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Abstract

Hypothesis ranking is a crucial component of automated scientific discovery, par-1

ticularly in natural sciences where wet-lab experiments are costly and throughput-2

limited. Existing approaches focus on pre-experiment ranking, relying solely on3

large language model’s internal reasoning without incorporating empirical out-4

comes from experiments. We introduce the task of experiment-guided ranking,5

which aims to prioritize candidate hypotheses based on the results of previously6

tested ones. However, developing such strategies is challenging due to the imprac-7

ticality of repeatedly conducting real experiments in natural science domains. To8

address this, we propose a simulator grounded in three domain-informed assump-9

tions, modeling hypothesis performance as a function of similarity to a known10

ground truth hypothesis, perturbed by noise. We curate a dataset of 124 chemistry11

hypotheses with experimentally reported outcomes to validate the simulator. Build-12

ing on this simulator, we develop a pseudo experiment-guided ranking method that13

clusters hypotheses by shared functional characteristics and prioritizes candidates14

based on insights derived from simulated experimental feedback. Experiments15

show that our method outperforms pre-experiment baselines and strong ablations.16

1 Introduction17

Scientific discovery plays a major role in advancing human society (Coccia, 2019). Recently, there18

have been promising advances in automating certain stages of the scientific process using large19

language models (LLMs) (Luo et al., 2025; Cambria et al., 2023).20

One of the most critical stages is hypothesis ranking: given a large set of automatically generated21

hypotheses, which one should be tested in a real experiment first? This question is particularly impor-22

tant in natural science domains, where experiments are costly and resource-constrained, necessitating23

efficient prioritization strategies to minimize experimental effort.24

Previous methods for hypothesis ranking (Yang et al., 2024b; Si et al., 2024) primarily rely on25

evaluations based solely on LLMs’ internal reasoning, without incorporating any empirical feedback26

from experiments. We refer to this approach as pre-experiment ranking, as hypotheses are prioritized27

before any experimental evidence is gathered.28

In contrast, we propose a new task: experiment-guided ranking, which focuses on dynamically29

prioritizing hypotheses by leveraging feedback from sequentially performed experiments. Rather than30

conducting all experiments upfront, this approach iteratively updates the ranking based on available31

experimental results, aiming to accelerate the discovery of promising hypotheses while minimizing32

the total number of experiments required. However, developing strategies for experiment-guided33
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ranking in natural science domains such as chemistry is challenging, as it is impractical to rely on34

real laboratories to repeatedly conduct experiments. In other words, the lack of scalable access to35

meaningful experimental feedback remains a key barrier to researching experiment-guided ranking36

strategies.37

Despite the challenges of obtaining real experimental feedback, we posit that simulating such feedback38

is feasible under three foundational assumptions. To illustrate these, consider a latent space where the39

x-axis (potentially multidimensional) parameterizes candidate hypotheses, such that each coordinate40

corresponds to a distinct hypothesis variant, and the y-axis denotes the associated experimental feed-41

back (e.g., performance). Assumption 1 (A1) posits that within any sufficiently local neighborhood of42

the hypothesis space, there exists at most one dominant optimum, corresponding to a ground truth43

hypothesis (e.g., reported in the literature). Assumption 2 (A2) states that hypotheses closer to this44

dominant maximum are more likely to yield more competitive experimental feedback. Assumption45

3 (A3) states that real experimental feedback can be viewed as idealized feedback—defined by A146

and A2—perturbed by an unknown deviation term due to the imperfect representation of hypothesis47

closeness in the hypothesis space.48

Specifically, the ground truth hypothesis is treated as the local optimum in the hypothesis space,49

and the performance of neighboring hypotheses is modeled as a function of their similarity to this50

optimum. Since real-world representations of hypothesis similarity are inherently imperfect, this51

relationship is subject to systematic deviations, whose effects on the simulator’s fidelity are analyzed52

in this work.53

The experiment-guided ranking task with real and simulated experiment feedback can be described54

by Figure 1. The primary goal of the simulator is to enable systematic research on experiment-guided55

ranking strategies by providing accessible and high-fidelity approximations of experimental feedback,56

which are otherwise prohibitively costly or unavailable. Ultimately, the aim is to deploy these57

strategies in real experimental settings to reduce the overall experimental costs.58
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(a) Real experiment feedback.
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(b) Simulated experiment feedback.

Figure 1: Experiment-guided hypothesis ranking using real and simulated feedback. A1, A2, and A3
illustrate our three foundational assumptions in a concise manner (introduced in § 2.1.1).

Guided by these assumptions and insights from chemistry experts, we construct a simulator that59

closely approximates real wet-lab experimental outcomes. To evaluate its fidelity, we curate a dataset60

of 30 groups of chemistry hypotheses, each consisting of 3–6 related hypotheses along with their61

experimentally reported performance, sourced from published literature (in total 124 <hypothesis,62

performance> pairs). Our simulator outperforms strong baselines, including widely used similarity-63

based evaluation metrics for hypothesis comparison (Yang et al., 2024b). Building on this foundation,64

we propose a new task: developing more accurate simulators for experimental feedback. Using65

the simulator to approximate experimental outcomes, we develop an pseudo experiment-guided66

ranking method leveraging functional clustering of hypotheses. Clustering enables effective transfer67

of insights from previously tested hypotheses to untested ones sharing similar functional elements,68

rather than evaluating each hypothesis in isolation.69

Specifically, hypotheses containing elements with similar functional relevance—regardless of whether70

identical or distinct—are grouped together, allowing hypotheses to belong to multiple clusters. Our71

method prioritizes clusters based on accumulated experimental feedback and subsequently selects the72

most promising hypothesis within each. Experiments demonstrate that our approach outperforms73
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both pre-experiment ranking methods and strong ablation variants. Overall, the contributions of this74

paper are:75

• We formalize the task of experiment-guided ranking and highlight a key challenge in76

the natural sciences: the lack of scalable access to wet-lab experimental feedback. To77

address this, we propose the use of simulators and release a curated dataset of 124 chemical78

hypotheses with annotated performance collected from the literature.79

• We introduce three foundational assumptions for simulating experimental feedback, pro-80

vide a mathematical formalization of the simulation process, and construct a high-fidelity81

simulator that approximates real wet-lab outcomes under these assumptions.82

• We develop a clustering-based pseudo experiment-guided ranking method that leverages83

simulated feedback and structural similarities among hypotheses. Experimental results show84

that our method outperforms both pre-experiment baselines and strong ablation variants.85

2 Methodology of Simulator Construction86

2.1 Foundational Assumptions and Formalization87

Our simulator construction is guided by three foundational assumptions derived from expert con-88

sultations in the chemistry domain. These assumptions provide a principled basis for modeling89

simulated experimental outcomes of untested chemical hypotheses, enabling systematic investigation90

of experiment-guided ranking strategies.91

2.1.1 Foundational Assumptions92
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(a) Idealized performance land-
scape (A1 + A2)).
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(b) Realistic performance land-
scape (A1 + A2 + A3).

4
2

0
2

4
Hypothesis Dim 1

4
2

0
2

4

Hyp
oth

esi
s D

im
 2

0.2
0.0
0.2
0.4
0.6
0.8
1.0

Pe
rfo

rm
an

ce

(c) Deviations from imperfect
closeness estimation (A3).

Figure 2: Illustration of the three fundamental assumptions for simulator construction.

