
Collaborative Learning with Different Labeling Functions

Yuyang Deng * 1 Mingda Qiao * 2

Abstract

We study a variant of Collaborative PAC Learning,
in which we aim to learn an accurate classifier for
each of the n data distributions, while minimizing
the number of samples drawn from them in total.
Unlike in the usual collaborative learning setup, it
is not assumed that there exists a single classifier
that is simultaneously accurate for all distribu-
tions. We show that, when the data distributions
satisfy a weaker realizability assumption, which
appeared in (Crammer & Mansour, 2012) in the
context of multi-task learning, sample-efficient
learning is still feasible. We give a learning al-
gorithm based on Empirical Risk Minimization
(ERM) on a natural augmentation of the hypoth-
esis class, and the analysis relies on an upper
bound on the VC dimension of this augmented
class. In terms of the computational efficiency,
we show that ERM on the augmented hypothesis
class is NP-hard, which gives evidence against
the existence of computationally efficient learners
in general. On the positive side, for two special
cases, we give learners that are both sample- and
computationally-efficient.

1. Introduction
In recent years, the remarkable success of data-driven ma-
chine learning has transformed numerous domains using the
vast and diverse datasets collected from the real world. An
ever-increasing volume of decentralized data is generated on
a multitude of distributed devices, such as smartphones and
personal computers. To better utilize these distributed data
shards, we are faced with a challenge: how to effectively
learn from these heterogeneous and noisy data sources?

Authors are listed in alphabetical order. 1Pennsylvania
State University, State College, PA, USA 2University of
California, Berkeley, Berkeley, CA, USA. Correspon-
dence to: Yuyang Deng <yzd82@psu.edu>, Mingda Qiao
<mingda.qiao@berkeley.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

Collaborative PAC Learning (Blum et al., 2017) is a theo-
retical framework that abstracts the challenge above. In this
model, there are n data distributions D1,D2, . . . ,Dn, from
which we can adaptively sample. We are asked to learn n
classifiers f̂1, f̂2, . . . , f̂n, such that each f̂i has an error at
most ϵ onDi. The goal is to minimize the number of labeled
examples that we sample from the n distributions in total.

Note that if we ignore the potential connection among the n
learning tasks and solve them separately, the sample com-
plexity is necessarily linear in n. Previously, Blum et al.
(2017) introduced a sample-efficient algorithm when all
distributions admit the same labeling function, i.e., some
classifier in the hypothesis class has a zero error on every
Di. Their algorithm has an O((d+ n) log n) sample com-
plexity, where d is the VC dimension of hypothesis class.1

When d is large, the overhead of the sample complexity is
significantly reduced from n to log n.

However, in the real world, it is often too strong an assump-
tion that every data distribution is consistent with the same
ground truth classifier. This is especially true when we are
learning for a diverse population consisting of multiple sub-
groups, each with different demographics and preferences.
In light of this, we study a model of collaborative learn-
ing with different labeling functions. In particular, we aim
to determine the conditions under which sample-efficient
learning is viable when the data from different sources are
labeled differently, and find the optimal sample complexity.

The contribution of this work is summarized as follows; see
Section 3 for formal statements of our results.

• We formalize a model of collaborative learning with
different labeling functions, and a sufficient condi-
tion, termed (k, ϵ)-realizability, for sample-efficient
collaborative learning. This realizability assumption
was used by Crammer & Mansour (2012) in the con-
text of multi-task learning. Under this assumption,
we give a learning algorithm with sample complexity
O(kd log(n/k) + n log n). This algorithm is based on
Empirical Risk Minimizarion (ERM) over an augmen-
tation of the hypothesis class.

1For brevity, we treat the accuracy and confidence parameters
as constants here.

1

Collaborative Learning with Different Labeling Functions

• We show that the ERM problem over the augmented
hypothesis class is always NP-hard when k ≥ 3, and
NP-hard for a specific hypothesis class when k = 2.
This rules out efficient learners based on ERM, as well
as strongly proper learners that always output at most
k different classifiers in the hypothesis class.

• Finally, we identify two cases in which computation-
ally efficient learning is possible. When all distribu-
tions share the same marginal distribution on X , we
give a simple polynomial-time algorithm that matches
the information-theoretic bound. When the hypothesis
class satisfies a “2-refutability” assumption, we give
a different algorithm based on approximate graph col-
oring, which outperforms the naı̈ve approach with an
Ω(nd) sample complexity.

2. Problem Setup
We adopt the following standard model of binary classifi-
cation: The hypothesis class F ⊆ {0, 1}X is a family of
binary functions over the instance space X . A data distri-
bution D is a distribution over X × {0, 1}. The population
error of a function f : X → {0, 1} on data distribution D
is defined as

errD(f) := Pr
(x,y)∼D

[f(x) ̸= y] .

A dataset is a multiset with elements in X × {0, 1}. The
training error of f : X → {0, 1} on dataset S =
{(xi, yi)}i∈[m] is defined as

errS(f) :=
1

m

m∑
i=1

1 {f(xi) ̸= yi} .

The learning algorithm is given sample access to n data
distributions D1,D2, . . . ,Dn. At each step, the algorithm
is allowed to choose one of the n distributions (possibly
depending on the previous samples) and draw a labeled ex-
ample from it. The algorithm may terminate at any time and
return n functions f̂1, f̂2, . . . , f̂n. The learning algorithm is
(ϵ, δ)-PAC if it satisfies

Pr
[
errDi

(f̂i) ≤ ϵ, ∀i ∈ [n]
]
≥ 1− δ.

The sample complexity of the algorithm is the expected
number of labeled examples sampled in total.

Note that the above is almost the same as the personalized
setup (i.e., the algorithm may output different classifiers for
different distributions) of the model of Blum et al. (2017),
except that in their model, in addition, it is assumed that
there exists a classifier in F with a zero error on every Di.

3. Overview of Our Results
A sufficient condition for sample-efficient learning. We
start by stating a sufficient condition for n distributions to
be learnable with a sample complexity that is (almost) linear
in some parameter k instead of in n.

Definition 3.1 ((k, ϵ)-Realizability). Distributions D1, D2,
. . ., Dn are (k, ϵ)-realizable with respect to hypothesis
class F , if there exist f∗

1 , f
∗
2 , . . . , f

∗
k ∈ F such that

minj∈[k] errDi
(f∗

j) ≤ ϵ holds for every i ∈ [n].

In words, (k, ϵ)-realizability states that we can find k classi-
fiers in F , such that on each of the n distributions, at least
one of the classifiers achieves a population error below ϵ.

Our first result is a general algorithm that efficiently learns
under the (k, ϵ)-realizability assumption.

Theorem 3.2. Suppose that D1,D2, . . . ,Dn are (k, ϵ)-
realizable with respect to hypothesis class F . For any δ > 0,
there is an (8ϵ, δ)-PAC algorithm with sample complexity

O

(
kd log(n/k) log(1/ϵ)

ϵ
+

n log k log(1/ϵ) + n log(n/δ)

ϵ

)
.

Viewing ϵ and δ as constants, the sample complexity reduces
to O(kd log(n/k)+n log n). When d is large, the overhead
in the sample complexity is k log(n/k), which interpolates
between the O(log n) overhead at k = 1 (shown by (Blum
et al., 2017)) and the O(n) overhead at k = n (where
the n learning tasks are essentially unrelated, and a linear
overhead is unavoidable).

The factor 8 in the PAC guarantee can be replaced by any
fixed constant that is strictly greater than 1, at the cost of
a different hidden constant in the sample complexity. This
follows from straightforward modifications to our proof.

While we prove Theorem 3.2 (as well as the other positive
results in the paper) under the assumption that the learning
algorithm is given the value of k, this assumption can be
removed via a standard doubling trick: We consider a se-
quence of guesses on the value of k: 1 = k1 < k2 < k3 <
· · · , where each ki+1 is the smallest value of k such that
the sample complexity bound is at least twice the bound
for ki. Then, we run the learning algorithm with k set to
k1, k2 − 1, k2, k3 − 1, k3, . . . in order, and terminate the
algorithm as soon as we are convinced that the actual k is
larger than the current guess. This procedure succeeds as
soon as the guess exceeds the actual value of k, and the
sample complexity only increases by a constant factor.

We prove Theorem 3.2 using the following natural augmen-
tation of the instance space and the hypothesis class.

Definition 3.3 ((G, k)-Augmentation). Let F be a hypoth-
esis class over instance space X . For finite set G and
k ∈ [|G|], the (G, k)-augmentation of F is the hypothe-

2

Collaborative Learning with Different Labeling Functions

sis class FG,k over X ′ := G×X defined as:

FG,k :=
{
gf,c : f ∈ Fk, c ∈ [k]G

}
,

where for f = (f1, f2, . . . , fk) and c = (ci)i∈G, gf,c is the
function that maps (i, x) ∈ X ′ to fci(x).

When G = [n] for some integer n, we use the shorthands
“Fn,k” and “(n, k)-augmentation”.

Definition 3.3 becomes more natural in light of the following
observation. For each i ∈ [n], let D′

i be the distribution of
((i, x), y) when (x, y) is drawn from Di. Then, for any
f ∈ Fk and c ∈ [k]n, we have

errD′
i
(gf,c) = Pr

((i,x),y)∼D′
i

[gf,c(i, x) ̸= y]

= Pr
(x,y)∼Di

[fci(x) ̸= y] = errDi(fci).

In particular, when distributions D1,D2, . . . ,Dn are (k, ϵ)-
realizable w.r.t. F , by definition, there exist k classifiers
f1, f2, . . . , fk ∈ F and n numbers c1, c2, . . . , cn ∈ [k]
such that errDi

(fci) ≤ ϵ. Then, the corresponding gf,c has
a population error of at most ϵ on every D′

i. This reduces
the problem to an instance of collaborative learning on hy-
pothesis class Fn,k and distributions D′

1 through D′
n, with a

single unknown classifier that is simultaneously ϵ-accurate
for all D′

i (i.e., the (1, ϵ)-realizability assumption).

Our proof of Theorem 3.2 first upper bounds the VC dimen-
sion of Fn,k by a function of n, k, and the VC dimension
of F . Then, we adapt an algorithm of Blum et al. (2017) to
achieve the sample complexity bound.

A sample complexity lower bound. Complementary to
Theorem 3.2, our next result shows that the sample complex-
ity can be lower bounded in terms of the sample complexity
for the (1, 0)-realizable case.

Theorem 3.4. Let m(n, d, ϵ, δ) denote the optimal sam-
ple complexity of (ϵ, δ)-learning on a hypothesis class
of VC dimension d and n distributions that are (1, 0)-
realizable. Then, under the (k, 0)-realizable assump-
tion, the sample complexity is lower bounded by Ω(k) ·
m (⌊n/k⌋, d, ϵ, O(δ/k)).

Theorem 3.1 of Blum et al. (2017) bounds m(n, d, ϵ, δ) by

O

(
log n

ϵ
((d+ n) log(1/ϵ) + n log(n/δ))

)
,

which contains a (d log n)/ϵ term. Assuming that this term
is unavoidable (i.e., m(n, d, ϵ, δ) = Ω((d log n)/ϵ)), by
Theorem 3.4, we have a lower bound of Ω

(
kd log(n/k)

ϵ

)
for the (k, 0)-realizable case. In other words, the leading
term of the sample complexity in Theorem 3.2 is necessary.
Proving such an Ω(d log n) lower bound, however, is still

an open problem, even under the additional restriction that
the learner must output the same function for all the n dis-
tributions (see Problem 2 in the COLT’23 open problem
of Awasthi et al. (2023)).

