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Abstract

We propose and investigate probabilistic guaran-
tees for the adversarial robustness of classifica-
tion algorithms. While traditional formal verifica-
tion approaches for robustness are intractable and
sampling-based approaches do not provide formal
guarantees, our approach is able to efficiently cer-
tify a probabilistic relaxation of robustness. The
key idea is to sample an ϵ-net and invoke a lo-
cal robustness oracle on the sample. Remarkably,
the size of the sample needed to achieve proba-
bly approximately global robustness guarantees is
independent of the input dimensionality, the num-
ber of classes, and the learning algorithm itself.
Our approach can, therefore, be applied even to
large neural networks that are beyond the scope
of traditional formal verification. Experiments
empirically confirm that it characterizes robust-
ness better than state-of-the-art sampling-based
approaches and scales better than formal methods.

1. Introduction
We present a novel sampling-based procedure to certify the
global robustness of a classifier with high probability. Exist-
ing robustness verification methods are decision procedures
that provide yes/no answers for a given robustness criterion,
for a specific point in the input space. In general, however,
robustness is a quantitative property that may depend on
additional factors, such as the classifier’s confidence in a
given prediction. As a key contribution, we propose and in-
vestigate a novel notion of global robustness that quantifies
the robustness of any point, given its prediction confidence.
Our guarantee is obtained by checking local robustness on a
sufficiently large sample of points. The size of the sample
is quantified using a learning-theoretic construct, namely
ϵ-nets (Haussler & Welzl, 1986). Our approach is agnos-
tic to the specific method used to perform local robustness
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checks and, therefore, to the precise notion of robustness
investigated. In this paper, we will consider both formal and
adversarial methods to check local robustness.

Neural Network (NN) robustness is a major desideratum
as, for non-robust networks, predictions can be drastically
changed with only small perturbations to the input (Szegedy
et al., 2014). This behavior can be detrimental in safety-
critical applications like autonomous driving (Rao & Frtu-
nikj, 2018) or image recognition tasks (Athalye et al., 2018).
Hence, methods for evaluating whether NNs are robust to
such perturbations are critical to enable their safe and re-
liable deployment. Significant research efforts have been
invested to assess NN robustness, following two main lines
of research:

• Formal verification methods have been used to prov-
ably certify local robustness of NNs (Katz et al., 2019;
Wu et al., 2024; Xu et al., 2021). Recent results have
extended these techniques to global robustness certifi-
cation (Athavale et al., 2024) albeit only for NNs with
up to a few hundred parameters.

• Adversarial methods rely on local optimization to as-
sess whether NNs can withstand adversarial attacks
(Goodfellow et al., 2015; Madry et al., 2018; Carlini &
Wagner, 2017a). These methods easily scale to large
networks, but generally do not provide formal guaran-
tees on the global behavior of the network.

Our approach provides a quantitative characterization of
robustness for the whole input space parameterized by the
prediction confidence of each point. That is, for each point
in the input space we are able to give a high-probability
lower bound for its robustness. This only requires indepen-
dently and identically distributed (iid) samples from the data
distribution and access to a local robustness oracle. Such
an oracle can be efficiently modeled using existing (formal
or adversarial) methods for assessing local robustness. The
sample size required by our approach is independent of the
input dimensionality, the number of classes, and the learning
algorithm itself. Our approach can provide distinct robust-
ness guarantees for each confidence value after a single
sampling procedure. This characterization can be used to in-
fer high-probability lower bounds on the robustness of new
data points, that were not part of the sampling procedure.
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This paper is organized as follows. In Section 2, we present
the relevant related work. In Section 3, we introduce the
preliminaries. Our main contributions are described in Sec-
tion 4 and Section 5. We present and discuss our experi-
mental evaluation in Section 6. Finally, Section 7 contains
concluding remarks.

2. Related Work
After the seminal work by Szegedy et al. (2014) showed
that NNs are sensitive to adversarial examples, a number of
techniques to find such examples were introduced. Many
such approaches rely on gradient computation such as the
Fast Gradient Signed Method (FGSM, Goodfellow et al.,
2015) and an iterative adaptation of it called Projected Gra-
dient Descent (PGD, Madry et al., 2018). Additionally, the
C&W attack (Carlini & Wagner, 2017a) explicitly takes
the distance to the original data point into account, to find
a particularly close adversarial example. More recently,
empirical approaches to assess (Webb et al., 2019; Baluta
et al., 2021; Kim et al., 2023) as well as improve (Li et al.,
2023; Kim et al., 2023) the robustness of NNs have been
introduced, often building from the concept of adversarial
training introduced by Goodfellow et al. (2015). While
these approaches are applicable to large NNs and can be
used to empirically assess robustness, they do not provide
theoretical robustness guarantees for new points.

In an effort to obtain provable guarantees, a line of research
has developed formal methods for the verification of NNs
(Katz et al., 2019; Chen et al., 2021; Xu et al., 2020). While
a formally verified NN is provably robust to input pertur-
bations (Casadio et al., 2022; Meng et al., 2022), formal
verification is limited to small NNs. In fact, it is generally
hard to provide guarantees about the behavior of large net-
works (Katz et al., 2017) and it is, in particular, hard to
detect all adversarial examples (Carlini & Wagner, 2017b).
Other approaches have sought to provide approximate (Wu
et al., 2020) or statistical (Webb et al., 2019; Cohen et al.,
2019; Lecuyer et al., 2019) robustness guarantees, as well
as to train NNs which are certifiably robust (Li et al., 2023;
Sinha et al., 2018; Wang et al., 2018).

Recent work has specifically addressed global robustness for
NNs. Athavale et al. (2024) have recently extended existing
formal verification methods to certify global robustness for
confident predictions, where confidence is quantified using
the softmax function. Similarly, Kabaha & Cohen (2024)
focus on confident predictions using a margin-based notion
of confidence. In both cases, however, the scope of the
method is limited to NNs with only hundreds of parameters.
In this paper, we introduce a probabilistic relaxation of the
notion of global robustness of Athavale et al. (2024). We
utilize ϵ-nets (Haussler & Welzl, 1986) to provide high-
probability guarantees for this notion of robustness.

3. Preliminaries
In this section, we will introduce basic notation and the nec-
essary background for our theory. We will further introduce
and motivate the notion of a robustness oracle and predic-
tion confidence. These abstract concepts will allow our
results to be easily adapted to different methods of assessing
robustness, as shown in our experiments in Section 6.

3.1. Basic Notation

Consider a classification task with n classes on a metric
input space X . We define a classifier as f : X → Rn, where
for any instance x ∈ X the classifier returns a vector f(x) ∈
Rn. In this vector, the i-th component f(x)i represents
the classifier’s output for class i, like the output layer in a
NN. We say that the predicted class for x is class(x) =
argmaxi∈[1,n] f(x)i. Furthermore, we say conff (x) ∈ R
is the prediction confidence of f for class(x). In the rest of
this paper, we will assume that for a class class(x) = c the
confidence is given by the softmax function, i.e.,

conff (x) =
exp(f(x)c)∑

j∈[1,n] exp(f(x)j)
(1)

without restricting the generality of our statements. We
assume that the data for the classification task follows a
distribution D over X . We write X ∼ D to indicate that X
is a random variable drawn from D, and x ∼ D to denote
an observed realization of X . If clear from context, proba-
bilities PrD that are computed with respect to a distribution
D will be written as Pr.