We posit that real experimental feedback within a hypothesis space can be simulated under the93

following assumptions:94

1. (A1) Within any sufficiently local neighborhood of the hypothesis space, there exists at most95

one dominant optimum, corresponding to a ground truth hypothesis.96

2. (A2) Among hypotheses in the vicinity of a dominant optimum, those that are closer to it are97

more likely to yield better experimental feedback.98

3. (A3) Real experimental outcomes deviate from the idealized structure described in A1 and99

A2 due to the imperfect representation of hypothesis closeness in the hypothesis space.100

Figure 2 visually illustrates these assumptions. In the ideal scenario (Figure 2a), hypotheses are101

embedded in a latent hypothesis space such that the Euclidean distance (“closeness”) between a102

hypothesis and the dominant optimum hypothesis accurately reflects similarity in terms of how they103

perform on a research question, creating a smooth, unimodal performance landscape.104

However, practical scenarios differ substantially, since the distance (“closeness”) between hypothe-105

ses—whether assessed by scientists or LLMs—may not accurately reflect functional similarity. For106

example, a chemical hypothesis may include a useful functional component whose contribution is not107
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fully recognized, causing it to be placed farther from the dominant peak than it should be—resulting108

in a spurious secondary peak. Conversely, a suboptimal hypothesis may appear closer to the dominant109

peak than warranted, forming a local valley. These distortions result in a performance landscape such110

as that in Figure 2b, with unexpected secondary peaks and valleys. Figure 2c further isolates this111

deviation, representing the discrepancy between oracle and practical understandings of closeness.112

We now formalize these assumptions by defining a mathematical model that makes the relationship113

between hypothesis embeddings, similarity, and performance explicit.114

2.1.2 Mathematical Formulation115

Let H ⊂ Rd denote the hypothesis space, where each hypothesis h ∈ H is represented as a point116

in a d-dimensional latent space, conditioned on a specific research question q. Let h∗ ∈ H denote117

the ground truth hypothesis for q, representing an experimentally validated optimum. We define the118

idealized performance function for any hypothesis h in the vicinity of h∗ as:119

f(h, h∗; q, ϕ∗(·)) = 1

(2πσ2)d/2
exp

(
−∥ϕ∗(h | q)− ϕ∗(h∗ | q)∥2

2σ2

)
, (1)

where ϕ∗(· | q) is an oracle embedding function that maps each hypothesis h to a point in the latent120

hypothesis space under the context of research question q. The embedded positions capture the121

oracle’s understanding of closeness, measured by the Euclidean distance ∥ϕ∗(h | q)− ϕ∗(h∗ | q)∥.122

We model the idealized performance surface as a Gaussian-like function centered at ϕ∗(h∗ | q),123

yielding a strictly unimodal landscape that decays smoothly with increasing distance from the124

optimum h∗ (Figure 2a). While the true performance landscape in chemical space may not be strictly125

Gaussian, the isotropic Gaussian form serves as a tractable and interpretable approximation in the126

latent space. This modeling choice directly reflects Assumptions A1 and A2.127

However, practical simulations rely on imperfect embeddings of hypotheses into the latent space,128

stemming from limitations in domain understanding—no matter whether the embedding is performed129

(internally) by human experts or LLMs. Consequently, this leads to distortions in perceived “close-130

ness”, effectively warping the positions of hypotheses in latent space. Such a distorted hypothesis131

embedding H̃ yields a different observed structure:132

f̃(h, h∗; q, ϕ(·)) = f(h, h∗; q, ϕ∗(·)) + ϵ(h | q) (2)

where ϕ(· | q) is a practical embedding function that maps each hypothesis h into (somewhat dis-133

torted) positions in the latent hypothesis space for a research question q, and ϵ(h | q) represents a134

systematic correction term that accounts for the discrepancy between oracle embedding ϕ∗(· | q)135

and the practical embedding ϕ(· | q) under the context of q. As a result, the practical embedding136

H̃ introduces systematic distortions in the latent space, leading to spurious local optima or unex-137

pected valleys—effectively transforming the unimodal ideal surface into a noisier, multimodal one138

(Figure 2b).139

Crucially, Figures 2a and 2b illustrate the same underlying performance-closeness relationship140

f(h, h∗), differing only by ϕ(h), which is how hypotheses are embedded in the latent space. Figure 2c141

illustrates ϵ(h), the correction term that accounts for the discrepancy between the oracle embedding142

ϕ∗(·) and the practical embedding ϕ(·).143

2.2 A Practical Implementation of ϕ(·) with Chemistry Prior Knowledge144

As discussed in § 2.1, the core objective of the simulator is to construct an embedding function ϕ(·)145

that maps each hypothesis h into a latent space such that distances in this space reflect meaningful146

functional differences. Through extensive discussions with chemistry PhD students, we observe that147

a chemical hypothesis succeeds in addressing a research question primarily due to its underlying148

reaction mechanisms.149

Specifically, an effective hypothesis typically comprises a set of chemically meaningful compo-150

nents—each contributing to distinct yet complementary sub-mechanisms—which together enable the151

4



Generated
hypotheses Clustering Select 

Cluster
Select

Hypothesis
Experiment
Simulation

(Accumulated)
Analysis

: Only one local
maximum hypothesis
per relevant region

: The closer to the
local maximum, the
better performance

Chemistry 
Experiment Simulator: Unknown noises 

Hypothesis
Candidates

Experiment results for
sampled hypothesis

Post-Experiment
Reranking

Sampling

Real Chemistry
Experiment

Hypothesis
Candidates

Experiment results for
sampled hypothesis

Post-Experiment
Reranking

Sampling

Compute Mechanism
Similarity

Extract Key Components
& Infer Mechanism

Ground truth
hypothesis

Candidate
hypothesis

Assign Component
Weights

Simulated
Performance
Score

Research
question

Extract Key Components
& Infer Mechanism

Figure 3: The internal structure of the simulator.

overall reaction to fulfill its intended function. The specific prompts and examples for extracting key152

chemical components and inferring mechanisms are provided in § C.153

Informed by this domain knowledge, we design a simulator architecture illustrated in Figure 3. Each154

module corresponds to a subroutine implemented using an LLM with task-specific prompting. The155

simulator’s goal is to estimate the latent-space distance ∥ϕ(h | q)− ϕ(h∗ | q)∥ between a candidate156

hypothesis h and a ground truth hypothesis h∗, conditioned on a research question q.157

The simulation begins by decomposing both the candidate and ground truth hypotheses into a set of158

key chemical components, and identifying the reaction mechanism associated with each component159

in the context of the research question. The decomposition of h∗ is performed first, serving as a160

reference. These reference components and mechanisms guide the decomposition of h, ensuring161

alignment in both granularity and mechanistic interpretation.162

Concurrently, the Assign Component Weights module estimates the relative importance wi of each163

component in the ground truth hypothesis, given the research question. A subset of these compo-164

nents—denoted C—are labeled as critical, meaning they are considered necessary for the reaction to165

succeed. To elaborate on the role of C, we provide illustrative examples in § D.166

Next, the Compute Mechanism Similarity module compares each key component in h∗ with its167

corresponding component in h, assigning a similarity score si ∈ [0, 1] to each pair. These scores168

are then aggregated using a weighted sum, combined with a multiplicative penalty that enforces the169

presence of all critical components:170

S(h | q;h∗) =

(∏
i∈C

1si>0

)
·

(
K∑
i=1

wi · si

)
, where

K∑
i=1

wi = 1 (3)

This formulation guarantees that S(h∗ | q;h∗) = 1, since all components are present with maximal171

similarity (si = 1 for all i), resulting in zero distance from the ground truth. Similarity score S are172

thereby bounded in [0, 1], and lower distances correspond to stronger functional alignment with the173

ground truth hypothesis. The resulting value is used as the simulated performance score.174

The final distance between the candidate and ground truth hypotheses is then calculated as:175

|ϕ(h | q)− ϕ(h∗ | q)| = |S(h | q;h∗)− 1| (4)

176

3 Methodology of Experiment-Guided Ranking177

3.1 Problem Formulation178

Given a research question q, a set of candidate hypotheses H is formed by selecting hypotheses179

generated by existing scientific discovery systems (Yang et al., 2024b) and ground-truth hypotheses180

from top-tier chemistry journals reporting high-quality lab experiments. The goal of experiment-181

guided ranking is to identify the optimal hypothesis h∗ ∈ H with the highest experimentally measured182

performance using an experiment executor E.183
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Figure 4: Experiment-guided ranking method.