Intractability of ERM and proper learning. A down-
side of Theorem 3.2 is that the learning algorithm might not
be computationally efficient, even if there is a computation-
ally efficient learner for F in the usual PAC learning setup.
Concretely, our learning algorithm requires Empirical Risk
Minimization (ERM) on Fn,k, the (n, k)-augmentation of
F . The straightforward approach involves enumerating all
partitions of [n] into k sets, which takes exponential time.2

Our next result shows that this ERM problem generalizes
certain intractable discrete optimization problems, and is
unlikely to be efficiently solvable. We first give a formal
definition of the an ERM oracle.

Definition 3.5 (ERM Oracle). An ERM oracle for hypothe-
sis class F ⊆ {0, 1}X is an oracle that, given any dataset S,
returns f∗ ∈ argminf∈F errS(f).

To state the hardness result rigorously, we need to consider a
parametrized family of hypothesis classes instead of a fixed
one.

Definition 3.6 (Regular Hypothesis Family). A regular hy-
pothesis family is {(Xd,Fd)}d∈N that satisfies the following
for every d:

• Fd is a collection of binary functions over Xd with VC
dimension at least d.

• There is an efficient algorithm that, given d, outputs
x1, x2, . . ., xd ∈ Xd that are shattered by Fd.

Remark 3.7. The first condition prevents the family from
containing only simple classes with bounded VC dimen-
sions. The second condition allows us to efficiently find
witnesses for the VC dimension. Note that the second condi-
tion holds for natural hypothesis classes such as halfspaces
and parity functions, the VC dimension of which can be
lower bounded in a constructive way.

We will show that the following decision version of
ERM is already hard for Fn,k: instead of finding f∗ ∈
argminf∈Fn,k

errS(f), we are only required to decide
whether minf∈Fn,k

errS(f) is 0 or not.
Problem 1 (ERM over Augmented Classes). For a regular
hypothesis family {(Xd,Fd)}d∈N, an instance of the ERM
problem consists of parameters (d, n, k) and n datasets
S1, S2, . . . , Sn ⊆ Xd × {0, 1}. The goal is to decide
whether there exist classifiers f1, f2, . . . , fk ∈ Fd such
that for every i ∈ [n], minj∈[k] errSi

(fj) = 0.
2There is a faster algorithm via dynamic programming, though

its runtime is still 2Ω(n).

3

Collaborative Learning with Different Labeling Functions

Remark 3.8. Problem 1 is equivalent to deciding whether
there exists a classifier f ∈ Fn,k with a zero training error
on the dataset {((i, x), y) : i ∈ [n], (x, y) ∈ Si}. Therefore,
if we could efficiently implement the ERM oracle for Fn,k,
we would be able to solve Problem 1 efficiently as well.

Now we are ready to state our intractability result.

Theorem 3.9. For any regular hypothesis family, ERM over
augmented classes (Problem 1) is NP-hard for any k ≥ 3.
Furthermore, there exists a regular hypothesis family on
which Problem 1 is polynomial-time solvable for k = 1 but
NP-hard for k = 2.

One might argue that Theorem 3.9 only addresses the worst
case, and does not exclude the possibility of efficiently im-
plementing ERM (with high probability) over datasets that
are randomly drawn. In Appendix D.3, we state and prove a
“distributional” analogue of Theorem 3.9, which shows that
it is also unlikely for an efficient (and possibly randomized)
algorithm to succeed on randomly drawn samples.

Recall that a proper learner is one that always returns hy-
potheses in the hypothesis class. In our setup, we say that
a learning algorithm is strongly proper if, when executed
under the (k, ϵ)-realizability assumption, it always outputs
n functions f̂1, . . . , f̂n ∈ F such that |{f̂1, . . . , f̂n}| ≤ k.
Note that the (k, ϵ)-realizability assumption implies that it
is always possible to find accurate classifiers that satisfy this
constraint. Unfortunately, our proof of Theorem 3.9 also
implies that, unless RP = NP, no strongly proper learner
can be computationally efficient in general.

Efficient algorithms for special cases. Despite the com-
putational hardness in the general case, we identify two
special cases in which computationally efficient learners
exist, assuming an efficient ERM for F .

The first case is when the n data distributions share the same
marginal over X .

Theorem 3.10. Suppose that D1,D2, . . . ,Dn are (k, ϵ)-
realizable and have the same marginal distribution on X .
Fix constant α > 0. For any δ > 0, there is a ((3 + α)ϵ, δ)-
PAC algorithm that runs in poly(n, k, 1/ϵ, log(1/δ)) time,
makes at most k calls to an ERM oracle for F , and has a
sample complexity of

O

(
kd log(1/ϵ)

ϵ
+

n log(n/δ)

ϵ

)
.

Our algorithm for the theorem above follows a similar ap-
proach to the lifelong learning algorithms in (Balcan et al.,
2015; Pentina & Urner, 2016).

Our next positive result applies to hypothesis classes that
are 2-refutable in the sense that whenever a dataset cannot

be perfectly fit by F , it contains two labeled examples that
explain this inconsistency.

Definition 3.11 (2-Refutability). A hypothesis class F ⊆
{0, 1}X is 2-refutable if, for any dataset S such that
minf∈F errS(f) > 0, there is S′ = {(x1, y1), (x2, y2)} ⊆
S such that minf∈F errS′(f) > 0.

The following gives examples of natural hypothesis classes
that are 2-refutable, and shows that 2-refutability is pre-
served under certain operations.
Example 3.12. The following hypothesis classes are 2-
refutable:

• F = {0, 1}X . Any dataset that cannot be perfectly
fit by F must contain both (x, 0) and (x, 1) for some
x ∈ X .

• F = {f : X → {0, 1} :
∑

x∈X f(x) ≤ 1}. Any
dataset that cannot be perfectly fit by F must contain
(x1, 1) and (x2, 1) for different x1, x2 ∈ X .

• F = {f ′ ◦ g : f ′ ∈ F ′}, where F ′ ⊆ {0, 1}X ′
is

2-refutable and g : X → X ′ is fixed.

• F = {f ′ ⊕ g : f ′ ∈ F ′}, where F ′ ⊆ {0, 1}X is
2-refutable, g : X → {0, 1} is fixed, and ⊕ denotes
pointwise XOR.

Assuming that the hypothesis class is 2-refutable and the
data distributions are (k, 0)-realizable, ERM on the aug-
mented class Fn,k gets reduced to graph coloring, in light
of the following definition and simple lemma.

Definition 3.13 (Conflict Graph). The conflict graph in-
duced by datasets S1, S2, . . . , Sn and hypothesis class F is
an undirected graph G = ([n], E), where {i, j} ∈ E if and
only if minf∈F errSi∪Sj (f) > 0.

Lemma 3.14. Let F be a 2-refutable hypothesis class.
Datasets S1, . . . , Sn satisfy minf∈F errSi(f) = 0 for every
i ∈ [n]. Let V be an independent set in the conflict graph
induced by S1, S2, . . . , Sn and F . Then, for S′ =

⋃
i∈V Si,

it holds that minf∈F errS′(f) = 0.

Proof. Suppose for a contradiction that minf∈F errS′(f)
is non-zero. Since F is 2-refutable, there exist i1, i2 ∈ V ,
(x1, y1) ∈ Si1 and (x2, y2) ∈ Si2 such that no classifier in
F correctly labels both examples. If i1 = i2, this contradicts
the assumption minf∈F errSi1

(f) = 0. If i1 ̸= i2, i1 and i2
must be neighbours in the conflict graph, which contradicts
the independence of V .

Assuming that the datasets are drawn from distributions
are (k, 0)-realizable, the induced conflict graph must be k-
colorable. If we could find a valid k-coloring efficiently,
each color corresponds to an independent set of the graph.

4

Collaborative Learning with Different Labeling Functions

By Lemma 3.14, we can call the ERM oracle for F to find
a consistent function. Combining the functions for the k
different colors gives a solution to the ERM problem over
the augmented class Fn,k.

Unfortunately, graph coloring is NP-hard when k ≥ 3. Nev-
ertheless, there are efficient algorithms for approximate
coloring, i.e., color a graph using a few colors, when the
graph is promised to be k-colorable for some small k. The
definition below together with Theorem 3.16 gives a way
of systematically translating an approximate coloring algo-
rithm into an efficient algorithm for collaborative learning.

Definition 3.15. For k ≥ 3, let c∗k ∈ (0, 1] denote any
constant such that any k-colorable graph with n vertices can
be efficiently colored with O(nc∗k) colors.

A result of Karger, Motwani and Sudan (Karger et al., 1998)
shows that we can take c∗k = 1 − 3

k+1 + ϵ for any ϵ > 0.
For k = 3, a more recent breakthrough of Kawarabayashi &
Thorup (2017) gives c∗3 = 0.19996.

Theorem 3.16. Suppose that D1,D2, . . . ,Dn are (k, 0)-
realizable with respect to a 2-refutable hypothesis class F .
For any δ > 0, there is an (ϵ, δ)-PAC algorithm that runs in
poly(n, k, 1/ϵ, log(1/δ)) time, makes poly(n) calls to an
ERM oracle for F , and has a sample complexity of

O

(
d log(1/ϵ) + n

ϵ
· log n+

n log(1/δ)

ϵ

)
if k = 2, and

O

(
d log(1/ϵ) + n

ϵ
· nc∗k +

n log(1/δ)

ϵ

)
if k ≥ 3.

Note that when k = 2, the sample complexity is as good
as the one in Theorem 3.2. When k ≥ 3, the overhead in-
creases from log n to poly(n). Nevertheless, this overhead
is still sub-linear in n for any fixed k.

4. Related Work
Most closely related to our work are the previous stud-
ies of Collaborative PAC Learning (Blum et al., 2017;
Nguyen & Zakynthinou, 2018; Chen et al., 2018; Qiao,
2018) and related fields such as multi-task learning (Han-
neke & Kpotufe, 2022), multi-distribution learning (Hagh-
talab et al., 2022; Awasthi et al., 2023; Peng, 2023; Zhang
et al., 2023), federated learning (McMahan et al., 2017;
Mohri et al., 2019; Cheng et al., 2023) and multi-source
domain adaptation (Mansour et al., 2008; Konstantinov &
Lampert, 2019; Mansour et al., 2021).

In multi-task learning/multi-source domain adaptation, there
are n distributions, each with a fixed number of samples,

and our goal is to use these samples to learn a hypothesis
that has a small risk on some target distribution. A line
of works (Ben-David et al., 2010; Konstantinov & Lam-
pert, 2019; Mansour et al., 2021) studied the generalization
risk in this scenario, but their bounds all depend on the dis-
crepancy among n distributions and contain non-vanishing
residual constants. To avoid this residual constant in the
bounds, Hanneke & Kpotufe (2022) considered a Bernstein
condition assumption on the hypothesis class and some
transferrability assumptions between the n source distribu-
tions and the target distribution. They studied the minimax
rate of this learning scenario, and gave a nearly-optimal
adaptation algorithm. Specially, some works studied the
multi-task linear regression (Yang et al., 2020; Huang et al.,
2023). Yang et al. (2020) considered linear regression from
multiple distributions, where all tasks share the same in-
put feature covariate X ∈ Rm×d, but with different label-
ing functions. They designed the Hard Parameter Sharing
estimator and established an excess risk upper bound of
O(dσ

2

m + heterogeneity). Recently, Huang et al. (2023)
proposed the s-sparse heterogeneity assumption among the
labeling functions in multi-task linear regression, and de-
signed an algorithm which achieves an O(sσ

2

mi
+ dσ2∑n

i=1 mi
)

excess risk on the i-th task. Notice that when s is smaller
than d, this bound is strictly sharper than individual learning
bound O(dσ

2

mi
). The difference between our scenario and

multi-task learning is that we allow the learner to draw an
arbitrary number of samples from each distribution, instead
of assuming that each distribution only has a fixed number
of samples.

