
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

IMPROVING TEXT-GUIDED CAD PROTOTYPING VIA
MODALITY-SPECIFIC TOKENIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Computer-Aided Design (CAD) is a foundational component of industrial pro-
totyping. where models are defined not by raw coordinates but by construction
sequences such as sketches and extrusions. This sequential structure enables both
efficient prototype initialization and subsequent editing. Text-guided CAD proto-
typing, which unifies Text-to-CAD generation and CAD editing, has the potential
to streamline the entire design pipeline. However, prior work has not explored
this setting, largely because standard large language model (LLM) tokenizers de-
compose CAD sequences into natural-language word pieces, failing to capture
primitive-level CAD semantics and hindering attention modules from modeling
geometric structure. We conjecture that a multimodal tokenization strategy, aligned
with CAD’s primitive and structural nature, can provide more effective represen-
tations. To this end, we propose CAD-Tokenizer, a framework that represents
CAD data with modality-specific tokens using a sequence-based VQ-VAE with
primitive-level pooling and constrained decoding. This design produces compact,
primitive-aware representations that align with CAD’s structural nature. Applied
to unified text-guided CAD prototyping, CAD-Tokenizer significantly improves
instruction following and generation quality, achieving better quantitative and qual-
itative performance over both general-purpose LLMs and task-specific baselines.

1 INTRODUCTION

Computer-Aided Design (CAD) plays a central role in industrial prototyping and production. CAD
models are constructed as sequences of operations—such as sketches and extrusions—that CAD
kernels compile into machine-interpretable 3D objects. Unlike other 3D representations, CAD explic-
itly encodes design history, which makes it particularly suitable for both creating initial prototypes
and performing subsequent modifications. Automating CAD sequence generation, especially from
natural language instructions, could substantially accelerate the design workflow.

Recent work has begun to explore text-guided CAD subtasks, including CAD editing (Yuan et al.,
2025) and text-to-CAD generation (Wang et al., 2025; Li et al., 2025b; Khan et al., 2024b). These
studies not only demonstrated the feasibility of each individual task but also showed that large
language models (LLMs) can effectively operate on CAD sequences. However, real-world design is
rarely a one-shot process: engineers iteratively refine prototypes by alternating between creation and
modification. An effective text-based CAD system should therefore support both tasks in a unified
manner—generating CAD objects from instructions while also allowing editing of existing designs.

Handling both tasks within a single unified model has never been studied previously. The difficulty
lies in the distinct requirements of the two subtasks. Text-to-CAD demands strong generative
capability to produce high-quality sequences from scratch, whereas CAD editing requires precise
instruction understanding and alignment with existing geometry. A unified framework must therefore
master two complementary but non-overlapping skills, which places significantly higher demands on
the backbone than solving either task alone.

We introduce CAD-Tokenizer, the first framework to tackle unified text-based CAD prototyping with
CAD-specific tokenization. Our key insight is that the default tokenizers used in LLMs are poorly
matched to CAD data. They decompose CAD programs into natural-language word pieces, frag-
menting operations and numeric parameters into arbitrary substrings (e.g., "[extru] [-sion]").
This causes attention layers to focus on punctuation or partial tokens instead of meaningful primitives,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Our t okeni zer spl i t s CAD i nt o pr i mi t i ves

Def aul t t okeni zer spl i t s CAD i nt o pi eces

Text - t o- CAD

CAD Edi t i ng

.
.

.

<ext >

. . . <ext >

cur ve. . .

l i ne

10

,

<

<. . .,10l i ne

.
.

.

cur ve

Bet t er
Compr essi on

Bet t er
Per f or mance

Def aul t Tokeni zi ng St r at egy (subopt i mal)

"Gener at e a ...
wi t h a ..."

Uni f i ed cad
Model f or
Text - based

Pr ot ot ypi ng

"Add...
t o ..."

l i ne 10 ,, 7 , < >cur ve _end . . . , . . . , < sket ch _end >

CAD- Tokeni zer (our s)

. . . , <cur ve_end> . . . , <cur ve_end> . . . , <sket ch_end>. . . ,

.
.

.

Figure 1: Overview of the unified text-based CAD prototyping task, which includes the Text-to-CAD
generation and text-based CAD Editing. Our approach introduces a CAD-specific tokenization
method that produces primitive-level tokens instead word pieces. This paradigm allows LLMs to cap-
ture relationships among CAD primitives more effectively, improves compression and performance.

limiting the model’s ability to capture structural and geometric dependencies. To address this, we use
a VQ-VAE to compress CAD sequences into primitive-level tokens before training, enabling LLMs
to directly model inter-primitive relations and predict the next operation rather than the next character
or word piece (Figure 1). This formulation makes unified training possible, leading to substantial
improvements in both efficiency and quality.

Our contributions are as follows:

1. We develop a primitive-level VQ-VAE tokenizer that maps sketch–extrusion pairs into
multiple discrete tokens. To integrate with LLMs, we train adapters that align the pretrained
tokenizer vocabulary with the backbone’s embeddings.

2. We fine-tune an LLM on these CAD-specific tokens under a unified setup covering both
Text-to-CAD generation and CAD editing. This design improves training efficiency and
surpasses strong task-specific baselines.

3. We leverage the formal grammar of CAD by introducing a finite-state automaton–based
sampling strategy, which enforces valid syntax in generation and improves quality.

4. Through extensive qualitative, quantitative, and ablation studies, we demonstrate that CAD-
Tokenizer improves both efficiency and performance across unified CAD prototyping tasks.

2 RELATED WORKS

2.1 CAD MODELING

In general, CAD modeling tasks take different types of user inputs and generate sequential CAD
output that renders into 3D objects by 3D kernels.

Classical CAD Tasks. Classical CAD tasks focus on generating CAD sequences from non-textual
inputs. This includes hand sketches (Seff et al., 2022), point clouds (Khan et al., 2024a; Ma et al.,
2024), sequence prefixes (Xu et al., 2022; 2023), or even random noise (Wu et al., 2021). There
are also tasks involving masked variation, where some primitives are masked out and converted into
random variants (Zhang et al., 2025; Xu et al., 2022; 2023). Our work differs from these works in
two ways. First, our work focuses on CAD generation from textual inputs. Second, while works in
these categories often use transformer encoders to extract features and decode specific IDs, they do
not involve texts or natural languages and thus have no need to leverage the textual understanding
capability of LLMs and hence do not need to align these IDs with them.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Text-based CAD Tasks. Text-based CAD tasks focus on generating CAD sequences based on textual
instructions. Inputs for these tasks fall into two main types: the first type includes only textual
instructions on how to generate an initial CAD model, and the second type includes a CAD sequence
(of the same representation format) and a textual instruction on how to modify the given model. The
former is the Text-to-CAD task (Wang et al., 2025; Li et al., 2024; 2025b; Khan et al., 2024b) and the
latter is the CAD-editing task (Yuan et al., 2025). Our work differs from these tasks as we propose
the text-based CAD prototyping task, which merges them. Given that initiating and editing CAD
models is a standard procedure in industry, a single-model solution is both necessary and promising
for the prototyping pipeline.

