
A Temporal Difference Method
for Stochastic Continuous Dynamics

Haruki Settai Naoya Takeishi Takehisa Yairi
The University of Tokyo

{sharuki,ntake,yairi}@g.ecc.u-tokyo.ac.jp

Abstract

For continuous systems modeled by dynamical equations such as ODEs and SDEs,
Bellman’s principle of optimality takes the form of the Hamilton-Jacobi-Bellman
(HJB) equation, which provides the theoretical target of reinforcement learning
(RL). Although recent advances in RL successfully leverage this formulation, the
existing methods typically assume the underlying dynamics are known a priori
because they need explicit access to the drift and diffusion coefficients to update the
value function following the HJB equation. We address this inherent limitation of
HJB-based RL; we propose a model-free approach still targeting the HJB equation
and the corresponding temporal difference method. We prove exponential stability
of the induced continuous-time dynamics, and we empirically demonstrate the
resulting advantages over transition–kernel–based formulations. The proposed
formulation paves the way toward bridging stochastic control and model-free
reinforcement learning.

1 Introduction

Reinforcement learning (RL) has been successfully applied in various domains, ranging from discrete
systems like board games (Silver et al., 2018) to systems that are continuous in both state and time
such as robotic control (Kober et al., 2013). RL research has been advancing through a variety of
approaches, and much of the work has focused on improving methods by refining objective functions
(Schulman et al., 2015, 2017), balancing exploration and exploitation (Haarnoja et al., 2018), and
developing more effective architectures (Hafner et al., 2019). These efforts have significantly
advanced the field, leading to the development of various successful algorithms.

In contrast to the studies primarily targeting algorithmic components or optimization techniques, we
focus on the continuity of time and explore what we call continuous RL, where the dynamics of
systems are described by ordinary differential equations (ODEs) or stochastic differential equations
(SDEs), which is a relatively underexplored aspect of RL. Although many RL methods have been
applied, sometimes heuristically, to both discrete and continuous systems, the continuity of the system
has not necessarily been fully exploited, even when it is known in advance. Laying a foundation
for utilizing prior knowledge of continuity is important toward more effective learning and decision-
making methods, particularly for practical applications such as robot control and autonomous driving,
which typically fall into the target of continuous RL.

A way to incorporate prior knowledge of the system’s continuity into the learning process is to use
the Hamilton-Jacobi-Bellman (HJB) equation. In the Bellman equation, continuity is encoded in the
transition kernel. However, in model-free RL, where transitions are approximated using samples, this
continuity information is lost because the transition kernel is not explicitly modeled. On the other
hand, the HJB equation retains the continuity information in the argument of the expectation rather
than in the transition kernel. This property allows the HJB equation to keep taking continuity into

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

account even under sample-based approximations. However, because the HJB equation depends on
the coefficient functions of the system’s dynamics, prior work has largely been limited to model-based
approaches (Munos and Bourgine, 1997; Yıldız et al., 2021).

In this paper, we introduce a temporal difference (TD) method based on the HJB equation, namely
differential TD (dTD), achieved through sample-based approximation of the expectation term in
the HJB equation. dTD enables policy evaluation without requiring knowledge or estimation of
the system dynamics, while incorporating the continuity of the dynamics into the learning process.
It is compatible with on-policy methods such as A2C (Mnih et al., 2016) and PPO (Schulman
et al., 2017), and we demonstrate its effectiveness on Mujoco (Todorov et al., 2012) tasks including
Hopper, HalfCheetah, Ant, and Humanoid. The codes for the proposed method are available at
https://github.com/4thhia/differential_TD.

2 Related Work

Deterministic Dynamics The study of continuous RL for ODE systems can be traced back to
studies such as Baird (1994); Munos (1997); Doya (2000); Munos (2006). Baird (1994) discovered
that the Q-function collapses in continuous RL, which was rigorously proven and extended to deep
RL in Tallec et al. (2019). In Munos (1997), model-free approaches for ODE systems were first
studied. Doya (2000) was the first to introduce TD for ODE systems and extended it to TD(λ) and
actor-critic. Munos (2006) investigated the estimation of policy gradients for ODE systems and
proposed a pathwise derivative approach. More recently, Vamvoudakis and Crofton (2017) developed
a model-free RL framework for deterministic linear systems. Kim et al. (2021) proposed a model-free
Q-learning approach in which the control is derived from the HJB equation, while the learning target
is based on the conventional Bellman equation. Yıldız et al. (2021) introduced a model-based method
that leverages the Neural ODE framework to enable continuous-time optimization using learned
system dynamics.

Stochastic Dynamics One of the earliest works on RL in SDE systems is Munos and Bourgine
(1997), which takes a model-based approach. However, research in this direction remained largely
unexplored until recently. In the past few years, a growing body of work has emerged that aims
to establish theoretical foundations for RL in stochastic dynamics. Wang et al. (2020) introduced
an entropy-regularized relaxed control formulation and provided a comprehensive analysis in the
LQR setting. Tang et al. (2022) further demonstrated the well-posedness of the HJB equation within
this relaxed control framework. Jia and Zhou (2022b) showed that Bellman optimality is equivalent
to maintaining the martingale property of a suitably defined stochastic process, and proposed a
corresponding algorithm. Building on this approach, Jia and Zhou (2022a, 2023) proposed actor-
critic and Q-learning algorithms for finite-horizon SDE systems, respectively. Zhao et al. (2020)
extended key theoretical tools such as the state visitation distribution and the performance difference
lemma to the continuous-time setting and applied them to TRPO and PPO. Despite these advances,
most of the above approaches (i) operate in a model-based regime and, in addition, (ii) are restricted
to finite-horizon settings that require access to full trajectory information and/or (iii) assume a linear
dynamics model. In contrast, our work proposes a simple model-free TD method that is applicable
to general nonlinear stochastic dynamics without requiring knowledge of the SDE coefficients. We
demonstrate its effectiveness on standard continuous-control RL benchmarks, going beyond prior
work that has been mostly confined to toy SDE examples.

3 Background

3.1 Problem Setting

We consider a continuous-time RL setting where the state space is S ⊂ Rn and the action space is A.
We model the state dynamics by the following controlled SDE:

dSt = µ(St, At)dt+ σ(St, At)dBt, (1)

where µ : S ×A → Rn, σ : S ×A → Rn×m, and (Bt)t≥0 is the m-dimensional Brownian motion.
Note that the state evolution is influenced by both the inherent noise in the system as well as the
randomness induced by the stochastic policy π : S → P(A), where P(A) is the space of probability

2

https://github.com/4thhia/differential_TD

distribution over the action space. Thus, the expectation related to this SDE is expressed as Epπ [·],
where pπ denotes the transition kernel induced by (1). For simplicity, we assume that the stochastic
process (1) is well-defined; see Appendix A.1 for a detailed justification. We here focus on SDE
systems because we can recover results for ODE systems in the limit of σ = 0.