Formally, we define the experiment executor as a function:184

E : H → [0, 1] (5)

that maps each hypothesis h ∈ H to a normalized performance score s ∈ [0, 1]. The normalization185

provides a unified performance metric across heterogeneous research hypotheses and varying problem186

settings q, and can be defined relative to a domain-specific state-of-the-art benchmark established by187

experts.188

The primary goal is to find h∗. However, since each evaluation of E(h) corresponds to a real or189

simulated experiment—which may be costly or time-consuming—a critical requirement is to identify190

h∗ using as few experimental trials as possible. Accordingly, an effective experiment-guided ranking191

strategy must actively incorporate feedback from prior evaluations to guide subsequent selections,192

balancing exploration and exploitation under a limited experimental budget.193

Thus, the problem can be reframed as finding a selection strategy that minimizes the number of trials194

required to identify the optimal hypothesis:195

argmin
π

Nπ
trials subject to h∗ = argmax

h∈H
E(h), (6)

where π denotes the hypothesis selection strategy, and Nπ
trials is the number of experiments required196

under strategy π to successfully discover h∗.197

3.2 Methodology198

We propose an experiment-guided ranking framework leveraging LLM agents, as illustrated in199

Figure 4. This design is informed by extensive consultations with chemistry domain experts, capturing200

key insights into hypothesis effectiveness.201

These discussions identified a key criterion for hypothesis efficacy: effective hypotheses typically202

contain a sufficient number of key chemical components that collectively fulfill complementary203

mechanistic roles relevant to the research question q. Building upon this insight, our framework204

employs a structured, iterative approach comprising several distinct stages.205

Step 1: Extraction, Classification, and Clustering of Functional Components. Each candidate206

hypothesis h ∈ H is decomposed into its functional chemical components—distinct substructures207

or motifs potentially contributing to the target reaction mechanism. These components are then208

classified into three categories: effective, uncertain, and ineffective. Components deemed ineffective209

are excluded from further consideration to reduce computational overhead, as the initial hypothesis210

set H may yield a large number of components. The remaining components are clustered based on211

functional similarity, with each cluster representing a distinct mechanistic contribution to solving q.212

Individual elements within a cluster correspond to specific functional components, each traceable to213

its originating hypothesis h.214
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Step 2: Cluster and Hypothesis Selection. Guided by the LLM’s prior chemical knowledge, the215

framework identifies the cluster most likely to contain components highly relevant to q. Within this216

selected cluster, the LLM agent further selects a hypothesis h deemed most promising based on217

component relevance and prior understanding.218

Step 3: Experiment Execution and Result Analysis. The selected hypothesis h is evaluated using219

the experimental executor (or simulator) E, yielding a normalized performance score s. The outcome220

of this experiment is then analyzed to evaluate the effectiveness of the chosen cluster and to validate221

or update the mechanistic assumptions made.222

Step 4: Iterative Summarization and Refinement. Following each experimental evaluation, a223

detailed analysis is conducted, and the insights gained are integrated into a cumulative summary.224

This continually updated summary synthesizes insights from all prior analyses, highlighting effective225

clusters and guiding future hypothesis and cluster selections.226

By iteratively leveraging prior chemical knowledge and empirical feedback, this framework system-227

atically refines hypothesis prioritization. The overall objective is to efficiently identify the optimal228

hypothesis while minimizing the total number of experimental trials.229

4 Experiment230

We name our simulator as CSX-Sim, and the experiment-guided ranking method as CSX-Rank. All231

experiments are implemented with GPT-4o-mini (OpenAI, 2024).232

4.1 Simulator: Evaluating the Simulator with Real Experiment Results233

To rigorously evaluate the performance of our simulator on advanced chemical problems, we curated234

a benchmark of 30 cutting-edge research questions, each associated with 3–6 mutually related235

candidate hypotheses, totaling 124 hypotheses. Ground-truth experimental outcomes were sourced236

from published literature, covering major subfields of chemistry, as detailed in § E.1237

For each hypothesis, simulated results were generated using the proposed CSX-Sim and compared238

against the annotated experimental outcomes. This trend comparison is illustrated in § E.2. Evaluation239

focused on two key criteria: (1) trend alignment, measured by Spearman rank correlation, which240

assesses whether the predicted performances correctly reflect the relative ranking of ground-truth241

annotations within each research question. This criterion is critical, as hypothesis ranking primarily242

depends on relative performance differences; absolute offsets (e.g., uniform biases of ±0.2) have243

limited impact on ranking outcomes. Here we use “Perfect Consistency Indicator” (PCI) as metric,244

which quantifies the number of research questions for which the simulator achieves perfect trend245

alignment with experimental outcomes (2) predictive accuracy, quantified by root mean square error246

(RMSE), measuring absolute deviations between predicted and annotated performances. Detailed247

explanations of this metric and other predictive accuracy indicators are available in the § F. The248

comparative results are summarized in Table 1.249

Simulator Spearman Correlation (↑) Perfect Consistency Indicator (↑) RMSE (↓)

Matched Score 0.843 12/30 0.232

CSX-Sim 0.960 26/30 0.213
w/o CriticalPoints 0.950 23/30 0.229
w/o ComponentExtraction 0.864 12/30 0.272

Table 1: Validating the simulator with collected chemistry experiment results from literature.

Baseline and Ablation We adopt the “Matched Score” (Yang et al., 2024b) as our primary baseline,250

which evaluates hypotheses by measuring their similarity to ground-truth references through a251

reference-based comparison. Additionally, we conduct two ablation studies on CSX-Sim to assess the252

contribution of its key components: (1) The first ablation (w/o CriticalPoints) disables the labeling of253

critical components C, as defined in Equation 3, allowing hypotheses that lack essential components to254

still receive positive feedback from the simulator; (2) The second ablation (w/o ComponentExtraction)255
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skips the extraction and weighting of critical components, directly computing mechanism similarity256

using prompts analogous to the final module in Figure 3.257

Results Interpretation As shown in Table 1, CSX-Sim achieves superior performance across all258

metrics, with a Spearman correlation of 0.960, perfect consistency in 26 out of 30 questions, and the259

lowest RMSE of 0.213. Compared to the Matched Score baseline, CSX-Sim demonstrates substantial260

improvements in both trend alignment (+0.117 in Spearman) and robustness (+14 in PCI), while also261

reducing predictive error. Ablation studies further highlight the importance of critical component262

identification: removing CriticalPoints slightly degrades performance (Spearman 0.950, PCI 23/30),263

whereas omitting component extraction leads to significant drops in both alignment (Spearman 0.864)264

and accuracy (RMSE 0.272). These results underscore the necessity of fine-grained component265

analysis in achieving high-fidelity simulation feedback.266

4.2 Experiment-guided Ranking267

Due to the page limit, experiments in terms of the experiment-guided rankning method CSX-Rank268

can be found in Appendix § A. Ablation on the simulator in terms of the robustness can be found in269

Appendix § B.270

5 Related Work271

Most prior work on hypothesis ranking has focused on pre-experiment ranking. Some approaches272

assign a score to each hypothesis and rank them accordingly, providing a simple and efficient273

solution (Yang et al., 2024a,b). Others adopt a pairwise ranking strategy, evaluating hypothesis pairs274

one at a time (Si et al., 2024; Liu et al., 2025). However, these methods rely solely on the internal275

reasoning of LLMs and do not incorporate feedback from experimental outcomes.276

To our knowledge, few existing works leverage experimental feedback in hypothesis-driven tasks.277