Federated learning is another relevant key learning scenario,
where n players with their own underlying distributions, and
fixed number of samples drawn from them, aim at learning
model(s) that can have small risk on everyone’s distribution.
A line of works aimed at studying its statistical proper-
ties (Chen et al., 2023; Cheng et al., 2023; Mohri et al.,
2019). (Chen et al., 2023) studied the minimax risk of feder-
ated learning in logistic regression setting, and showed that
the minimax risk is controlled by the heterogeneity among
n distributions and their labeling functions. Cheng et al.
(2023) studied the risk bound of federated learning in the
linear regression setting, and in an asymptotic fashion when
the dimension of the model goes to infinity. Similar to multi-
task learning, federated learning also assumes each player
only has fixed number of samples, and the analysis does not
give a PAC learning bound.

Multi-distribution learning was recently proposed by Hagh-
talab et al. (2022), where n players try to learn a single
model f̂ , that can have an ϵ excess error on the worst case
distribution among n players, i.e., maxi∈[n] errDi

(f̂) ≤
ϵ + OPT. They gave an algorithm with sample complex-
ity O(d logn

ϵ2 + nd log(d/ϵ)
ϵ), and proved a lower bound of

5

Collaborative Learning with Different Labeling Functions

Ω̃(d+k
ϵ2). Note that this is a more pessimistic learning guar-

antee than ours, since the value OPT can be very large.
Very recently, two concurrent papers (Peng, 2023; Zhang
et al., 2023) gave algorithms that match this lower bound,
resolving some of the open problems formulated in (Awasthi
et al., 2023).

We defer the discussion on other related work in the theoreti-
cal computer science literature—including mixture learning
from batches, the computational hardness of learning, and
approximate coloring—to Appendix A.

5. Sample Complexity Upper Bound
The key step in our proof of Theorem 3.2 is the following
upper bound on the VC dimension of Fn,k.

Lemma 5.1. For any n ≥ k ≥ 1 and hypothesis class F
of VC dimension d, the VC dimension of Fn,k is at most
O(kd+ n log k).

Lemma 5.1 implies that in general, FG,k has a VC dimen-
sion of O(kd + |G| log k). To gain some intuition behind
the bound in Lemma 5.1, suppose that F is a finite class
of size 2d. By Definition 3.3, the size of Fn,k is at most
|F|k ·kn = 2kd+n log2 k, and the bound in the lemma imme-
diately follows. The actual proof, of course, needs to deal
with the case that F is larger or even infinite.

The lemma improves a previous result of Crammer & Man-
sour (2012), which upper bounds the VC dimension of
Fn,k (called the class of “hard k-shared task classifiers”)
by O(kd log(nkd) + n log k). Note that this bound can be
looser than the one in Lemma 5.1 by a logarithmic factor.

Proof of Lemma 5.1. We will show that, for some integer
m ≥ kd to be chosen later, no m instances in X ′ = [n] ×
X can be shattered by Fn,k. This upper bounds the VC
dimension of Fn,k by m− 1.

Fix a set S of m elements in X ′. To bound the number of
ways in which S can be labeled by Fn,k, we also fix c∗ ∈
[k]n and focus on the classifiers in Fn,k associated with c∗.
Note that c∗ naturally partitions S into S1 ∪ S2 ∪ · · · ∪ Sk,
where Sj := {(i, x) ∈ S : c∗i = j}. Furthermore, let
Xj := {x ∈ X : (i, x) ∈ Sj , ∃i ∈ [n]} be the projection of
Sj to X . Note that we have

k∑
j=1

|Xj | ≤
k∑

j=1

|Sj | = |S| = m.

Let Φ(·) be the growth function of hypothesis classF . Then,
for each fixed c∗ ∈ [k]n, the number of ways in which S
can be labeled by classifiers in {gf,c∗ : f ∈ Fk} ⊆ Fn,k is

at most

Nc∗ ≤
k∏

j=1

Φ(|Xj |).

By the Sauer-Shelah-Perles lemma, we have the following
upper bound:

Φ(m) ≤ Φ(m) :=

{
em, m ≤ d,(
em
d

)d
, m > d.

It can be verified that the function m 7→ lnΦ(m) is mono-
tone increasing and concave on [0,+∞). It then follows
from

∑k
j=1 |Xj | ≤ m that

lnNc∗ ≤ k · 1
k

k∑
j=1

lnΦ(|Xj |)

≤ k · lnΦ

1

k

k∑
j=1

|Xj |

 (concavity)

≤ k · lnΦ
(m
k

)
(monotonicity)

= kd ln
em

kd
. (m ≥ kd)

Then, summing over the kn different choices of c∗, the
logarithm of the growth function of Fn,k at m is at most

ln

 ∑
c∈[k]n

Nc

 ≤ n ln k + kd ln
em

kd
.

For some sufficiently large m = O(n log k+kd), the above
is strictly smaller than ln(2m), which means that the m
points in S cannot be shattered by Fn,k.

Given Lemma 5.1, Theorem 3.2 essentially follows from the
learning algorithm of Blum et al. (2017) for the personalized
setup, with slight modifications. For completeness, we state
the algorithm and prove its correctness in Appendix B.

6. Evidence of Intractability
In this section, we sketch the proof of Theorem 3.9.

6.1. Reduction from Graph Coloring

We prove the first part (the k ≥ 3 case) by a reduction from
graph k-coloring, which is well-known to be NP-hard.

Proof sketch of Theorem 3.9 (the first part). For every k-
coloring instance G = (V,E), we construct an instance
of Problem 1 with parameters k and d = n = |V |. Without
loss of generality, we assume V = [n]. By Definition 3.6,
we can efficiently find n instances x1, x2, . . . , xn ∈ Xd that
are shattered by Fd.

6

Collaborative Learning with Different Labeling Functions

For each i ∈ [n], we define the i-th dataset as

Si := {(xi, 1)} ∪ {(xj , 0) : {i, j} ∈ E}.

It can be shown that G has a k-coloring if and only if the
ERM instance is feasible, i.e., the n datasets can be perfectly
fit by k classifiers from Fd. This reduces k-coloring to
Problem 1 and proves the first part of Theorem 3.9.

6.2. Hardness under Two Labeling Functions

Next, we deal with the k = 2 case. Since 2-coloring can be
efficiently solved, we must reduce from a different NP-hard
problem. Intuitively, we want the problem to correspond
to partitioning a set into k = 2 parts. This motivates our
reduction from a version of subset sum.

Proof sketch of Theorem 3.9, the second part. For each in-
teger d ≥ 1, we consider the instance space Xd :=
[d]× {0, 1, . . . , 2d} and the following hypothesis class:

Fd :=

{
fθ : θ ∈ {0, 1, . . . , 2d}d,

d∑
i=1

θi ≤ 2d

}
,

where fθ is defined as fθ(i, j) = 1 {j ≤ θi}. In other
words, each fθ ∈ Fd can be viewed as a direct product of
d threshold functions, subject to that the thresholds sum up
to ≤ 2d. It can be verified that {(Xd,Fd)}d∈N is a regular
hypothesis family, and the k = 1 case of Problem 1 is easy.

Now, we consider a specific choice of the datasets: for each
i ∈ [n], the i-th dataset contains exactly one data point of
form (i, ai) with label 1. The key observation is that the
ERM problem for k = 2 is equivalent to deciding whether
{a1, . . . , an} can be partitioned into two parts, each with
sum ≤ 2d. This problem can be shown to be NP-hard by a
reduction from the standard subset sum problem.

7. Efficient Learning via Approximate
Coloring

In this section, we prove Theorem 3.16, which gives efficient
learning algorithms when the hypothesis class is 2-refutable.

7.1. The Learning Algorithm

The two cases are proved via a common strategy. In each
iteration, we carefully choose a parameter m and draw m
samples from each distribution. We use an approximate col-
oring algorithm to color the conflict graph (Definition 3.13)
induced by the datasets. For each color that is used by
considerably many vertices, we combine the corresponding
datasets and fit a classifier to this joint dataset. The key is to
argue that this classifier must be accurate for many distribu-
tions. Finally, we repeat the above on the distributions that
have not received an accurate classifier.

We formally define a meta-algorithm in Algorithm 1. In the
r-th iteration of the while-loop, we draw m(r) samples from
each of the remaining distributions in G(r). We then build
the conflict graph based on these datasets, and compute a
γ(r)-coloring of the graph. The vertices that receive color i
are denoted by Gi, and ĝi is chosen as an arbitrary classifier
inF that is consistent with Sv for every v ∈ Gi. This choice
is always possible by Lemma 3.14.

The algorithm is under-specified in three aspects: the num-
ber of samples m(r), the number of colors γ(r), as well
as the algorithm for computing a γ(r)-coloring. We will
specify these choices when we prove Theorem 3.16 later.

Algorithm 1 Collaborative Learning via Approximate Col-
oring

1: Input: 2-refutable hypothesis class F . Sample access
to D1, . . . ,Dn. Parameters k, ϵ, δ, c.

2: Output: Hypotheses f̂1, f̂2, . . . , f̂n.
3: r ← 1; G(1) ← [n];
4: while G(r) ̸= ∅ do
5: δ(r) ← δ/r2;
6: Set parameters m(r) and γ(r) according to |G(r)|, d,

ϵ, δ(r);
7: for i ∈ G(r) do
8: Draw m(r) samples from Di to form Si;
9: end for

10: (G(r), E)← conflict graph of {Si : i ∈ G(r)};
11: Compute a γ(r)-coloring of (G(r), E). Let Gi ⊆

G(r) denote the set of vertices with color i;
12: G(r+1) ← G(r);
13: for i ∈ [γ(r)] such that |Gi| ≥ |G(r)|/(2γ(r)) do
14: Find ĝi ∈ F such that errSv

(ĝi) = 0, ∀v ∈ Gi;
15: for v ∈ Gi do
16: Draw c · ln(|G

(r)|/δ(r))
ϵ samples fromDv to form

Sv;
17: if errSv (ĝi) ≤ ϵ/2 then
18: f̂v ← ĝi;
19: G(r+1) ← G(r+1) \ {v};
20: end if
21: end for
22: end for
23: r ← r + 1;
24: end while
25: Return f̂1, f̂2, . . . , f̂n;

7.2. A Key Technical Lemma

We state and prove a key technical lemma in the analysis of
Algorithm 1. The lemma states that whenever we find an
approximate coloring of the conflict graph, the coloring can
guide us to cluster the datasets and learn classifiers that are
accurate on average. The remainder of the proof is relatively
standard and thus deferred to Appendix F.

7

Collaborative Learning with Different Labeling Functions

Lemma 7.1. There is a universal constant c > 0 such that
the following holds. In the r-th iteration of the while-loop,
if m(r) is at least

c ·max

{
γ(r)

|G(r)|
· d ln(1/ϵ) + |G

(r)|+ ln(1/δ(r))

ϵ
,

ln(|G(r)|/δ(r))
}
,

it holds with probability 1− δ(r)/6 that, for every i ∈ [γ(r)]
such that |Gi| ≥ |G(r)|/(2γ(r)),

1

|Gi|
∑
v∈Gi

errDv
(ĝi) ≤ ϵ/8.

The proof is based on similar techniques to the analysis
of (Qiao, 2018) for a different variant of collaborative learn-
ing, in which a small fraction of the data sources are adver-
sarial.