3.2. Robustness

We say a classifier f is robust around a point x, if
class(f(x)) remains constant within some neighborhood
N (x) ⊂ X of x. In many applications, N (x) is chosen to
be an L∞-ball (Goodfellow et al., 2015; Madry et al., 2018)
or another norm-bounded ball (Baluta et al., 2021; Carlini
& Wagner, 2017a; Leino et al., 2021; Athavale et al., 2024).

How robust f is around x is assessed by a robustness or-
acle robf (x). The robustness oracle robf (x) returns the
distance ρ to the closest counterexample x′ ∈ N (x) s.t.
class(f(x′)) ̸= class(f(x)). Examples of robustness or-
acles robf include verification tools (Katz et al., 2017;
Meng et al., 2022; Xu et al., 2021; Athavale et al., 2024),
which offer exact results at high computational costs. For
such exhaustive search methods, we can state robf (x) =
minx′∈N (x){∥x− x′∥ : class(f(x)) ̸= class(f(x′))}. In
contrast, heuristic or adversarial methods (Goodfellow et al.,
2015; Madry et al., 2018; Carlini & Wagner, 2017a) can
efficiently find very close points with different class mem-
bership, which can be used as an upper bound for ρ. We will
further discuss practically useful robustness oracles based
on well-established methods in Section 6.
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The following definition captures this oracle-based notion
of robustness around a given point.

Definition 3.1 (Local ρ-robustness). A classifier f : X →
Rn is locally ρ-robust around x according to the robustness
oracle robf if

robf (x) ≥ ρ. (2)

Based on this definition, we need to define a notion of global
robustness for a given classifier f , so we can guarantee the
classifier will behave robustly regardless of the input. A
natural definition of global ρ-robustness would require local
ρ-robustness for every possible input. However, enforcing
this for all inputs in dense spaces like Rm would constrain
the classifier to make constant predictions. To address this,
a more useful notion of global robustness focuses on spe-
cific regions of interest, such as areas where the classifier’s
prediction confidence conff (x) is high (Leino et al., 2021;
Athavale et al., 2024). More confident predictions require
larger changes in the output of f to alter the predicted class,
so we consequently expect points classified with high confi-
dence to be more robust. The following definition formalizes
global robustness, based on a confidence threshold κ.

Definition 3.2 (Global ρ-κ-robustness). A classifier f :
X → Rn is globally ρ-κ-robust if it is locally ρ-robust for
all x ∈ X where the prediction confidence conff (x) is
larger than κ.

∀x ∈ X : conff (x) ≥ κ =⇒ robf (x) ≥ ρ. (3)

Definition 3.2 is equivalent to the following statement,
which states the absence of counterexamples:

∄x ∈ X : robf (x) < ρ ∧ conff (x) ≥ κ. (4)

Equation (4) highlights that a classifier is certified to be
robust if no counterexample exists, that is, if no point with
both high confidence and insufficient robustness is found by
the oracle. However, certifying robustness in this manner is
intractable in general (Katz et al., 2017). In this paper, we
focus instead on bounding the probability of encountering
counterexamples.

3.3. Epsilon Nets

Our robustness guarantees build on concepts from computa-
tional geometry and learning theory, and our definitions are
based on Mitzenmacher & Upfal (2017).

Definition 3.3 (Range space). Let Y be a (possibly infinite)
set and R a family of subsets of Y called ranges. A range
space is a tuple (Y,R).

Definition 3.4 (VC Dimension, Vapnik & Chervonenkis
(2015)). Let (Y,R) be a range space. The Vapnik-
Chervonenkis (VC) dimension of (Y,R) is the size of the

largest finite set S ⊆ Y such that for every subset T ⊆ S,
there exists a range R ∈ R satisfying R ∩ S = T . If no
such maximum exists, the VC dimension is infinite.

Definition 3.5 (ϵ-net, Haussler & Welzl (1986)). Let (Y,R)
be a range space and D be a probability distribution on Y . A
(finite) set N ⊆ Y is an ϵ-net for Y with respect to D if, for
every set R ∈ R such that Pr(R) ≥ ϵ, the set R contains at
least one point from N , i.e.,

∀R ∈ R : Pr(R) ≥ ϵ =⇒ R ∩N ̸= ∅. (5)

ϵ-nets provide a general notion of coverage. Our approach
for certifying PAG-robustness relies on the following theo-
rem for constructing ϵ-nets from iid samples.

Theorem 3.6 (ϵ-nets from iid samples (Mitzenmacher &
Upfal, 2017)). Let (Y,R) be a range space with VC dimen-
sion d and let DY be a probability distribution on Y . For
any 0 < δ, ϵ ≤ 1

2 , an iid sample from DY of size s is an
ϵ-net for Y with probability at least 1− δ if

s = O
(
d

ϵ
ln

d

ϵ
+

1

ϵ
ln

1

δ

)
(6)

While the big-O notation of this result is convenient for
theoretical asymptotic analyses, it neglects constant factors
that may be significant in practice. In their proof, how-
ever, Mitzenmacher & Upfal (2017) show that Theorem 3.6
always holds if s satisfies the inequality in the following
restatement.

Proposition 3.7 (ϵ-nets from iid samples with constants).
Let (Y,R) be a range space with VC dimension d and let D
be a probability distribution over Y . For any 0 < ϵ, δ < 1

2 ,
an iid sample from DY of size s is an ϵ-net for Y with
probability at least 1− δ if

s ≥ 2

ln(2)ϵ

(
ln

1

δ
+ d ln(2s)− ln

(
1− e−sϵ/8

))
. (7)

Proof. See Appendix A.

We refer to the smallest integer s that satisfies the inequality
in Proposition 3.7 as s(ϵ, δ, d), and obtain it by computing

min
s∈N

{
s ≥ 2

ln(2)ϵ

(
ln

1

δ
+ d ln(2s)− ln

(
1− e−sϵ/8

))}
.

(8)

To obtain sample complexities, we find s(ϵ, δ, d) from Equa-
tion (8) using numerical methods.

4. PAG Robustness
In this section, we present our main theoretical results. We
show how to get high-probability certificates for the follow-
ing relaxation of global ρ-κ-robustness (Definition 3.2).
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Definition 4.1. Given a data-distribution D, a classifier
f : X → Rn is approximately globally robust according
to a robustness oracle robf if, for a given confidence κ,
robustness ρ, and X ∼ D, we have that

Pr
(
robf (X) < ρ | conff (X) ≥ κ

)
< ϵ. (9)

where 0 < ϵ < 1 is a chosen parameter.

Our relaxation states that all κ-confident predictions of f
will also be at least ρ-robust, with high probability. This
probabilistic statement is inspired by the work of Athavale
et al. (2024), where the confidence threshold is introduced
as a mechanism for f to abstain from prediction. A key
difference to their work is that we are able to decide the
probabilistic statement for all values of (ρ, κ) simultane-
ously. For this, we devise on a sampling-based methodology
using ϵ-nets to obtain the bound in Equation (9).

We rephrase the left-hand side of Equation (9) as

Pr
(
robf (X) < ρ ∧ conff (X) ≥ κ

)
Pr

(
conff (X) ≥ κ

) (10)

to then separately provide a lower bound for the numerator
(using Proposition 4.2) and an upper bound for the denom-
inator (using Lemma 4.3). Both of these bounds can then
be realized with the same iid sample. In the rest of this
section, we introduce a set of novel definitions required for
our results and then proceed with the bounds themselves.