2.2 LLM TOKENIZATION

LLMs operate over discrete tokens that are mapped into hidden embeddings. In natural language,
these tokens are defined by vocabularies (Pennington et al., 2014; Mikolov et al., 2013) or obtained via
algorithms such as byte-pair encoding (BPE) (Gage, 1994). In multimodal tasks where inputs often
lie outside the space of predefined vocabularies, external encoders and decoders such as VAEs and
VQ-VAEs (Kingma & Welling, 2022; van den Oord et al., 2018), vision transformers (Dosovitskiy
et al., 2021; Radford et al., 2021), or diffusion-based algorithms (Podell et al., 2023) are commonly
used to map continuous modalities into token sequences that LLMs can process.

Tokenization strategies vary across domains. For visual tasks, pretrained VAE/VQ-VAE or CLIP/ViT
encoders are typically used, sometimes paired with custom decoders when generative outputs are
required (Zhou et al., 2024; Ge et al., 2023; 2025; Liu et al., 2023). In robotics, many works bypass
neural tokenizers, instead stringifying actions for direct use with default LLM tokenizers (Brohan
et al., 2023b;a), or applying lightweight algorithmic encodings (Pertsch et al., 2025). Time-series
modeling has explored both neural tokenizers based on attention architectures (Nie et al., 2023) and
classic tokenization methods (Li et al., 2025a).

Prior CAD works are task-specific on tokenizations. Classical CAD generation methods train separate
encoders and decoders for different inputs, such as sketches and extrusions (Xu et al., 2022; 2023;
Khan et al., 2024b;a), resulting in multi-encoder pipelines. Recent text-based CAD efforts typically
rely on off-the-shelf LLM tokenizers, directly applying LLM tokenizations to CAD sequences without
adaptation (Wang et al., 2025; Yuan et al., 2025; Zhang et al., 2025). In contrast, our work introduces
the first encoder–decoder tokenizer specifically designed to integrate with LLMs. We employ a single
VQ-VAE–variant encoder–decoder pair to tokenize all CAD inputs and align its vocabulary with
the LLM backbone. This unified tokenization allows the model to reason over CAD primitives as
discrete units, addressing the fragmentation issues inherent in natural-language tokenizers.

3 METHODOLOGY

3.1 APPROACH OVERVIEW

The text-based CAD prototyping task unifies Text-to-CAD generation and CAD editing. Formally,
given a prompt x = (I, Corig) consisting of an instruction I and an optional original sequence
Corig, the goal is to learn a mapping f(·) that outputs a parametric sequence Cgen. For Text-to-CAD,
Corig = ∅, while for editing tasks, Corig is a valid CAD sequence. The generated sequence should
reflect the design intent expressed by the instruction and, when applicable, the original shape.

CAD-Tokenizer addresses this unified task by fine-tuning LLMs with CAD-specific tokens produced
by a pretrained VQ-VAE (Figure 2). Specifically, (1) a primitive-based VQ-VAE is trained on CAD
sequences to compresses the sketch-extrusion pairs into discrete tokens, and adapters are deployed to
align these tokens with the backbone’s embedding space (Section 3.2), (2) the backbone is fine-tuned
on the encoded CAD data (Section 3.3), and (3) an FSA-based decoding strategy enforces CAD
grammar during inference (Section 3.4). We describe each step below.

3.2 PRIMITIVE-BASED VQ-VAE AS CAD TOKENIZER

Pretraining Primitive VQ-VAE. To convert CAD sequences into compact symbolic representations,
we modify and pretrain a VQ-VAE variant that outputs primitive-level tokens. Each input sequence

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Embed. Recon. Loss

CAD Seq.

l i ne, . . .

ar c, . . .

.
.

.

<ext r usi on>

T
r

an
sfo

r
m

er

E
n

c
o

d
er

P
r

im
itive P

o
o

lin
g

V
Q

 N
ear

est R
etr

ieval

...

CODEBOOK

T
r

an
sfo

r
m

er

D
ec

o
d

er

Out put Seq

.
.

.

1 . . .2 n
Pr i m. Tokens (Raw)

Sequence Reconst r uct i on Loss

VQ Loss

CAD Seq.

.
.

.

V
Q

 E
n

c
o

d
er

LLaM
A

 Lo
g

it Layer

V
Q

 D
ec

o
d

er

Out put Seq

.
.

.

1 . . .2 n

Pr i m. Tokens (Fi nal)

LLaM
A

 E
m

bed
d

in
g

Lin
ear

 A
d

apter
 1

Lin
ear

 A
d

apter
 2

For Tr ai ni ng

Sequence Reconst r uct i on Loss

VQ Encoder VQ Decoder

1. VQ Pr et r ai ni ng 2. VQ- LLM Al i gnment

s

/s

CAD Tokens CAD Tokens

Language
Model i ng

Loss

Nat ur al Langauge Tokens

Pr et r ai ned LLM Backbone

CAD Seq.

Inst r uct i ons

Fi net uned
Backbone

A
d

apter
 +

 D
ec

o
d

er

Fi ni t e- St at e
CAD

Aut omat on

E
n

c
o

d
er

 +
 A

d
apter

CAD Seq.

Gener at i on

Fi ni t e- St at e Sampl i ng

3. LLM Fi ne- t uni ng wi t h CAD Tokens 4. Inf er ence

Pr i mi t i ve 1

Pr i mi t i ve 2

Pr i mi t i ve n

<ext r usi on>

ar c, . . .

l i ne, . . .

<ext r usi on>

ar c, . . .

l i ne, . . .

<ext r usi on>

ar c, . . .

l i ne, . . .

Pr i mi t i ve 1

Pr i mi t i ve 2

Pr i mi t i ve n

Pr i mi t i ve 1

Pr i mi t i ve 2

Pr i mi t i ve n

Pr i mi t i ve 1

Pr i mi t i ve 2

Pr i mi t i ve n

Figure 2: Overview of the CAD-Tokenizer framework. (1) A primitive-based VQ-VAE tokenizes
CAD sequences into discrete primitive tokens. (2) Adapter modules align these tokens with the LLM
embedding space. (3) The backbone LLM is fine-tuned using CAD-specific tokens. (4) At inference,
an FSA-guided sampling strategy ensures syntactically valid CAD generation.

C needs to be decomposed into sketch–extrusion pairs SE = {t1, . . . , tn} and encoded into latent
vectors {p′1, . . . , p′k}, with k < n, in pairs by transformer encoders. Unlike standard VQ-VAEs that
pool the entire sequence into a single latent vector, we introduce a primitive-specific pooling layer,
producing multiple discrete representations for each sketch–extrusion pair. This design captures
both local and contextual information from the surrounding sequence. Training follows a sequence
reconstruction objective with an accumulated VQ loss across all pooled tokens:

LV Q-Prim =
∑
i∈n

EMD(Decoder({p′}, t1,i−1), 𝟙i) +
∑
j∈k

V Q(T
E

j , p
′
j),

where EMD is the squared Earth Mover’s Distance Loss, and T
E

j denotes the pooled vector of the
tokens construct up the j-th primitive. We demonstrate this method in Figure 2(1) and provide
additional details such as the detailed pooling procedure in Appendix B.

