we have:

1 1 .
> = _ -
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= |V|2tr(PP A A) |V|QZ dy|lu || |V\2tr(PP A A), (20)

where dy, is the maximum degree of nodes and tr(-) denotes the matrix trace. In Equation (19), we
utilize the inequality: tr(PQ) < % (| P13 + ||Ql|3) for any two matrices P € R™*™ and Q € R"*".
Equation holds as u is normalized. Since the trace is the sum of elements on the main diagonal
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of the matrix, the v-th diagonal value of (PPTATA) is
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where Equation (21) holds is because the decoder is L-bi-Lipschitz: ¥ (x1,x5), 1/L ||x1 — x5 |* <
|96 (x1) — 9o (x2) HZ Combining Equations (I8)), (20) and 1), we have:
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B or 2L ] Zvev |/\/2 )] Zuzem(v) —uzl, (22)
where ming fi = miny fz represents that minimizing function f; with respect to 6 is equivalent to
maximizing function f, with respect to 8. Thus, the proof is completed. O

B.3 Proof of Theorem[3

Theorem [3{ Let hy = H(G2) be the homophily ratio of the two-hop graph Ga. Suppose that the
downstream task is the M-categorical linear classification and the class is balanced. Then, Vq € the
hypothesis class with ¢ = g o f, the upper bound for the classification error on the optimal v* is:

P (yo # pw (V")) < AM?(ALLa(q) + (1 — h2)) + const, (23)

Proof. We define the adjacency matrix of the two-hop graph of G as Ao, i.e., (A2);; = 1 if there
exists node j such that e;; € £ and ej;, € &, otherwise (Ay);r, = 0. The normahzed form of A
is Ay = D™1/2A,D, where D, is the diagonal degree matrix of the two-hop graph. N3(v) is
the set of the neighbors of v on the two-hop graph. We also define the label matrix of all nodes as
Y € RVXM and the representation matrix V € RM* P with the v-th node representation as V,, = v.
Let ¢; be the number of nodes belonging to class ¢. For any class i, we have ¢; = ¢ = %I since
we assume the ideal balanced setting for simplicity. However, our theoretical results can be easily
extended to unbalanced settings by explicitly considering the shift of label distributions [46]. Given
the above definitions, we have the following:

Y - VW3,

1 1
Eoy, lys — Wv]3 ~ v ZUGV yw — Wv|3 = m\

= m|\Y —AyC+A,C—- VW' |3,
< (2||Y AxCJ}3 +2]A2C - VW[}3), 24)

where C,, ; = ci_l]lyv:i and 1 is the indicator function. y, is the label index of node v and y,, is
the one-hot vector of label y,. The last line holds because ||P + Q|2 < 2||P]3 + 2||Q||3 for any
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two matrices P and Q of the same dimension. The (v, i)-th elements of matrices Y and A,C are:
Y,;=1,,—;and (A;C),; = Z’IJ,QGNQ(’U) cjl]lyw:i. If y, = 4, we have:

1 1
(Y = AzC)ui = Ly,=i — Zmewm o =i =17 Zuge/vg(v) o = (3D

Similarly, for y, # i, we have:

1 1
(Y = AyC)yi =Ty =i — Y —ly—i=— =1y, —i- (26)

u2€N2(v) ¢; u2€N2(v) ¢;

Given the above, we further have:
M
Y — A2Clf3 = Zv I(Y — A2C), |3 = ZU D (Y - A:C)7,
i=1
M 1 1
- Zv Z ]lyv:'L(l ZUQGNQ('U) C ]lyuZ :'L) + (1 ]lyvzl)( ZquNz(’U) c 1?!':42 :l)
=1
1 M 1
= 1— -1 1y, = T
ZU( Zu2€N2<U> i Yug = Z/v + ,21 Yo Fl Z’U,QENQ(’U) i Yuy 1)
1, 1 )
< —
— Zv(l ZUZENZ('U) ¢ yuz yu Z]lyv7é7f Zuze.’\fz(’u) ¢ ]]'yuz—z)
M