Notably, recent methods in mathematics (Romera-Paredes et al., 2024; Shojaee et al., 2024) and278

programming (Qiu et al., 2024) incorporate feedback loops by refining hypotheses based on verifica-279

tion outcomes. These approaches rely on domains where extremely efficient verifiers are available,280

allowing for rapid hypothesis testing and direct refinement rather than explicit ranking. In contrast,281

our work focuses on natural science domains, where real experiments are significantly more costly,282

making such exhaustive trial-and-error strategies impractical. This difference motivates the need283

for a more deliberate experiment-guided ranking process, where each experiment must inform the284

prioritization of future hypotheses due to limited experimental bandwidth.285

Roohani et al. (2024) address hypothesis generation in a genetic perturbation setting, where task-286

specific feedback can be directly computed (e.g., via gene overlap). In contrast, our work focuses on287

constructing general-purpose simulators for natural science domains, with an emphasis on chemistry288

due to the availability of annotated novel hypotheses from the literature (Yang et al., 2024b).289

6 Conclusion290

We present a systematic framework for experiment-guided hypothesis ranking in chemistry, address-291

ing the critical challenge of limited access to real experimental feedback. By formalizing three292

foundational assumptions, we develop a high-fidelity simulator that approximates experimental293

outcomes based on hypothesis similarity, validated against a curated dataset of 124 hypotheses with294

reported wet-lab results. Building on this simulator, our proposed CSX-Rank method leverages295

functional clustering and iterative feedback analysis to efficiently prioritize hypotheses during the296

discovery process.297

Empirical evaluations demonstrate that CSX-Rank significantly outperforms pre-experiment baselines,298

reducing the number of trials required to identify ground-truth hypotheses by more than 50% on299

the TOMATO-chem dataset. Ablation studies and controlled noise experiments further highlight300

the importance of analytical components and feedback integration for robust performance under301

increasingly challenging conditions.302
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A Experiment-Guided Ranking: Baselines and Ablation Study341

Data and Evaluation Metrics We evaluate experiment-guided ranking on the TOMATO-chem342

dataset (Yang et al., 2024b), which includes 51 chemical problems, each annotated with a ground-truth343

(gdth) hypothesis. For each problem, we use the MOOSE-Chem framework (Yang et al., 2024b) to344

generate 63 additional candidate hypotheses that are distinct from the ground truth, resulting in 64345

hypotheses per research question (1 gdth and 63 negatives).346

To measure performance, we define the metric Ntrials, representing the number of simulation-based347

evaluations required to identify the ground-truth hypothesis for each of the 51 problems. Lower348

values of Ntrials indicate more efficient hypothesis prioritization. Results are summarized in Table 2.349

Method Ntrials (↓)

Random Sampling 32.000
Pre-Experiment Ranking 33.280

CSX-Rank 15.196
w/o Clustering 27.980
w/o Clustering & Analysis 35.627
w/o Clustering & Analysis & Full Feedback 37.667

Table 2: Number of experiments required to identify the ground truth hypothesis across methods.

Baselines We consider two baselines: Pre-Experiment Ranking and Random Sampling. Pre-350

Experiment Ranking follows the strategy used in MOOSE-Chem (Yang et al., 2024b), where hypothe-351

ses are scored based on the model’s prior knowledge and ranked accordingly, without incorporating352

any experimental feedback. Random Sampling selects hypotheses uniformly at random, serving as a353

simple yet unbiased baseline.354

As shown in Table 2, both baselines require over 32 trials on average to identify the ground-truth355

hypothesis, with Pre-Experiment Ranking (33.28 trials) slightly underperforming Random Sam-356

pling (32.00 trials). This counterintuitive result indicates that relying solely on prior model knowl-357

edge—without feedback—can lead to suboptimal prioritization, as initial estimation errors may358

mislead the ranking more than random choice.359

Ablation Study To assess the contribution of key components in CSX-Rank, we conducted ablation360

studies under three conditions: (1) removing functional clustering (CSX-Rank w/o Clustering); (2)361

further disabling feedback analysis (CSX-Rank w/o Clustering & Feedback Analysis); and (3) addition-362

ally limiting feedback to the 10 most recent simulation results (CSX-Rank w/o Clustering & Feedback363

Analysis & Full Feedback). As shown in Table 2, progressively removing these components leads to364

marked performance degradation, confirming the importance of clustering, analytical summarization,365

and sufficient feedback quantity for efficient hypothesis ranking.366

B Simulator: Ablation on Different ϕ(·) with Different Levels of Distortion367

To assess how simulator quality affects ranking performance, we leverage the observation that368

experiment-guided ranking is fundamentally an optimization process: navigating the hypothesis space369

to identify candidates with superior experimental performance. A high-fidelity simulator facilitates370

this search by providing informative feedback, while a degraded simulator misleads the process,371

making it harder to reach the optimum. Based on this perspective, we systematically introduce372

controlled distortions that worsen simulator fidelity from an optimization standpoint.373

Specifically, we collaborated with chemistry PhD students to design three types of distortions374

commonly encountered in chemical research: local maxima/minima, plateaus, and cliffs. These375

noise patterns capture typical challenges in hypothesis evaluation, informed by domain expertise376

and heuristics. We defined three distortion levels—Simple Noise, Moderate Noise, and Complex377

Noise—and incorporated them into the hypothesis embedding function ϕ(·) to simulate increasingly378

challenging feedback conditions. The composition and classification of constructed noise are detailed379

in § G380
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We evaluated CSX-Rank, CSX-Rank w/o Clustering, and CSX-Rank w/o Clustering & Analysis381

across three noise scenarios of increasing complexity: Simple Noise (3 maxima, 3 minima, 1 cliff,382

2 plateaus), Moderate Noise (8 maxima, 12 minima, 3 cliffs, 4 plateaus), and Complex Noise (38383

maxima, 22 minima, 4 cliffs, 4 plateaus).384

As shown in Table 3, increasing noise complexity progressively degraded performance across all385

methods, as reflected by higher Ntrials. CSX-Rank consistently outperformed its ablated variants,386

maintaining a substantial efficiency margin even under Complex Noise (32.7 vs. 36.5 and 40.5 trials).387

These results highlight the robustness of functional clustering and feedback analysis in mitigating388

misleading signals and preserving search efficiency. The findings align with Section A, underscoring389

the critical role of each component in navigating noisy hypothesis spaces.390

Method Ntrials (Simple Noise) Ntrials (Medium Noise) Ntrials (Complex Noise)

CSX-Rank 21.804 26.608 32.706
w/o Clustering 32.706 35.843 36.471
w/o Clustering & Analysis 37.235 38.373 40.451

Table 3: Simulator with different noise conditions

C Extracting Key Chemical Components in the Simulator391

C.1 A Framework for Extracting Critical Chemical Components in the Simulator392

To better illustrate the specific framework of CSX-Sim for extracting key chemical components, as393

shown in Figure 5. For scientific hypotheses addressing specific problems, we categorize key chemical394

components and conclusions within the hypothesis. We then analyze the role and mechanism of395

each key chemical component based on the chemical problem and the conclusions drawn from396

the hypothesis. Finally, we review and output the key chemical components, their corresponding397

mechanisms, and the conclusions from the hypothesis.

1. Identify Key Chemical Components and Conclusions

2. Explain Mechanism of Key Chemical Components

3. Verify and Output Key Points, Mechanisms, and Conclusions

Framework for Analyzing Scientific Hypotheses in
Chemical Problems

Figure 5: A Framework for Extracting Chemical Components in the Simulator.