We primarily focus on the model-free setting, where the agent has no prior knowledge of the dynamics
coefficients µ and σ in Eq. (1). Throughout this paper, the term RL refers to this model-free setting
unless specifically stated otherwise (e.g., as model-based RL).

3.2 Continuous RL

The dynamics governed by the SDE in Eq. (1) exhibit the Markov property (informally, the infinitesi-
mal evolution depends on the past only through (St, At)), and thus continuous RL falls within the
general framework of an MDP. For example, the Bellman optimality equation can be written as
follows:

V ∗(st) = max
π

Epπ

[∫ t′

t

e−γ(τ−t)ρ(Sτ , Aτ)dτ + e−γ(t′−t)V ∗(St′)

∣∣∣∣∣St = st

]
,

where ρ : S ×A → R is the reward rate function, and γ ∈ (0,∞) is the constant discount rate. Here,
V ∗(s) is the optimal value function, defined as:

V ∗(s) := max
π

Epπ

[∫ ∞

t

e−γ(τ−t)ρ(Sτ , Aτ)dτ

∣∣∣∣ St = s

]
.

When learning based on discrete observations of a continuous system, such as in simulations, one can
discretize the problem as follows:

V ∗(st) = max
π

Epπ

[
ρ(st, At)∆t+ e−γ∆tV ∗(St+∆t)

]
, (2)

where ∆t is a small time interval and need not be constant. This shows that standard RL methods can
be applied to continuous RL, although the use of Q-functions in continuous time requires care (Tallec
et al., 2019). However, this discretization-based approach can be inefficient in the model-free setting,
where the expectation is approximated using samples. In particular, the system dynamics enter only
through the transition kernel, and approximating the expectation by samples does not explicitly
exploit the underlying continuity of the dynamics. As a result, the agent may fail to leverage structural
information that is specific to continuous-time systems.

3.3 Natural Target of Continuous RL

We focus on TD learning, a fundamental approach in RL. TD learning naturally targets two types
of Bellman equations: the Bellman optimality equation and the Bellman expectation equation.
Combining these with the choice of value function (V or Q) yields four candidate targets. Among
them, the V-Bellman optimality equation is immediately excluded as it is not compatible with model-
free framework. Moreover, as we will show in Section 4, the Q-Bellman optimality equation is
challenging to learn effectively with TD methods in continuous RL due to the maximization operator.
Thus, in continuous RL, policy evaluation is the most natural scope.

This leaves two remaining candidates: the V- and Q-Bellman expectation equations. While the
Q-Bellman expectation equation is compatible with our methodology, Q-functions often degenerate
in continuous RL (Tallec et al., 2019), introducing unnecessary complexity. We therefore focus on
policy evaluation via the V-Bellman expectation equation,

V π(st) = Epπ

[
ρ(st, At)∆t+ e−γ∆tV π(St+∆t)

]
. (3)

3.4 Contrast with Stochastic Control

Much of the prior work on continuou RL originates from the field of stochastic control. These
approaches often start by directly introducing the HJB equation, which is the continuous counterpart
of the Bellman optimality equation (2). For instance, the HJB equation can be expressed as: (see

3

Appendix A.2 for more detail):

V ∗(st) =
1

γ
max
π

Eπ

[
ρ(st, At) +

n∑
i=1

µi(st, At)
∂V ∗(s)

∂si

∣∣∣∣
s=st

+
1

2

n∑
i=1

n∑
j=1

[σ(st, At)σ
⊤(st, At)]

ij ∂
2V ∗(s)

∂si∂sj

∣∣∣∣
s=st

]
,

(4)

where µi and [σσ⊤]ij denote the i-th element of µ and the (i, j)-th element of σσ⊤, respectively.

However, introducing the HJB equation in continuous RL typically restricts the methodology to
model-based approaches, since the update requires explicit access to µ and σ (and the same issue
persists even when using Q-functions; see Section 4). Thus, for TD learning, the HJB equation offers
no clear advantage over the standard Bellman formulation (2).

In contrast, our goal is to design model-free algorithms that explicitly leverage the continuity of the
underlying dynamics, which naturally leads us to introduce a variant of the HJB equation built upon
the V-Bellman expectation equation (3).

4 TD Method for Stochastic Continuous Dynamics

A natural way to inform the agent that the system follows an SDE is to embed the model directly
into the update rule. As discussed in Section 3.2, with the standard Bellman expectation equation (3)
this information is lost when we pass to a sample-based approximation, which drops the expectation
subscript pπ where the model is encoded. Therefore, by encoding the SDE information in the
argument rather than in the subscript of the expectation, one can expect to keep this information
from being lost even under sample approximation. This can be achieved by further transforming
the Bellman expectation equation using the SDE, i.e., by expanding V (St+∆t) via Itô’s formula,
resulting in a variant of the HJB equation (the derivation is identical to that for the HJB equation; see
Appendix A.2 for more details):

V π(st) =
1

γ
Eπ

[
ρ(st, At) +

n∑
i=1

µi(st, At)
∂V π(s)

∂si

∣∣∣∣
st

+
1

2

n∑
i=1

n∑
j=1

[σ(st, At)σ
⊤(st, At)]

ij ∂
2V π(s)

∂si∂sj

∣∣∣∣
st

]
.

(5)
We call this equation the HJB for a fixed policy.

Now, are we all ready to implement model-free value iteration just by approximating the expectation
on the right-hand side of (5) with samples? The answer is no because the argument of the expectation
includes the coefficient functions of the SDE, µ and σ, making it impossible to directly approximate
the expectation with samples.

4.1 Deriving TD from the HJB equation

We now present our main theoretical result. It gives the foundation for our model-free formulation of
temporal-difference learning based on the HJB equation. The idea is that the drift and diffusion terms
in the HJB equation can be equivalently expressed using limits of sample-based finite differences.
Proposition 1. When a stochastic process (St)t≥0 follows the SDE in (1), we have

Epπ

[
µi(st, At)

]
= lim

∆t→0
Epπ

[
Si
t+∆t − sit

∆t

]
(6)

and

Epπ

[
[σ(st, At)σ

⊤(st, At)]
ij
]
= lim

∆t→0
Epπ

[
(Si

t+∆t − sit)(S
j
t+∆t − sjt)

∆t

]
. (7)

Proof. For the first claim, we expand the i-th component of the SDE (1) using the Ito formula:

Si
t+∆t =sit + µi(st, At)∆t+

m∑
j=1

σij(st, At)(B
j
t+∆t −Bj

t) +O(∆t
3
2). (8)

4

V(st)

V(st + t)

V(st)

V(st + t)

typical TD proposed dTD

Figure 1: Qualitative difference between
the typical TD method and the proposed
dTD method; the objects in red indicate
what is adjusted by each temporal differ-
ence. (Left) In the typical TD method, the
values of V̂ are adjusted to minimize the
TD error. (Right) In the dTD method, the
gradient and the second derivative of V̂ at
st are adjusted to minimize the dTD error.