Aligning CAD Tokenizer with LLM Embeddings.

The raw primitive vectors {p′j} have dimension dvq , while the LLM requires tokens in its embedding
space of dimension dtok. Typically, this adaptation is performed during co-training with LLM
backbones (Liu et al., 2023), which is compute-intensive and does not guarantee alignment in
the reverse direction. We introduce a novel use of adapters that map VQ-VAE outputs and LLM
embeddings bi-directionally. In detail, we leverage the frozen embedding and logit layers of the
pretrained LLM. Adapters are trained with a vector reconstruction loss that encourages the mapped
tokens {pj = argmax(Llogit(W

dvq

dtok
(p′j)))} to remain faithful to their raw representations:

Lrecon =
∑
j∈k

∥p̂′j − p′j∥22.

p̂′j = W dtok

dvq
(Lembed(pj)) is the reconstructed embedding corresponding to {p′j}. This alignment

produces native LLM-recognizable primitive IDs, enabling seamless integration without modifying
the backbone. The alignment procedure is illustrated by Figure 2(2).

3.3 INSTRUCTION TUNING WITH CAD TOKENS

With aligned tokens, CAD sequences can be encoded into compact symbolic forms and directly used
for instruction tuning. Given an input prompt x = (I, Corig) and target sequence Cgen, we define

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

x′ = (I,CAD-Encoder(Corig)) and y′ = CAD-Encoder(Cgen). We fine-tune the pretrained
LLM by minimizing the standard cross-entropy loss between the generated tokens ŷ = f(x′) and
ground-truth y′ as described below:

LSFT = −E(x′,y′)

[
1

T

T∑
t=1

log p(ŷ = y′t|x′)

]
.

Because CAD sequences are significantly compressed, i.e., |x′| < |x|, fine-tuning is not only more
effective but also more computationally efficient. Figure 2(3) illustrates this stage.

3.4 MODEL INFERENCE AND TOKEN DECODING

During inference, naive autoregressive sampling may produce invalid CAD sequences, as standard
LLM decoding strategies (e.g., top-p, beam search) are unaware of CAD grammar. However, unlike
natural language, CAD sequences are formal languages and can be fully described by states and
transitions. Therefore, we can improve the sample quality by designing a finite-state automaton (FSA)
that formalizes valid CAD construction rules (Figure 2(4)).

At each step, the FSA provides a series of masks restricting the candidate logits to grammar-compliant
tokens, ensuring syntactic validity. The automaton state evolves with the decoder, whose choice
for the next token is also passed to the automaton for deciding if a transition is going to take place.
Despite some context-dependent geometric constraints are unable to fully catched, this method
significantly reduces syntactic errors and improves sampling robustness by preventing obvious
grammatical mistakes. Further implementation details are given in Appendix B.2 and the FSA design
is illustrated in Figure 8.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets. For training the VQ-VAE, we convert the SkexGen (Xu et al., 2022) dataset into the
formatting used by CADFusion (Wang et al., 2025) and CAD-Editor (Yuan et al., 2025). We include
the formatting details in the Appendix A. To prevent a distribution gap for the tokenizer between
seen and unseen data, we use half of the training data for VQ-VAE training, ensuring the LLM also
encounters samples not seen by the VQ-VAE encoder during its training. For training the backbone
LLM, we use the datasets of CADFusion and CAD-Editor. Although both originate from SkexGen,
the two datasets have different content, so we merge them for training our model without further
deduplication. Since CAD-Editor uses the original split of SkexGen but the entire CADFusion dataset
is split from its training set, we consolidate the CADFusion dataset and additionally annotated 200
pairs for our test set. We also balance this combined dataset by randomly selecting five CAD-Editing
data points for every Text-to-CAD data point. Ultimately, this results in approximately 100k training
pairs and 1000 testing pairs.

Implementation Details. The CAD sequence formalization and primitive selection is detailed in
Appendix A. The VQ-VAE is trained with 5 encoder and 5 decoder layers, a codebook size of
2048, and an internal dimension of 512. It is trained with a learning rate of 3e-4 for up to 250
epochs, using early stopping with a patience of 25. The logit and embedding layers inserted are from
LLaMA-3-8b-Instruct (4096-dim), which is also used as our LLM backbone. The alignment
uses exactly the same setup, but the encoder, decoder and LLM layers are frozen, and only the two
adapter layers are trained. For LLM training, the backbone is configured with a maximum token
length of 1024 and a hidden dimension of 4096. We adopt Low-Rank Adaptation (LoRA) (Hu
et al., 2021) for efficient fine-tuning, with a rank of 32 and an α value of 32. The model is trained
for 20 epochs with a learning rate of 1e-4 and the AdamW optimizer. The VQ-VAE training is
run on a single NVIDIA A100-80G GPU, and the LLM fine-tuning is conducted on four NVIDIA
A6000-48GB SMX GPUs using Distributed Data Parallel (DDP).

Baselines. We select two types of baselines. First, we include CADFusion and CAD-Editor as
state-of-the-art methods in Text-to-CAD and CAD-editing tasks, respectively. However, since these
are for individual text-based tasks only and no existing works address text-based CAD prototyping,
we propose two additional baselines for the unified task. First, we train a vanilla LLM model using

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Methods F1-Skt F1-Ext CD COV JSD MMD IR VLM HE
CAD-Editor∗ 73.3 82.6 40.7 51.1 1.63 1.25 1.50 4.28 1.63
GPT-4o 80.0 78.1 42.9 51.8 4.00 2.14 47.9 1.94 -
Vanilla-LLaMA 78.8 84.9 42.4 48.6 3.90 2.37 48.6 4.31 2.64
CAD-Tokenizer 88.6 94.8 13.5 52.4 2.54 1.97 8.38 5.09 1.72

(a) CAD-Editing quantitative results. ∗CAD-Editor is the task-specific model on it.

Methods F1-Skt F1-Ext CD COV JSD MMD IR VLM HE
CADFusion† 68.8 80.1 38.5 54.4 10.6 3.86 22.5 5.41 1.91
GPT-4o 66.7 66.8 79.8 52.6 62.0 13.5 90.5 1.47 -
Vanilla-LLaMA 66.4 80.9 48.4 53.8 27.4 72.6 80.5 3.45 2.58
CAD-Tokenizer 77.9 84.7 26.7 54.5 7.26 3.74 1.50 3.82 1.62

(b) Text-to-CAD quantitative results. †CADFusion is the task-specific model on it.