398

C.2 Prompt for Extracting Key Chemical Components in the Simulator399

The prompt for extracting key chemical components in the simulator, along with examples, is as400

follows:401
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You are an experienced chemistry expert. I will provide you with a scientific question and a scientific402

hypothesis. Your task is to identify the chemical key points within the hypothesis that are essential403

for addressing the scientific question. Chemical key points are the core elements—such as basic404

chemical components, reactions, or mechanistic methods—critical to solving the problem effectively.405

Analyze these key points by linking them to the scientific question, determining how they contribute to406

resolving it.407

When identifying chemical key points, consider the following:408

Each substance may be a key point. If it includes specific parameters like concentration or mass409

fraction (e.g., 0.3M NaCl, 10wt% PVA), ensure these details are retained in the division process410

without losing specificity. If multiple substances are related and function together (e.g., potassium411

ferricyanide and potassium ferrocyanide as an oxidizing-reducing pair), group them as a single412

chemical key point based on their shared role or interdependence. Exclude elements from the scientific413

question that reappear in the hypothesis as prerequisites (e.g., if the question involves improving414

MXene nanosheets and the hypothesis enhances them with liquid metal, MXene nanosheets are a415

prerequisite, not a key point; liquid metal is the key point). Prerequisites should not be output or416

analyzed as key points. Distinguish key points from validation methods (e.g., elemental analysis to417

verify properties). Validation methods support the hypothesis but are not chemical key points. For418

each identified chemical key point, conduct a detailed and rigorous analysis of its role and function in419

relation to the scientific question. Use your chemical knowledge to explain the specific mechanism by420

which it addresses the problem, focusing on how it enhances the relevant properties or performance421

outlined in the question. Provide a clear, mechanistic explanation of its contribution and, if multiple422

key points exist, describe their interconnections.423

Additionally, identify the results—effects or phenomena caused by these key points—representing424

the experiment’s outcomes. In your output, focus on listing and explaining the chemical key points,425

followed by the results, ensuring no prerequisites from the scientific question are included.426

Output format:427

Chemical Key Points Chemical substance/component/method 1428

Role and Function: Describe the role and function of the substance or method, including a detailed429

mechanistic explanation of how it addresses the scientific question and enhances relevant properties.430

Chemical substance/component/method 2431

Role and Function: Describe the role and function of the substance or method, including a detailed432

mechanistic explanation of how it addresses the scientific question and enhances relevant properties.433

End Chemical Key Points Results Result 1:434

Describe the effects caused by the aforementioned reasons (e.g., performance improvement, efficiency435

changes).436

Result 2:437

Further describe other effects related to the experimental objectives.438

End Results439

Example: Chemical Key Points 1. 10wt% PVA (Polyvinyl Alcohol)440

Role and Function: Polyvinyl alcohol (PVA) hydrogel acts as the base material, providing structural441

support and mechanical performance for thermoelectric gels. PVA with a mass fraction of 10% can442

provide mechanical support through hydrogen bonds in its structure and interact with potassium443

ferricyanide and potassium ferrocyanide to offer electrical changes.444

2. Gdm2SO4 (Guanidine Sulfate)445

Role and Function: Guanidine sulfate (Gdm2SO4) is integrated into the K3[Fe(CN)6] / K4[Fe(CN)6]446

to improve thermoelectric performance. The introduction of guanidine salt increases solvent entropy447

and effectively enhances thermopower.448

3. Directional Freezing Method449

Role and Function: By employing directional freezing technology, aligned channels are created,450

enhancing the electrical conductivity and mechanical strength of the material.451

4. Potassium Ferricyanide and Potassium Ferrocyanide (K3[Fe(CN)6] / K4[Fe(CN)6])452

Role and Function: These compounds are crucial electrolytes that facilitate redox reactions within453

the polymer gel. The presence of these ions enhances ion mobility and conductivity due to their ability454

to undergo reversible redox processes, thereby boosting the thermoelectric properties of the gel455

End Chemical Key Points Results Carnot-relative Efficiency456

The Carnot-relative efficiency of the FTGA exceeds 8%.457
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Thermopower and Mechanical Robustness458

Thermopower and mechanical robustness are enhanced, outperforming traditional quasi-solid-state459

thermoelectric cells.460

End Results461

Here’s a detailed example in chemistry: To better illustrate the effectiveness of extracting key chemical462

components, we compare the performance of our simulator against human chemistry experts by463

analyzing a real-world chemical problem.464

• Scientific Question: How can a cost-effective N-type quasi-solid-state thermocell be devel-465

oped to boost electricity production from low-grade heat by improving both ion transport466

efficiency and electrode performance?467

• Scientific Hypothesis:Develop a flexible N-type quasi-solid-state thermocell by integrating468

anisotropic polymer networks and hierarchical 3D copper electrodes to enhance ion469

transport, mechanical robustness, and thermoelectric performance. Utilizing Polyvinyl470

Alcohol (PVA) as the hydrogel matrix, the anisotropic structure is achieved through a471

directional freeze-thawing (DFT) process, which involves applying a temperature gradient472

during freezing to guide ice crystal growth for polymer chain alignment. Repeated cycles473

further enhance the alignment and crosslinking, creating anisotropic pores that reduce474

ion transport resistance. Ionic crosslinking with a 0.7 M CuSO4 electrolyte and 0.1 M475

H2SO4 strengthens the hydrogel while retaining flexibility. Meanwhile, hierarchical 3D476

copper electrodes, fabricated via oxidation, etching, and thermal reduction, provide a high477

surface area, enhancing redox kinetics of the Cu2+/Cu0 couple and obviating platinum478

electrode reliance. This synergistic design achieves a remarkable 1500% increase in power479

density, reaching 0.51 mW m−2 at a ∆T of 5◦C, with a thermopower of 0.7 mV K−1 and480

ionic conductivity improved by 20%. Mechanical tests reveal significant strength with a481

tensile strain at break of 350% and the system maintains stability under various mechanical482

deformations. This approach offers a cost-effective, adaptable solution for low-grade heat483

harvesting.484

Here’s Chemistry Expert Extracting Key Chemical Component:485

• Chemical Key Points:486

1. Anisotropic Polymer Networks487

Role and Function: The layered polymer network structure enhances ion transport488

rates, thereby improving thermoelectric conversion efficiency.489

2. Hierarchical 3D Copper Electrodes490

Role and Function: The use of 3D copper electrodes effectively increases the reaction491

contact area, enhancing the thermoelectric potential.492

3. Polyvinyl Alcohol (PVA) as the Hydrogel Matrix493

Role and Function: PVA hydrogel is used as the matrix to provide good mechanical494

properties and structural support.495

4. Directional Freeze-Thawing (DFT) Process496

Role and Function: The DFT process forms ion channels along the freezing direction,497

thereby increasing ion transport rates.498

5. 0.7 M CuSO4 Electrolyte499

Role and Function: This electrolyte is used for ionic crosslinking to enhance the500

mechanical properties of the thermoelectric material.501

6. 0.1 M H2SO4502

Role and Function: This acid is used together with a 0.7 M CuSO4 electrolyte for ionic503

crosslinking to enhance the mechanical properties of the thermoelectric material.504

• Results:505

– Enhanced Electrical Properties of the Thermoelectric Material506

- Increased power density507

- Improved thermopower508

- Enhanced ionic conductivity509

510
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– Improved Mechanical Properties of the Thermoelectric Material511

- Increased strength with a tensile strain512

- Enhanced stability under various mechanical deformations513

514

Here’s CSX-Sim Extracting Key Chemical Component:515

• Chemical Key Points:516

1. Anisotropic Polymer Networks517

Role and Function: These networks are engineered to enhance ion transport efficiency518

while providing mechanical robustness through alignment of polymer chains, reducing519

ion transport resistance in thermocells.520

2. Hierarchical 3D Copper Electrodes521

Role and Function: The use of hierarchical 3D copper electrodes increases the surface522

area, enhancing redox kinetics of the Cu2+/Cu0 couple, thus improving the thermo-523

electric performance without relying on expensive platinum electrodes.524

3. Copper Sulfate (CuSO4) Electrolyte525

Role and Function: A 0.7 M CuSO4 solution serves as an ionic crosslinker in the526

hydrogel, enhancing mechanical strength while facilitating efficient ion transport in the527

system.528

4. Sulfuric Acid (H2SO4)529

Role and Function: The addition of 0.1 M H2SO4 in the hydrogel contributes to ionic530

crosslinking and enhancing the overall conductivity of the electrochemical system.531