Since Bj
t+∆t −Bj

t follows a zero-mean Gaussian and is independent of the state and the action,

Epπ

[
m∑
j=1

σij(st, At)(B
j
t+∆t −Bj

t)

]
=

m∑
j=1

Eπ

[
σij(st, At)

]
E
[
Bj

t+∆t −Bj
t

]
= 0.

By taking the expectation of both sides of (8) and then letting ∆t→ 0, the terms in O(∆t
3
2) vanish,

and we obtain (6). For the second part of the claim, we begin by considering the product:

(Si
t+∆t − sit)(S

j
t+∆t − sjt)

= µi(st, At)µ
j(st, At)∆t2 +

m∑
k=1

m∑
l=1

σik(st, At)σ
jl(st, At)(B

k
t+∆t −Bk

t)(B
l
t+∆t −Bl

t)

+ µi(st, At)∆t

m∑
k=1

σjk(st, At)(B
k
t+∆t −Bk

t) + µj(st, At)∆t

m∑
k=1

σik(st, At)(B
k
t+∆t −Bk

t) +O(∆t
3
2).

(9)
and then take the expectation of both sides. Using the fact

E
[
(Bk

t+∆t −Bk
t)(B

l
t+∆t −Bl

t)
]
= δkl∆t,

where δkl = 1 if k = l and δkl = 0 otherwise, we can take the expectation of both sides of
equation (9) and then let ∆t→ 0, which yields (7).

Remark 1. Note that since St+∆t in equations (5) and (6) is sampled under the policy π, our method
is not applicable to off-policy settings such as value iteration or Q-learning. This limitation reflects a
fundamental distinction: our formulation relies on the HJB equation under a fixed policy (i.e., policy
evaluation), rather than the classical HJB equation involving maximization over all policies.

From Proposition 1, the HJB equation (5) can be reformulated as

V π(st) =
1

γ
lim

∆t→0
Epπ

[
ρ(st, At) +

n∑
i=1

Si
t+∆t − sit

∆t

∂V π(s)

∂si

∣∣∣∣
st

+
1

2

n∑
i=1

n∑
j=1

(Si
t+∆t − sit)(S

j
t+∆t − sjt)

∆t

∂2V π(s)

∂si∂sj

∣∣∣∣
st

]
.

As we have rearranged the HJB equation so that the argument of expectation does not depend on
the model, µ and σ, we can construct a temporal-difference update directly from it. We refer to this
update as differential temporal difference (dTD) and expect it to be particularly effective when the
observation interval ∆t is small.
Definition 1 (differential temporal difference). Let ∆t > 0 be a time step and V̂ denote an estimated
value function. The dTD is defined as:

dTD :=
1

γ

(
ρ(st, at) +

n∑
i=1

sit+∆t − sit
∆t

∂V̂ (s)

∂si

∣∣∣∣
st

+
1

2

n∑
i=1

n∑
j=1

(sit+∆t − sit)(s
j
t+∆t − sjt)

∆t

∂2V̂ (s)

∂si∂sj

∣∣∣∣
st

)
− V̂ (st).

(10)

5

As illustrated in Figure 1, unlike conventional TD methods based on transition kernels, dTD en-
courages the learning of a smooth value function by incorporating the continuity of the state space,
even under sample-based approximation. We note that the version of dTD for ODE systems can be
recovered by simply removing the term corresponding to the diffusion coefficient σ.

4.2 Convergence Analysis

A standard TD convergence analysis relies on the Bellman operator being a contraction. In contrast,
the fixed-policy HJB operator involves unbounded differential operators and is not a contraction in
general, making the usual arguments inapplicable. Moreover, a parameter-space analysis is technically
challenging since the update depends on state derivatives of the value function. Therefore, we adopt
an idealized function-space analysis and study the continuous-time limit of the induced dynamics
using PDE techniques. For the convergence analysis, we rewrite the second-order term in matrix
form for notational convenience.

We first define the key operators for the fixed-policy HJB equation.
Definition 2 (Fixed-policy HJB operator). Given a stationary Markov policy π, discount rate γ > 0,
and functions µ, σ, ρ, define the policy-averaged coefficients

µ̄(s) := EA∼π(·|s)[µ(s,A)], D(s) := EA∼π(·|s)[σ(s,A)σ
⊤(s,A)], ρ̄(s) := EA∼π(·|s)[ρ(s,A)].

The fixed-policy HJB operator T maps V : S → R to

(TV)(s) :=
1

γ

(
ρ̄(s) + (LπV)(s)

)
,

where Lπ is the infinitesimal generator defined below.
Definition 3 (Infinitesimal generator). The infinitesimal generator Lπ maps any C2 function V to

(LπV)(s) := µ̄(s) · ∇V (s) +
1

2
tr
(
D(s)∇2V (s)

)
.

We analyze the iterative scheme

Vk+1 = Vk + ηk(TVk − Vk)

through its continuous-time limit

∂V (t)

∂t
= TV (t)− V (t),

which corresponds to an idealized setting where the function V can be updated directly in function
space. Convergence is characterized by asymptotic stability of the unique fixed point satisfying
TV = V . Since we consider a fixed policy (and thus no maximization operator), this fixed-point
equation reduces to a linear elliptic PDE. Defining the expected reward rate ρ̄(s) := Eπ(·|s)[ρ(s,A)],
the equation V = TV is equivalent to

(γI − Lπ)V (s) = ρ̄(s).

We then apply standard elliptic PDE theory (via the Lax–Milgram theorem) to the bilinear form
associated with (γI −Lπ), which guarantees existence, uniqueness, and stability of the solution, and
hence convergence of the induced dynamics. We leave a full analysis under function approximation
to future work.
Assumption 1. We assume:

1. (Domain) S ⊂ Rn is bounded with C2 boundary ∂S.

2. (Coefficients) ρ̄ ∈ L2(S). The diffusion D ∈ W 1,∞(S;Rn×n) is symmetric, and the
effective drift b := µ̄− 1

2divD belongs to L∞(S;Rn).

3. (Uniform ellipticity) There exists α > 0 such that ξ⊤D(s)ξ ≥ α∥ξ∥2 for all s ∈ S, ξ ∈ Rn.

4. (Reflecting boundary) The Neumann condition n ·D∇V = 0 holds on ∂S.

5. (Coercivity / discount) γ > ∥b∥2∞/α.

6

We then apply standard elliptic PDE theory (via the Lax–Milgram theorem) to the bilinear form
associated with (γI − Lπ) to guarantee existence and uniqueness of the fixed point. The exponential
stability of the induced continuous-time dynamics is established separately below.
Lemma 1 (Existence and Uniqueness of the Fixed Point). Under Assumption 1, the linear elliptic
PDE

(γI − Lπ)V (s) = ρ̄(s) for s ∈ S

admits a unique weak solution V π ∈ H1(S).
Proposition 2 (Exponential Stability of the Dynamics). Let V π ∈ H1(S) be the unique weak
solution of (γI − Lπ)V = ρ̄. Under Assumption 1, the solution V (t) of

∂V (t)

∂t
= TV (t)− V (t)

satisfies, for any V (0) ∈ H1(S),
∥V (t)− V π∥L2(S) ≤ exp(−λt) ∥V (0)− V π∥L2(S),

where one may take

λ =
1

γ

(
γ − ∥b∥

2
∞

α

)
> 0, b := µ̄− 1

2divD.