4.1. Quality Space

An important aspect of our method is that our guarantees are
independent of the properties of the input space and of the
classifier f . This is because our guarantees only consider
the two properties of confidence and robustness of a given
point in the input space. In this section, we formalize this
idea. We define a function q that maps a given point x ∈ X
to its robustness-confidence tuple:

q(x) 7→ (robf (x), conff (x)). (11)

As q(x) captures precisely the characteristics, or qualities,
of each point x that are relevant for our guarantees, it is
useful to introduce the concept of a quality space Q. The
quality space is a 2-dimensional real space defined by the
outputs of the map q. For a given pair (ρ, κ), we say x is a
counterexample to global ρ-κ-robustness if q(x) ∈ R(ρ, κ),
where

R(ρ, κ) := {(ρ′, κ′) ∈ R2 : ρ′ < ρ ∧ κ′ ≥ κ}. (12)

The quality space allows us to easily define and detect
whether f is robust or not. Each R(ρ, κ) corresponds to

Confidence

(ρ, κ)

R
o
b
u
st
n
es
s Quality space Q

(ρ̃, κ̃)

R(ρ̃, κ̃)

R(ρ, κ)

Figure 1. Visualization of the quality space Q and of the region of
counterexamples defined in Equation (12) for two possible pairs
of robustness-confidence values (ρ, κ) and (ρ̃, κ̃).

the intersection of two-axis aligned half-spaces in Q, as
illustrated in Figure 1.

We define the family of these counterexample ranges over
all possible (ρ, κ) as

R = {R(ρ, κ) : (ρ, κ) ∈ R2}. (13)

Under a data distribution D, we have

Pr(R(ρ, κ)) =Pr
(
q(X) ∈ R(ρ, κ)

)
=Pr

(
robf (X) < ρ ∧ conff (X) ≥ κ

)
.

(14)

Given a set N ⊆ X , we use q(N) to denote the set q(N) =
{q(x) ∈ Q : x ∈ N}. With these concepts, we can obtain
sample complexities independent from the dimensionality
of X . We obtain an iid sample N in X , map it to Q, and
interpret q(N) as ϵ-net over the range space (Q,R). This
range space is equivalent to the intersection of two axis-
aligned half-spaces in R2, with a VC-dimension d = 2.

4.2. Bounding the Joint Probability

In this section, we define a method that can check under
which conditions and for which (ρ, κ) the inequality

Pr
(
robf (X) < ρ ∧ conff (X) ≥ κ

)
< ϵ (15)

holds true. For our guarantee, we consider an iid sample N
from the data distribution D. If our iid sample is an ϵ-net, it
intersects all ϵ-likely ranges. Therefore, if no counterexam-
ple to ρ-κ-robustness is found in an ϵ-net over (Q,R), then
R(ρ, κ) is known to be less than ϵ-likely. The following
proposition formalizes this idea.
Proposition 4.2. Let D be a data distribution and f : X →
Rn be a classifier. Given an ϵ-net q(N) over the range
space (Q,R), then for a given confidence κ and robustness
radius ρ, we have that

q(N) ∩R(ρ, κ) = ∅ =⇒ Pr
(
R(ρ, κ)

)
< ϵ (16)
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where R(ρ, κ) denotes the set of counterexamples to ρ-κ-
robustness.

Proof. As q(N) is an ϵ-net, it holds that

∀R ∈ R : Pr(R) ≥ ϵ =⇒ q(N) ∩R ̸= ∅. (17)

By contraposition, this statement is equivalent to

∀R ∈ R : Pr(R) < ϵ ⇐= q(N) ∩R = ∅. (18)

Then, q(N) ∩R(ρ, κ) = ∅ =⇒ Pr(R(ρ, κ)) < ϵ.

This result allows us to bound the numerator of Equa-
tion (9). Note that Proposition 4.2 allows us to give guar-
antees on the behavior of f . However, a bound on the
joint probability (alone) may lead to vacuous guarantees.
In fact, the probability in Equation (15) is trivially zero if
we consider a confidence value κ large enough such that
Pr(conff (X) ≥ κ) = 0. For this reason, we require addi-
tional information about Pr(conff (X) ≥ κ).

4.3. Bounding the prediction confidence

In this section, we provide a method to lower bound the
probability of obtaining a given prediction confidence as

Pr(conff (X) ≥ κ) ≥ pmin. (19)

Equation (19) is implied by the following statement about
the cumulative distribution function of confidence:

Pr(conff (X) ≤ κ) ≤ 1− pmin (20)

The following auxiliary lemma provides a general method
to obtain a bound for a given quantile of a random variable
from an iid sample.
Lemma 4.3. Let K be a real-valued random variable, and
N be an iid sample of K with |N | = s. Denote with N(i) ∈
R the ith-largest element in the sample. Then for parameters
1 > p ≥ 1

2 and 0 < δ < 1
2 , with probability of at least 1−δ,

we have that
Pr(K ≤ N(i)) ≤ p (21)

for any integer i such that

i < sp−

√
2sp ln

(
1

δ

)
. (22)

Proof sketch. The number of elements in an iid sample that
are smaller or equal to the p-quantile Kp of K is a random
variable I ∼ Binom(s, p). We are interested in finding the
largest integer i such that N(i) ≤ Kp holds with probability
at least 1− δ and, therefore, the largest integer i such that
Pr(I ≥ i) ≥ 1 − δ. We use a Chernoff bound for the
deviation of I from its expected value E[I] = sp to obtain
an integer i that is a high-probability lower bound for I .

We use Lemma 4.3 with K = conff (X) and p = 1− pmin

to obtain κ values for which

Pr(conff (X) > κ) ≥ pmin. (23)

As Pr(conff (X) ≥ κ) ≥ Pr(conff (X) > κ), we arrive
at Equation (19). For compactness, we use

i(s, p, δ) := max
i∈N

{
i : i < sp−

√
2sp ln

(
1

δ

)}
(24)

to refer to the largest i which respects the bound in Equa-
tion (22). In our sample, we refer to the confidence value
corresponding to this i as κmax. For confidence values
κ ≤ κmax, Lemma 4.3 allows us to state with high probabil-
ity that Pr(conff (X) > κ) ≥ pmin. We cannot, however,
make a statement about confidence values that were not ob-
served frequently enough in the sample, i.e., for κ > κmax.
This upper bound on confidence values being certified is
natural, as our statement relies only on the observed sample.

4.4. PAG Robustness

We have now introduced all necessary tools and conditions
to certify a classifier f to be approximately globally robust.
So far, we assumed an ϵ-net in the quality space Q as given.
We now discuss how to obtain such an ϵ-net using Theo-
rem 3.6 to derive our main contribution: an iid sampling-
based procedure that allows us to certify the approximate
global robustness of a classifier f with high probability.

Theorem 4.4 (PAG robustness). Let D be a data distri-
bution, f : X → Rn be a classifier and robf be a local
robustness oracle. With q(x) defined as in Equation (11),
with parameters 0 < ϵ, pmin, δ < 1

2 . Consider a sample
N ∼ D with |N | ≥ s(ϵ, δ/2, 2) as per Equation (8) and
an integer i = i(|N |, 1− pmin, δ/2) as per Equation (24).
Then, with a probability of at least 1 − δ the following
implication holds for all ρ and for all κ ≤ N(i):(

q(N) ∩R(ρ, κ) = ∅
)

=⇒

Pr
(
robf (X) < ρ | conff (X) ≥ κ

)
<

ϵ

pmin
.

(25)

That is, under the absence of counterexamples in N , the
classifier f can be certified to be Probably Approximately
Globally (PAG) robust.