Proof. For brevity, we omit the superscripts in m(r), δ(r)

and γ(r). Let M := m · |G(r)|
4γ . Consider the follow-

ing thought experiment: We draw M independent sam-
ples z(i)1 , z

(i)
2 , . . . , z

(i)
M from each Di. (Recall that in Algo-

rithm 1, only m ≪ M data points are actually drawn to
form the dataset Si.) Independently, for each non-empty
U ⊆ G(r), we choose a sequence A(U) ∈ UM uniformly
at random. We may then consider the fictitious dataset
S(U) =

{
S
(U)
1 , . . . , S

(U)
M

}
defined as:

S
(U)
i := z

(j)
k , where j = A

(U)
i , k =

i∑
l=1

1

{
A

(U)
l = j

}
.

In words, for each i ∈ U , if entry i appears t times in
sequence A(U), S(U) contains the first t data points collected
from Di (namely, z(i)1 , . . . , z

(i)
t). It can be easily verified

that, over the randomness in all z(i) and A(U), each fictitious
dataset S(U) is identically distributed as M samples from
the uniform mixture DU := 1

|U |
∑

i∈U Di.

The rest of the proof consists of two parts: First, we show
that with high probability, every S(U) is “representative” for
distribution DU . Formally, any classifier in F with a zero
training error on S(U) must have an O(ϵ) population error
onDU . Then, we show that for each color i ∈ [γ], the actual
datasets (each of size m) collected from the distributions
with color i can simulate the fictitious dataset S(Gi).

Step 1: Fictitious datasets are representative. For each
fixed non-empty U ⊆ G(r), Theorems 28.3 and 28.4
in (Shalev-Shwartz & Ben-David, 2014) imply that for some
universal constant c′ > 0,

Pr [∀f ∈ F , errS(U)(f) = 0 =⇒ errDU
(f) ≤ ϵ/8]

is at least 1 − (8/ϵ)d · e−ϵM/c′ . For M ≥ c′ ·
d ln(8/ϵ)+|G(r)| ln 2+ln(12/δ)

ϵ , the right-hand side above is at
least 1− δ

12·2|G(r)|
. Then, a union bound over the 2|G

(r)|−1

choices of U shows that with probability at least 1− δ/12,
for all non-empty U ⊆ G(r), any classifier in F that is
consistent with S(U) has an error ≤ ϵ/8 on distribution DU .

Step 2: Fictitious datasets can be simulated. Fix i ∈ [γ]
such that |Gi| ≥ |G(r)|/(2γ). Recall that the classifier ĝi
has a zero training error on Ti :=

⋃
v∈Gi

Sv . In the first step,
we showed that any f ∈ F that achieves a zero training error
on S(Gi) must have a small population error on DGi

. Thus,
it suffices to argue that Ti ⊇ S(Gi) with high probability.

Recall that we computed the coloring solely based on the
datasets, which are independent of the indices A(U). There-
fore, conditioning on the realization of G1, G2, . . . , Gγ ,
each A(Gi) still uniformly distributed among GM

i . In par-
ticular, for every i ∈ [γ] and v ∈ Gi, the number of times
v appears in A(Gi), denoted by ni,v, follows the binomial
distribution Binomial(M, 1/|Gi|). As long as ni,v ≤ m for
every (i, v) pair, each Ti (which contains the first m data
points from Dv) will be a superset of S(Gi) (which contains
the first ni,v data points from Dv).

There are at most |G(r)| such (i, v) pairs. The probability
for each pair to violate the condition is at most

Pr
X∼Binomial(M,1/|Gi|)

[X ≥ m]

≤ Pr
X∼Binomial(M,1/|Gi|)

[
X ≥ 4Mγ

|G(r)|

]
(M = m|G(r)|/(4γ))

≤ Pr
X∼Binomial(M,2γ/|G(r)|)

[
X ≥ 4Mγ

|G(r)|

]
(|Gi| ≥ |G(r)|/(2γ))

By a Chernoff bound, the last expression is at most
exp

(
− 2Mγ

3|G(r)|

)
, which can be made smaller than δ

12|G(r)|

since M ≥ c · |G
(r)|
4γ ln |G(r)|

δ for sufficiently large c. By
a union bound, the aforementioned condition holds for all
(i, v) pairs with probability at least 1− δ/12.

Finally, the lemma follows from the two steps above and
another union bound.

8. Discussion on Open Problems
Tighter sample complexity bounds. The most obvious
open problem is to either improve the kd log(n/k)/ϵ term
in the sample complexity bound in Theorem 3.2 or prove
a matching lower bound. In light of Theorem 3.4, it is
sufficient to prove a lower bound of Ω((d log n)/ϵ) for the
personalized setup of collaborative learning (i.e., the (1, 0)-

8

Collaborative Learning with Different Labeling Functions

realizable case). Conversely, any improvement on this term
implies a better algorithm for the (1, 0)-realizable case.

A stronger hardness result. The NP-hardness is proved
either for the ERM problem (in Theorem 3.9), or against
learners that are strongly proper in the sense that they always
return at most k different classifiers (recall the discussion
in Section 3). Our result does not rule out efficient learners
that are neither ERM-based nor strongly proper.3 Can we
prove the intractability of sample-efficient learning directly,
at least for specific hypothesis classes?

Conflict graphs with bounded degrees. Our Theo-
rem 3.16 gives a computationally efficient learner based
on approximate coloring. It is also known that k-colorable
graphs with the maximum degree bounded by ∆ can be
colored with a smaller number of colors (e.g., Õ(∆1/3) col-
ors when k = 3 (Karger et al., 1998)). It is interesting to
identify natural assumptions on the data distributions that
ensure this small-degree property in the conflict graph, and
explore whether that leads to a lower sample complexity.

Efficient learner for concrete hypothesis classes. Even
when F is simply the class of all binary functions on an
instance space of size d and the data distributions are (k, 0)-
realizable for k = 3, we do not have a computationally effi-
cient learner that achieves the information-theoretic bound
in Theorem 3.2. For this setup, since F is 2-refutable, The-
orem 3.16 gives an algorithm with sample complexity of
roughly d · n0.19996/ϵ. Can we improve the overhead from
poly(n) to polylog(n) via an efficient learner?

Acknowledgements
We thank the anonymous reviewers of ICML for pointers
to related work and suggestions that helped improve the
presentation.

Impact Statement
This paper presents theoretical work which refines an ex-
isting framework of machine learning. While there might
be potential societal consequences of our work, none of
them is sufficiently concrete and imminent to be specifically
highlighted here.

References
Anthony, M. and Bartlett, P. L. Neural Network Learning:

Theoretical Foundations. Cambridge University Press,
1999.

3In fact, the distributions that we constructed in the proof of
Theorem 3.4 can be easily learned by an improper algorithm.

Arora, S., Chlamtac, E., and Charikar, M. New approxima-
tion guarantee for chromatic number. In Symposium on
Theory of Computing (STOC), pp. 215–224, 2006.

Awasthi, P., Haghtalab, N., and Zhao, E. Open problem:
The sample complexity of multi-distribution learning for
vc classes. In Conference on Learning Theory (COLT),
pp. 5943–5949, 2023.

Balcan, M.-F., Blum, A., and Vempala, S. Efficient rep-
resentations for lifelong learning and autoencoding. In
Conference on Learning Theory (COLT), pp. 191–210,
2015.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A.,
Pereira, F., and Vaughan, J. W. A theory of learning
from different domains. Machine learning, 79:151–175,
2010.

Berger, B. and Rompel, J. A better performance guarantee
for approximate graph coloring. Algorithmica, 5(1-4):
459–466, 1990.

Blum, A. New approximation algorithms for graph coloring.
Journal of the ACM (JACM), 41(3):470–516, 1994.

Blum, A. and Karger, D. An Õ(n3/14)-coloring algorithm
for 3-colorable graphs. Information Processing Letters,
61(1):49–53, 1997.

Blum, A., Haghtalab, N., Procaccia, A. D., and Qiao, M.
Collaborative PAC learning. In Advances in Neural In-
formation Processing Systems (NIPS), pp. 2389–2398,
2017.

Chen, J., Zhang, Q., and Zhou, Y. Tight bounds for col-
laborative pac learning via multiplicative weights. In
Advances in Neural Information Processing Systems
(NeurIPS), pp. 3602–3611, 2018.

Chen, S., Zheng, Q., Long, Q., and Su, W. J. Minimax esti-
mation for personalized federated learning: An alternative
between fedavg and local training? Journal of Machine
Learning Research, 24(262):1–59, 2023. URL http:
//jmlr.org/papers/v24/21-0224.html.

Cheng, G., Chadha, K., and Duchi, J. Federated asymptotics:
a model to compare federated learning algorithms. In
International Conference on Artificial Intelligence and
Statistics (AISTATS), pp. 10650–10689, 2023.

Chlamtac, E. Approximation algorithms using hierarchies
of semidefinite programming relaxations. In Foundations
of Computer Science (FOCS), pp. 691–701, 2007.

Crammer, K. and Mansour, Y. Learning multiple tasks using
shared hypotheses. In Advances in Neural Information
Processing Systems (NIPS), pp. 1475–1483, 2012.

9

http://jmlr.org/papers/v24/21-0224.html
http://jmlr.org/papers/v24/21-0224.html

Collaborative Learning with Different Labeling Functions

Das, A., Jain, A., Kong, W., and Sen, R. Efficient list-
decodable regression using batches. In International Con-
ference on Machine Learning (ICML), pp. 7025–7065,
2023.

Diakonikolas, I., Kane, D., Manurangsi, P., and Ren, L.
Cryptographic hardness of learning halfspaces with mas-
sart noise. Advances in Neural Information Processing
Systems (NeurIPS), 35:3624–3636, 2022.

Diakonikolas, I., Kane, D., and Ren, L. Near-optimal cryp-
tographic hardness of agnostically learning halfspaces
and relu regression under gaussian marginals. In Inter-
national Conference on Machine Learning (ICML), pp.
7922–7938, 2023.

Feldman, V. Optimal hardness results for maximizing agree-
ments with monomials. In Conference on Computational
Complexity (CCC), pp. 226–236, 2006.

Feldman, V., Gopalan, P., Khot, S., and Ponnuswami, A. K.
New results for learning noisy parities and halfspaces. In
Foundations of Computer Science (FOCS), pp. 563–574,
2006.

Guruswami, V. and Raghavendra, P. Hardness of learning
halfspaces with noise. SIAM Journal on Computing, 39
(2):742–765, 2009.

Haghtalab, N., Jordan, M., and Zhao, E. On-demand sam-
pling: Learning optimally from multiple distributions.
In Advances in Neural Information Processing Systems
(NeurIPS), pp. 406–419, 2022.

Hanneke, S. and Kpotufe, S. A no-free-lunch theorem for
multitask learning. The Annals of Statistics, 50(6):3119–
3143, 2022.

Huang, X., Xu, K., Lee, D., Hassani, H., Bastani, H., and
Dobriban, E. Optimal heterogeneous collaborative lin-
ear regression and contextual bandits. arXiv preprint
arXiv:2306.06291, 2023.

Jain, A., Sen, R., Kong, W., Das, A., and Orlitsky, A. Lin-
ear regression using heterogeneous data batches. arXiv
preprint arXiv:2309.01973, 2023.

Karger, D., Motwani, R., and Sudan, M. Approximate graph
coloring by semidefinite programming. Journal of the
ACM (JACM), 45(2):246–265, 1998.

Kawarabayashi, K.-I. and Thorup, M. Coloring 3-colorable
graphs with less than n1/5 colors. Journal of the ACM
(JACM), 64(1):1–23, 2017.

Kearns, M. J., Schapire, R. E., and Sellie, L. M. Toward
efficient agnostic learning. In Annual Workshop on Com-
putational Learning Theory (COLT), pp. 341–352, 1992.