5 Method

This section outlines our method for applying dTD in deep reinforcement learning. Because dTD
relies on function approximation, we restrict our attention to the deep RL regime, representing the
value function with a neural network. A concise pseudocode listing is provided in Appendix B.1;
here we explain the loss formulation and the β-dTD stabilization strategy.

5.1 Loss function

In deep RL, TD methods typically use a fixed target, known as the TD target, r(s, t)+γdiscreteV (st+1),
as the teacher and aim to approximate the prediction V (st) by minimizing the squared error between
them. Although it may seem natural, by analogy with classical TD, to treat the V (st) term in
the dTD (10) as the prediction and regard the remaining terms as the dTD target, this is in fact
unnecessary. As shown in Appendix A.2, the terms that appear in (5) and thus in (10) are derived
through a series of transformations, and thus in dTD we no longer interpret the terms other than
V (st) as a low-variance estimate of the Bellman error. Consequently, the split between prediction
and target is a design choice.

We examine two different ways of defining the prediction and target from the rhs of (10).

• As a baseline, we first consider a naive formulation following the typical TD-style decomposition,
that is, we treat V (st) as the prediction. We refer to this approach as naive-dTD.

• On the other hand, since TD methods are intended to learn the value function V rather than its
derivatives, we treat the value-based terms as the target and regard the derivative-based terms as
the prediction. We term such a parametrization simply as dTD hereafter.

These two variants are summarized in Table 1. As introduced in the next section, we empirically
found that dTD performed significantly better than naive-dTD.

5.2 Hybrid scheme for stabilizing dTD

Although Proposition 2 establishes a convergence analysis, it relies on an idealized setting and does
not cover the practical instability that can arise from function approximation errors in deep RL.
Consequently, we cannot a priori guarantee that plain dTD operates stably and efficiently in practice.

To make the critic update more robust, we linearly combine the classical TD error with the dTD error,
using weights 1− β and β, respectively; we call the resulting update β-dTD. The TD part supplies
the empirical stability that underpins most deep RL algorithms, whereas the dTD part injects gradient
information from the continuous dynamics, accelerating learning when the underlying assumptions
are approximately satisfied. We hypothesize that β-dTD can strike a balance to stabilize learning
progress and potentially improve convergence behavior in practice.

7

Table 1: Comparison of target and prediction terms in TD methods. Here, ∆sit := sit+∆t− sit denotes
the i-th component of the state transition over a small time interval ∆t.

Target Prediction

TD r(s, t) + γdiscreteV (st+1) V (st)

naive-dTD

ρ(st, at) +

n∑
i=1

∆sit
∆t

∂V (s)

∂si

∣∣∣∣
st

+ 1
2

n∑
i=1

n∑
j=1

∆sit∆sjt
∆t

∂2V (s)

∂si∂sj

∣∣∣∣
st

γV (st)

dTD −ρ(st, at) + γV (st+∆t)

n∑
i=1

∆sit
∆t

∂V (s)

∂si

∣∣∣∣
st

+ 1
2

n∑
i=1

n∑
j=1

∆sit∆sjt
∆t

∂2V (s)

∂si∂sj

∣∣∣∣
st

6 Experiments

6.1 Modification for discrete environment compatibility

In our theoretical framework, we work with continuous rewards (i.e., reward rate function) and a
specific form of the discount ratio e−γ , which is not directly compatible with the discrete discount
ratio γdiscrete. To address this, we adjusted the reward and discount ratio following the same approach
discussed in Tallec et al. (2019). The continuous reward formulation can be approximated by:∫ ∞

0

e−γtρ(st, at)dt ≈
∞∑
k=0

e(−γ∆t)kρ(sk∆t, ak∆t)∆t.

In this approximation, ρ(st, at)∆t corresponds to the discrete reward r, and e−γ∆t corresponds to
the discrete discount ratio γdiscrete. Thus, we can establish the following relationship:

ρ(st, at) =
r(st, at)

∆t
and γ = − 1

∆t
log(γdiscrete).

This adjustment ensures that the observed discrete rewards are properly scaled to align with the
continuous reward formulation used in the dTD method. With this scaling, dTD can be computed as

dTD Target : −r(st, at)− log(γdiscrete)V (st+∆t) and

dTD Prediction :
n∑

i=1

(sit+∆t − sit)
∂V (s)

∂si

∣∣∣∣
st

+
1

2

n∑
i=1

n∑
j=1

(sit+∆t − sit)(s
j
t+∆t − sjt)

∂2V (s)

∂si∂sj

∣∣∣∣
st

.

6.2 Experiment design

Environment We conducted experiments with the Brax1 library (Freeman et al., 2021) in the
following environments: Hopper, HalfCheetah, Ant and Humanoid. Each environment provides a mid-
to high-dimensional state space, with the number of state components varying across environments:
Hopper (11 dimensions), HalfCheetah (17 dimensions), Ant (27 dimensions) and Humanoid (244
dimensions). In each environment, at every step, we perturbed each state component by adding noise
in the form of

si ← si + coef× |si| × noise,
where noise ∼ N (0, 1), and tested for three values of coef = 0.00, 0.01, 0.05. By adding this process
noise, we aim to simulate with SDE systems, with the case of coef = 0.00 representing the limit
case corresponding to ODEs. The specific time-step values used for each environment, which are not
directly used in the learning process but are important to ensure they are small enough, are: Hopper:
∆t = 0.008, HalfCheetah: ∆t = 0.05, Ant: ∆t = 0.05 and Humanoid: ∆t = 0.015.

1https://github.com/google/brax

8

https://github.com/google/brax

0 1 2 ·106
0

2

4

·103

E
pi

so
di

c
re

tu
rn

Hopper (noise: 0.00)

0 1 2 ·106
0

2

4

·103 Hopper (noise: 0.01)

0 1 2 ·106
0

2

4
·103 Hopper (noise: 0.05)

0 1 2 ·106
0

1

2
·104

E
pi

so
di

c
re

tu
rn

Halfcheetah (noise: 0.00)

0 1 2 ·106
0

1

·104 Halfcheetah (noise: 0.01)

0 1 2 ·106
0

1
·104 Halfcheetah (noise: 0.05)

0 1 2 ·106
0

2

4

6

·103

E
pi

so
di

c
re

tu
rn

Ant (noise: 0.00)

0 1 2 ·106
0

2

4

6

·103 Ant (noise: 0.01)

0 1 2 ·106
0

2

4

·103 Ant (noise: 0.05)

0 1 2 ·106
0

2

4

·102

Total episode step

E
pi

so
di

c
re

tu
rn

Humanoid (noise: 0.00)

0 1 2 ·106
0

2

4

·102

Total episode step

Humanoid (noise: 0.01)

0 1 2 ·106
0

2

4

·102

Total episode step

Humanoid (noise: 0.05)

Figure 2: Performance of TD, β-naive-dTD, and β-dTD on continuous control benchmark. These
results were obtained using the PPO algorithm. Each column corresponds to different noise levels
(coef = 0.00, 0.01, 0.05), and each row corresponds to different environments. The tuned β values
for β-naive-dTD were 0.08, 0.07, 0.23, 0.02 and for β-dTD were 0.57, 0.74, 0.24, 0.33 in Hopper,
HalfCheetah, Ant, and Humanoid, respectively.