5. Directional Freeze-Thawing (DFT) Process532

Role and Function: This method is used to create an ordered structure in the polymer533

hydrogel, promoting alignment of polymer chains and ensuring anisotropic pores that534

further reduce ion transport resistance.535

• Results:536

– Power Density Increase537

– Enhanced Thermopower538

– Improved Ionic Conductivity539

– Mechanical Strength under Deformation540

Here’s a comparison of the analysis results between our simulator and human experts:541

By comparing the approaches of a chemistry expert and CSX-Sim in extracting key chemical compo-542

nents for the specific chemical issues of ion transport efficiency and electrode performance, CSX-Sim543

successfully identifies solutions in its scientific hypotheses, including anisotropic polymer networks544

and hierarchical 3D copper electrodes. Compared to the human chemistry expert, CSX-Sim captures545

five out of six key points, missing only one: “Polyvinyl Alcohol (PVA) as the Hydrogel Matrix.”546

The points it does identify align accurately with those proposed by the human expert based on the547

hypothesis, demonstrating the high accuracy of CSX-Sim in extracting key chemical components.548

D The Role of CriticalPoints in CSX-Sim549

To better illustrate the role of labeling critical components C in CSX-Sim, as defined in Equation 3,550

we provide an example for clarity. For simplicity, we define the term
(∏

i∈C 1si>0

)
from Equation 3,551

related to CriticalPoints, as the Correction Factor. This factor takes values of either 0 or 1.552

The scientific problem under study is: How can a polymer gel material be designed to enhance the553

Seebeck coefficient (Se) by optimizing the matrix material and redox pair, thereby improving the554

energy conversion efficiency of a thermoelectric device utilizing the temperature difference between555

body heat and the environment?556

This scientific problem corresponds to four real experimental hypotheses, outlined as follows:557

1. Hypothesis 1: By combining gelatin with KCl, prepare a gel with high ionic conductivity558

to investigate its Seebeck coefficient (Se) performance with the [Fe(CN)6]3−/[Fe(CN)6]4−559
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redox pair. KCl, as an electrolyte, significantly enhances the gel’s ionic conductivity,560

while the [Fe(CN)6]3−/[Fe(CN)6]4− redox pair boosts the Seebeck coefficient through561

temperature-gradient-driven ion diffusion. Gelatin provides biocompatibility and mechanical562

strength, making it suitable for efficient thermoelectric energy conversion.563

2. Hypothesis 2: By combining a PVA matrix with HCl, prepare a gel with high ionic564

conductivity and investigate its Seebeck coefficient (Se) performance under the influence565

of the Fe3+/Fe2+ redox pair. HCl, as a strong electrolyte, significantly enhances the gel’s566

ionic conductivity, while the Fe3+/Fe2+ redox pair boosts the Seebeck coefficient through567

temperature-difference-driven ion diffusion. PVA provides flexibility and transparency, and568

by optimizing the HCl concentration and PVA crosslinking degree, ion migration efficiency569

can be further improved, enhancing the Seebeck coefficient and making it suitable for570

efficient energy conversion in body-heat thermoelectric devices.571

3. Hypothesis 3: By preparing a pure PVA gel, investigate its Seebeck coefficient (Se) per-572

formance under the influence of the Fe3+/Fe2+ redox pair. PVA, as a hydrophilic polymer,573

possesses a certain level of ionic conductivity, and the Fe3+/Fe2+ redox pair generates a574

Seebeck coefficient through temperature-difference-driven ion diffusion.575

4. Hypothesis 4: By polymerizing acrylamide (PAM) to prepare a hydrogel and investigate its576

thermoelectric performance. The porous network structure of the polyacrylamide hydrogel577

enhances the gel’s ionic conductivity.578

The results of the actual wet-lab experiments are summarized in Table 4. For the first three hypotheses,579

the CriticalPoints are included in the assumptions, resulting in a Correction Factor of 1 and non-580

zero final results. In contrast, for the fourth hypothesis, the CriticalPoints are not included in the581

assumption, leading to a Correction Factor of 0 and a final result of 0.582

Matrix The Seebeck coefficient Se / mV K−1

[Fe(CN)6]3−/[Fe(CN)6]4− KCl/Gelatin 17
Fe3+/ Fe2+ HCl/PVA 1.02

Fe3+/ Fe3+ PVA 0.85
Polymerizing Acrylamide (PAM) 0
Table 4: The Seebeck coefficient (Se) of polymer thermoelectric materials

Our simulator analyzes Hypothesis 4, where the Correction Factor is 0, as follows:583

Analysis: The Ground Truth Scientific Hypothesis identifies three core key points: Gelatin, KCl584

(Potassium Chloride), and the [Fe(CN)6]3−/[Fe(CN)6]4− Redox Pair, each playing significant roles585

in enhancing the Seebeck coefficient for thermoelectric efficiency. The Generated Hypothesis uses586

Polyacrylamide (PAM) in place of Gelatin, which can provide a similar structural function but587

lacks some specific characteristics of Gelatin important for thermoelectric stability. It discusses588

ionic conductivity, paralleling that of KCl without directly employing the salt. Notably, it does not589

mention the redox pair, which is critical to the thermoelectric function as outlined in the Ground590

Truth Hypothesis.591

However, while the Generated Hypothesis incorporates functional aspects related to ionic conductivity592

and chemical structure, it omits the crucial redox couple and does not fully replicate the essential593

components necessary for observable thermoelectric phenomena defined by the Ground Truth. The594

presence of PAM and evolving ionic conductivity offers a partial basis for plausible thermoelectric595

behavior under hypothetical conditions, but the complete omission of the redox pair is significant. The596

lack of adherence to all core key points and reliance on acceptable substitutions leads to a conclusion597

that while observable phenomena might still occur, they are limited. Given these evaluations, I assign598

R = 0 as there is a substantial gap in essential components for the reaction proposed in the Ground599

Truth Hypothesis.600

Final Correction Factor 0 End601

The our simulator analyzes Hypothesis 4, noting that enhancing the Seebeck coefficient of a poly-602

mer gel material requires a redox pair. The first three hypotheses incorporate redox pairs, either603

[Fe(CN)6]3−/[Fe(CN)6]4− or Fe3+/Fe2+, which facilitate efficient conversion of thermal energy604
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to electrical energy. In contrast, Hypothesis 4 only involves polymerizing acrylamide (PAM) and605

lacks a redox pair, rendering it unable to effectively convert thermal energy into electrical energy.606

Consequently, the thermoelectric potential (Seebeck coefficient, Se) is zero.607

E Evaluating the Simulator with Real Experiment Results608

In this section, we present the validation of our simulator’s accuracy using a dataset of 124 chemical609

hypotheses, detailing their classification and composition. We further compare the trends of the simu-610

lated results with the corresponding real experimental outcomes to assess the simulator’s predictive611

performance and reliability in capturing real-world chemical behaviors.612

E.1 Dataset Composition and Analysis613

To evaluate the performance of the simulator, we conducted a thorough analysis using real-world614

experimental data. We curated a set of 30 cutting-edge chemical questions, each designed to probe615

significant aspects of chemical research. These questions were carefully selected to encompass multi-616

ple areas within the chemistry domain, ensuring a diverse and representative evaluation framework.617

Each question was associated with 3 to 6 hypotheses, resulting in a total of 124 authentic wet lab618

chemical experiment results. This extensive dataset forms a robust foundation for assessing the619

simulator’s predictive accuracy and reliability.620

The 124 experiment results were sourced from key subfields of chemistry to provide broad coverage621

of the discipline. The distribution of these results across subfields is presented in Table 5. Specifically,622

Polymer Chemistry contributed 16 results, Organic Chemistry provided 36, Inorganic Chemistry623

accounted for 33, and Analytical Chemistry comprised 39, totaling 124 results. This distribution624

across multiple subfields ensures that the test set reflects the diversity and complexity of real-world625

chemical experiments, enhancing the robustness of our evaluation.626

A statistical analysis of the 124 authentic wet lab results was conducted to rigorously evaluate the627

simulator’s performance. By including a substantial number of experiments from various subfields,628

we ensured that the dataset captures a wide range of challenges encountered in chemical research. This629

approach minimizes potential biases from over-representing any single subfield, thereby strengthening630

the reliability of our evaluation. The dataset’s diversity and scale provide a solid basis for assessing631

the simulator’s ability to predict experimental outcomes accurately, offering valuable insights for632

future research and applications.633

Category Count

Polymer Chemistry 16
Organic Chemistry 36

Inorganic Chemistry 33
Analytical Chemistry 39

Total 124
Table 5: Distribution of categories.