Koch, C., Strassle, C., and Tan, L.-Y. Properly learning
decision trees with queries is np-hard. In Foundations of
Computer Science (FOCS), pp. 2383–2407, 2023a.

Koch, C., Strassle, C., and Tan, L.-Y. Superpolynomial
lower bounds for decision tree learning and testing. In
Symposium on Discrete Algorithms (SODA), pp. 1962–
1994, 2023b.

Kong, W., Somani, R., Kakade, S., and Oh, S. Robust meta-
learning for mixed linear regression with small batches.
In Advances in Neural Information Processing Systems
(NeurIPS), pp. 4683–4696, 2020a.

Kong, W., Somani, R., Song, Z., Kakade, S., and Oh,
S. Meta-learning for mixed linear regression. In In-
ternational Conference on Machine Learning (ICML), pp.
5394–5404, 2020b.

Konstantinov, N. and Lampert, C. Robust learning from un-
trusted sources. In International Conference on Machine
Learning (ICML), pp. 3488–3498, 2019.

Mansour, Y., Mohri, M., and Rostamizadeh, A. Domain
adaptation with multiple sources. In Advances in Neural
Information Processing Systems (NIPS), pp. 1041–1048,
2008.

Mansour, Y., Mohri, M., Ro, J., Suresh, A. T., and Wu, K. A
theory of multiple-source adaptation with limited target
labeled data. In International Conference on Artificial
Intelligence and Statistics (AISTATS), pp. 2332–2340,
2021.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. In International Con-
ference on Artificial Intelligence and Statistics (AISTATS),
pp. 1273–1282, 2017.

Mohri, M., Sivek, G., and Suresh, A. T. Agnostic feder-
ated learning. In International Conference on Machine
Learning (ICML), pp. 4615–4625, 2019.

Nguyen, H. and Zakynthinou, L. Improved algorithms
for collaborative pac learning. In Advances in Neural
Information Processing Systems (NeurIPS), pp. 7631–
7639, 2018.

Peng, B. The sample complexity of multi-distribution learn-
ing. arXiv preprint arXiv:2312.04027, 2023.

Pentina, A. and Urner, R. Lifelong learning with weighted
majority votes. In Advances in Neural Information Pro-
cessing Systems (NIPS), pp. 3619–3627, 2016.

Qiao, M. Do outliers ruin collaboration? In International
Conference on Machine Learning (ICML), pp. 4180–
4187, 2018.

10

Collaborative Learning with Different Labeling Functions

Shalev-Shwartz, S. and Ben-David, S. Understanding ma-
chine learning: From theory to algorithms. Cambridge
university press, 2014.

Wigderson, A. Improving the performance guarantee for
approximate graph coloring. Journal of the ACM (JACM),
30(4):729–735, 1983.

Yang, F., Zhang, H. R., Wu, S., Ré, C., and Su, W. J. Precise
high-dimensional asymptotics for quantifying heteroge-
neous transfers. arXiv preprint arXiv:2010.11750, 2020.

Zhang, Z., Zhan, W., Chen, Y., Du, S. S., and Lee,
J. D. Optimal multi-distribution learning. arXiv preprint
arXiv:2312.05134, 2023.

11

Collaborative Learning with Different Labeling Functions

A. Additional Discussion on Related Work
Mixture learning from batches. Another recent line of work (Kong et al., 2020b;a; Das et al., 2023; Jain et al., 2023)
studied learning mixtures of linear regressions from data batches. In these setups, there are k unknown linear regression
models. Each data batch consists of labeled examples produced by one of the linear models chosen randomly. This line of
work gave trade-offs between the number of batches and the batch size in order for the parameters of the k linear models to
be efficiently learnable.

In comparison, our model allows the learner to adaptively sample from the data distributions, whereas the batch sizes are
fixed in the model of learning with batches. We also note that the results for learning with batches require assumptions on
the marginal distribution, such as Gaussianity or certain hypercontractivity and condition number properties. Also, except
the recent work of Jain et al. (2023), they all required the marginal distribution of the instance to be the same across all
batches.

Computational hardness of learning. There is a huge body of work on the computational hardness of learning. Early
work along this line showed that, under standard complexity-theoretic assumptions, it is hard to properly and agnostically
learn halfspaces (Feldman et al., 2006; Guruswami & Raghavendra, 2009) and boolean disjunctions (Kearns et al., 1992;
Feldman, 2006). More recent work have obtained a finer-grained understanding of this computational hardness. It is now
known that many natural hypothesis classes are hard to learn even under additional assumptions, e.g., learning halfspaces
under Massart noise (Diakonikolas et al., 2022), agnostically learning halfspaces under Gaussian Marginals (Diakonikolas
et al., 2023), and properly learning decision trees using membership queries (Koch et al., 2023a;b).

Approximate coloring. Approximate coloring is the problem of finding a valid coloring of a given graph with as few
colors as possible. This line of work was initiated by Wigderson (1983), who gave an efficient algorithm that colors a
3-colorable graph with n vertices using O(

√
n) colors. This result was later improved by a series of work (Berger & Rompel,

1990; Blum, 1994; Karger et al., 1998; Blum & Karger, 1997; Arora et al., 2006; Chlamtac, 2007; Kawarabayashi & Thorup,
2017). The best known upper bound of O(n0.19996) is due to Kawarabayashi and Thorup (Kawarabayashi & Thorup, 2017).
The analogous problem for k-colorable graphs (where k ≥ 4) has also been studied.

B. Proofs for Section 5
The algorithm is formally defined in Algorithm 2, and follows the same strategy as Algorithm 1 of Blum et al. (2017).

Recall that for each data distribution Di, D′
i denotes the distribution of ((i, x), y) when (x, y) ∼ Di. Therefore, on Line 7,

to sample from the mixture distribution 1
|G(r)|

∑
i∈G(r) D′

i, it suffices to sample i from G(r) uniformly at random, draw
(x, y) ∼ Di, and then use the labeled example ((i, x), y).

The algorithm maintains G(r) as the set of active distributions at the beginning of the r-th round. The algorithm samples
from the uniform mixture of the active distributions, learns a classifier gf,c ∈ FG(r),k via ERM, and then tests whether the
learned classifier is good enough for each distribution in G(r). If the learned classifier achieves an O(ϵ) empirical error on
Di, we use it as the answer f̂i; otherwise, Di stays active for the next round. Finally, the iteration terminates whenever the
number of active distributions drops below k, at which point we naı̈vely learn on the ≤ k remaining distributions separately.

The analysis of Algorithm 2 is straightforward, and relies on the following definition of a “good event”.

Definition B.1. Let Egood denote the event that the following happen simultaneously when Algorithm 2 is executed:

• Whenever Line 8 is reached, it holds that errD(gf,c) ≤ 2ϵ.

• Whenever Line 11 is reached, it holds that: (1) errDi(fci) ≤ 4ϵ implies errSi(fci) ≤ 6ϵ; (2) errDi(fci) > 8ϵ implies
errSi

(fci) > 6ϵ.

• Whenever Line 22 is reached, it holds that errDi
(f̂i) ≤ 2ϵ.

Then, Theorem 3.2 is a consequence of the following three lemmas.

Lemma B.2. For some universal constant c, when Algorithm 2 is executed with parameter c, Pr
[
Egood

]
≥ 1− δ.

12

Collaborative Learning with Different Labeling Functions

Algorithm 2 Collaborative Learning for (k, ϵ)-Realizable Distributions
1: Input: Hypothesis class F . Sample access to D1, . . ., Dn. Parameters k, ϵ, δ, c.
2: Output: Hypotheses f̂1, f̂2, . . . , f̂n.
3: r ← 1; G(1) ← [n];
4: while |G(r)| > k do
5: δ(r) ← δ/r2;
6: d(r) ← c · (kd+ |G(r)| log k);
7: Draw c · d

(r) ln(1/ϵ)+ln(1/δ(r))
ϵ samples from D := 1

|G(r)|
∑

i∈G(r) D′
i to form S;

8: gf,c ← argming∈F
G(r),k

errS(g);

9: G(r+1) ← ∅;
10: for i ∈ G(r) do
11: Draw c · ln(|G

(r)|/δ(r))
ϵ samples from Di to form Si;

12: if errSi(fci) ≤ 6ϵ then
13: f̂i ← fci ;
14: else
15: G(r+1) ← G(r+1) ∪ {i};
16: end if
17: end for
18: r ← r + 1;
19: end while
20: for i ∈ G(r) do
21: Draw c · d ln(1/ϵ)+ln(k/δ)

ϵ samples from Di to form Si;
22: f̂i ← argminf∈F errSi(f);
23: end for
24: Return: f̂1, . . . , f̂n;

Proof. Whenever Line 8 is reached, by Lemma 5.1, for some sufficiently large constant c > 0, the VC dimension of FG(r),k

is upper bounded by d(r) = c · (kd+ |G(r)| log k). Then, it follows from Theorem 5.7 in (Anthony & Bartlett, 1999) that,
for some universal constant c > 0, the first condition is violated at the r-th round with probability at most δ(r)/6. By a
union bound over all possible r, the first condition holds with probability at least 1−

∑+∞
r=1 δ

(r)/6 ≥ 1− δ/3.

Again, by Theorem 5.7 in (Anthony & Bartlett, 1999), the probability for the third condition to be violated for a specific i is
at most δ/(3k). Since |G(r)| ≤ k, by a union bound, the third condition holds with probability at least 1− k · δ

3k = 1− δ/3.

Finally, a Chernoff bound shows that the second condition holds for a specific r and i ∈ G(r) with probability at least

1− 2 exp

(
−Ω

(
c · ln(|G

(r)|/δ(r))
ϵ

· ϵ
))

,

which can be made greater than 1− δ(r)

6|G(r)| for sufficiently large c. By a union bound over all r and i ∈ G(r), the second
condition holds with probability at least

1−
+∞∑
r=1

|G(r)| · δ(r)

6|G(r)|
≥ 1− δ/3.

The lemma follows from the three claims above and yet another union bound.

Lemma B.3. When event Egood happens, the output of Algorithm 2 satisfies errDi(f̂i) ≤ 8ϵ for every i ∈ [n].

Proof. We assign a classifier as f̂i for some i ∈ [n] either right after Line 11 or on Line 22. In either case, event Egood
guarantees that f̂i is 8ϵ-accurate on Di.

13

Collaborative Learning with Different Labeling Functions

Lemma B.4. When event Egood happens, Algorithm 2 terminates with a sample complexity of

O

(
kd log(n/k) log(1/ϵ)

ϵ
+

n log k log(1/ϵ) + n log(n/δ)

ϵ

)
.

Proof. We first control the size of G(r) in each round r. We claim that when event Egood happens, if G(r+1) is defined
during the execution of Algorithm 2, it holds that |G(r+1)| ≤ |G(r)|/2. Indeed, the first condition of Egood guarantees that
for D = 1

|G(r)|
∑

i∈G(r) D′
i,

1

|G(r)|
∑

i∈G(r)

errDi
(fci) =

1

|G(r)|
∑

i∈G(r)

errD′
i
(gf,c) = errD (gf,c) ≤ 2ϵ.

By Markov’s inequality, it holds for at least half of the values i ∈ G(r) that errDi
(fci) ≤ 4ϵ. Then, the second condition of

Egood guarantees that |G(r+1)| ≤ |G(r)|/2. It follows immediately that |G(r)| ≤ 21−r · n.

Then, the sample complexity of the r-th iteration of the while-loop is upper bounded by

c · d
(r) ln(1/ϵ) + ln(1/δ(r))

ϵ
+ |G(r)| · c · ln(|G

(r)|/δ(r))
ϵ

⪯ (kd+ 2−r · n log k) log(1/ϵ) + log(1/δ) + log r

ϵ
+ 2−r · n · log(2

−r · n) + log(1/δ) + log r

ϵ
.