Baseline Various methods have been developed specifically for settings such as ODE (Tallec et al.,
2019), LQR (Vamvoudakis and Crofton, 2017), or time-dependent Q functions with finite horizons
(Jia and Zhou, 2023), but are often incompatible with the current deep RL framework (Kim et al.,
2021) or rely on model-based assumptions (Munos and Bourgine, 1997), making them unsuitable
for comparison with our proposed method. We chose to use standard TD methods as baselines and
experimented with TD, β-naive-dTD, and β-dTD, using A2C(Mnih et al., 2016) and PPO (Schulman
et al., 2017). In this paper, we present the results using PPO as the primary focus, and the results
using A2C are provided in the Appendix B.4 for supplementary details.

Hyperparameter tuning For hyperparameter tuning, we applied the DEHB (Awad et al., 2021),
a multi-fidelity method that is currently considered the most effective method in RL (Eimer et al.,
2023). While we performed hyperparameter tuning for the standard PPO algorithm as well, we also
reference the official tuning results from Freeman et al. (2021) for fair comparison. Additional details
about the hyperparameter search space can be found in Appendix B.

6.3 Results and discussion

Comparative evaluation We compare (the variants of) the proposed method and the baseline:

9

(β-naive-dTD vs. β-dTD) In Figure 3, we can observe that β-dTD consistently outperforms β-
naive-dTD. In all the environments, the optimized values of β for β-naive-dTD were quite small,
suggesting that the effective update rule of β-naive-dTD became close to that of the standard TD.
Despite such a fact, however, the performance of β-naive-dTD remains significantly worse than
the standard TD. There are two possible explanations: (1) the β value chosen for β-naive-dTD was
actually still not small enough to fully eliminate the adverse effect of the naive-dTD term; and (2)
the TD-related parameters in β-naive-dTD were only suboptimally tuned because hyperparameter
tuning resources were allocated mainly to optimizing β. These factors may jointly account for the
unexpectedly poor performance of β-naive-dTD.

(TD vs. β-dTD) As shown in Figure 3, β-dTD outperforms TD or achieves comparable performance
in all cases. While the degree of improvement varies, the final performance of TD and β-dTD tends
to converge, which is not very surprising because both dTD and TD are derived from the same
Bellman equation, and the resulting value functions should thus be similar to each other eventually.
Nevertheless, dTD has the advantage of implicitly utilizing continuity information during training,
which enables it to make more informative updates. Consequently, although the final performance
may be comparable, β-dTD tends to show a faster rate of improvement relative to TD.

Significance of dTD In contrast to β-naive-dTD, the weight β in β-dTD is not exceedingly small.
Notably, in the Halfcheetah environment, β assumes a relatively large value of 0.74. This indicates
that dTD retains a meaningful impact on the learning process.

Impact of process noise In terms of robustness to process noise, both β-dTD and TD exhibit
similar performance. When the noise level is coef = 0.01, neither method experiences significant
degradation in performance. However, when the noise level is increased to coef = 0.05, both β-dTD
and TD show similar reduction in performance, particularly in environments like Ant and Halfcheetah.

7 Conclusion

We have presented differential TD (dTD), a temporal difference method based on the HJB equation.
In contrast to approaches based on transition kernels, the proposed method can incorporate the
continuity of dynamics into the learning process without knowing the dynamics. We have shown
empirical results for a variety of continuous control environments with different time intervals. The
empirical results highlight the potential advantages of dTD in terms of learning speed and efficiency
while also implying that stability concerns may exist in practice, which led to the introduction of the
robust β-dTD update. Although the current paper focuses on the theoretical development of dTD,
these observations are useful and also warrant further empirical exploration.

We have also analyzed the conditions under which the continuous-time dynamics of the HJB equation
exhibit exponential stability toward the unique fixed point. This stability property, proven using
techniques from linear elliptic PDE theory, is crucial for showing the theoretical convergence of the
idealized iterative scheme. However, a drawback is that the sufficient conditions we identify, such
as the requirement for a bounded domain and uniform ellipticity (Assumption 1), are often hard to
maintain or verify in the context of deep RL with function approximation.

Future work includes bridging the gap between the theoretical exponential stability and the practical
stability of dTD updates (e.g., by ensuring the coercivity condition in practice), reducing the variance
of learning by improved estimators or regularization, and extending the wide range of existing
TD-based techniques to the dTD framework.

Acknowledgements

NT was supported by JST PRESTO JPMJPR24T6, JSPS JP20K19869, and JSPS JP25H01454.

References
Noor Awad, Neeratyoy Mallik, and Frank Hutter. DEHB: Evolutionary hyperband for scalable,

robust and efficient hyperparameter optimization. In Proceedings of the 30th International Joint
Conference on Artificial Intelligence, pages 2147–2153, 2021.

10

Leemon C. Baird. Reinforcement learning in continuous time: Advantage updating. In Proceedings
of 1994 IEEE International Conference on Neural Networks, volume 4, pages 2448–2453, 1994.

Kenji Doya. Reinforcement learning in continuous time and space. Neural Computation, 12(1):
219–245, 2000.

Theresa Eimer, Marius Lindauer, and Roberta Raileanu. Hyperparameters in reinforcement learning
and how to tune them. In Proceedings of the 40th International Conference on Machine Learning,
pages 9104–9149, 2023.

Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem. Brax
- a differentiable physics engine for large scale rigid body simulation. In Proceedings of the Neural
Information Processing Systems Track on Datasets and Benchmarks, volume 1, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proceedings of the 35th
International Conference on Machine Learning, volume 80, pages 1861–1870, 2018.

Danijar Hafner, Timothy Lillicrap, and Jimmy Ba. Dream to control: Learning behaviors by latent
imagination. arXiv: 1912.01603, 2019.

Yanwei Jia and Xun Yu Zhou. Policy gradient and actor-critic learning in continuous time and space:
Theory and algorithms. Journal of Machine Learning Research, 23(275), 2022a.

Yanwei Jia and Xun Yu Zhou. Policy evaluation and temporal–difference learning in continuous time
and space: A martingale approach. Journal of Machine Learning Research, 23(154), 2022b.

Yanwei Jia and Xun Yu Zhou. q-learning in continuous time. Journal of Machine Learning Research,
24(161), 2023.

Jeongho Kim, Jaeuk Shin, and Insoon Yang. Hamilton-Jacobi deep Q-learning for deterministic
continuous-time systems with Lipschitz continuous controls. Journal of Machine Learning
Research, 22(206), 2021.