We present a proof of Theorem 4.4 that builds on the fol-
lowing lemma, which reformulates Proposition 4.2 as con-
ditional probability.

Lemma 4.5. Let X ∼ D be a random data point in X , f :
X → Rn be a classifier, and parameters 0 < ϵ, pmin ≤ 1

2
be a parameter. Given an ϵ-net q(N) over the range space
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(Q,R), for all ρ, κ such that Pr(conff (X) ≥ κ) ≥ pmin,
it holds that (

q(N) ∩R(ρ, κ) = ∅
)

=⇒

Pr
(
robf (X) < ρ | conff (X) ≥ κ

)
<

ϵ

pmin
.

(26)

Proof. Let us define, for brevity, the two random events
Er = {robf (X) < ρ} and Ec = {conff (X) ≥ κ}. By
Proposition 4.2 we know

q(N) ∩R(ρ, κ) = ∅ =⇒ Pr(Er ∧ Ec) < ϵ. (27)

Furthermore, by the definition of conditional probability

Pr(Er | Ec) =
Pr(Er ∧ Ec)

Pr(Ec)
. (28)

When Pr(Ec) = Pr(conff (X) ≥ κ) ≥ pmin, it holds that

Pr(Er | Ec) ≤
Pr(Er ∧ Ec)

pmin
<

ϵ

pmin
, (29)

which completes the proof.

Proof of Theorem 4.4. We assume that |N | ≥ s(ϵ, δ/2, 2).
Theorem 3.6 then implies that q(N) is an ϵ-net over (Q,R)
with a probability of at least 1 − δ/2. We further assert
i ≤ i(|N |, 1 − pmin, δ/2). Lemma 4.3 then implies that
Pr(conff (X) ≥ N(i)) ≥ pmin with a probability of at
least 1 − δ/2 as well. We use the union bound to state
that both conditions hold true with a probability of at least
1 − δ. Given that both N(i) is a valid quantile bound,
i.e., Pr(conff (X) ≥ N(i)) ≥ pmin, and κ ≤ N(i), then
Pr(conff (X) ≥ κ) ≥ pmin. The theorem then follows
from Lemma 4.5.

In some settings, it might not be possible to directly sample
from the data distribution, but rather from a distribution D′

that is used to approximate the true distribution D. Even in
these settings we can transfer our guarantee, as long as we
can quantify the difference between the two distributions.

Theorem 4.6 (PAG under distribution shift). Let D be a
data distribution, f : X → Rn be a classifier and robf be
some robustness oracle. Let D′ be a distribution such that
TV(D,D′) = Λ. Consider an iid sample N ∼ D′s and
parameters ϵ, δ and pmin. Consider an s that satisfies the
conditions in Theorem 4.4 for D′. Then, with probability at
least 1− δ (

q(N) ∩R(ρ, κ) = ∅
)

=⇒

PrD

(
robf (X) < ρ | conff (X) ≥ κ

)
<

ϵ+ Λ

pmin − Λ
.

(30)
That is, in the absence of counterexamples f can be certified
to be PAG robust with respect to the data distribution D.

Proof sketch. The data processing inequality (Raginsky,
2014) can be used to show (Lemma A.2) that Λ is an upper
bound for the total variation distance of the distribution of
instances sampled from D and D′ when they are mapped
into the quality space Q. The numerator in the right-hand
side can be derived by showing (Lemma A.3) that an ϵ-net
under D′ is an (ϵ+ Λ)-net under D. The denominator can
be derived by observing (Proposition A.5) that the quantiles
of D and D′ can differ by at most Λ. The theorem follows
(Appendix A) from these results.

In the following section, we describe how to use the theoret-
ical results obtained so far and practically derive robustness
lower-bounds for a given classifier.

5. Robustness Lower-Bounds
In the previous section, we described how to provide global
robustness guarantees given an iid sample N is found to be
robust. Specifically, for a given choice of parameters ϵ and δ,
we bound the required size of N . This single sample N can
be used to evaluate the robustness with all tuples (ρ, κ). A
lower-bound on the robustness of a point x with prediction
confidence κ = conff (x) can be obtained using the small-
est observed robustness for a confidence of at least κ in the
sample N . We define a mapping function M(κ) 7→ ρ that
maps a given confidence κ to a corresponding robustness
lower bound ρ:

M(κ) :=


min
x∈N

robf (x)

s.t. conff (x) ≥ κ

}
if κ ≤ κmax

UNDEFINED else

(31)

Equation (31) assures that no counterexample of ρ-κ-
robustness is in N for ρ = M(κ), and that the returned
ρ satisfies all conditions of Theorem 4.4. The mapping func-
tion M(κ) does not return a robustness lower-bound for
confidence values larger than κmax. In this case, for the con-
sidered sample size the uncertainty for quantile estimation is
too large to guarantee Pr(conff (X) ≥ κmax) > 0, as de-
scribed in Lemma 4.3. Note that, for κ > κmax, we can nev-
ertheless guarantee that Pr

(
robf (X) < ρ∧ conff (X) ≥

κ
)
< ϵ. The map M can be constructed from a sample N

in O(|N | log(|N |)) time, as detailed in Algorithm 1.

For a given mapping M , we now discuss how likely it is
that our guarantees hold across all confidence values. This
is not directly addressed by our analysis so far and requires
to bound

Pr
(
robf (X) < M

(
conff (X)

))
. (32)

We can obtain a bound on this probability as a direct conse-
quence of Proposition 4.2. In this sense, the ρ-κ-mapping
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Quality space Q

κmaxκ′′κ′
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M(κ′′)
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Figure 2. Visualization of the robustness lower-bound map M(κ).
Each rectangular region under the curve has a probability mass
smaller than ϵ. The yellow line represents the maximum confidence
value above which M(κ) is undefined.

M is not only useful to obtain robustness lower-bounds for
individual points, but can furthermore be used to bound the
probability that for a point x sampled from D, it holds that
robf (x) < M(conff (x)).

Proposition 5.1. Consider a classifier f : X → Rn and
a ρ-κ-mapping M constructed from an ϵ-net q(N) as in
Equation (31). Let |M | be the size of the codomain of M .
Then

Pr
(
robf (X) < M

(
conff (X)

))
< |M |ϵ. (33)

Proof. We use the properties of ϵ-nets together with a union
bound based on the size of the codomain of the mapping
M . As M consists, by construction, of |M | discrete steps,
|M | ranges fully cover the area in the quality space below
M . In the worst case, we have to assume their probability
mass is additive and proceed with a union bound, proving
our statement.

In practical settings, |M | is typically small; we empirically
demonstrate this in Section 6. We illustrate the practical
effectiveness of our method in experiments with NNs in the
following section.

6. Experiments
In this section, we investigate the practical aspects of our the-
ory. We aim to show that our results translate into practical
settings and aim to answer the following research questions:

• RQ1: How can different methods for checking local
robustness be modeled as oracles?

• RQ2: How well do our guarantees hold on unseen data
in realistic, imperfect conditions?

• RQ3: How does the runtime of our verification proce-
dure scale based on network size, parameter choices,
and oracle?

• RQ4: How well can we capture qualitative differences
in the behavior of different NNs?

We answer these questions by applying our procedure to
the certification of NNs for MNIST (Deng, 2012) and CI-
FAR10 (Krizhevsky, 2009).