Since the while-loop terminates whenever |G(r)| ≤ k, there are at most O(log(n/k)) iterations, and summing the above
over r = 1, 2, . . . , O(log(n/k)) gives

kd log(1/ϵ) + log(1/δ)

ϵ
· log(n/k) + n log k log(1/ϵ)

ϵ
+

log2(n/k)

ϵ
+

n log n+ n log(1/δ)

ϵ

⪯ kd log(n/k) log(1/ϵ)

ϵ
+

n log k log(1/ϵ) + n log(n/δ)

ϵ
.

Finally, the last for-loop of the algorithm takes O
(

kd log(1/ϵ)+k log(k/δ)
ϵ

)
samples in total, which is always dominated by

the above. Therefore, we have the desired upper bound on the sample complexity.

Finally, we put all the pieces together and prove Theorem 3.2.

Proof of Theorem 3.2. Lemmas B.2, B.3, and B.4 together imply that, conditioning on an event that happens with probability
at least 1− δ, Algorithm 2 returns 8ϵ-accurate classifiers for each of the n distributions, while the number of samples is
upper bounded by some

M = O

(
kd log(n/k) log(1/ϵ)

ϵ
+

n log k log(1/ϵ) + n log(n/δ)

ϵ

)
.

To control the sample complexity—the (unconditional) expectation of the number of samples, we simply terminate the
algorithm whenever the number of samples exceeds M . The resulting algorithm is still (8ϵ, δ)-PAC guarantee, and satisfies
the desired upper bound on the sample complexity.

C. Sample Complexity Lower Bound
We prove Theorem 3.4 in this section. Our proof is based on a simple observation: learning n distributions under (k, 0)-
realizability is at least as hard as learning k unrelated instances, where each instance consists of learning n/k distributions
under (1, 0)-realizability.

Our actual proof is essentially the same as the lower bound proof in (Blum et al., 2017), and formalizes the intuition above.
Formally, assuming that a learning algorithm A (ϵ, δ)-PAC learns n distributions under (k, 0)-realizability, we use A to
construct another learner A′, which is (ϵ, O(δ/k))-PAC for n/k distributions that are (1, 0)-realizable. Furthermore, the
sample complexity of A′ is an O(1/k) fraction of that of A. For completeness, we state the reduction in the following.

14

Collaborative Learning with Different Labeling Functions

Proof of Theorem 3.4. Fix parameters n, k, d, ϵ, and δ. Let n′ := ⌊n/k⌋ and δ′ := 10δ
9k . Let F be a hypothesis class with

VC dimension d, and Dhard be a distribution over hard instances for collaborative learning on n′ distributions. Formally,
Dhard is a distribution over n′ data distributions (D1,D2, . . . ,Dn′) such that:

• Every (D1, . . . ,Dn′) in the support of Dhard is (1, 0)-realizable with respect to F .

• If a learning algorithm achieves an (ϵ, δ′)-PAC guarantee when learning F on D1, . . . ,D′
n′ drawn from Dhard, it must

take m(n′, d, ϵ, δ′) samples in expectation.

Now, let A be an (ϵ, δ)-PAC learning algorithm over k · n′ distributions under (k, 0)-realizability. For brevity, we relabel the
k · n′ distributions as Di,j where i ∈ [k] and j ∈ [n′]. In the following, we construct another learning algorithm A′ that
learns n′ distributions (denoted by Dactual

1 , . . . ,Dactual
n′) drawn from Dhard by simulating A:

1. For each i ∈ [k], independently draw (Di,1, . . . ,Di,n′) from Dhard.

2. Sample i∗ from [k] uniformly at random.

3. We simulate algorithm A on distributions (Di,j)i∈[k],j∈[n′], except that Di∗,1 through Di∗,n′ are replaced by the n′

actual distributions Dactual
1 , . . . ,Dactual

n′ . In other words, whenever A requires a sample from Di,j , we truly sample
from Di,j if i ̸= i∗; otherwise, we sample from Dactual

j , and forward the sample to A.

4. When A terminates and outputs (f̂i,j)i∈[k],j∈[n′], we test if errDi,j
(f̂i,j) ≤ ϵ holds for all i ̸= i∗ and j ∈ [n′]. If so, we

output f̂i∗,1 through f̂i∗,n′ as the answer; otherwise, we repeat the procedure above.

In each repetition of the above procedure, from the perspective of algorithm A, it runs on k · n′ distributions divided into k
groups, where each group consists of n′ distributions drawn from Dhard. Clearly, the k · n′ distributions together satisfy
(k, 0)-realizability. Intuitively, it is impossible for A to tell the index i∗ that corresponds to the actual instance, so the actual
instance only suffers from an O(1/k) fraction of the error probability as well as the sample complexity.

Let M denote the expected number of samples that A draws on such a random instance. Analogous to Claims 4.3 and 4.4
from (Blum et al., 2017)4, we have the following guarantees of the constructed learner A′:

Claim 1. Assuming δ ≤ 0.1, on a random instance drawn from Dhard, A′ achieves an (ϵ, 10δ
9k)-PAC guarantee and draws at

most 10M
9k samples in expectation.

By our assumption on Dhard, we have 10M
9k ≥ m(n′, d, ϵ, δ′). Hence, we conclude that A takes at least

9k

10
·m(n′, d, ϵ, δ′) = Ω(k) ·m(⌊n/k⌋, d, ϵ, O(δ/k))

samples in expectation.

D. Proofs for Section 6
In this section, we prove Theorem 3.9 as well as a distributional version of it.

D.1. Reduction from Graph Coloring

We prove the first part (the k ≥ 3 case) by a reduction from graph coloring, which is well-known to be NP-hard.

Proof of Theorem 3.9 (the first part). Fix an arbitrary regular hypothesis family {(Xd,Fd)}d∈N. We will show that if, for
any fixed k ≥ 3, there is a polynomial-time algorithm that solves Problem 1, the same algorithm can be used to solve graph
k-coloring efficiently. This implies the first part of the theorem.

4While the two claims in (Blum et al., 2017) were proved for a concrete construction of hard instances, the proof only relies on the
symmetry and independence among the instances, and thus can be applied to our case without modification.

15

Collaborative Learning with Different Labeling Functions

Given an instance G = (V,E) of the k-coloring problem, we construct an instance of Problem 1 with parameters k and
d = n = |V |. Without loss of generality, we assume V = [n], since we can always relabel the vertices. By Definition 3.6,
the VC dimension of Fd is at least d = n, and we can efficiently find n instances x1, x2, . . . , xn ∈ Xd that are shattered by
Fd.

For each v ∈ [n], we define the v-th dataset as

Sv := {(xv, 1)} ∪ {(xu, 0) : {u, v} ∈ E}.

We will show in the following that G has a k-coloring if and only if the ERM instance is feasible, i.e., the n datasets can be
perfectly fit by k classifiers from Fd.

From coloring to classifiers. Suppose that c : V → [k] is a valid k-coloring of G. SinceFd shatters x1, x2, . . . , xn, we can
find f1, f2, . . . , fk ∈ Fd such that fi(xv) := 1 {c(v) = i} holds for every i ∈ [k] and v ∈ [n]. Then, for every v ∈ [n], the
dataset Sv is perfectly fit by classifier fc(v), since fc(v)(xv) = 1 {c(v) = c(v)} = 1 and fc(v)(xu) = 1 {c(u) = c(v)} = 0
for every neighbor u of v.

From classifiers to coloring. Conversely, let f1, f2, . . . , fk ∈ Fd be k classifiers such that each dataset Sv is consistent
with one of the classifiers. We can then choose a labeling c : V → [k] such that Sv is perfectly fit by fc(v). Now we show
that c is a valid k-coloring. Indeed, suppose that {u, v} ∈ E is an edge and c(u) = c(v) = i. Then, fi must correctly label
both (xu, 1) ∈ Su and (xu, 0) ∈ Sv , which is impossible.

Finally, note that the above reduction works for any k ≥ 3 and any family of hypothesis classes, while k-coloring is NP-hard
for any k ≥ 3. This proves the first part of Theorem 3.9.

D.2. Hardness under Two Labeling Functions

Next, we deal with the k = 2 case. Since 2-coloring can be efficiently solved, we must reduce from a different NP-hard
problem. Intuitively, we want the problem to correspond to partitioning a set into k = 2 parts. This motivates our reduction
from (a variant of) subset sum.

Proof of Theorem 3.9, the second part. We start by defining the regular hypothesis family. For each integer d ≥ 1, we
consider the instance space Xd := [d]× {0, 1, . . . , 2d} and the following hypothesis class:

Fd :=

{
fθ : θ ∈ {0, 1, . . . , 2d}d,

d∑
i=1

θi ≤ 2d

}
,

where fθ is defined as
fθ(i, j) = 1 {j ≤ θi} .

In other words, each fθ ∈ Fd can be viewed as a direct product of d threshold functions, subject to that the thresholds
sum up to at most 2d. It can be easily verified that {(Xd,Fd)}d∈N satisfies Definition 3.6, since for every d, the instances
(1, 1), (2, 1), . . . , (d, 1) are shattered by Fd, witnessed by {fθ : θ ∈ {0, 1}d} ⊆ Fd.

Vanilla ERM is easy. We first show that the k = 1 case of Problem 1 is easy. Indeed, when k = 1, Problem 1 reduces to
deciding whether S1 ∪ S2 ∪ · · · ∪ Sn ⊆ Xd × {0, 1} can be perfectly fit by a hypothesis in Fd. By construction of Fd, this
can be easily done via the following two steps:

• First, check whether there exist i ∈ [d] and 0 ≤ j1 < j2 ≤ 2d such that both ((i, j1), 0) and ((i, j2), 1) are in the
dataset. Also check whether the dataset contains ((i, 0), 0) for any i ∈ [d]. If either condition holds, report “no
solution”.

• Then, for each i ∈ [d], let θi denote the largest value j ∈ {0, 1, . . . , 2d} such that the dataset contains ((i, j), 1); let
θi = 0 if no such labeled example exists. If

∑d
i=1 θi ≤ 2d, the function fθ is a valid solution; otherwise, report “no

solution”.

The correctness of this procedure is immediate given the definition of Fd.

16

Collaborative Learning with Different Labeling Functions

Construction of datasets. We consider a specific choice of the datasets: for each i ∈ [n], the i-th dataset contains exactly
one data point of form (i, ai) with label 1. In the rest of the proof, the key observation is that the datasets with indices in
T ⊆ [n] can be simultaneously satisfied by a hypothesis in Fd if and only if

∑
i∈T ai ≤ 2d. The ERM problem for k = 2 is

then equivalent to deciding whether {ai : i ∈ [n]} can be partitioned into two sets, each of which sums up to ≤ 2d. This
problem can be easily shown to be NP-hard via a standard reduction from the subset sum problem.

From subset sum to a special case. We first reduce the general subset sum problem to a special case, in which the n
numbers sum up to 2n+1 and the target value is exactly 2n. Let ({ai}i∈[m], t) be an instance of subset sum (i.e., deciding
whether there exists T ⊆ [m] such that

∑
i∈T ai = t). Let s =

∑m
i=1 ai and pick n = max{m + 2, ⌊log2 s⌋ + 1} such

that n − m ≥ 2 and 2n > s. We pad n − m numbers to the instance, such that am+1 = am+2 = · · · = an−2 = 0,
an−1 = 2n − t, an = 2n − (s− t). Note that the numbers now sum up to

n∑
i=1

ai = s+ (2n − t) + [2n − (s− t)] = 2n+1.