1 2 1 2
= 1— -1, - 1 1., =i
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M
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27
For the second term ||A2C — VW T ||2 in Equation (24), we have:
[A2C— VW[ =[(A2—VV +VV)C-VW'|3 (28)
=[[(A2—=VV)C+V(V C-W')|3
<2[(A2 = VV)C3 +2[V(V C - W3
<2[(A2 = VV)[ZICI3 + 2 V[ZI(VIC - W3
<2[[(A2 = VV)[BICIE + 2| VIEI(VC - W3
=2|[(Az = VV )3 C|3 (29)
MM
Ty A2 = VYOI, (30)

where Equation (29) holds because the iy, row of W is the mean of representations of nodes with
label i: ||(VTC — W T)||2 = 0. Combining Equations (24), (27), and (30), we have:

Euy. lye — Wvl3 < o (21Y — A2CJ13 +2]A.C - VW)

Vi
MM T

-VV 2(1 3
(A = VYOI 2 IVIIVIZ 2 o)

MM VI
4——||(A 2(1 E E 1
= |VHV‘ ”( 2= )”2 + + |V||V| v |N2 | 02 EN (V) yv27£yv)
MM
4——||[(A
= Ay (A

V5 +2M%(1 — ha) +2, 31
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where hy = H(G2) is the homophily ratio of the two-hop graph. Based on the derivations in
Theorem [2] and Equation (9), we have:

1 1 1
La(g) > V2L Zvev Vo)l nge/\/2(v) [v — v2||3 + log (Zv,ev exp (VTV,/T) )

exp(vTvQ/T)

1 1 1
> S 1
=T Vi2L DB N2 ()] 2 ez 18 Y. cvexp(Vviv_/7)

(32

1 1 exp(v' va/T) A 1 1
> 1 ES =
= "IV 2L DDNND DIV S cpexp(viv_/r)  VIVI2L
We can find the last line is exactly the SimCLR-style loss [55]] over two-hop graphs. Recent work [39]]

proves that finding the global optimum of the un-normalized SimCLR-style objective Lgimcrr(V) is

equivalent to solving the matrix factorization problem: miny ||As — VVT||2. Given Equations (31)
and (33), we further have:

Lsimcr (V). (33)

P (yo # pw(v")) < 2Euy, [lye — W3 (34)
MM * * 7
<8 MM Ay = VIV A (1 — o) + 4
VIV
M2 * 2 7
= 8WCSimCLR(V ) +4AM (1 —h2) +4+«

<16M°LLA(") +4M*(1 — ho) + B
< AMP(ALLA(q) + (1 — ho)) + B (35)

Here, we convert the mean-squared error bound to classification error bound in Equation (34)) as
shown by Claim B.9 in [60]. The « is the constant indicating the gap between the optimal loss value
of SimCLR-style and matrix factorization losses [59] and 5 = a + 4. O

C Experimental Details

C.1 Datasets Details and Statistics

Table 3: Statistics of used homophilic and heterophilic graph datasets in this paper.

Dataset #Nodes #Edges #Classes #Features H(G) H(G.) S(G)

Cora 2,708 5,278 7 1,433 0.81 0.71 0.89
Citeseer 3,327 4,552 6 3,703 0.74 0.56 0.81
Pubmed 19,717 44,324 3 500 0.80 0.74 0.87
Photo 7,650 119,081 8 745 0.83 0.66 0.91
Computer 13,752 574,418 10 767 0.78 0.55 0.90
Arxiv 169,343 2,332,386 40 128 0.66 0.61 0.79
Texas 183 309 5 1,793 0.11 0.54 0.79
Cornell 183 295 5 1,703 0.30 0.40 0.40
Wisconsin 251 466 5 1,703 0.21 0.42 0.42
Chameleon 2,277 36,101 5 2,325 0.23 0.35 0.67
Squirrel 5,201 216,933 5 2,089 0.22 0.22 0.73
Crocodile 11,631 360,040 5 2,089 0.25 0.30 0.71
Actor 7,600 33,544 5 931 0.22 0.21 0.68
Roman 22,662 32,927 18 300 0.05 0.67 0.59
Arxiv-year 169,343 1,166,243 5 128 0.22 0.58 0.77