Setup We train four different network architectures (Ioffe
& Szegedy, 2015; He et al., 2016; Mirman et al., 2018) on
the two classification problems MNIST and CIFAR10, il-
lustrated in Table 1. For each architecture, we train, in a
cross-validation setup, five instances of the network with
standard training and five instances with TRADES (Zhang
et al., 2019). We then use the respective validation split of
the data to produce our guarantee: We imitate iid samples
from the true data distribution by sampling with Gaussian
noise from the validation data. As this approximation might
not represent the true data distribution perfectly, the theoret-
ical strictness of our guarantees might decrease, according
to Theorem 4.6. Similar to this, in practical settings, true iid
sampling is not always possible, and we investigate whether
our guarantees appear to degrade noticeably.

Table 1. Overview of used NN architectures and oracles.

Dataset Architecture Params Oracle

MNIST FeedForward 39 k PGD, LiRPA
ConvBig 1 663 k PGD, LiRPA

CIFAR10 ResNet20 272 k PGD
VGG11 BN 9 491 k PGD

We repeat the randomized verification procedure multiple
times for each instance of the NNs with different robustness
oracles. A detailed description of the training and verifica-
tion procedure is provided in Appendix C.

Robustness Oracles We provide three robustness oracles,
and conduct experiments with one based on adversarial
techniques and one based on formal methods, as an answer
to RQ1. Our adversarial oracle uses PGD (Madry et al.,
2018), with a high number of small gradient steps, to report
the closest counterexample found. For the experiments
with PGD, we set ϵ = 10−4, pmin = 0.01, δ = 0.01 and
thus sample s(ϵ, δ/2, 2) = 989534 images. We use PGD
to quantify robustness, by performing many small gradient
steps from each data point, and we measure the L∞ distance
to the first adversarial example.

The two formal robustness oracles we provide are based on
the NN verification tools Marabou (Katz et al., 2019) and
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auto LiRPA1 based on LiRPA Xu et al. (2020) respec-
tively. We will only conduct multiple experiments using
auto LiRPA, due to the high computational demand of
Marabou in our setting. For both of these tools, we certify
local robustness in L∞ hypercubes of fixed distances, and
use binary search to find a lower bound of the radius where
the model is robust. In our experiments with auto LiRPA,
we choose ϵ = 2.5 · 10−3, pmin = 0.05 and δ = 0.01. We
consequently sample s(ϵ, δ/2, 2) = 31635 images.

Evaluation After the sampling procedure is completed,
we construct the map M as in Equation (31) from the sam-
pling split of our data. The map M provides the robustness
lower bound obtained with the sampling procedure. We are
then interested in empirically checking whether the robust-
ness lower bound we obtained holds on the unseen testing
split, that is, whether the testing data respects our guarantees.
To this end, we define the following estimators. For a given
confidence value κ, we estimate the conditional probability
Pr(robf (x

′) < M(κ) | conff (x
′) ≥ κ) for x′ ∈ Dtest,

that is, the probability that the testing data does not respect
the robustness lower-bound provided by M .

pκ =
|{x′ : robf (x

′) < M(κ) ∧ conff (x
′) ≥ κ}|

|{x′ : conff (x′) ≥ κ}|
,

(34)
where x′ ∈ Dtest. To estimate the worst-case violation of
our guarantees, we consider the p̂ = maxκ≤κmax pκ and
check if p̂ ≤ ϵ/pmin. We furthermore report

nc = |{x′ ∈ Dtest : robf (x
′) < M(conff (x

′)}|. (35)

This helps evaluate Proposition 5.1 empirically. As dis-
cussed in Proposition 5.1, |M | denotes the number of steps
in M , i.e., the size of its codomain. If Proposition 5.1 holds
for our sample, we then expect nc ≤ |Dtest||M |ϵ. For both
MNIST and CIFAR-10, |Dtest| = 104 and thus |Dtest|ϵ = 1.
We then expect nc/|M | < 1 for PGD and nc/|M | < 10 for
auto LiRPA.

Results Table 2 reports a summary of our experimental
evaluation. We perform a total of 230 experiments on 40
NNs, checking our guarantees against the estimators de-
scribed above. In the majority of trials (211/230) our estima-
tors suggest that our guarantees hold across all confidence
values. To answer RQ2, we discuss possible explanations
for the 19 observed violations, besides the natural variance
of our estimators defined in Equations (34) and (35).

In the few cases where our estimators indicate that our
guarantees are violated on unseen data, the models under
analysis still follow the overall trend described by our guar-
antees (see Figure 3), with only slight violations. Consid-
ering our results in more detail, we can observe that 5 of

1github.com/Verified-Intelligence/auto LiRPA

the 6 runs with violations for the FeedForward network on
MNIST originate in one single validation data split, as de-
tailed in Appendix D. This could be, for instance, due to a
distribution shift between this specific validation split under
Gaussian noise and the true data distribution. A similar
phenomenon can be observed for ResNet20 on CIFAR10.

With these possible explanations in mind, we observe a re-
maining total of 5/180 ≈ 0.028 trials, where our guarantees
seem not to generalize to the unseen test data as expected.
This empirical fraction is close to our choice of δ = 0.01,
and considering our simple approach of estimating the data
distribution, our method can be considered relatively re-
silient to imperfect sampling settings.

To discuss RQ3, we inspect the runtimes in Table 2. We find
that our approach is able to effectively scale to large models
like the 10 million parameter VGG11 BN with strict param-
eter values for ϵ, δ and pmin, that provide strong guarantees.
The runtime of our procedure consists mainly of the indi-
vidual local robustness checks, so by relaxing ϵ, δ and pmin,
the runtime can be easily adjusted to desired durations.

We plot the map M and the testing split of CIFAR10 with
VGG11 BN in Figure 3. To investigate our method on the
more challenging examples, we choose to plot the results for
one of the 3 experiments for which we observe pκ > 0.01
for some κ. Even in this case, the lower bound provided
by M generally holds on test data and describes well the
specific behavior of the networks, despite very few (7) ex-
ceptions. The bounds also allow for a clear differentiation
between the formal robustness of adversarially and normally
trained networks, as observable in Figure 4 in Appendix D
too, which answers RQ4 positively.

7. Conclusion
In this work, we use ϵ-nets to devise a sampling-based ap-
proach to provide probabilistic guarantees on the global
robustness of a given classifier. Our approach is agnostic
to the specific robustness oracle and can thus be adapted to
a variety of existing approaches. Our guarantees are con-
ditioned on the confidence of a prediction to allow for a
flexible characterization of robustness. In our experimental
evaluation, we used PGD and auto LiRPA to evaluate
local robustness and showed how our method: (i) charac-
terizes the behavior of networks trained with both standard
and adversarial methods, and (ii) obtains useful global ro-
bustness guarantees that transfer effectively to unseen data.

In future work, we will use other informative properties
in addition to confidence, such as the predicted class, to
further refine our guarantees. Beyond this, more refined
robustness oracles and sampling procedures can be used to
further improve the scalability and practical resilience of
the obtained guarantees. As our approach is agnostic to the

8

https://github.com/Verified-Intelligence/auto_LiRPA


Probably Approximately Global Robustness Certification

Figure 3. Scatter plot of the CIFAR-10 test dataset Dtest, with |Dtest| = 10000, in the quality space Q with VGG11 BN. The left network
is trained with standard methods, the right network is trained robustly with TRADES. The red line depicts the lower bound obtained from
validation sample N , with the parameters ϵ = 10−4, δ = pmin = 0.01, with |N | = s(ϵ, δ/2, 2) = 989534. On the right-hand side, 5
data points violate the lower bound. Note that, despite this apparent violation, M tightly fits the test data and illustrates the contrasting
robustness behaviors of the networks.