Also note that the size of the instance increases at most polynomially after the padding: A natural representation of the
original subset sum instance ({ai}i∈[m], t) takes at least m+ log2 s bits. In the new instance, there are n = O(m+ log s)
numbers that sum up to 2n+1, so its representation takes at most O(n2) bits, which is at most quadratic in the size of the
original instance.

We claim that ({ai}i∈[n], 2
n) has the same answer as ({ai}i∈[m], t). Indeed, if

∑
i∈T ai = t for some T ⊆ [m], T ∪{n−1}

would be a feasible solution to the new instance. Conversely, suppose that T ⊆ [n] is a subset such that
∑

i∈T ai = 2n.
Since an−1 + an = 2n+1 − s > 2n, T must contain exactly one of n − 1 and n. Without loss of generality, we have
n− 1 ∈ T , and T \ {n− 1} would then give

∑
i∈T\{n−1} ai = 2n − (2n − t) = t.

From the special case to ERM. Then, we construct a collaborative learning instance with n distributions and set d = n
in the definition of Xd and Fd. The i-th dataset only contains ((i, ai), 1). We claim that the datasets can be fit by k = 2
functions in Fd if and only if the subset sum instance ({ai}i∈[n], 2

n) is feasible. For the “if” direction, suppose that T ⊆ [n]

satisfies
∑

i∈T ai = 2n. Then, we define θ(1) and θ(2) as:

θ
(1)
i =

{
ai, i ∈ T,

0, i /∈ T,
and θ

(2)
i =

{
ai, i /∈ T,

0, i ∈ T.

Clearly, both fθ(1) and fθ(2) are in Fd. The i-th dataset is consistent with the first function if i ∈ T and the second otherwise.

Conversely, suppose the datasets can be perfectly fit by two hypotheses fθ(1) , fθ(2) ∈ Fd. Let T := {i ∈ [n] : fθ(1)(i, ai) =

1} be the indices of the data that are consistent with the former. We then have θ(1)i ≥ ai for every i ∈ T and thus
∑

i∈T ai ≤∑
i∈T θ

(1)
i ≤ 2n. The same argument, when applied to [n] \ T and θ(2), implies

∑
i∈[n]\T ai ≤

∑
i∈[n]\T θ

(2)
i ≤ 2n. Since

the ai’s sum up to 2n+1, we conclude that each summation must be equal to 2n, i.e., T is a feasible solution to the subset
sum instance.

D.3. Hardness of the Distributional Version of ERM

As we mentioned earlier, Theorem 3.9 and its proof are arguably of a worst-case nature, and does not exclude the possibility
of efficiently performing ERM (with high probability) over datasets that are randomly drawn. Indeed, for the first part of the
proof (via a reduction from graph coloring), when the graph G = (V,E) is dense, each dataset constructed in the proof
would be of size Ω(|V |) = Ω(d), whereas in the context of sample-efficient collaborative learning, the datasets tend to be
much smaller.

Unfortunately, we can also prove the hardness of this distributional version, which we formally define below.
Problem 2 (ERM over Randomly Drawn Datasets). This is a variant of Problem 1, in which we specify n distributions
D1,D2, . . . ,Dn over Xd × {0, 1} and a parameter m. Each dataset Si consists of m samples independently drawn from Di.

We first note that the k = 2 part of Theorem 3.9 still holds for Problem 2. This is because our proof shows that Problem 1
is hard (for a specific hypothesis family) even if all the datasets are of size 1. Then, the same construction can be used to
reduce subset sum to Problem 2, in which each distribution is a degenerate distribution.

17

Collaborative Learning with Different Labeling Functions

To prove the hardness of Problem 2 when k ≥ 3 and the hypothesis family is arbitrary, we will reduce from the following
variant of the graph k-coloring problem, in which the graph is promised to have degrees bounded by O(k).
Problem 3. Given a graph G = (V,E) with maximum degree at most 2k − 1, decide whether G can be k-colored.

Lemma D.1. Problem 3 is NP-hard.

Proof. We reduce from the usual k-coloring. Let G = (V,E) be an instance of k-coloring. We will give an efficient
algorithm that transforms G into a graph G′ that is a valid instance for Problem 3. Furthermore, G is k-colorable if and only
if G′ is k-colorable. This immediately implies the NP-hardness of Problem 3.

For each node v ∈ V , we split it into |V | − 1 copies v(1), v(2), . . . , v(|V |−1). We also add |V | − 2 cliques of size k − 1,
denoted by Cv,1, Cv,2, . . . , Cv,|V |−2. Every vertex in clique Cv,i is also linked to v(i) and v(i+1). Note that this forces
v(1), v(2), . . . , v(|V |−1) to take the same color in a valid k-coloring. Then, for every edge {u, v} ∈ E, we link some copy
u(i) of u to another copy v(j) of v, so that no copy of any vertex is used twice. The resulting graph G′ = (V ′, E′) satisfies

|V ′| = |V | · [|V | − 1 + (|V | − 2) · (k − 1)] = O(k|V |2),

and the maximum degree is 1 + 2(k − 1) = 2k − 1. The equivalence between the k-colorability of G and G′ is immediate
from our construction.

Now we prove a strengthening of Theorem 3.9.

Theorem D.2. Unless NP = RP, no polynomial-time (possibly randomized) algorithm for Problem 2 achieves the following
guarantee for k ≥ 3 and m = Ω(k log n): With probability at least 1/poly(d, n,m) over the randomness in S1, . . . , Sn, if
S1, . . . , Sn admits a feasible solution, the algorithm outputs a feasible solution with probability at least 1/poly(d, n,m).

Indeed, the guarantee required in Theorem D.2 seems minimal for a useful ERM oracle: It only needs to succeed on a
non-negligible fraction of instances, and the definition of “success” is merely to be able to output a feasible solution (if
one exists) with a non-negligible probability. Still, it is unlikely to achieve such a guarantee efficiently under the standard
computational hardness assumption of NP ̸= RP.

Proof. We prove the contrapositive: the existence of such algorithms implies NP = RP. Suppose that A is an efficient
algorithm with the desired guarantees. We derive an efficient algorithm for Problem 3.

Given an instance of Problem 3, the reduction from the proof of Theorem 3.9 produces n = |V | datasets Ŝ1, Ŝ2, . . . , Ŝn,
each of size at most 2k. We define the i-th data distribution as the uniform distribution over Ŝi. When m samples are drawn
from each Di, every element in the support of every Di appears at least once, except with probability at most

n · 2k ·
(
1− 1

2k

)m

≤ 2kn · exp
(
−m

2k

)
,

which can be made much smaller than the 1/poly(d, n,m) term in the theorem statement for some appropriate m =
Ω(k log n). In other words, except with a negligibly small probability, the randomly drawn datasets S1, . . . , Sn coincide
with the intended datasets Ŝ1, . . . , Ŝn (when both are viewed as sets rather than multisets).

Then, the hypothetical algorithm A for Problem 2 must output the correct answer with probability larger than
1/poly(d, n,m), when the sampled datasets are Ŝ1, . . . , Ŝn. We repeat A on Ŝ1, . . . , Ŝn for O(poly(d, n,m)) times
and check whether it ever outputs a feasible solution. If so, we output “Yes”; we output “No” otherwise. This gives an
efficient randomized algorithm for Problem 3 that: (1) when the input graph is k-colorable, outputs “Yes” with probability
≥ 1/2; (2) when the graph is not k-colorable, always outputs “No”. This implies NP = RP in light of Lemma D.1.

E. An Efficient Algorithm for Identical Marginals
In this section, we prove Theorem 3.10, which addresses the special case that D1,D2, . . . ,Dn share the same marginal
distribution over X . In this case, we show that there is a simple algorithm that efficiently clusters the distributions and learn
accurate classifiers using≪ nd samples. The algorithm is formally defined as Algorithm 3, and follows a similar approach
to the lifelong learning algorithms in (Balcan et al., 2015; Pentina & Urner, 2016).

18

Collaborative Learning with Different Labeling Functions

Algorithm 3 Efficient Clustering under Identical Marginals
1: Input: Hypothesis class F . Sample access to D1, . . . ,Dn. Parameters k, ϵ, δ, α, c.
2: Output: Hypotheses f̂1, f̂2, . . . , f̂n.
3: F ← ∅;
4: for i ∈ [n] do
5: Draw c · ln(n|F |/δ)

ϵ samples from Di to form dataset S;
6: f̂ ← argminf∈F errS(f);
7: if errS(f̂) ≤ (3 + 2

3α)ϵ then
8: f̂i ← f̂ ;
9: else

10: Draw c · d ln(1/ϵ)+ln[(|F |+1)/δ]
ϵ samples from Di to form dataset S;

11: f̂i ← argminf∈F errS(f);
12: F ← F ∪ {f̂i};
13: end if
14: end for
15: Return: f̂1, f̂2, . . . , f̂n;

The algorithm maintains a list F of classifiers from class F . For each distribution Di, we first test whether any classifier in
F is accurate enough on it. If so, we set f̂i as the best classifier in F ; otherwise, we draw fresh samples to learn an accurate
classifier for Di and add it to F .

Now we analyze Algorithm 3. We first define a good event that implies the accuracy and sample efficiency of the algorithm.
Definition E.1. Let Egood denote the event that the following happen simultaneously when Algorithm 3 is executed:

• Whenever Line 5 is reached, it holds for every f ∈ F that: (1) errDi
(f) ≤ (3 + α/3)ϵ implies errS(f) ≤

(
3 + 2

3α
)
ϵ;

(2) errS(f) > (3 + α)ϵ implies errDi(f) >
(
3 + 2

3α
)
ϵ.

• Whenever Line 11 is reached, it holds that errDi(f̂i) ≤ (1 + α/3)ϵ.

We show that Egood happens with high probability, and implies that Algorithm 3 is ((3+α)ϵ, δ)-PAC and has a small sample
complexity.
Lemma E.2. For any fixed α > 0, there exists a sufficiently large c > 0 such that when Algorithm 3 is executed with
parameters α and c, Pr

[
Egood

]
≥ 1− δ.

Proof. We upper bound the probability for each of the two conditions in Egood to be violated.

For the first condition, we fix i ∈ [n] and f ∈ F . We note that errS(f) is the average of c · ln(n|F |/δ)
ϵ independent Bernoulli

random variables, each with expectation errDi
(f). By a Chernoff bound, for sufficiently large constant c (that depends on α),

it holds with probability 1− δ
2n|F | that: (1) errDi

(f) ≤ (3+α/3)ϵ implies errS(f) ≤
(
3 + 2

3α
)
ϵ; (2) errDi

(f) > (3+α)ϵ

implies errS(f) >
(
3 + 2

3α
)
ϵ. By a union bound over all f ∈ F , the first condition of Egood holds for a specific i ∈ [n]

with probability at least 1− δ/(2n). By another union bound, the first condition holds for all i ∈ [n] with probability at
least 1− δ/2.

For the second condition, suppose that we reach Line 11 at the i-th iteration of the for loop, and |F | = r − 1. Recall that
the (k, ϵ)-realizability of D1 through Dn implies that there exists f ∈ F such that errDi

(f) ≤ ϵ. Then, by Theorem 5.7
of (Anthony & Bartlett, 1999), for some sufficiently large c, we have errDi

(f̂i) ≤ (1 + α/3)ϵ with probability at least
1− δ/(4r2). Since |F | is incremented whenever Line 11 is reached, we only need a union bound over all r = 1, 2, . . . , n,
and the probability for the second condition to be violated is upper bounded by

n∑
r=1

δ

4r2
≤ δ

4

+∞∑
r=1

1

r2
=

δ

4
· π

2

6
<

δ

2
.

Finally, yet another union bound gives Pr
[
Egood

]
≥ 1− δ/2− δ/2 = 1− δ.