Jens Kober, J Andrew Bagnell, and Jan Peters. Some studies in machine learning using the game of
checkers. The International Journal of Robotics Research, 32(11):1238–1274, 2013.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Tim Harley, Timothy P.
Lillicrap, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Proceedings of the 33rd International Conference on Machine Learning, pages
1928–1937, 2016.

Rémi Munos. A convergent reinforcement learning algorithm in the continuous case based on a
finite difference method. In Proceedings of the 15th International Joint Conference on Artificial
Intelligence, volume 2, pages 826–831, 1997.

Rémi Munos. Policy gradient in continuous time. Journal of Machine Learning Research, 7(27):
771–791, 2006.

Rémi Munos and Paul Bourgine. Reinforcement learning for continuous stochastic control problems.
In Advances in Neural Information Processing Systems, volume 10, 1997.

John Schulman, Sergey Levine, Philipp Moritz, Michael Jordan, and Pieter Abbeel. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning,
volume 37, pages 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347, 2017.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen Si-
monyan, and Demis Hassabis. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv:1712.01815, 2018.

11

Corentin Tallec, Léonard Blier, and Yann Ollivier. Making deep Q-learning methods robust to
time discretization. In Proceedings of the 36th International Conference on Machine Learning,
volume 97, pages 6096–6104, 2019.

Wenpin Tang, Paul Yuming Zhang, and Xun Yu Zhou. Exploratory hjb equations and their conver-
gence. SIAM Journal on Control and Optimization, 60, 2022.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
5026–5033. IEEE, 2012.

Kyriakos G. Vamvoudakis and Kevin T. Crofton. Q-learning for continuous-time linear systems: A
model-free infinite horizon optimal control approach. Systems & Control Letters, 100:14–20, 2017.

Haoran Wang, Thaleia Zariphopoulou, and Xun Yu Zhou. Reinforcement learning in continuous time
and space: A stochastic control approach. Journal of Machine Learning Research, 21(198), 2020.

Çağatay Yıldız, Markus Heinonen, and Harri Lähdesmäki. Continuous-time model-based reinforce-
ment learning. In Proceedings of the 38th International Conference on Machine Learning, pages
12009–12018, 2021.

Hanyang Zhao, Wenpin Tang, and David D. Yao. Policy optimization for continuous reinforcement
learning. In Advances in Neural Information Processing Systems 36, pages 13637–13663, 2020.

12

A Mathematical Details

A.1 Justification for the Continuous RL Formulation

In Section 3, we modeled the evolution of the state under a stochastic policy π by the controlled SDE

dSt = µ(St, At) dt+ σ(St, At) dBt, At ∼ π(·|St).

Here, the control is applied in the form of action samples drawn from a stochastic policy at each time
step. While this formulation closely reflects the sampling-based behavior in RL, it raises a technical
challenge: the presence of external randomness in addition to the intrinsic Brownian noise introduces
analytical difficulties. As a result, the well-definedness of this SDE is not immediately obvious.

To address this issue, many prior works (e.g., Wang et al. (2020); Jia and Zhou (2022b,a, 2023); Zhao
et al. (2020)) adopt the averaged dynamics, denoted by (S̃t)t≥0, whose distribution at each time t is
known to coincide with that of the original one under the same initial condition (Wang et al., 2020).
Specifically, the averaged dynamics is defined as

dS̃t = µ̃(S̃t, π)dt+ σ̃(S̃t, π)dB̃t,

where µ̃(s, π) =
∫
A µ(s, a)π(a)da, σ̃(s, a) =

(∫
A σ(s, a)σ⊤(s, a)π(a)da

) 1
2 and (B̃t)t≥0 is the

m-dimensional Brownian motion. Since the averaged dynamics no longer involves the external
randomness induced by stochastic action selection, its well-definedness is ensured by classical SDE
theory under standard assumptions such as Lipschitz continuity and a linear growth condition.

Since the marginal distributions of the two dynamics coincide, the corresponding value functions
also coincide:

V π(s) = Epπ

[∫ ∞

t

e−γ(τ−t)ρ(Sτ , Aτ) dτ

∣∣∣∣St = s

]
= Ep̃

[∫ ∞

t

e−γ(τ−t)ρ̃(S̃τ , π) dτ

∣∣∣∣ S̃t = s

]
=: Ṽ π(s),

where ρ̃(s, π) :=
∫
A ρ(s, a)π(a) da. Hence the value function above is itself well defined and raises

no analytical issues.

A.2 Ito formula

The Bellman equation is given by:

V ∗(st) = max
π

Epπ

[
ρ(st, At)∆t+ e−γ∆tV ∗(St+∆t)

]
.

13

Assuming that a stochastic process (St)t≥0 follows the SDE (1), the term V ∗(St+∆t) can be further
expanded using Itô’s lemma:

V ∗(st) = max
π

Epπ

[
ρ(st, At)∆t+ e−γ∆tV ∗(St+∆t)

]
= max

π
Epπ

[
ρ(st, At)∆t+ e−γ∆t

{
V ∗(st) +

(n∑
i=1

µi(st, At)
∂V ∗(s)

∂si

∣∣∣∣
st

+
1

2

n∑
i=1

n∑
j=1

[σ(st, At)σ
⊤(st, At)]

ij ∂
2V ∗(s)

∂si∂sj

∣∣∣∣
st

)
∆t

+

n∑
i=1

m∑
j=1

σi
j(st, At)

∂V ∗(s)

∂si

∣∣∣∣
st

(Bj
t+∆t −Bj

t) +O((∆t)3/2)

}]

= max
π

Epπ

[
ρ(st, At)∆t+ e−γ∆t

{
V ∗(st) +

(
n∑

i=1

µi(st, At)
∂V ∗(s)

∂si

∣∣∣∣
st

+
1

2

n∑
i=1

n∑
j=1

[σ(st, At)σ
⊤(st, At)]

ij ∂
2V ∗(s)

∂si∂sj

∣∣∣∣
st

)
∆t+O((∆t)3/2)

}]
.

Simplifying the equation and taking the limit as ∆t→ 0, we have the condition for the optimal value
function:

V ∗(st) =
1

γ
max
π

Epπ

[
ρ(st, At) +

n∑
i=1

µi(st, At)
∂V ∗(s)

∂si

∣∣∣∣
st

+
1

2

n∑
i=1

n∑
j=1

[σ(st, At)σ
⊤(st, At)]

ij ∂
2V ∗(s)

∂si∂sj

∣∣∣∣
st

]
.

A.3 Convergence of dTD

The existence and uniqueness of the weak solution V (·) to the linear parabolic problem ∂tV =
TV − V with Neumann boundary conditions follow from standard theory for uniformly parabolic
equations.

A.3.1 Proof of Lemma 1

Proof. We consider the linear elliptic boundary value problem

(γI − Lπ)V = ρ̄ in S, n ·D∇V = 0 on ∂S,

where
(LπV)(s) =

1

2
∇ · (D(s)∇V (s)) + b(s) · ∇V (s), b := µ̄− 1

2divD.