Table 2. Summary results for all experiments. We report worst results aggregated over three to five random seeds and over the different
data splits used for the TRADES adversarial training. The subscripts indicate standard training (ST) or adversarial training (AT) with
TRADES, and if the used oracle is PGD (P) or auto LiRPA (L). For each experiment, we report the values of p̂ and nc, |M |, where
bold numbers denote that the estimators are consistent with our guarantees for all the κ ≤ κmax, for all the runs considered. Moreover,
we report the number of individual “good runs” that are consistent with our guarantees even when considering the worst-case p̂. Finally,
we report the average runtime per verification run in minutes. More extensive results are available in Appendix D.

Experiment NN p̂·103 ϵ/pmin ·103 nc |M | good runs runtime

MNISTST,L
FeedForward 0.00 50.00 0 13−15 25/25 8.3
ConvBig 0.00 50.00 0 5−5 15/15 245

MNISTAT,L
FeedForward 1.30 50.00 7 6−9 25/25 8.3
ConvBig 3.39 50.00 44 3−4 13/15 246

MNISTST,P FeedForward 0.18 10.00 2 38−46 25/25 0.2
MNISTAT,P FeedForward 16.50 10.00 4 14−22 19/25 0.3

CIFARST,P
ResNet20 1.35 10.00 8 3−3 17/25 4.5
VGG11 BN 0.00 10.00 0 4−5 25/25 38.8

CIFARAT,P
ResNet20 1.51 10.00 4 24−42 25/25 133.4
VGG11 BN 17.00 10.00 9 26−60 22/25 308

properties of the tested object, we will investigate other use
cases where this approach to probabilistic verification could
improve on the state of the art.
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A. Proofs
Proposition 3.7 (ϵ-nets from iid samples with constants). Let (Y,R) be a range space with VC dimension d and let D be a
probability distribution over Y . For any 0 < ϵ, δ < 1

2 , an iid sample from DY of size s is an ϵ-net for Y with probability at
least 1− δ if

s ≥ 2

ln(2)ϵ

(
ln

1

δ
+ d ln(2s)− ln

(
1− e−sϵ/8

))
. (7)

Proof. We follow the“double sampling” argument from Mitzenmacher & Upfal (2017, Theorem 14.8). First, define E1 as
the random event that a sample N of size |N | = s is not an ϵ-net:

E1 =
{
∃R ∈ R :

(
Pr(X ∈ R) ≥ ϵ

)
∧
(
R ∩N = ∅

)}
. (36)

We aim to show Pr(E1) ≤ δ for a large enough s. Consider then a second sample T with |T | = s and define E2 as the
random event that some range R ∈ R does not intersect N , but has a large intersection with T :

E2 =
{
∃R ∈ R :

(
Pr(X ∈ R) ≥ ϵ

)
∧
(
R ∩N = ∅

)
∧
(
|R ∩ T | ≥ ϵs

2

)}
. (37)

As E(|R ∩ T |) = ϵs, then Pr
(
|R ∩ T | ≥ ϵs

2

)
should be large. Hence, E1 and E2 should have similar probability in total.

Mitzenmacher & Upfal (2017) formalize this intuition with the following expression which considers a fixed range R′ such
that R′ ∩N = ∅ and Pr(X ∈ R′) ≥ ϵ. In particular, as E2 ⊂ E1 and consequently E2 = E2 ∩ E1, it follows that

Pr(E2)

Pr(E1)
=

Pr(E1 ∩ E2)

Pr(E1)
= Pr(E2 | E1) ≥ Pr

(
|T ∩R′| ≥ ϵs

2

)
. (38)

For some fixed range R′, the random variable S = |R′ ∩ T | follows a binomial distribution Bin(s, p) with expectation
E[S] = sp. We can proceed with a Chernoff bound as

Pr
(
|R′ ∩ T | ≤ sϵ

2

)
≤ Pr

(
|R′ ∩ T | ≤ sp

2

)
≤ exp

(
−sp

8

)
≤ exp

(
−sϵ

8

)
, (39)

where we used the fact that p ≥ ϵ. While Mitzenmacher & Upfal (2017) relax this expression with exp(−sϵ
8 ) < 1

2 . In the
interest of tighter bounds, we continue instead our derivation without this relaxation. Thus,

Pr(E2)

Pr(E1)
= Pr(E2 | E1) ≥ Pr

(
|T ∩R′| ≥ ϵs

2

)
≥ 1− exp

(
−sϵ

8

)
=⇒ Pr(E1) ≤

Pr(E2)

1− exp
(−sϵ

8

) . (40)

Next, we aim to bound the probability of E2 using a larger event E′
2. Consider again some fixed range R with

ER = {(R ∩N = ∅) ∧ (|R ∩ T | ≥ k)} (41)

with k = ϵs
2 . We want to show that Pr(ER) is small. To do so, consider a set of 2s elements and assume to partition it

randomly into N and T . ER captures the event that at least k elements in N ∪ T intersect R but none of these is in N . Of
the

(
2s
s

)
possible partitions of N ∪ T , in exactly

(
2s−k

s

)
of them, no element of R is in N . Consequently,

Pr(ER) ≤ Pr(N ∩R = ∅ | |R ∩ (N ∪ T )| ≥ k) (42)

≤
(
2s−k

s

)(
2s
s

) =
(2s− k)!s!

(2s)!(s− k)!
=

s(s− 1) · · · (s− k + 1)

(2s)(2s− 1) · · · (2s− k + 1)
(43)

≤ 2−k = 2−ϵs/2. (44)

The last inequality introduces a further albeit small relaxation in the result, as k ≪ s. We then finally consider the event E′
2

via the union bound over all the ranges R ∈ R, that is,

E′
2 = {∃R ∈ R : (R ∩N = ∅) ∧ (|R ∩ T | ≥ sϵ

2
)}. (45)
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We then use the Sauer-Shelah Lemma (Sauer, 1972; Shelah, 1972) to argue that we can consider at most (2s)d ranges when
projecting R onto N ∪ T . By the union bound we then have that Pr(E′

2) ≤ (2s)d2−sϵ/2. Finally, we arrive at

Pr(E1) ≤
Pr(E2)

1− exp
(−sϵ

8

) ≤ (2s)d2−sϵ/2

1− exp
(−sϵ

8

) ≤ δ. (46)

We can now simplify the last expression to obtain

(2s)d2−sϵ/2 ≤ δ

(
1− exp

(
−sϵ

8

))
(47)

d ln(2s) +

(
−sϵ

2

)
ln(2) ≤ ln(δ) + ln

(
1− exp

(
−sϵ

8

))
(48)

s ≥ 2

ln(2)ϵ

(
ln

(
1

δ

)
+ d ln(2s)− ln

(
1− exp

(
−sϵ

8

)))
, (49)

which concludes the derivation.