C.1.1 One-hop Homophily Levels

We utilize the following edge homophily ratio [[15] to measure the one-hop neighbor homophily of
the graph. Specifically, the edge homophily ratio H(G) is the proportion of edges that connect two
nodes of the same class:

e @ eenp=u)

o) @

(36)
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C.1.2 Neighborhood Context Similarity

To justify our first intuition that two nodes of the same semantic class tend to share similar one-hop
neighborhood patterns even in heterophilic graphs, we consider if the same label shares similar
one-hop neighborhood distributions of labels in the neighborhoods regardless of the homophily. To
measure this property, we calculate the class neighborhood similarity [24]] defined as follows:

s(m,m) = 1 Z cos(d(u), d(v)), (37

|V’m ||Vm/ UEVy, WEV, 7

where M is the number of classes, V,, is the set of nodes with class m, and d(u) is the empirical label
histogram of node «’s neighbors over M classes. cos(-) represents the cosine similarity function.
This cross-class neighborhood similarity measures the neighborhood distributions between different
classes. When m = m/, s(m,m’) calculates the intra-class similarity. To measure the neighborhood
similarity, we average the intra-class similarities of all classes:

M 1
§(G) = 3 3750mm). G8)
20

If nodes with the same label share the same neighborhood distributions, the class neighborhood
similarity H,(G) is high.

C.1.3 Two-hop Monophily Levels

To further verify our second intuition in the introduction: two-hop similarities (monophily) still exist
even without the one-hop homophily assumption, we also consider monophily properties of two-hop
neighborhoods. Following [16]], we use the following two-hop homophily to measure the monophily,
where the neighborhood of each node is defined to be the nodes of exactly two hops away.

1 1
9 = 1 2 ] e )

where A5 (v) denotes the set of two-hop neighborhoods of v.

The statistics of datasets, including their one-hop and two-hop homophily levels and neighborhood
similarities, are given in Table[3] We can observe both homophilic and heterophilic graphs exhibit
strong neighborhood similarity calculated based on one-hop neighborhoods. In addition, the two-hop
homophily level is generally higher than the one-hop homophily level in heterophilic graphs. This
observation confirms our intuition that two-hop similarities still exist without a strong one-hop
homophily level. The descriptions of the datasets are given below:

Cora, Citeseer, and Pubmed [49]. They are among the most widely used node classification
benchmarks. Each dataset is a citation and high-homophily graph, where nodes are documents, and
edges are citation relationships from one to another. The class label of each node is based on the
research field. A bag of words of its abstracts is used as the features of nodes. The public split is used
for these datasets, where each class has fixed 20 nodes for training, another fixed 500 nodes and 1000
nodes for validation/test, respectively for evaluation.

Computer and Photo [} 51]. They are co-purchase graphs from Amazon, where nodes represent
products and frequently bought products are connected by edges. Node features represent product
reviews, and class labels indicate the product category. Following the experiment settings from [[12],
we randomly split the nodes into train/validation/test (10%/10%/80%) sets.

For these homophilic datasets, we utilized the process version of them provided by Deep Graph
Library [61]. These datasets can be found in https://docs.dgl.ai/en/0.6.x/api/python/
dgl.data.html.

Ogbn-arxiv (Arxiv) [52]. It is a citation network between all Computer Science (CS) arXiv papers.
Each node represents one paper and each edge indicates the citation relationships between two papers.
The feature of each node is obtained by a 128-dimensional feature vector through averaging the
embeddings of words in its title and abstract. The embeddings of words are obtained by running the
skip-gram over the MAG corpus. Following [12], we also use 10%/10%/80% split for this dataset.

Texas, Wisconsin and Cornell [33]]. They are webpage networks collected from computer science
departments of different universities by Carnegie Mellon University. For each network, nodes are
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web pages and edges indicate hyperlinks between web pages. Node features are bag-of-words
representations of web pages. The task is to classify nodes into five categories: student, project,
course, staff, and faculty.

Chameleon, Crocodile and Squirrel [47]. They are Wikipedia networks, where nodes represent
web pages and edges represent hyperlinks between them. Features of nodes are several informative
nouns on Wikipedia pages. Labels of nodes are based on the average daily traffic of the web page.