Weak formulation. Let v ∈ H1(S) be a test function. Multiplying the PDE by v and integrating
over S yields ∫

S

γV v −
∫
S

(LπV) v =

∫
S

ρ̄ v.

Using integration by parts for the divergence term and the Neumann condition n ·D∇V = 0 on ∂S,
we obtain ∫

S

γV v +
1

2

∫
S

(D∇V) · ∇v −
∫
S

(b · ∇V) v =

∫
S

ρ̄ v.

Define the bilinear form B : H1(S)×H1(S)→ R and the linear functional f : H1(S)→ R by

B(u, v) :=

∫
S

γuv +
1

2

∫
S

(D∇u) · ∇v −
∫
S

(b · ∇u) v, f(v) :=

∫
S

ρ̄ v.

A weak solution is a function V ∈ H1(S) such that B(V, v) = f(v) for all v ∈ H1(S).

14

Boundedness. Since D ∈ L∞(S) and b ∈ L∞(S), there exists C > 0 such that for all u, v ∈
H1(S),

|B(u, v)| ≤ γ∥u∥L2∥v∥L2 +
1

2
∥D∥∞∥∇u∥L2∥∇v∥L2 + ∥b∥∞∥∇u∥L2∥v∥L2

≤ C∥u∥H1(S)∥v∥H1(S).

Moreover, since ρ̄ ∈ L2(S), we have |f(v)| ≤ ∥ρ̄∥L2∥v∥L2 ≤ ∥ρ̄∥L2∥v∥H1 , hence f is bounded on
H1(S).

Coercivity. Let v ∈ H1(S). Using uniform ellipticity of D (i.e., ξ⊤Dξ ≥ α∥ξ∥2), we have

1

2

∫
S

(D∇v) · ∇v ≥ α

2
∥∇v∥2L2 .

For the drift term, we use Cauchy–Schwarz and Young’s inequality: for any ε > 0,∣∣∣∣∫
S

(b · ∇v) v
∣∣∣∣ ≤ ∥b∥∞∥∇v∥L2∥v∥L2 ≤ ε∥∇v∥2L2 +

∥b∥2∞
4ε
∥v∥2L2 .

Choosing ε = α/4 gives ∣∣∣∣∫
S

(b · ∇v) v
∣∣∣∣ ≤ α

4
∥∇v∥2L2 +

∥b∥2∞
α
∥v∥2L2 .

Therefore,

B(v, v) = γ∥v∥2L2 +
1

2

∫
S

(D∇v) · ∇v −
∫
S

(b · ∇v) v

≥
(
γ − ∥b∥

2
∞

α

)
∥v∥2L2 +

α

4
∥∇v∥2L2 .

In particular, if γ > ∥b∥2∞/α, then there exists c0 > 0 such that B(v, v) ≥ c0∥v∥2H1(S) for all
v ∈ H1(S), i.e., B is coercive on H1(S).

Conclusion. Since H1(S) is a Hilbert space, B is bounded and coercive, and f is bounded, the
Lax–Milgram theorem implies that there exists a unique weak solution V π ∈ H1(S) such that
B(V π, v) = f(v) for all v ∈ H1(S).

A.3.2 Proof of Proposition 2

Proof. Let V π ∈ H1(S) be the unique weak solution from Lemma 1, and define e(t) := V (t)− V π .
Since V π satisfies (γI − Lπ)V π = ρ̄ and ∂tV = −γ−1(γI − Lπ)V + γ−1ρ̄, we obtain the error
evolution

∂te(t) = −
1

γ
(γI − Lπ)e(t).

We use the weak formulation associated with the bilinear form B(·, ·) defined in the proof of Lemma 1.
Namely, for any test function v ∈ H1(S),

⟨∂te(t), v⟩L2(S) = −
1

γ
B(e(t), v).

Choosing v = e(t) yields the energy identity

1

2

d

dt
∥e(t)∥2L2(S) = −

1

γ
B(e(t), e(t)).

By the coercivity estimate established in the proof of Lemma 1, we have for all w ∈ H1(S)

B(w,w) ≥
(
γ − ∥b∥

2
∞

α

)
∥w∥2L2(S), b := µ̄− 1

2divD.

15

Applying this with w = e(t) gives

d

dt
∥e(t)∥2L2(S) ≤ −

2

γ

(
γ − ∥b∥

2
∞

α

)
∥e(t)∥2L2(S).

Since γ > ∥b∥2∞/α, Grönwall’s inequality implies

∥e(t)∥2L2(S) ≤ exp

(
− 2

γ

(
γ − ∥b∥

2
∞

α

)
t

)
∥e(0)∥2L2(S),

and hence

∥V (t)− V π∥L2(S) ≤ exp(−λt) ∥V (0)− V π∥L2(S), λ :=
1

γ

(
γ − ∥b∥

2
∞

α

)
> 0.

B Implementation Details

B.1 Algorithm

The procedures for policy evaluation are summarized in Algorithm 1.

Algorithm 1 Policy evaluation with dTD

Input: policy π
Output: Vθ

Initialize value function Vθ with random parameter θ
for each training step do

Initialize buffer D = ∅ and initial state s0
for each environment step do

at ∼ π(·|st)
st+∆t ∼ p(·|st, at)
D ← D ∪ (st, at, st+∆t, ρt)

end for
for each update step do

Sample a batch of D random transitions from D
θ̄ ← θ
yd ← −ρdt − γVθ̄(s

d
t+∆t)

predd ←
n∑

i=1

(sd,it+∆t − sd,it)

∆t

∂Vθ(s)

∂si

∣∣∣∣
sdt

+
1

2

n∑
i=1

n∑
j=1

(sd,it+∆t − sd,it)(sd,jt+∆t − sd,jt)

∆t

∂2Vθ(s)

∂si∂sj

∣∣∣∣
sdt

Update parameter θ using gradient descent method
θ ← argminθ

1
D

∑D
d=1(yd − predd)

2

end for
end for

B.2 Efficient Computation of the dTD Loss

Since equation (10) involves the Hessian, it may seem that O(n2) (where n is the dimension of the
observation space) computations are required. However, by rearranging the order of calculations,
such as using 〈

∆st,
∂2V (s)

∂s2

∣∣∣∣
st

∆st

〉
=

〈
∆st,

∂

∂s

〈
∂V

∂s
,∆st

〉∣∣∣∣
st

〉
,

we can avoid directly calculating the Hessian and achieve a computation complexity of O(n).

B.3 Hyperparameters for PPO

The search space of the hyperparameters is summarized in Table 2. The values chosen finally are
summarized in Tables 3.