Table 1: Results in (a) and (b) include F1 scores for sketches (F1-skt ↑) and extrusions (F1-ext ↑),
Chamfer Distance (CD ↓), Coverage(COV ↑), Minimum Matching Distance (MMD ↓), Jensen-
Shannon Divergence (JSD ↓), Invalidity Ratio (IR ↓), the VLM Score (VLM ↑), and average rank
from Human Evaluation (HE ↓). GPT-4o generations were not included in the human evaluation
process. (↑) marks the higher the better, and (↓) marks the opposite. The best results are marked in
bold, and second-best results are underlined.

the native LLaMA tokenizer (Vanilla-LLaMA), with all other aspects of the setup identical to
CAD-Tokenizer. Second, we prompt a five-shot GPT-4o to examine how modern commercial LLMs
perform on the text-based CAD prototyping task. Details including baseline implementation and
prompting samples can be found in the Appendix C.1.

Metrics. Our evaluation focuses on different aspects of the generated CAD models. First, we
measure the pairwise correspondence between generated outputs and the ground truth sequences.
For this criterion, we use F1 scores and Chamfer Distance (CD). We follow CADFusion’s (Wang
et al., 2025) measurements of F1-Sketch and F1-Extrusion for simplicity. Second, we measure
distributional similarity. Between the generated samples and the ground truths, we follow (Xu et al.,
2022; Yuan et al., 2025; Wang et al., 2025) and measure: Coverage (COV), which quantifies how
well the generated distribution covers the ground truth; Minimum Matching Distance (MMD), which
evaluates similarity by finding the closest matches between samples from the two distributions; and
Jensen-Shannon Divergence (JSD) for distributional similarity. Third, we measure the Invalidity
Ratio (IR) as an indicator of sequence robustness; and fourth, we measure the generated outputs’
alignment with instructions using a VLM-based score (VLM) and Human Evaluation (HE). The
VLM is prompted to rate instruction following on a scale of 0 to 10, and human judges are asked to
rank the outputs from different models based on the same criterion. Details on VLM prompting and
human evaluation methodology can be found in Appendix C.1.

For the clarity of the presentation, the results of the distribution scores (COV, JSD, MMD) and
chamfer distance in all records are multiplied by 102.

4.2 MAIN RESULTS

Quantitative Evaluation. Table 1 reports results on CAD editing (a) and Text-to-CAD generation
(b). On CAD editing, CAD-Tokenizer achieves the best results across almost all metrics. It improves
the F1 scores by around 10 points each. Compared to the task-specific CAD-Editor, CAD-Tokenizer
leads in F1 metrics while also achieving stronger VLM and human evaluation scores. Moreover,
discoveries detailed in the supplementary results of Appendix C.2.1 suggest that our model is best
intended to edit the original object despite being disfavored by the distributional metrics by doing so.

On Text-to-CAD generation, CAD-Tokenizer again shows clear improvements. It significantly
improves the F1 scores, indicating strong matching in CAD sequential information. Chamfer
Distance is also decreased by a large margin. Although CADFusion attains a slightly higher VLM
score (5.41 vs. 3.82), CAD-Tokenizer surpasses it in nearly every other metric, including a lower
human evaluation rank that indicates preference.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Text - t o- CAD Inst r uct i on Gr ound t r ut h

CADFusi on Vani l l a- LLaMA CAD- Tokeni zer

Or i g Shape
Edi t i ng

Inst r uct i on Gr ound t r ut h

CAD- Edi t or Vani l l a- LLaMA CAD- Tokeni zer

1. Qual i t at i ve Demonst r at i on of Text - t o- CAD Gener at i ons

2. Qual i t at i ve Demonst r at i on of Text - based CAD Edi t i ng

Figure 3: Qualitative results. The upper and lower sections display results for the Text-to-CAD and
CAD editing tasks, respectively. In each subfigure, the top-left corner shows the input instruction and
CAD object (or only the instruction in Text-to-CAD), the top-right corner shows the ground truth, and
the bottom three show outputs from CADFusion/CAD-Editor, Vanilla-LLaMA, and CAD-Tokenizer.

Besides the advantage of our framework over task-specific baselines, it is noteworthy that Vanilla-
LLaMA almost collapses on the majority of metrics. This supports our conjecture that text-based
CAD prototyping is inherently a challenging task for conventional tokenizers, and highlights that our
improvements over the vanilla tokenizer and training paradigm are substantial.

Qualitative Evaluation. Figure3 illustrates typical generations of our model and selected baselines.
In Text-to-CAD, CAD-Tokenizer produces more faithful multi-face objects compared to Vanilla-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

LLaMA, which often drops faces or misaligns structures. Also, the outputs are natural and balanced,
which resemble human designs. Its qualitative performance is competitive with CADFusion, the
task-specific baseline.

For CAD editing, CAD-Tokenizer demonstrates stronger instruction-following: it modifies existing
shapes as required rather than persisting the original form, a failure mode described in Appendix
C.2.3. Compared to the vanilla tokenizer, CAD-Tokenizer better respects structural templates and
achieves higher-quality modifications.

Additional results including more complex prompts and designs can be found in Appendix C.2.2.

4.3 ABLATION STUDIES

We analyze the contribution of each component in CAD-Tokenizer across three stages: pre-SFT
tokenization, in-SFT integration with the LLM, and post-SFT sampling.

Methods F1-Skt (↑) COV (↑) JSD (↓)
HNC-CAD 85.5 57.5 29.8
CAD-Tokenizer (curve) 94.1 64.5 8.19
CAD-Tokenizer loop 91.5 59.5 18.4
CAD-Tokenizer single 76.5 54.0 35.9

Table 2: The reconstruction quality of the CAD-Tokenizer
variants and HNC-CAD. Only the sketch scores are reported
for the F1 score because the CAD-Tokenizer encodes objects
by sketch-extrusion pairs and always achieves full score for
this sub-metric. CAD-Tokenizer (curve) is the default vari-
ant which we reported in the main quantitative results.

Figure 4: The Compression ratio
of the different tokenization algo-
rithms. The compression ratio is
100% for no compression.

Before LLM Finetuning: the Quality of Tokenizers. The tokenizer quality is critical to downstream
LLM performance. We evaluate two aspects: (i) reconstruction quality, in terms of selected
sequence and distribution metrics, and (ii) compression ratio for efficiency. We compare CAD-
Tokenizer against the following: 1. HNC-CAD (Xu et al., 2023), a strong neural coding baseline
on conditional and unconditional CAD generation, 2.BPE (Gage, 1994), the Byte-pair Encoding, a
standard tokenization algorithm, 3. CAD-Tokenizer (curve), our default tokenizer with curve-based
pooling, 4. CAD-Tokenizer (loop), a variant pooling loops instead, and 5. CAD-Tokenizer (single),
which omits primitive pooling and encodes each sketch–extrusion pair as a single unit.

Table2 and Figure 4 presents the results. Except that BPE is not involved in the reconstruction
evaluation as it guarantees returning original vectors algorithmically, the exploration is three-fold:
First, all CAD-Tokenizer variants outperform prior methods on both reconstruction quality and
compression. The CAD-Tokenizer variants perform uniformly better than other tokenization methods,
while having better compression rate. Second, within CAD-Tokenizer, the results also highlight the
trade-off between compression rate and the reconstruction accuracy, as the variants that compress
more tokens into one embedding tend to have worse quality after reconstruction. Third, the sharp
degradation of the single variant underscores the importance of primitive-level pooling.