Actor [33]. It is an actor-only induced subgraph of the film-director-actor-writer network. Nodes
correspond to actors and edges represent the co-occurrence of two nodes on the same Wikipedia
page. Node features are keywords in Wikipedia pages. Labels are assigned five categories in terms of
words on the actor’s Wikipedia.

For Texas, Wisconsin, Cornell, Chameleon, Crocodile, Squirrel and Actor, we use the raw data
provided by the Geom-GCN [33]] with the standard fixed 10-fold split for our experiment. These
datasets can be downloaded from: https://github. com/graphdml-uiuc-jlu/geom-gcnl

Roman-empire (Roman) [48]] is a heterophilous graph based on the Roman Empire article in English
Wikipedia. Each node in the graph corresponds to one (non-unique) word in the text. The node
features are from word embeddings. The class of a node is its syntactic role (the 17 most frequent
roles as unique classes and all the other roles are grouped into the 18th class). Following [48]], we
utilize the fix 10 random 50%/25%/25% train/validation/test splits. This dataset can be found in
https://github.com/yandex-research/heterophilous-graphs.

Arxiv-year [16] is a citation network from a subset of the Microsoft Academic Graph, where the
task focuses on predicting the year that a paper is posted. Nodes are papers, and edges are relevant to
citations. The node features correspond to the average of word embeddings of the title and abstract of
the papers. Following [16], 50%/25%/25% train/val/test split is utilized for this dataset. This dataset
can be found in https://github. com/CUAI/Non-Homophily-Large-Scale,

C.2 Baselines
LINE [14]: This network embedding model proposed an objective function to preserve both the
first-order and second-order proximities.

VGAE [9]: VGAE is a generative model based on variational autoencoder for node representation
learning by directly reconstructing adjacency matrix.

DGI [2]]: It is a self-supervised learning method that maximizes the mutual information between
node representations and graph summary.

GCA [4]: This is a graph contrastive representation learning method with adaptive augmentation that
incorporates various priors for topological and semantic aspects of the graph.

BGRL [5]: This model is a graph contrastive learning method, where the alternative augmentations
of the graph are predicted to learn representations of nodes.

CCA-SSG [6]: CCA-SSG is a graph contrastive learning model, which encourages the learned
representations of nodes by reducing the correlation between different views.

L-GCL [12]: It is a self-supervised node representation learning method, which samples positive
samples from the first order neighborhoods and kernelizes negative loss to reduce the training time.

SP-GCL [53]: This is a single-pass graph contrastive learning method based on the concentration
property of node representations.

HGRL [29]: This is a self-supervised representation learning framework on graphs with heterophily,
which leverages the node original features and the high-order information.

DSSL [18]]: This method introduces a representation learning framework by decoupling the diverse
neighborhood context of a node in an unsupervised manner.

C.3 Setup and Hyper-parameter Settings

We use official implementation publicly released by the authors on Github of the baselines. For
fair comparison, we used grid search to find the best hyperparameters of the baselines. We run
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Figure 7: The average spectrum changes across these frequency bands for two augmented views. The
perturbations resulting from augmentations reveal a consistent trend in the graph spectrum.

experiments on a machine with a NVIDIA RTX A6000 GPU with 49GB of GPU memory. In
all experiments, we use the Adam optimizer [62]. A small grid search is used to select the best
hyperparameter for all methods. In particular, for our GraphACL, we search A from {0, 0.90, 0.95,
0.97, 0.99, 0.999, 1}, D from {256, 512, 1024, 2048, 4096, 8192}, 7 from {0.25, 0.5, 0.75, 0.99,
1}, and K from {1, 5, 10} when we utilize the negative sampling. We tune the learning rate over
{0.001, 0.0005, 0.0001} and weight decay over {0, 0.0001, 0.0003, 0.000001}. We select the best
configuration of hyper-parameters based on average accuracy only based on the validation set.