The use of authentic wet lab results bolsters the credibility of our findings. By grounding the634

evaluation in real experimental data, we ensured that the simulator’s predictions were tested against635

the intricacies and variability of actual laboratory conditions. This approach not only validates the636

simulator’s performance but also underscores its potential to guide subsequent research by delivering637

reliable and actionable predictions. The diverse dataset and representation of multiple subfields638

collectively contribute to a comprehensive and effective evaluation, paving the way for advancements639

in chemical simulation and experimentation.640

E.2 Trend Comparison with Real Experiment Results641

To further assess the capabilities of our CSX-Sim, we utilized it to simulate 124 wet lab experiments.642

These experiments corresponded to 30 cutting-edge chemical science questions, and their simulated643
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Figure 6: Comparison of simulated real experimental results with CSX-Simulator.

outcomes were subsequently aggregated for a comprehensive analysis. For each of the 124 experi-644

ments, the simulated result was derived from the average of three trials conducted by CSX-Sim. These645

results, each corresponding to one of the curated chemical questions, were systematically arranged646

in ascending order along the "Order of Experimental Results" axis, as depicted in Figure 6. This647

organization enabled a unified comparison between the simulated and actual experimental outcomes,648

with the vertical axis representing normalized experimental results to standardize the evaluation649

across the dataset.650

Figure 6 compares the trends observed in CSX-Sim predictions (green line) with those from real651

experimental data (blue line). Error bars, representing the population standard deviation, illustrate652

the variability of the data points. Statistical significance was further established using the Bootstrap653

method, with results indicating (p < 0.01) (Berg-Kirkpatrick et al., 2012). The aggregated analysis654

reveals that the simulator effectively predicts the mean trends for all 30 sets of results, demonstrating655

a strong consistency with the mean of the actual experimental outcomes. This alignment of mean656

trends across the diverse questions underscores the simulator’s ability to model chemical processes657

accurately, capturing the overall behavior of the experimental data, regardless of the specific subfield.658

The use of normalized results ensures that differences in scale do not affect the comparison, allowing659

a fair assessment of the simulator’s trend-matching capability. The close correspondence between the660

simulated and real mean data, as visualized in the figure, highlights the CSX-Sim broad applicability661

across the chemistry domain. By successfully replicating the mean trends of the 124 results, the662

simulator proves to be a versatile tool, offering reliable predictions that can support a wide range of663

chemical research and applications.664

F Evaluation of Trend Alignment and Accuracy665

F.1 Evaluation of Trend Alignment666

To quantitatively assess trend alignment between simulated and experimental results, we employed667

the Spearman Rank Correlation Coefficient (denoted as ρ). This non-parametric measure evaluates668
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the monotonic relationship between the rankings of simulated and experimental outcomes, making it669

suitable for capturing trend consistency across diverse chemical problems.670

The Spearman Correlation Coefficient is calculated as follows:671

ρ = 1− 6
∑

d2i
n(n2 − 1)

(7)

Where: di: The difference between the ranks of the i-th simulated and experimental result. n: The672

number of hypotheses in a given group (ranging from 3 to 6 per scientific question). ρ: The correlation673

coefficient, ranging from -1 (perfect negative correlation) to 1 (perfect positive correlation), with 0674

indicating no monotonic relationship. A Spearman Correlation Coefficient (ρ) near 1 indicates strong675

trend alignment, meaning the simulated results closely mirror the relative ordering of experimental676

outcomes. Our CSX simulator achieved a mean Spearman Correlation Coefficient of ρ = 0.960,677

significantly outperforming the baseline, as shown in Table 1, and demonstrating superior trend678

alignment.679

To further assess the robustness of the simulator across diverse problems, we introduced the Perfect680

Consistency Indicator (PCI), a stringent metric that counts the number of question groups (out of681

the 30 scientific questions) where the simulated results achieved perfect trend alignment with the682

experimental results (ρ = 1). Perfect trend alignment requires an exact match in the ranking of683

simulated and experimental outcomes, making PCI a robust measure of the simulator’s ability to684

consistently replicate experimental trends across all problems. Notably, our CSX simulator achieved685

perfect trend alignment (ρ = 1) in 26 out of 30 question groups, significantly surpassing the baseline686

methods and highlighting its exceptional robustness and predictive fidelity.687

F.2 Evaluation of Simulator Accuracy688

For evaluating prediction accuracy, we used the Root Mean Square Error (RMSE) to quantify the689

deviation between simulated and experimental values. The RMSE is defined as:690

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (8)

Where: yi: The experimental result for the i-th hypothesis. ŷi: The simulated result for the i-th691

hypothesis. The CSX simulator exhibited a lower RMSE than the "Matched Score" baseline (Yang692

et al., 2024b), signifying improved predictive accuracy, as substantiated by the results in Table 1.693

To thoroughly evaluate the predictive accuracy of our CSX simulator compared to real-world ex-694

perimental outcomes, we tested its performance on a dataset of 124 authentic scientific hypotheses.695

For a comprehensive comparison, we calculated several performance indicators, as presented in696

Table 6. Building on the previously discussed metrics, we introduced three additional measures:697

Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Logarithmic698

Error (RMSLE). These metrics, defined below, enhance the robustness of our analysis by capturing699

different aspects of prediction error.700

Simulator MSE (↓) MAE (↓) RMSLE (↓)

Matched Score 0.068 0.179 0.166

CSX-Sim 0.058 0.161 0.147
w/o CriticalPoints 0.064 0.174 0.159
w/o ComponentExtraction 0.087 0.215 0.192

Table 6: Validating the simulator with collected chemistry experiment results from literature.

Below, we define each metric used in the evaluation, along with their respective formulas, to ensure701

scientific rigor:702
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Mean Squared Error (MSE): MSE measures the average squared difference between predicted values703

ŷi and actual values yi across n samples. It is defined as:704

MSE =
1

n

n∑
i=1

(ŷi − yi)
2 (9)

A lower MSE indicates higher predictive accuracy, with larger errors penalized more heavily due to705

squaring.706

Mean Absolute Error (MAE): MAE quantifies the average absolute difference between predicted and707

actual values, calculated as:708

MAE =
1

n

n∑
i=1

|ŷi − yi| (10)

This metric is less sensitive to outliers than MSE, providing a more balanced measure of error.709

Root Mean Squared Logarithmic Error (RMSLE): RMSLE focuses on relative errors by evaluating710

the logarithmic difference between predicted and actual values:711

RMSLE =

√√√√ 1

n

n∑
i=1

(log(ŷi + 1)− log(yi + 1))
2 (11)

This metric is particularly useful for datasets with exponential trends or varying error scales.712

As shown in Table 6, CSX-Sim consistently outperforms the "Matched Score" baseline (Yang et al.,713

2024b) across all metrics, achieving an MSE of 0.058, an MAE of 0.161, and an RMSLE of714