Methods F1-Avg (↑) CD (↓) COV (↑) JSD (↓) IR (↓)
CAD-Tokenizer (curve) 86.5 20.1 53.4 4.90 4.94
CAD-Tokenizer loop 86.3 32.6 53.6 7.05 4.91
CAD-Tokenizer single 78.3 59.1 43.4 48.5 70.7
BPE 76.2 56.8 48.8 48.3 88.5

Table 3: The performance of each tokenizer when integrated and trained with the backbone LLM.
CAD-Tokenizer (curve) is the default variant which we reported in the main quantitative results,
while loop is a variant on pooling loop primitives and single does not perform specific pooling.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Methods F1-Avg (↑) CD (↓) COV (↑) JSD (↓) IR (↓)
CAD-Tokenizer(+FSA) 86.5 20.1 53.4 4.90 4.94
CAD-Tokenizer+top-p 80.4 66.4 30.3 61.2 17.2
CAD-Tokenizer+beam search 82.8 49.8 51.2 46.7 45.2

Table 4: The generation quality of each sampling method after training. The base model used for
evaluation is the fine-tuned CAD-Tokenizer. CAD-Tokenizer(+FSA) is the default variant which we
reported in the main quantitative results.

In LLM Finetuning: the Performance of Different Tokenizion Methods. We next evaluate the
tokenizers during supervised fine-tuning (SFT) with the LLM backbone. All methods are included
except HNC-CAD, which was not designed for LLM training.

As shown in Table 3, both BPE and the single variant of CAD-Tokenizer perform poorly, with high
invalidity ratios and consistently weak metrics. Their setups justify the unsatisfactory performance:
the single variant performed already poor enough during the pre-finetuning reconstruction evaluation;
and BPE does not align the post-tokenization tokens with the LLM vocabulary, which adds up
additional burden during finetuning. The loop variant achieves performance close to the default
curve tokenizer, with slightly lower reconstruction but higher compression. This not only indicates
that primitive pooling—whether curve- or loop-based—is essential, but also offers flexibility and
alternatives in trading off accuracy against efficiency.

After LLM Finetuning: Different Sampling Strategies. Finally, we assess the impact of our
FSA-based decoding strategy described in Section 3.4. We fix the backbone to the fine-tuned CAD-
Tokenizer and apply different sampling strategies on top of it, and compare our method with the two
mainstream approaches: top-p sampling and beam search.

Table 4 shows that FSA-guided sampling consistently outperforms both alternatives across all metrics.
Its CAD-specific design leverages formal sequence constraints, enabling it to utilize structural
formatting information that general-purpose decoding methods do not take into account. Also notably,
beam search improves the model performance in all aspects comparing to the top-p sampling, but
encounters a significant tradeoff in invalidity ratio.

5 LIMITATIONS

Our work’s limitations are two-fold. First, the quality gap between the open-source and private-
sector CAD data limits us from training on further complex shapes. Second, as mentioned and
referred, we observe a gap between the distributional metrics and the actual performance in CAD
Editing, which stems from the failure to evaluate the ’intent to keep the original shape.’ We therefore
anticipate both better datasets and metrics that can create a better ground for future works to improve.
Additionally, our failure study in Appendix C.2.3 suggests better spatial or commonsense reasoning
capabilities, which can only be improved by better pretrained backbones. We include some of the
related discussions, as well as the detail of our failure study, in Appendix C.2.

6 CONCLUSION

In this work, we presented CAD-Tokenizer, the first framework to address the unified text-based CAD
prototyping problem, a task that requires a unified model on both Text-to-CAD generation and CAD
editing. Key to CAD-Tokenizer’s approach is a pretrained transformer-based VQ-VAE module that
enables CAD-specific tokenization by converting sequential CAD inputs into meaningful primitive
tokens, instead of the word pieces produced by vanilla tokenizers. LLM backbones that were finetuned
on the CAD specific tokens demonstrated better performance and training efficiency. Our extensive
experiments validated these core design choices, including the primitive-specific pooling mechanism
within the VQ-VAE and the FSA-driven sampling, and demonstrated the advantage of CAD-Tokenizer
over both task-specific and general-purpose baselines. We also improved inference-time decoding
quality by introducing a novel finite-state automaton–driven sampling method, designed to enforce
sequence formatting and hence improve generation quality.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REFERENCES

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander
Herzog, Jasmine Hsu, Brian Ichter, Alex Irpan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspiar Singh, Anikait Singh, Radu Soricut,
Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-
2: Vision-language-action models transfer web knowledge to robotic control, 2023a. URL
https://arxiv.org/abs/2307.15818.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian Ichter,
Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha
Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez, Karl
Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Kevin
Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent Van-
houcke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and
Brianna Zitkovich. Rt-1: Robotics transformer for real-world control at scale, 2023b. URL
https://arxiv.org/abs/2212.06817.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
2021. URL https://arxiv.org/abs/2010.11929.

Philip Gage. A new algorithm for data compression. The C Users Journal, 12(2):23–38, 1994.

Yuying Ge, Yixiao Ge, Ziyun Zeng, Xintao Wang, and Ying Shan. Planting a seed of vision in large
language model. arXiv preprint arXiv:2307.08041, 2023.

Yuying Ge, Sijie Zhao, Jinguo Zhu, Yixiao Ge, Kun Yi, Lin Song, Chen Li, Xiaohan Ding, and Ying
Shan. Seed-x: Multimodal models with unified multi-granularity comprehension and generation,
2025. URL https://arxiv.org/abs/2404.14396.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali, Kseniya Cherenkova, Anis Kacem, and Djamila
Aouada. Cad-signet: Cad language inference from point clouds using layer-wise sketch instance
guided attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 4713–4722, June 2024a.

Mohammad Sadil Khan, Sankalp Sinha, Sheikh Talha Uddin, Didier Stricker, Sk Aziz Ali, and
Muhammad Zeshan Afzal. Text2cad: Generating sequential cad designs from beginner-to-expert
level text prompts. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024b. URL https://openreview.net/forum?id=5k9XeHIK3L.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022. URL https:
//arxiv.org/abs/1312.6114.

Hao Li, Yuhao Huang, Chang Xu, Viktor Schlegel, Renhe Jiang, Riza Batista-Navarro, Goran
Nenadic, and Jiang Bian. Bridge: Bootstrapping text to control time-series generation via multi-
agent iterative optimization and diffusion modelling, 2025a. URL https://arxiv.org/
abs/2503.02445.

10

https://arxiv.org/abs/2307.15818
https://arxiv.org/abs/2212.06817
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2404.14396
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://openreview.net/forum?id=5k9XeHIK3L
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/2503.02445
https://arxiv.org/abs/2503.02445

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Jiahao Li, Weijian Ma, Xueyang Li, Yunzhong Lou, Guichun Zhou, and Xiangdong Zhou. Cad-llama:
Leveraging large language models for computer-aided design parametric 3d model generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
June 2025b.