Table 4: Node clustering performance in terms of NMI (%) on homophilic and heterophilic graphs

Method Citeseer Computer Photo Arxiv Texas Cornell  Squirrel Arxiv-year
VGAE 36.40z001  22.30z000  53.00z004 31.10x001 27.75:0.16 17.87:0.13 10.832009  25.64+0.05
DGI 43.90:000 31.80:002  47.60:003 31.90:001 34.17:007 15.92z0.15  8.49:0.13 24.35+0.08
BGRL 45.38:004  36.20:007  54.61:008 33.71:0.09 33.59:0.15 19.74z0.4 15.132009  25.31:0.05
DSSL 45912006  36.82:008  54.99:005 32.98:006 38.22:0.15 20.36:0.08 19.85:0.13  24.45:0.07
L-GCL 46.52+008 37.51x0.09 55.25:0.01 32.77:005 37.92:010 19.25:005 18.15z0.11  26.87:0.09
GraphACL | 46.82:007 39.51:0.09 55.97:004 34.15:006 43.31x008 22.79:0.05 23.96:0.09  29.84:0.08

C.4 The Spectrum Changes in Augmented Views

In Figure[7} we categorize the eigenvalues (spectrum) of the symmetric normalized graph Laplacian
into five distinct frequency bands, ranging from low to high. Subsequently, we computed the
average spectrum changes across these frequency bands for two augmented views. The perturbations
resulting from augmentations reveal a consistent trend in the graph spectrum. After augmenting
the graph, we can observe that the perturbations in the low-frequency components (far left) are
comparatively smaller than those observed in the high-frequency components (far right) for both
homophilic (PubMed) and heterophilic (Squirrel) graphs. This observation confirms that mainstream
GCL methods can not work well on heterophilic graphs, particularly when the perturbation in
high-frequency signals is more significant.

C.5 Node Clustering Performance

We also conduct node clustering to evaluate the quality of the learned node representations. Specifi-
cally, we obtain node representation with GraphACL, then perform k-means clustering on the obtained
representations and set the number of clusters to the number of ground truth classes. The experiment
is conducted five times. We report the average normalized mutual information (NMI) for clustering
in Table {] on both homophilic and heterophilic graphs. From the table, we can observe that our
GraphACL can consistently improve node clustering performance compared to the state-of-the-art
self-supervised learning baselines on eight datasets. This observation, along with the results of
the node classification, demonstrates the effectiveness of GraphACL in learning more expressive
and robust node representations for various downstream tasks. These results further validate that
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Table 5: Experimental results (%) on the graph classification results.

Method LINE VGAE GraphCL L-GCL DSSL GraphACL

MUTAG 75.6x23 84.4:06 86.8+1.3 85.3:05 87.2:15 89.422.0
PROTEINS | 61.1x17  74.0z05 74.420.5 72.9:06 73.50.7 75.3205

modeling one-hop neighborhood pattern and two-hop monophily similarity benefit downstream tasks
on real-world graphs with various homophily ratios.

C.6 Graph Classification Performance

Existing works for heterophilic graphs typically focus on node-level tasks (node classification and
node clustering). Thus, an empirical comparison of the graph-level task is relatively not straightfor-
ward. Nevertheless, for graph classification, we can use a non-parameterized graph pooling (readout)
function, e.g., MeanPooling, to obtain the graph-level representation. For graph classification, we
conduct experiments on three graph classification benchmarks: MUTAG and IMDB-B, and follow
the same setting in GraphCL [3]. The results are shown in Table@ From the table, we can observe
that our ACL framework can also work well on the graph classification task and still can achieve
better (or competitive) performance compared to baselines.
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Figure 8: The classification performance curves with varying decay rate A on homophilic graphs.
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Figure 9: The node classification performance with varying decay rate A on other heterophilic graphs.

C.7 The Effect of Target Decay Rate

Figures [8] and [9] show the results of node classification with varying decay rate A on four other
homophilic and four heterophilic graphs, respectively. We can still observe that having large values
of X improves the overall performance. We observe that GraphACL obtains a competitive but not the
best result when A = 0, which confirms that slowly updating the target network is crucial in obtaining
superior performance. We also notice that we can achieve good performance even with a random
target encoder, i.e., A = 1 on some datasets, which can be explained by the recent work [63]] that
shows only using the simple stop-gradient operation can sometimes prevent collapsing.