Lemma 4.3. Let K be a real-valued random variable, and N be an iid sample of K with |N | = s. Denote with N(i) ∈ R
the ith-largest element in the sample. Then for parameters 1 > p ≥ 1

2 and 0 < δ < 1
2 , with probability of at least 1− δ, we

have that

Pr(K ≤ N(i)) ≤ p (21)

for any integer i such that

i < sp−

√
2sp ln

(
1

δ

)
. (22)

Proof. Let Kp ∈ R be the p-quantile of K, i.e.,

Pr(K ≤ Kp) = p (50)

The number of elements in an iid sample smaller than Kp is a binomially distributed random variable I ∼ Binom(s, p). We
aim to find an integer i that results in a high-probability lower bound for I , that is, we look for the largest i such that

Pr (I > i) ≥ 1− δ (51)

or, equivalently,

Pr (I ≤ i) =

i∑
k=1

(
s

k

)
pk(1− p)s−k < δ. (52)

There is no straightforward closed form expression to find this integer i. We proceed using Chernoff bounds for the deviation
of I from E[I] = sp. Recall that Chernoff bounds for some relative deviation η ∈ [0, 1] is defined as (Mitzenmacher &
Upfal, 2017, Chapter 4)

Pr(I ≤ (1− η)E[I]) ≤ exp

(
−η2E[I]

2

)
. (53)

In our discrete setting, the relative deviation η of I from E[I] is defined as η := sp−i
sp . The Chernoff bound can then be

written as

Pr(I ≤ i) ≤ exp

(
−(sp− i)2

2sp

)
< δ. (54)

13
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We now perform routine calculations to obtain an upper bound for i.

− (sp− i)2

2sp
< ln (δ) (55)

(sp− i)2

2sp
> ln

(
1

δ

)
(56)

sp− i > ±

√
2sp ln

(
1

δ

)
(57)

i < sp−

√
2sp ln

(
1

δ

)
(58)

Given Equation (58) holds for a particular i, at least i elements in a sample of size s are smaller than Kp with probability at
least 1− δ, i.e., Pr(N(i) ≤ Kp) ≥ 1− δ. Finally, the event N(i) ≤ Kp implies Pr(K ≤ N(i)) ≤ p, which then holds true
with a probability of at least 1− δ as well.

Definition A.1 (Total variation distance). Consider two distributions D, D′ over X and let R ⊆ X be a measurable set. The
total variation (TV) distance between D and D′ is defined as

TV(D,D′) = sup
R⊆X

|Pr
D
(R)− Pr

D′
(R)|. (59)

Lemma A.2 (Total variation distance in the quality space Q). Consider two distributions D and D′ over X and denote with
TV(D,D′) their total variation distance. For the function q : X → R2 that maps instances into the quality space Q. We
denote the distribution of the instances after they are mapped onto Q as Dq,D′

q . It then holds that

TV(Dq,D′
q) ≤ TV(D,D′). (60)

Proof. For ease of presentation, we discuss a proof of the statement for more general conditions, which correspond to a
version of the data processing inequality (Raginsky, 2014). Let F be a σ-algebra on the input space X and consider two
probability measures P and Q on (X ,F). Let t : X → Y be a measurable map and G be a σ-algebra on the space Y . With
slight abuse of notation we denote with t(P )(B) := P (t−1(B)),∀B ∈ G the pushforward measure induced by t on (Y,G).
We do so analogously for Q too. The total variation distance for probability measures is defined as

TV(t(P ), t(Q)) = sup
B∈G

|t(P )(B)− t(Q)(B)| = sup
B∈G

|P (t−1(B))−Q(t−1(B))| (61)

Note that for every measurable set B ∈ G in the measure space (Y,G), the preimage t−1(B) ∈ F is a measurable set in
(X ,F). It therefore holds that

sup
B∈G

|P (t−1(B))−Q(t−1(B))| ≤ sup
A∈F

|P (A)−Q(A)| = TV(P,Q), (62)

from which it follows that
TV(t(P ), t(Q)) ≤ TV(P,Q). (63)

The statement of lemma holds when t is the function q that maps to the quality space Q, and Y is Q.

Lemma A.3. Given two distributions D and D′ on X such that TV(D,D′) ≤ Λ, if N is an ϵ-net for X with respect to D′,
then it is an (ϵ+ Λ)-net for X with respect to D.

Proof. Using Definition A.1, TV(D,D′) = supR⊆X |PrD(R) − PrD′(R)| ≤ Λ. Specifically, PrD(R) ≥ ϵ + Λ implies
that PrD′(R) ≥ ϵ. As N is an ϵ-net for X with respect to D′, it intersects all R ⊆ X such that PrD′(R) ≥ ϵ, and it thus
intersects all R ⊆ X such that PrD(R) ≥ ϵ+ Λ. Therefore, N is an (ϵ+ Λ)-net for X with respect to D.

Lemma A.4. Let K be a random variable sampled from D′. Let D be another distribution such that TV(D,D′) ≤ Λ, and
PrD′(K ≤ κ) ≤ p then we have that

PrD(K ≤ κ) ≤ p+ Λ (64)
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Proof. The proof follows from the fact that if TV(D,D′) ≤ Λ, then probability of no event under D and D′ can differ by
more than Λ.

Proposition A.5. Consider a random variable K ∼ D′ and let N , N(i), p, and δ be as in the setting for Lemma 4.3 so that
PrD′(K ≤ N(i)) ≤ p holds with probability at least 1− δ for any integer i such that i < np−

√
2np ln (1/δ). Consider

a distribution D such that TV(D,D′) ≤ Λ. Then, under the distribution D and for the same N , N(i), p, and δ, with
probability of at least 1− δ:

PrD(K ≤ N(i)) ≤ p+ Λ. (65)

Proof. Using Definition A.1, for any measurable set R ⊆ Rn it holds that |PrD(R)− PrD′(R)| ≤ Λ. If we consider the
event {K ≤ N(i)} ⊆ Rn, with probability of at least 1− δ it holds that:

PrD(K ≤ N(i)) = PrD′(K ≤ N(i)) + Λ
(⋆)

≤ p+ Λ, (66)

where in (⋆) we used Lemma 4.3.

Theorem 4.6 (PAG under distribution shift). Let D be a data distribution, f : X → Rn be a classifier and robf be some
robustness oracle. Let D′ be a distribution such that TV(D,D′) = Λ. Consider an iid sample N ∼ D′s and parameters ϵ,
δ and pmin. Consider an s that satisfies the conditions in Theorem 4.4 for D′. Then, with probability at least 1− δ(

q(N) ∩R(ρ, κ) = ∅
)

=⇒

PrD

(
robf (X) < ρ | conff (X) ≥ κ

)
<

ϵ+ Λ

pmin − Λ
.

(30)

That is, in the absence of counterexamples f can be certified to be PAG robust with respect to the data distribution D.

Proof. We show that the two assumptions in Theorem 4.4 lead to the statement of the theorem if TV(D,D′) = Λ.

1. To satisfy assumption 1. in Theorem 4.4, s ≥ 2
ϵ

(
log

(
4
δ

)
+ d log(2s)

)
, i.e., N is an ϵ-net for X with respect to D′ with

probability at least 1− δ/2. Because of Lemma A.3, N is also an (ϵ+Λ)-net for X with respect to D with probability
at least 1− δ/2.

2. To satisfy assumption 2. in Theorem 4.4, i < s(1−pmin)−
√
2s(1− pmin) ln

(
2
δ

)
for i = |{x ∈ N : conff (x) < κ}|,

i.e., PrD′(conff (X) ≤ κ) ≤ 1− pmin with probability at least 1− δ/2. Using Proposition A.5 with p = 1− pmin, it
follows that PrD(conff (X) ≤ κ) ≤ 1− pmin + Λ with probability at least 1− δ/2.