Xueyang Li, Yu Song, Yunzhong Lou, and Xiangdong Zhou. CAD translator: An effective drive for
text to 3d parametric computer-aided design generative modeling. In ACM Multimedia 2024, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning, 2023. URL
https://arxiv.org/abs/2304.08485.

Weijian Ma, Shuaiqi Chen, Yunzhong Lou, Xueyang Li, and Xiangdong Zhou. Draw step by
step: Reconstructing cad construction sequences from point clouds via multimodal diffusion. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 27154–27163, June 2024.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space, 2013. URL https://arxiv.org/abs/1301.3781.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers, 2023. URL https://arxiv.org/abs/
2211.14730.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word
representation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans (eds.), Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543,
Doha, Qatar, October 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1162.
URL https://aclanthology.org/D14-1162/.

Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
models, 2025. URL https://arxiv.org/abs/2501.09747.

Dustin Podell, Zion English, Kyle Lacey, Andreas Blattmann, Tim Dockhorn, Jonas Müller, Joe
Penna, and Robin Rombach. Sdxl: Improving latent diffusion models for high-resolution image
synthesis, 2023. URL https://arxiv.org/abs/2307.01952.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning transferable visual models from natural language supervision, 2021. URL https:
//arxiv.org/abs/2103.00020.

Ari Seff, Wenda Zhou, Nick Richardson, and Ryan P. Adams. Vitruvion: A generative model of
parametric cad sketches, 2022. URL https://arxiv.org/abs/2109.14124.

Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning,
2018. URL https://arxiv.org/abs/1711.00937.

Ruiyu Wang, Yu Yuan, Shizhao Sun, and Jiang Bian. Text-to-cad generation through infusing visual
feedback in large language models, 2025. URL https://arxiv.org/abs/2501.19054.

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
aided design models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 6772–6782, October 2021.

Xiang Xu, Karl DD Willis, Joseph G Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayaraman, and
Yasutaka Furukawa. Skexgen: Autoregressive generation of cad construction sequences with
disentangled codebooks. In International Conference on Machine Learning, pp. 24698–24724.
PMLR, 2022.

Xiang Xu, Pradeep Kumar Jayaraman, Joseph G Lambourne, Karl DD Willis, and Yasutaka Furukawa.
Hierarchical neural coding for controllable cad model generation. arXiv preprint arXiv:2307.00149,
2023.

11

https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/2211.14730
https://arxiv.org/abs/2211.14730
https://aclanthology.org/D14-1162/
https://arxiv.org/abs/2501.09747
https://arxiv.org/abs/2307.01952
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2109.14124
https://arxiv.org/abs/1711.00937
https://arxiv.org/abs/2501.19054

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Yu Yuan, Shizhao Sun, Qi Liu, and Jiang Bian. Cad-editor: A locate-then-infill framework with
automated training data synthesis for text-based cad editing, 2025. URL https://arxiv.
org/abs/2502.03997.

Zhanwei Zhang, Shizhao Sun, Wenxiao Wang, Deng Cai, and Jiang Bian. Flexcad: Unified and
versatile controllable cad generation with fine-tuned large language models, 2025. URL https:
//arxiv.org/abs/2411.05823.

Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob
Kahn, Xuezhe Ma, Luke Zettlemoyer, and Omer Levy. Transfusion: Predict the next token and
diffuse images with one multi-modal model, 2024. URL https://arxiv.org/abs/2408.
11039.

12

https://arxiv.org/abs/2502.03997
https://arxiv.org/abs/2502.03997
https://arxiv.org/abs/2411.05823
https://arxiv.org/abs/2411.05823
https://arxiv.org/abs/2408.11039
https://arxiv.org/abs/2408.11039

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

ETHICS STATEMENT

The data used in this work is tailored for CAD generation. Due to its specialized nature, the misuse
risk is naturally minimized, ensuring the developed methods primarily benefit CAD development.

REPRODUCIBILITY STATEMENT

We have included sufficient information on our all aspects of our experimentations including dataset
resources and setups, model hyperparameters and LLM backbones, computational resources and
setups, and metric setups. Relevant detail can be found in Section 4.1 and Appendix C.1.

We will release the source code after the peer-review procedure.

THE USE OF LARGE LANGUAGE MODELS

THe use of LLMs is restricted in revising the word choices and grammar only. No LLMs are used for
research ideation or contributive enough to be regarded as a contributor.

A ADDITIONAL INFORMATION OF THE CAD REPRESENTATION

A.1 SEQUENCE REPRESENTATION

We follow the practice of Zhang et al. (2025); Yuan et al. (2025); Wang et al. (2025). In detail, a CAD
object is defined by a series of sketches and extrusions, termed the Sketch-and-Extrude Modeling
(SEM) format.

Each sketch consists of multiple faces, with each face typically containing one or more loops.
Primitives in each loop include lines, arcs, and circles. They are defined by an identifier and, for their
geometric properties, one, two, or four key coordinates or sets of parameters, respectively.

Each extrusion is represented as a BVVTTTRRRRRRRRRSOO sequence. B refers to the boolean
operation selected from add, cut, intersect; the two V values define the respective displace-
ments of the top and bottom extrusion planes from a reference plane; the three T values form the
translation vector; the nine R values represent rotation parameters; S is the scaling factor; and the two
O values identify the origin of scaling.

Figure 5 illustrates the components of the sketch and extrusion operations.

l i ne, 10, 7 <cur ve_end> . . . , <l oop_end> . . . , <f ace_end> . . . , <sket ch_end>

add, 16, 31, 31, 31, 31, 1, 0, 0, 0, 0, 1, 0, - 1, 0, 29, 31, 48, <ext r ude_end>

B V T R S O END

Over vi ew of a Sket ch Sequence

Over vi ew of an Ext r usi on Sequence

Figure 5: An overview of the CAD sequence structure. Top: sketch components; bottom: extrusion
components.

In our VQ-VAE training, we tokenize CAD sequences into their smallest semantic units. These units
are defined in Table 5. This tokenizer differs from native LLM tokenizers in that it does not further
split these semantic units into word pieces.

A.2 PRIMITIVE DEFINITION

We define our primitives differently for sketches and extrusions. For sketches, we define one primitive
as a curve and any succeeding end tokens, if present. For extrusions, we split each into three parts:

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Token Name Vocabulary Index Description
pad 0 Padding token
line 1 Identifier token of curve: line
arc 2 Identifier token of curve: arc

circle 3 Identifier token of curve: circle
<curve_end> 4 End token of curves
<loop_end> 5 End token of loops
<face_end> 6 End token of faces

<sketch_end> 7 End token of sketches
add 8 Identifier token of extrusion operation: add
cut 9 Identifier token of extrusion operation: cut

intersect 10 Identifier token of extrusion operation: intersect
<extrusion_end> 11 End token of extrusions

-1 12 Number -1
0-63 13-76 Numbers from 0 to 63

Table 5: Token vocabulary for the CAD sequence representation used in training our VQ-VAE.