19

Collaborative Learning with Different Labeling Functions

Lemma E.3. When Egood happens, the outputs of Algorithm 3 satisfy errDi
(f̂i) ≤ (3 + α)ϵ for every i ∈ [n].

Proof. Fix i ∈ [n], and consider the i-th iteration of the for-loop in Algorithm 3. If the condition errS(f̂) ≤
(
3 + 2

3α
)
ϵ

holds, by the first condition in the definition of Egood, we must have errDi
(f̂) ≤ (3 + α)ϵ. Then, by setting f̂i to f̂ , we

guarantee that f̂i is (3 + α)ϵ-accurate for Di. Otherwise, we pick f̂i in Line 11, in which case the second condition of Egood
gives errDi

(f̂i) ≤ (1 + α)ϵ ≤ (3 + α)ϵ.

Lemma E.4. When Egood happens, Algorithm 3 runs in poly(n, d, 1/ϵ, log(1/δ)) time, makes at most k calls to the ERM
oracle, and takes

O

(
kd log(1/ϵ)

ϵ
+

n log(n/δ)

ϵ

)
samples.

Proof. The key of the proof is to show that when Egood happens, |F | is always at most k throughout the execution of
Algorithm 3.

Upper bound |F |. Suppose towards a contradiction that |F | > k at the end of Algorithm 3, while Egood happens. By
definition of (k, ϵ)-realizability from Definition 3.1, there exist f∗

1 , . . . , f
∗
k ∈ F and c ∈ [k]n such that errDi(f

∗
ci) ≤ ϵ holds

for every i ∈ [n]. By the pigeonhole principle, there exist i < j such that ci = cj , and Algorithm 3 increments |F | on both
the i-th and the j-th iterations of the for-loop.

During the i-th iteration, we add f̂i to F . By the second condition in the definition of Egood, we have errDi(f̂i) ≤
(1 + α/3)ϵ. Now, we use the fact that Di and Dj share the same marginal over X , which we denote by Dx. Define
function pi : X → [0, 1] as pi(x

′) := Pr(x,y)∼Di
[y = 1|x = x′], i.e., the expectation of y|x according to Di. Define

pj(x
′) := Pr(x,y)∼Dj

[y = 1|x = x′] analogously. Note that we have the following relation for every f : X → {0, 1} and
i′ ∈ {i, j}:

errDi′ (f) = Pr
(x,y)∼Di′

[f(x) ̸= y] = E
x∼Dx

[
Pr

y∼Bernoulli(pi′ (x))
[f(x) ̸= y]

]
= E

x∼Dx

[|f(x)− pi′(x)|] .

Since ci = cj , for every x ∈ X we have

f̂i(x)− pj(x) = [f̂i(x)− pi(x)] + [pi(x)− f∗
ci(x)] + [f∗

cj (x)− pj(x)].

It then follows from the triangle inequality that

errDj
(f̂i) = E

x∼Dx

[∣∣∣f̂i(x)− pj(x)
∣∣∣]

≤ E
x∼Dx

[∣∣∣f̂i(x)− pi(x)
∣∣∣]+ E

x∼Dx

[∣∣pi(x)− f∗
ci(x)

∣∣]+ E
x∼Dx

[∣∣∣f∗
cj (x)− pj(x)

∣∣∣]
= errDi(f̂i) + errDi(f

∗
ci) + errDj (f

∗
cj)

≤ (3 + α/3)ϵ.

The last step above applies errDi
(f̂i) ≤ (1 + α/3)ϵ, errDi

(f∗
ci) ≤ ϵ, and errDj

(f∗
cj) ≤ ϵ. The first inequality was proved

earlier. The second and the third inequalities follow from our choice of f∗
1 , . . . , f

∗
k and c ∈ [k]n.

Finally, by the first condition in the definition of Egood, errDj
(f̂i) ≤ (3 + α/3)ϵ implies that, during the j-th iteration of the

for-loop, we have errS(f̂i) ≤
(
3 + 2

3α
)
ϵ on Line 5. Then, we will not increment |F | during the j-th iteration, which leads

to a contradiction.

Oracle calls, runtime, and sample complexity. We first note that |F | is incremented each time we call the ERM oracle on
Line 11. Therefore, we make at most k calls to the ERM oracle. Other than this step, the remainder of Algorithm 3 can clearly
be implemented in polynomial time. Finally, to bound the sample complexity, we note that in every iteration of the for-loop,

20

Collaborative Learning with Different Labeling Functions

c · ln(n|F |/δ)
ϵ = O

(
log(n/δ)

ϵ

)
samples are drawn. In addition, before each time |F | is incremented, O

(
d log(1/ϵ)+log(k/δ)

ϵ

)
samples are drawn. Therefore, the total sample complexity is upper bounded by:

n ·O
(
log(n/δ)

ϵ

)
+ k ·O

(
d log(1/ϵ) + log(k/δ)

ϵ

)
= O

(
kd log(1/ϵ) + n log(n/δ)

ϵ

)
.

Finally, we put everything together to prove Theorem 3.10.

Proof of Theorem 3.10. By Lemmas E.2, E.3 and E.4, conditioning on an event that happens with probability at least 1− δ,
Algorithm 3 returns (3 + α)ϵ-accurate classifiers for all the n distributions, and the runtime, number of ERM oracle calls,
and the number of samples are bounded accordingly.

In order to control the (unconditional) sample complexity, runtime, and number of oracle calls, we simply terminate the
algorithm when any of these quantities exceeds the corresponding bound. The resulting algorithm is still ((3 + α)ϵ, δ)-PAC,
and satisfies the desired upper bounds on the sample complexity, runtime, and number of oracle calls.

F. Proofs for Section 7
F.1. Technical Lemmas

We state and prove a few additional technical lemmas that will be useful for proving the two cases in Theorem 3.16.

As in the analysis in the previous sections, we define a “good event” that implies the success of Algorithm 1.

Definition F.1. Let Egood denote the event that the following happen simultaneously when Algorithm 1 is executed:

• The condition in Lemma 7.1 holds at every iteration r.

• Whenever Line 16 is reached, errDv
(ĝi) ≤ ϵ/4 implies errSv

(ĝi) ≤ ϵ/2 and errDv
(ĝi) > ϵ implies errSv

(ĝi) > ϵ/2.

Lemma F.2. When Algorithm 1 is executed with some sufficiently large constant c, it holds that Pr
[
Egood

]
≥ 1− δ.

Proof. By Lemma 7.1, the probability for the condition in Lemma 7.1 to be violated in the r-th iteration is at most δ(r)/6.
Summing over all r gives

∑+∞
r=1

δ(r)

6 = δ
6 ·

π2

6 < δ/3. By the same argument as in the proof of Lemma B.2, the probability
for the second condition to be violated is also at most δ/3. By a union bound, Pr

[
Egood

]
≥ 1− δ/3− δ/3 ≥ 1− δ.

Analogous to Lemma B.3, we have the following lemma, which states that event Egood guarantees that the classifiers returned
by the algorithm are accurate.

Lemma F.3. When Egood happens, the output of Algorithm 1 satisfies errDi
(f̂i) ≤ ϵ for every i ∈ [n].

Finally, we prove that the number of active distributions, |G(r)|, decreases at an exponential rate, so the while-loop is
executed at most O(log n) times. This will be useful for upper bounding the sample complexity.

Lemma F.4. When event Egood happens, |G(r+1)| ≤ 3
4 |G

(r)| holds at the end of the r-th iteration of the while-loop.

Proof. Consider the r-th iteration of the while-loop. For brevity, we drop the superscript in γ(r). Since
∑γ

i=1 |Gi| = |G(r)|,
we have

γ∑
i=1

|Gi| · 1
{
|Gi| ≥ |G(r)|/(2γ)

}
=

γ∑
i=1

|Gi| −
γ∑

i=1

|Gi| · 1
{
|Gi| < |G(r)|/(2γ)

}
≥ |G(r)| − γ · |G

(r)|
2γ

= |G(r)|/2.

21

Collaborative Learning with Different Labeling Functions

Fix i ∈ [γ] that satisfies |Gi| ≥ |G(r)|/(2γ). By the first condition in the definition of Egood, event Egood implies that

1

|Gi|
∑
v∈Gi

errDv
(ĝi) ≤ ϵ/8.

By Markov’s inequality, there are at least |Gi|/2 elements v ∈ Gi such that errDv
(ĝi) ≤ ϵ/4. Then, by the second condition

in the definition of Egood, every such element v will not appear in G(r+1). Therefore, we conclude that

|G(r+1)| ≤ |G(r)| −
γ∑

i=1

|Gi|
2
· 1

{
|Gi| ≥ |G(r)|/(2γ)

}
≤ |G(r)| − |G

(r)|
4

=
3

4
|G(r)|.

F.2. The Bipartite Case

We start with the simpler case that k = 2. In this case, we set m(r) according to Lemma 7.1 and set γ(r) = 2 in Algorithm 1.
Furthermore, the coloring algorithm is simply the efficient algorithm for 2-coloring.

Proof of Theorem 3.16, the k = 2 case. In light of Lemmas F.2 and F.3, it remains to upper bound the sample complexity
of Algorithm 1 under event Egood. As a simple corollary of Lemma F.4, we have |G(r)| ≤ (3/4)r−1 · n at the r-th iteration
of the while-loop.

The sample complexity of the r-th iteration of the while-loop is upper bounded by

m(r) · |G(r)|+ |G(r)| · c · ln(|G
(r)|/δ(r))
ϵ

⪯ d log(1/ϵ) + |G(r)|+ log(1/δ(r))

ϵ
+ |G(r)| · log(|G

(r)|/δ(r))
ϵ

⪯ d log(1/ϵ) + (3/4)r · n+ log(1/δ) + log r

ϵ
+ (3/4)r · n · log[(3/4)

r · n] + log(1/δ) + log r

ϵ
.

Since the while-loop terminates when G(r) is empty, there are at most O(log n) iterations, and summing the above over all
rounds gives

d log(1/ϵ) log n+ n+ log(1/δ) log n+ log2 n

ϵ
+

n log n+ n log(1/δ)

ϵ

⪯ d log(1/ϵ) + n

ϵ
· log n+

n log(1/δ)

ϵ
.

Therefore, we have the desired sample complexity upper bound.

F.3. The General Case

When k ≥ 3, we can no longer find a k-coloring efficiently. Instead, we compute an approximate coloring with O(nc∗k)
colors, where n = |G(r)| is the number of vertices in the graph. The hope is that as long as c∗k < 1, we can still combine the
datasets from vertices that share the same color, and use the data more efficiently.

Formally, let α be a constant such that there is an efficient algorithm that colors every k-colorable graph with n vertices
using at most α · nc∗k colors. We set γ(r) = α · |G(r)|c∗k and set m(r) according to Lemma 7.1.

Proof of Theorem 3.16, the k ≥ 3 case. Again, we focus on upper bounding the sample complexity. The number of samples
drawn in the r-th round is at most

m(r) · |G(r)|+ |G(r)| · c · ln(|G
(r)|/δ(r))
ϵ

⪯ |G(r)|c
∗
k · d log(1/ϵ) + |G

(r)|+ log(1/δ(r))

ϵ
+ |G(r)| · log(|G

(r)|/δ(r))
ϵ

.

22

Collaborative Learning with Different Labeling Functions

Plugging |G(r)| ≤ (3/4)r−1 · n into the above and summing over r = 1, 2, . . . gives

dnc∗k log(1/ϵ) + n1+c∗k + nc∗k log(1/δ)

ϵ
+

n log n+ n log(1/δ)

ϵ

⪯ d log(1/ϵ) + n

ϵ
· nc∗k +

n log(1/δ)

ϵ
.

23