By union bound, the probability that either condition does not hold on a given sample N is at most δ/2 + δ/2 = δ. Thus,
with probability of at least 1 − δ, N will be an (ϵ + Λ)-net for X under D and the quantile bound holds under D. The
data processing inequality (Raginsky, 2014) can then be used to show (Lemma A.2) that Λ is an upper bound for the total
variation distance of the distribution of instances sampled from D and D′ when they are mapped into the quality space Q.
With this, the theorem follows from the definition of ϵ-nets and Lemma 4.5.

B. Construction of Mapping
In this section, we expand on the definition of the mapping function M in Equation (31). The construction of the map can
be performed in a single pass over the sorted sample N , and is illustrated in Algorithm 1. This process is O(|N | log(|N |)),
bound by the process of sorting. At inference time, M(κ) returns the ρ corresponding to the largest confidence κ′ ≤ κ.

The size of the mapping |M |, and the corresponding strictness of Proposition 5.1, can be controlled via quantization.
Rounding down robustness radii reduces the size of the codomain of M , keeps the guarantees valid, and reduces the spatial
requirements of the mapping.

C. Details on Experimental Setup
In this section, we detail how the experiments were conducted. The full code to train, test and analyze the experiments is
available at our repository.

15

https://anonymous.4open.science/r/pag-robustness-C500/


Probably Approximately Global Robustness Certification

Algorithm 1 Obtain κ-ρ-mapping
Input: ϵ-net N , confidence upper-bound κmax

Output: κ-ρ-mapping M(κ)
Let M = ∅

Let κ′ = −∞
/* iterate through sample in order of increasing robustness ρ */

for (ρ, κ) ∈ N in lexicographic order do
if κ′ < κ ≤ κmax then

M = M ∪ {κ 7→ ρ} // add new step from κ to ρ to the mapping
κ′ = κ

end
end
return M

C.1. Software and Hardware Used

We use PyTorch to conduct our experiments and perform training with the MAIR (Kim et al., 2023) library for support of
normal and adversarial training. In all instances, for TRADES, we chose the parameter β = 6. All the experiments were run
on a single desktop machine equipped with an Intel i9-11900KF @ 3.50GHz CPU and a NVIDIA GeForce RTX 3080 GPU.

C.2. Robustness Oracles

PGD We adapt the internal PGD function in MAIR to return the distance to adversarial examples. To get a fine-grained
result, we perform many gradient steps with a small step size. For MNIST, we use a step size of 0.5/256 and up to 200
steps to find an adversarial example. We project our examples to valid pixel values between 0 and 1. For CIFAR-10, we
use a similar setup with a smaller step size of 0.1/256 and up to 500 steps. We constrain adversarial images to have L∞
distance of at most 0.5 to the original data point.

LIRPA (Xu et al., 2020) offers a Python interface for NN robustness certification. Similar to Marabou, we perform some
preprocessing on our MNIST models and use the bound propagation capabilities of LiRPA to obtain a bound. The LiRPA
library lets us define a neighbourhood in X and gives bounds for the logits of f in this neighbourhood. To check if the class
of f stays constant around a given point x, with class(x) = c, we query LiRPA for an upper bound UB(x)

UB(x) = max
x′∈X

{f(x′)− fc(x
′) : ∥x− x′∥∞ < ρ}. (67)

If this upper bound UB(x) = 0, then f is robust around x. It is worth noting that the bounds reported by LiRPA are not
necessarily tight. This means that LiRPA might underreport robustness radii. Similarly to Marabou, we then use binary
search to find the smallest value for ρ.

Marabou While omitted in the main paper due to the better scalability of auto LiRPA, we present Marabou here as an
additional example for a robustness oracle. We use the Python interface of the Marabou 2.0 NN verification tool to verify
the following query for our network for a given data point x ∈ X and a given robustness radius ρ:

∃ x′ ∈ X : ||x− x′||∞ < ρ ∧ class(x) ̸= class(x′). (68)

If the formula is UNSAT, the network is locally ρ-robust. We perform a binary search to get a bounded estimate of the local
robustness radius, and obtain a lower bound of the L∞ local robustness radius with 4 bits of precision, up to a value of
0.5. In Figure 6, we choose ϵ = 2.5/ ln(2) · 10−3 and δ = 0.01 and pmin = 0.05, with a six-step binary search for ρ. This
results in a sample requirement of s(ϵ, δ/2, 2) = 21294.

C.3. NN Architectures

All network architectures were trained with the MAIR library (Kim et al., 2023), using a normal training procedure or
TRADES (Zhang et al., 2019) with a β = 6. We trained 5 instances of each architecture on different splits of the training
data. For the respective number of parameters, refer to Table 1.
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Feed Forward Network We considered three-layer, fully-connected ReLu networks with (768, 50, 10) neurons, trained
on MNIST. Refer to our github repository and to Appendix D for the exact (hyper)parameter values.

ResNet20 We downloaded an untrained ResNet20 network from this Github repository. Refer to Appendix D for the
exact hyperparameter values.

ConvBig Similarly to the other architectures, we used an untrained ConvBig architecture (Mirman et al., 2018), but trained
our instances independently.

VGG11 BN This CIFAR10 network (Simonyan & Zisserman, 2015; Ioffe & Szegedy, 2015) is our largest architecture
with approximately 10M trainable parameters.

C.4. Datasets and Splits

We use MNIST and CIFAR10 for our experiments. We train five instances of each architecture in the manner of 5-fold
cross-validation. We then use the respective 20% of the training data to sample data points with Gaussian noise added to the
data points. The network does not see the validation split during training, and our guarantees are only obtained from the
data in the test split. Finally, the test set, both unknown to the network and our verification procedure, is used to test the
generalization of our guarantee.

To obtain the sampling datasets, we consider the following settings:

• For the PGD oracle, we choose the verification parameters ϵ = 10−4 and δ = pmin = 0.01. This results in a sample
size of s(ϵ, δ/2, 2) = 989534.

• For the auto LiRPA oracle, due to the more costly local verification procedure, we relax our parameters to ϵ =
2.5 · 10−3, δ = 0.01 and pmin = 0.05. This results in a sample size of s(ϵ, δ/2, 2) = 31635.

For each of our experiments, the sampling dataset is then obtained by uniformly choosing data from the sampling split and
adding Gaussian noise with a mean of 0 and a standard deviation of 8/256 for both.

D. Additional Results
D.1. Additional Results on MNIST

Figure 4. Scatter plot of the MNIST test dataset Dtest, with |Dtest| = 10000, in the quality space Q for our feed forward network. The
left network is trained with standard methods, the right network is trained robustly with TRADES. Results for parameters ϵ = 10−4,
δ = pmin = 0.01, with |N | = s(ϵ, δ/2, 2) = 989534.

17

https://anonymous.4open.science/r/pag-robustness-C500/
https://github.com/chenyaofo/pytorch-cifar-models


Probably Approximately Global Robustness Certification

Figure 5. Scatter plot of the MNIST test dataset Dtest, with |Dtest| = 10000, in the quality space Q for our feed forward network. The left
network is trained with standard methods, the right network is trained robustly with TRADES. Results for parameters ϵ = 2.5 · 10−3,
δ = pmin = 0.01, with |N | = s(ϵ, δ/2, 2) = 31635.
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Figure 6. Scatter plot of the MNIST test dataset Dtest, with |Dtest| = 10000, in the quality space Q for our feed forward network. The
left network is trained with standard methods, the right network is trained robustly with TRADES (β = 2). Results for parameters
ϵ = 2.5/ ln(2) · 10−3, δ = 0.01 pmin = 0.05, with |N | = s(ϵ, δ/2, 2) = 21892.
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