B,V,T, R, and S,O,END, and split R into 3 distinct tokens. This partitioning is designed to prevent
the VQ-VAE from having to summarize overly long sequences, which can be difficult to learn
effectively.

Our primitive design offers several advantages. First, limiting the scope to the loop level restricts the
number of tokens the VQ-VAE model generates for the LLM to a manageable quantity. Generating
one token per curve would provide the LLM with too many tokens; conversely, one token per face
or per sketch would yield too few for the LLM to extract meaningful correlations and, in the case
of per-sketch tokenization, might also represent too much information for a VQ-VAE to compress
effectively into a single token. Second, compared to works that do not pool primitives but instead
train on smaller ‘particles’ (Xu et al., 2022; 2023), our approach improves representation quality by
embedding all primitive representations into a unified subspace (which is not guaranteed by methods
training separate models for different CAD pieces) and by posing contextualization. Furthermore,
those approaches may not adequately address the challenge of long extrusion sequences, which are
difficult for a VQ-VAE to compress meaningfully into a single token.

B IMPLEMENTATION DETAILS

PRELIMINARY: TERMINOLOGIES AND NOTATIONS

We use the term Encoder and Decoder to refer the transformer encoder and decoder layers in
with in the VQ module. We refer the term VQ Encoder to the entire module before token extraction,
i.e. the transformer encoder layers, the primitive pooling, and the VQ layer. The same applies to VQ
Decoder, but since no additional modules are added, it is in fact equivalent to the Decoder. CAD
Encoder and CAD Decoder describe the combination of the VQ Encoder/Decoder and the
corresponding adapter layers.

B.1 VQ AND PRIMITIVE POOLING

A classic VQ-VAE for sequential data consists of transformer encoder layers, a VQ layer to quantize
vectors, and transformer decoder layers. Input tokens are encoded, pooled into a single hidden
vector, and then mapped to codebook vectors. These VQ vectors are then fed into the decoder, which
typically reconstructs the output sequence via a cross-attention mechanism. A traditional training
procedure includes a reconstruction loss between the decoder outputs and the initial inputs, as well as
a quantization loss.

This traditional approach of relying on a single hidden vector can be insufficient for representing
complex sequences like those in CAD. To obtain richer primitive representations, previous CAD
works (Xu et al., 2022; 2023) separated CAD objects into multiple primitives and trained individual

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

St age 1. Pr et r ai ni ng VQ- VAE St age 2. Al i gni ng VQ- VAE

l i ne 10 . . . ar c 5 . . . add. / ext

. . .

Pr i mi t i ve 1 Pr i mi t i ve 2 Pr i mi t i ve n

Tr ansf or mer Encoder Layer s

. . .

Pr i mi t i ve Pool i ng

. . .

VQ Near est Ret r i eval

..
.

C
O

D
E

B
O

O
K

. . .

Tr ansf or mer Decoder Layer s

. . .s . . .

. . .

l i ne 10 . . . ar c 5 . . . add. / ext

S
eq

u
en

c
e

R
ec

o
n

st
r

u
c

ti
o

n
 L

o
ss

VQ Loss

Embeddi ng

1 2 n

1 2 n

. . .

Encoder & Pr i mi t i ve Pool i ng

. . .

VQ Near est Ret r i eval

..
.

C
O

D
E

B
O

O
K

. . .

Embeddi ng

1 2 n

1 2 n

l i ne 10 . . . ar c 5 . . . add. / ext

Pr i mi t i ve 1 Pr i mi t i ve 2 Pr i mi t i ve n

Li near Adapt er Layer 1

...1 2 n

LLaMA Logi t

LLaMA Embeddi ng

Li near Adapt er Layer 2

...1 2 n

Fr om St age 1
Pr et r ai ned & f r ozen

V
ec

to
r

 R
ec

o
n

st
r

u
c

ti
o

n
 L

o
ss

Fr om Pr et r ained
LLaMA, Fr ozen

Decoder

Encoder

A
d

ap
te

r
 1

A
d

ap
te

r
 2

CAD Tokens f or
LLM Tr ai ni ng

Decoder

. Fr om St age 1
Pr et r ai ned & f r ozen

Figure 6: A detailed overview of the VQ-VAE pretraining and finetuning.

Figure 7: An overview of our primitive pooling procedure for each sequence.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

VQ models on them. We argue that this approach has limitations because training separate models
can introduce alignment issues, and primitives may not receive contextualized information that
could be beneficial for their encoding. In contrast, we split each CAD sequence into its constituent
sketch-extrusion pairs and propose a primitive-specific pooling layer—replacing standard global
pooling—to generate distinct representations for these pairs.

Our primitive pooling is achieved by masking; i.e., we generate masks for each input sketch-extrusion
pair to isolate each primitive within it. Figure 7 demonstrates our method. In detail, we extract pooling
masks from the input sequence that reflect the primitive corresponding to each token. Subsequently,
we perform element-wise multiplication between each individual mask and the encoded representation
output by the encoder. At this point, the resulting matrix contains information related only to the
specific primitive isolated by the mask, allowing us to perform max pooling to obtain the pooled
representation for that primitive. By concatenating these pooled primitive representations, we obtain
a sequence of primitive-specific representations used for the decoder’s cross-attention mechanism
and for subsequent LLM alignment.

We set the maximum number of primitives in our method to 12. This corresponds to 9 flexible
slots for loop primitives and 3 fixed slots for extrusion primitives. The limit for loop primitives is
generally not restrictive, as the average number of loops per sketch-extrusion pair in our dataset is
approximately 4, and during VQ-VAE training, we filtered out only around 900 sequences (out of
90,000) due to exceeding this limit.

B.2 FSA SAMPLING

Our FSA sampling is based on a specially-designed Finite State Automaton (FSA) that determines
the set of permissible next tokens (referred to as logit options). The system generates a token (or
tokens) based on these allowed options, and then updates the FSA by inputting the current FSA state
and the last generated token as an action, to determine the options for the subsequent step.

The algorithm is described in Algorithm 1, and the FSA’s detailed design is illustrated in Figure 8.
The specific logit masks employed by the FSA are listed in Table 6.

Mask Name Mask Content Description
Init [line, arc, circle] Enforces that the first token is a curve type.

Numbers [0-63] Restricts selection to numerical values (0-63).
End-of-curve [<curve_end>] Enforces the <curve_end> token.

Primitive-start [line, arc, circle] Enforces a new curve; identical to Init.
End-of-loop [<loop_end>] Enforces the <loop_end> token.
End-of-face [<face_end>] Enforces the <face_end> token.

End-of-sketch [<sketch_end>] Enforces the <sketch_end> token.
B [add, cut, intersect] Boolean extrusion operations.
V [0-63] Numerical values for V parameter.
T [0-63] Numerical values for T parameters.
R [-1, 0, 1] -1, 0, or 1 for rotation parameters.
S [0-63] Numerical values for the S parameter.
O [0-63] Numerical values for O parameters.