C.8 The Effect of Temperature

Figures [I0]and [TT]show the results of node classification with variable temperature 7 in homophilic
and heterophilic graphs. We can observe that our GraphACL is not very sensitive to temperature 7 on
heterophilic graphs, while moderate hardness of the softmax (large 7) produces the best result. For
homophilic graphs, the large or small temperature can lead to poor performance.
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Figure 10: The effect of temperature 7 on five homophilic graphs.
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Figure 11: The effect of temperature 7 on five heterophilic graphs.
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Figure 13: The distribution of pair-wise cosine similarity calculated by learned representations on
randomly sampled node pairs, one-hop neighbors and two-hop neighbors.

C.9 The Effect of the Number of Negative Samples

We run a sweep over the size of negative samples K to study how it affects performance. We
vary K as {1,5,10}. For each K, we first learn node representation and then use the learned node
representation for node classification. Figure[I2]shows the results with varying K. From the figure,
we can observe that a small number of negative samples (e.g., K = 5) is enough to achieve good
performance on all graphs. For homophilic graphs, we can observe that large K can promote the
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Figure 14: Similarity (cosine similarity between representation v and prediction p = g4(v)) his-
togram on different graphs.
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Figure 15: Case studies. Node colors denote the semantic labels of nodes. The size of the node is
proportional to its similarity to the central node denoted as the star.

performance of GraphACL. In contrast, for heterophilic graphs, training with large K will lead to a
slight drop in performance. A possible reason is that the randomly sampled negative samples can not
represent the whole node-set, given the heterogeneous and diverse patterns of heterophilic graphs.

C.10 More Similarity Histograms of Node Pairs

Figure [[3]shows the additional results on the representation similarity. The observations are generally
similar to the results in the main body of the paper. As shown by the figure, we can observe that the
randomly sampled node pairs are easier to be distinguished from one-hop and two-hop neighbors
based on the representation similarity, which demonstrates that our GraphACL indeed captures the
semantic meaning of node and will desirably push away the semantically dissimilar nodes. Moreover,
the two-hop similarities in heterophilic graphs are much larger than that in homophilic graphs.
These phenomena provide explanations for why GraphACL achieves good performance by capturing
two-hop monophily structure information. Figure [T4] shows the cosine similarity between the v
and prediction g4(v) for each node on other graphs. We can find that the cosine similarities are
typically smaller than 1, which shows that the predictor g, is not an identity matrix after convergence.
Moreover, we can observe that, compared to the homophilic graph Cora, the similarities on the
heterophilic graph Squirrel are smaller. Since the objective of GraphACL will pull p = g4(v)
and u together, thus GraphACL can automatically differ identity representation v and preference
representation u, which is important for modeling heterophilic graphs. For the homophilic graph
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Cora, the node identity representation v and the preference representation u should be similar, which
is also captured by our simple contrastive objective in GraphACL.

C.11 Additional Case Study Results

In Figure|15] we provide the additional case studies and visualization results on other graphs. We can
find that, in most cases, nodes sharing the same semantic classes with the central nodes have larger
similarities to the central nodes. This observation interprets the reason why GraphACL can achieve
good performance. We observe that GraphACL can effectively capture the local neighborhood pattern
and two-hop monophily for both homophilic and heterophilic graphs, which empirically verifies our
theoretical analysis given in the main body of the paper.

D Societal Impacts and Limitations

There are numerous graphs in the real world that exhibit heterophilic properties, such as transaction
networks, ecological food networks, and molecular networks, in which the connected nodes possess
dissimilar features and distinct class labels. Given the successful deployment of Graph Neural
Networks (GNNs) in various human-related real-world applications, including social networks,
knowledge graphs, and molecular property prediction, it is crucial to propose unsupervised represen-
tation learning techniques for GNNs that can effectively handle both homophilic and heterophilic
graphs, thereby potentially yielding direct social impacts.

The collection of labeled data is often expensive and impractical, particularly in domains requiring
specialized knowledge, such as medicine and chemistry. Considering the potential positive impact,
we believe that our work can assist researchers and practitioners in devising solutions that alleviate the
reliance on labeled data. However, it is important to acknowledge the potential negative consequences,
as these learned representations could also be exploited for malicious purposes, such as adversarial
attacks on GNNGs that exploit systematic biases. Nonetheless, we believe that our simple framework
and theoretical insights derived from this work contribute as a small step towards advancing the
simplicity and generalizability of graph contrastive learning models within the research community.
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