16

Table 2: Hyperparameter search space

Hyperparameter Search Space

environment steps per update
(number of parallel environment: 64) {8, 16, 32}
number of epochs per update range(5, 20)
minibatch size {256, 512}
learning rate log(interval(1e− 6, 5e− 3))
normalize advantage {True,False}
gae lambda interval(0.8, 0.9999)
clip range interval(0.0, 0.9)
entropy coefficient interval(0.0, 0.3)
value loss weight interval(0.0, 1.0)
mixture raio β interval(0.0, 1.0)

Table 3: Best hyperparameters for PPO with TD and β-dTD across environments

Hyperparameter TD β-dTD
Hopper Halfcheetah Ant Humanoid Hopper Halfcheetah Ant Humanoid

environment steps/update 32 16 8 16 32 8 32 16
epochs/update 7 5 11 15 19 9 16 10
minibatch size 512 256 512 512 256 256 256 256
learning rate 1.18e-3 5.93e-4 3.71e-4 1.40e-3 3.52e-4 3.29e-4 7.94e-5 1.08e-3
normalize advantage False False False False False False False False
GAE lambda 0.886 0.833 0.935 0.999 0.998 0.908 0.805 0.888
clip range 0.439 0.268 0.425 0.063 0.075 0.040 0.520 0.713
entropy coefficient 0.121 0.018 0.162 0.021 0.046 0.011 0.133 0.002
value loss weight 0.049 0.513 0.711 0.091 0.675 0.268 0.274 0.054
mixture ratio β — — — — 0.572 0.742 0.241 0.332

B.4 Details of the A2C Implementation

B.4.1 Learning Curves

B.4.2 Hyperparameters for A2C

The search space of the hyperparameters is summarized in Table 4. The values chosen finally are
summarized in Tables 5.

Table 4: Hyperparameter search space

Hyperparameter Search Space

environment steps per update
(number of parallel environment: 64) {8, 16, 32}
number of epochs per update range(5, 20)
minibatch size {256, 512}
learning rate log(interval(1e− 6, 5e− 3))
normalize advantage {True,False}
gae lambda interval(0.8, 0.9999)
entropy coefficient interval(0.0, 0.3)
value loss weight interval(0.0, 1.0)
mixture raio β interval(0.0, 1.0)

B.5 Computing Infrastructure and Reproducibility

Computing infrastructure Experiments were conducted on a machine with four NVIDIA Tesla
V100 GPUs (32GB each) and an Intel Xeon E5-2698 v4 CPU. Although all experiments can be
executed on a single GPU, multiple GPUs were used to run independent trials in parallel for efficiency.

17

0 1 2 ·106
0

0.5

1

1.5

·103

E
pi

so
di

c
re

tu
rn

Hopper (noise: 0.00)

0 1 2 ·106
0

0.5

1

1.5

·103 Hopper (noise: 0.01)

0 1 2 ·106
0

0.5

1

1.5
·103 Hopper (noise: 0.05)

0 1 2 ·106
0

·104

E
pi

so
di

c
re

tu
rn

Halfcheetah (noise: 0.00)

0 1 2 ·106
0

·104 Halfcheetah (noise: 0.01)

0 1 2 ·106
0

1
·104 Halfcheetah (noise: 0.05)

0 1 2 ·106
0

1

2

3

·103

E
pi

so
di

c
re

tu
rn

Ant (noise: 0.00)

0 1 2 ·106
0

1

2

3

·103 Ant (noise: 0.01)

0 1 2 ·106
0

1

2

3
·103 Ant (noise: 0.05)

0 1 2 ·106
0

1

2

3

·102

Total episode step

E
pi

so
di

c
re

tu
rn

Humanoid (noise: 0.00)

0 1 2 ·106
0

2

4

·102

Total episode step

Humanoid (noise: 0.01)

0 1 2 ·106
0

1

2

3

4
·102

Total episode step

Humanoid (noise: 0.05)

Figure 3: Performance of TD, and β-dTD on continuous control benchmark. These results were
obtained using the A2C algorithm. Each column corresponds to different noise levels (coef =
0.00, 0.01, 0.05), and each row corresponds to different environments. The tuned β values for β-dTD
were 0.24, 0.60, 075, 0.47 in Hopper, HalfCheetah, Ant, and Humanoid, respectively.

Table 5: Best hyperparameters for A2C with TD and β-dTD across environments

Hyperparameter TD β-dTD
Hopper Halfcheetah Ant Humanoid Hopper Halfcheetah Ant Humanoid

environment steps/update 32 16 8 16 16 8 8 16
epochs/update 7 5 11 15 16 9 12 19
minibatch size 512 256 512 512 512 256 256 512
learning rate 1.18e-3 5.93e-4 3.71e-4 1.40e-3 1.88e-6 3.52e-4 2.90e-6 6.83e-7
normalize advantage False False False False False False False True
GAE lambda 0.886 0.833 0.935 0.999 0.890 0.950 0.960 0.827
entropy coefficient 0.121 0.018 0.162 0.021 0.031 5.38e-6 0.094 0.046
value loss weight 0.049 0.513 0.711 0.091 0.825 0.602 0.457 0.546
mixture ratio β — — — — 0.244 0.598 0.750 0.467

Training time Hyperparameter tuning typically took 6–9 hours depending on the environment.
Training time for the final runs depended on the environment and ranged from 10 to 60 minutes.

Reproducibility All experiments were conducted with the random seed fixed in the training
scripts. However, MuJoCo (accessed via Brax) uses its own internal random seed that is not
directly controllable, so full determinism cannot be ensured. The code is available at https:
//github.com/4thhia/differential_TD for reproducibility.

18

https://github.com/4thhia/differential_TD
https://github.com/4thhia/differential_TD

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We not only theoretically developed a model-free, TD method based on
the HJB equation for continuous systems, but also validated the potential effectiveness
empirically.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: On the theoretical aspect, we clearly noted that currently the proposed method
is not applicable to off-policy settings. On the empirical side, we found that the proposed
method might work similarly to the baseline method when the process noise is large.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

19

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The assumptions are clearly stated, and we added further explanations about
them. Full proofs of the propositions are provided in the main text and in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the experimental settings are described in the main text and the appendix.
We also made the codes publicly available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

20

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We made the codes publicly available. The RL environment we used is
originally publicly available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the experimental settings are described in the main text and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The achieved rewards are compared considering the variance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All the experimental settings are described in the main text and the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [No]

Justification: The study is strongly from the theoretical perspective, and we do not think it is
straightforward to discuss the direct societal impact at this stage.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

22

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We referred to the libraries we used in the experiment.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

23

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We gave description along with the codes.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

24

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: NA
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Background
	Problem Setting
	Continuous RL
	Natural Target of Continuous RL
	Contrast with Stochastic Control

	TD Method for Stochastic Continuous Dynamics
	Deriving TD from the HJB equation
	Convergence Analysis

	Method
	Loss function
	Hybrid scheme for stabilizing dTD

	Experiments
	Modification for discrete environment compatibility
	Experiment design
	Results and discussion

	Conclusion
	Mathematical Details
	Justification for the Continuous RL Formulation
	Ito formula
	Convergence of dTD
	Proof of Lemma 1
	Proof of Proposition 2

	Implementation Details
	Algorithm
	Efficient Computation of the dTD Loss
	Hyperparameters for PPO
	Details of the A2C Implementation
	Learning Curves
	Hyperparameters for A2C

	Computing Infrastructure and Reproducibility