End-of-extrusion [<extrusion_end>] Enforces <extrusion_end>.
Pad [pad] Restricts selection to the padding token.

Table 6: Details of the logit masks provided by the FSA to guide token generation during decoding.

C EXPERIMENTAL RESULTS

C.1 EVALUATION SETUP

Instruction of Human Judges. Five human judges were provided with 50 generation outputs for
evaluation (40 from editing tasks and 10 from Text-to-CAD tasks). All participants had completed
college-level to graduate-level education. The judges were given specific instructions on the evaluation

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 8: An overview of our FSA design. At each step, the FSA receives an input action, transitions
to the corresponding new state (i.e., updates its internal state), and returns the mask(s) associated
with that new state (node).

Algorithm 1 The FSA-driven decoding algorithm.

Given: LLM-generated primitive tokens T
Given: Max length of generation max_len
State← ‘init’
M ← [initial_mask]
Seq ← ∅
while |Seq| < max_len do
m←M .next()
logits← Decoder(Seq, T)
choice← argmax(m ⊗ logits)
Seq.insert(choice)
if M = ∅ then

new_state, new_M = FSA(State, choice)
State← new_state
M ← new_M

end if
end while

task and were shown visual examples similar to those in the main qualitative results, but without
model identifiers.

1 """
2 The following are a series of pictures. The upper half is the instruction

and the standand answer. You need to rank the following three
pictures based on their response quality to the instruction.

3

4 For example, if in a picture you like 3 the most, 1 following, and 2 the
worst, rank them as (2 3 1).

5 """

Listing 1: Instructions of human judges.

Instruction of VLM. The prompts we use to generate VLM scorings are listed Listing 3 and 4.

1 """

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Methods COV JSD MMD VLM(left)
GPT-4o <–> Original Seq. 60.8 6.75 2.39 1.94
CAD-Tokenizer <–> Original Seq. 52.4 2.54 1.97 5.09
Original Seq. <–> Ground Truth 55.6 6.07 2.54 2.02

Table 7: Distributional measures for pairwise sequence comparisons from the CAD editing task.
VLM scores of the left-hand-side component are reported.

2 The following is an original image of a CAD instance, a text description
on editing and an image of the edited result. Measure if the figure
corresponds to the given description, and give a score in the scale
of 10. Only return the score. Do not comment on issues such as
texture, smoothness and colors.\n description:{description}\n

3 """

Listing 2: Instructions of VLM on CAD Editing

1 """
2 The following is a text description of a 3D CAD figure and an image of a

CAD instance. Measure if the figure corresponds to the given
description, and give a score in the scale of 10. Only return the
score. Do not comment on issues such as texture, smoothness and
colors.\n description:{description}\n

3 """

Listing 3: Instructions of VLM on Text-to-CAD generation

C.2 EXPERIMENTAL RESULTS

C.2.1 ELABORATION ON CAD EDITING RESULTS ON THE DISTRIBUTIONAL METRICS

In the CAD Editing task, we observe that models such as GPT-4o can achieve high scores on
distributional metrics for the CAD editing task, despite poor actual performance in editing. We
hypothesize that a model can frequently fail to apply edits but still achieve satisfactory distributional
scores by simply reproducing the input CAD sequence without modifications. To investigate this
matter further, we provide additional distributional measures for three comparison types: 1. between
GPT-4o outputs and the original input sequences, 2. between outputs from CAD-Tokenizer and the
original input sequences, and 3. between the original input sequences and the ground truth edited
sequences.

The results are displayed in Table 7. As shown in the third row (comparing original inputs to the
ground truth), the original sequence yields high distributional scores. However, such outputs should
be considered failed edits, as they do not incorporate any of the specified editing instructions. VLMs
capture instruction-following capabilities much better by assigning a low score when an output merely
returns the original sequence. In light of this, we measured the distributional similarity between
the original input sequences and the outputs from GPT-4o and our CAD-Tokenizer. It was found
that GPT-4o’s outputs are much closer to the original sequences than those from CAD-Tokenizer,
suggesting that our model more consistently attempts to modify the original sequence and perform
the requested edits. This pattern, along with our model’s overall advantages, is more accurately
reflected by the difference in VLM scores presented in the main quantitative results.

We draw the conclusion that the interpretation of the distributional metrics should be extra careful
as it may not always reflect the true performance of the model. The analysis on the CAD Editing
performance should take all metrics (especially the qualitative ones) into consideration in order to get
unbiased information.

C.2.2 ADDITIONAL QUALITATIVE RESULTS

We present additional qualitative results for CAD editing and Text-to-CAD generation in Figure 9
and 10, respectively.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Text - t o- CAD Inst r uct i on

Gr ound Tr ut h CAD- Tokeni zer

Figure 9: Additional qualitative results for CAD editing.

C.2.3 FAILURE CASES

In this section, we discuss failure cases observed with our method. As shown in Figure 11, we classify
these failures into three categories: overcomplicated testing entries, misleading instructions, and lack
of spatial or commonsense reasoning. We list our findings below:

1. For the first category, the model faces difficulty in generating correct shapes from compli-
cated instructions. For example, an extrusion resembling the number ’4’ poses difficulty,
especially when the instruction phrases it as "four polyhedra" without stating its resemble
with the number.

2. The second category describes instances where the instructions do not always accurately
reflect the relationship between the original and target shape. This issue can arise because
the CAD-Editor dataset was generated by prompting VLMs, for which achieving absolute
robustness and trustworthiness remains an open problem; this, in turn, poses instruction-
following challenges for our model.

3. The last category reflects a lack of common sense or spatial reasoning, likely originating
from limitations in the backbone LLM’s capabilities. Generating concrete shapes such as a
"key" or letter shapes, as well as arranging multiple objects in an organized way, remains
challenging.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Or i g Shape
Edi t i ng

Inst r uct i on

Gr ound Tr ut h CAD- Tokeni zer

Figure 10: Additional qualitative results for Text-to-CAD generation.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Over compl i cat ed Test i ng Ent r i es

Mi sl eadi ng Inst r uct i ons

Lack of Spat i al Reasoni ng or Common Sense Reasoni ng

Figure 11: An overview of our model’s failure cases. The layout follows that of Figures 9 and 10.

21

	Introduction
	Related Works
	CAD Modeling
	LLM Tokenization

	Methodology
	Approach Overview
	Primitive-based VQ-VAE as CAD Tokenizer
	Instruction Tuning with CAD Tokens
	Model Inference and Token Decoding

	Experiments
	Experimental Setups
	Main Results
	Ablation Studies

	Limitations
	Conclusion
	Additional Information of the CAD Representation
	Sequence Representation
	Primitive Definition

	Implementation Details
	VQ and Primitive Pooling
	FSA Sampling

	Experimental Results
	Evaluation Setup
	Experimental Results
	Elaboration on CAD Editing Results on the Distributional Metrics
	Additional Qualitative Results
	Failure Cases