0.147. Ablation studies further reveal the contributions of individual components: the removal of715

CriticalPoints results in a slight performance decline (MSE of 0.064, MAE of 0.174, RMSLE of716

0.159), while the exclusion of ComponentExtraction leads to more significant degradation (MSE of717

0.087, MAE of 0.215, RMSLE of 0.192). These results underscore the importance of both critical718

point identification and component extraction in achieving high predictive accuracy and robustness in719

simulation outcomes.720

G Different Levels of Distortion721

We collaborated with chemistry PhD students to identify and design three common types of distortions722

encountered in chemical research: local maxima/minima, plateaus, and cliffs. These distortion pat-723

terns reflect typical challenges in hypothesis evaluation, drawing on domain expertise and established724

heuristics to ensure relevance. We defined three distinct distortion levels—Simple Noise, Moderate725

Noise, and Complex Noise—and incorporated them into the hypothesis embedding function ϕ(·) to726

simulate increasingly challenging feedback conditions.727

In chemical scientific hypotheses, biases in understanding key factors can result in specific distor-728

tion patterns. For instance, when adding guanidine sulfate to polymer thermoelectric materials,729

recognizing it solely as a salt providing hydrogen bonds for the reaction—while overlooking its730

influence on the entropy of redox pairs—can lead to a local maximum, as this oversight may enhance731

thermoelectric performance unexpectedly. Similarly, misjudging irrelevant factors, such as additives732

in organic reactions with no actual impact, can create a plateau effect. Conversely, misjudging critical733

factors, like the temperature’s role in enzyme activity during enzyme studies, can produce a cliff734

if the temperature is incorrectly assumed to inhibit the reaction entirely. These elements—local735

maxima/minima, plateaus, and cliffs—present significant challenges in optimization problems within736

chemical research.737

Through extensive discussions with chemistry experts, we conducted a statistical analysis to evaluate738

the discrepancies between wet lab results and empirical expected outcomes across diverse experi-739

mental scenarios. This process enabled us to statistically analyze the frequency of the three types of740

distortions—local maxima/minima, plateaus, and cliffs—across various chemical scenarios. We then741

quantified the occurrence of these distortions in different scenarios and sorted them by frequency,742

from low to high. Based on this distribution, we categorized the discrepancies: the top 35% of ob-743

served gaps were classified as Simple Noise, the middle 40% as Moderate Noise, and the bottom 25%744

as Complex Noise. Furthermore, we integrated the three distortion levels—Simple Noise, Moderate745
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Noise, and Complex Noise—into the hypothesis embedding function ϕ(·) to simulate increasingly746

challenging feedback conditions. This structured stratification provided a clear framework to evaluate747

the varying impacts of different scenarios on our simulator, facilitating a deeper understanding of the748

simulator’s performance under diverse conditions.749

Noise Conditions Local Maxima/Minima Plateaus Cliffs

Simple 0-10 0-2 0-2
Medium 0-30 0-6 0-6
Complex ≥ 30 ≥ 3 ≥ 3

Table 7: The composition of different types of noise.

These distortions, along with their detailed quantities, are outlined in the accompanying Table 7,750

which illustrates the composition of different types of noise across various conditions. For instance,751

simple noise conditions are associated with 0-10 local maxima/minima, 0-2 plateaus, and 0-2 cliffs.752

Medium noise conditions escalate these figures to 0-30 local maxima/minima, 0-6 plateaus, and753

0-6 cliffs. In complex noise scenarios, the challenges intensify, with ≥ 30 local maxima/minima,754

≥ 3 plateaus, and ≥ 3 cliffs, reflecting the increased difficulty in achieving optimal solutions. We755

constructed three distinct noise levels to evaluate the robustness of our CSX-Rank under complex756

chemical feedback conditions.757

By comparing Table 3, we observed that with the introduction of noise, the experiment-guided758

ranking method requires a significantly higher number of simulation feedback iterations to identify759

the ground truth scientific hypothesis as the complexity of the noise increases. This is primarily due760

to the growing discrepancy between highly complex noise and real experimental feedback, where761

simulation feedback contains substantial erroneous information, thereby degrading the performance762

of screening the ground truth scientific hypothesis from the generated scientific hypotheses.763

H Evaluation of Experiment-Guided Ranking and Its Societal Benefits764

The intricate knowledge system of chemistry, combined with the multitude of factors influencing765

hypothesis analysis, often leads to the gradual accumulation of small cognitive biases. These biases766

can significantly distort the final experimental outcomes, creating substantial disparities between767

expected and observed results. To address this challenge, we conducted a comparative analysis768

between two distinct approaches: the experiment-guided ranking method, which leverages simulation769

feedback or real experimental results to refine hypothesis selection, and the pre-experiment method,770

which relies solely on the model’s prior knowledge for screening the ground truth hypothesis. Our771

findings reveal that the experiment-guided ranking method demonstrates a marked improvement over772

its counterpart. By integrating simulation feedback, this method allows for a reflective process that773

considers previous simulation (and experimental) results. This iterative reflection provides more774

contextually relevant information, enabling the selection of the next hypothesis with greater precision.775

Consequently, this approach effectively mitigates the accumulation of biases, thereby enhancing the776

efficiency and accuracy of experimental screening processes.777

The ranking of hypotheses emerges as a pivotal element in automated scientific discovery, particularly778

in natural sciences, where wet-lab experiments are costly and are constrained by low throughput.779

Traditional approaches, such as pre-experiment ranking, depend exclusively on the internal reasoning780

of large language models, lacking integration with empirical experimental outcomes. In contrast, we781

introduce the novel task of experiment-guided ranking, designed to prioritize candidate hypotheses782

by leveraging insights from previously tested results. However, the development of such strategies is783

hindered by the impracticality of repeatedly conducting real experiments in natural science domains784

due to time, cost, and resource limitations. To overcome this obstacle, we propose a simulator785

grounded in three domain-informed assumptions, modeling hypothesis performance as a function786

of its similarity to a known ground truth hypothesis, with performance perturbed by noise to reflect787

real-world variability. To validate this simulator, we curated a dataset comprising 124 chemistry788

hypotheses, each accompanied by experimentally reported outcomes, providing a robust foundation789

for evaluation.790
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Building on this simulator, we developed a pseudo experiment-guided ranking method that clusters791

hypotheses based on shared functional characteristics and prioritizes candidates using insights de-792

rived from simulated experimental feedback. Our experimental results demonstrate that this method793

outperforms both pre-experiment baselines and strong ablations, highlighting its potential to revolu-794

tionize hypothesis selection in chemical research. Beyond academic and scientific advancements, this795

approach holds promising societal impacts. By reducing the need for extensive wet-lab experiments,796

it can lower research costs and accelerate the development of new materials and drugs, potentially im-797

proving healthcare access and environmental sustainability. Additionally, the enhanced efficiency in798

hypothesis testing could foster innovation in industrial applications, such as cleaner energy solutions,799

contributing to global efforts to address climate change and promote sustainable development.800

I Limitations801

A primary limitation of this work is that the constructed simulator does not provide perfectly accurate802

experimental feedback. Specifically, the simulator is based on three foundational assumptions803

developed through extensive consultations with domain experts. While it represents the first attempt to804

build such a simulator for experiment-guided hypothesis ranking, its outputs remain an approximation805

rather than exact experimental results.806

The rationale for developing this simulator stems from the absence of any prior tools with comparable807

functionality. Its purpose is to enable research on experiment-guided ranking methods, which can808

later be applied and validated with real experimental feedback in practical settings.809

Importantly, the simulator’s absolute accuracy is not critical for this line of research. As long as the810

experiment-guided ranking methods are robustly developed and tested within this simulated envi-811

ronment, they can subsequently leverage real experimental feedback to identify optimal hypotheses812

when deployed in real-world scenarios.813
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