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ABSTRACT

Computer-Aided Design (CAD) is a foundational component of industrial pro-
totyping. where models are defined not by raw coordinates but by construction
sequences such as sketches and extrusions. This sequential structure enables both
efficient prototype initialization and subsequent editing. Text-guided CAD proto-
typing, which unifies Text-to-CAD generation and CAD editing, has the potential
to streamline the entire design pipeline. However, prior work has not explored
this setting, largely because standard large language model (LLM) tokenizers de-
compose CAD sequences into natural-language word pieces, failing to capture
primitive-level CAD semantics and hindering attention modules from modeling
geometric structure. We conjecture that a multimodal tokenization strategy, aligned
with CAD’s primitive and structural nature, can provide more effective represen-
tations. To this end, we propose CAD-Tokenizer, a framework that represents
CAD data with modality-specific tokens using a sequence-based VQ-VAE with
primitive-level pooling and constrained decoding. This design produces compact,
primitive-aware representations that align with CAD’s structural nature. Applied
to unified text-guided CAD prototyping, CAD-Tokenizer significantly improves
instruction following and generation quality, achieving better quantitative and qual-
itative performance over both general-purpose LLMs and task-specific baselines.

1 INTRODUCTION

Computer-Aided Design (CAD) plays a central role in industrial prototyping and production. CAD
models are constructed as sequences of operations—such as sketches and extrusions—that CAD
kernels compile into machine-interpretable 3D objects. Unlike other 3D representations, CAD explic-
itly encodes design history, which makes it particularly suitable for both creating initial prototypes
and performing subsequent modifications. Automating CAD sequence generation, especially from
natural language instructions, could substantially accelerate the design workflow.

Recent work has begun to explore text-guided CAD subtasks, including CAD editing (Yuan et al.,
2025) and text-to-CAD generation (Wang et al., 2025; Li et al., 2025b; Khan et al., 2024b). These
studies not only demonstrated the feasibility of each individual task but also showed that large
language models (LLMs) can effectively operate on CAD sequences. However, real-world design is
rarely a one-shot process: engineers iteratively refine prototypes by alternating between creation and
modification. An effective text-based CAD system should therefore support both tasks in a unified
manner—generating CAD objects from instructions while also allowing editing of existing designs.

Handling both tasks within a single unified model has never been studied previously. The difficulty
lies in the distinct requirements of the two subtasks. Text-to-CAD demands strong generative
capability to produce high-quality sequences from scratch, whereas CAD editing requires precise
instruction understanding and alignment with existing geometry. A unified framework must therefore
master two complementary but non-overlapping skills, which places significantly higher demands on
the backbone than solving either task alone.

We introduce CAD-Tokenizer, the first framework to tackle unified text-based CAD prototyping with
CAD-specific tokenization. Our key insight is that the default tokenizers used in LLMs are poorly
matched to CAD data. They decompose CAD programs into natural-language word pieces, frag-
menting operations and numeric parameters into arbitrary substrings (e.g., "[extru] [-sion]").
This causes attention layers to focus on punctuation or partial tokens instead of meaningful primitives,
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Figure 1: Overview of the unified text-based CAD prototyping task, which includes the Text-to-CAD
generation and text-based CAD Editing. Our approach introduces a CAD-specific tokenization
method that produces primitive-level tokens instead word pieces. This paradigm allows LLMs to cap-
ture relationships among CAD primitives more effectively, improves compression and performance.

limiting the model’s ability to capture structural and geometric dependencies. To address this, we use
a VQ-VAE to compress CAD sequences into primitive-level tokens before training, enabling LLMs
to directly model inter-primitive relations and predict the next operation rather than the next character
or word piece (Figure 1). This formulation makes unified training possible, leading to substantial
improvements in both efficiency and quality.

Our contributions are as follows:

1. We develop a primitive-level VQ-VAE tokenizer that maps sketch–extrusion pairs into
multiple discrete tokens. To integrate with LLMs, we train adapters that align the pretrained
tokenizer vocabulary with the backbone’s embeddings.

2. We fine-tune an LLM on these CAD-specific tokens under a unified setup covering both
Text-to-CAD generation and CAD editing. This design improves training efficiency and
surpasses strong task-specific baselines.

3. We leverage the formal grammar of CAD by introducing a finite-state automaton–based
sampling strategy, which enforces valid syntax in generation and improves quality.

4. Through extensive qualitative, quantitative, and ablation studies, we demonstrate that CAD-
Tokenizer improves both efficiency and performance across unified CAD prototyping tasks.

2 RELATED WORKS

2.1 CAD MODELING

In general, CAD modeling tasks take different types of user inputs and generate sequential CAD
output that renders into 3D objects by 3D kernels.

Classical CAD Tasks. Classical CAD tasks focus on generating CAD sequences from non-textual
inputs. This includes hand sketches (Seff et al., 2022), point clouds (Khan et al., 2024a; Ma et al.,
2024), sequence prefixes (Xu et al., 2022; 2023), or even random noise (Wu et al., 2021). There
are also tasks involving masked variation, where some primitives are masked out and converted into
random variants (Zhang et al., 2025; Xu et al., 2022; 2023). Our work differs from these works in
two ways. First, our work focuses on CAD generation from textual inputs. Second, while works in
these categories often use transformer encoders to extract features and decode specific IDs, they do
not involve texts or natural languages and thus have no need to leverage the textual understanding
capability of LLMs and hence do not need to align these IDs with them.
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Text-based CAD Tasks. Text-based CAD tasks focus on generating CAD sequences based on textual
instructions. Inputs for these tasks fall into two main types: the first type includes only textual
instructions on how to generate an initial CAD model, and the second type includes a CAD sequence
(of the same representation format) and a textual instruction on how to modify the given model. The
former is the Text-to-CAD task (Wang et al., 2025; Li et al., 2024; 2025b; Khan et al., 2024b) and the
latter is the CAD-editing task (Yuan et al., 2025). Our work differs from these tasks as we propose
the text-based CAD prototyping task, which merges them. Given that initiating and editing CAD
models is a standard procedure in industry, a single-model solution is both necessary and promising
for the prototyping pipeline.

2.2 LLM TOKENIZATION

LLMs operate over discrete tokens that are mapped into hidden embeddings. In natural language,
these tokens are defined by vocabularies (Pennington et al., 2014; Mikolov et al., 2013) or obtained via
algorithms such as byte-pair encoding (BPE) (Gage, 1994). In multimodal tasks where inputs often
lie outside the space of predefined vocabularies, external encoders and decoders such as VAEs and
VQ-VAEs (Kingma & Welling, 2022; van den Oord et al., 2018), vision transformers (Dosovitskiy
et al., 2021; Radford et al., 2021), or diffusion-based algorithms (Podell et al., 2023) are commonly
used to map continuous modalities into token sequences that LLMs can process.

Tokenization strategies vary across domains. For visual tasks, pretrained VAE/VQ-VAE or CLIP/ViT
encoders are typically used, sometimes paired with custom decoders when generative outputs are
required (Zhou et al., 2024; Ge et al., 2023; 2025; Liu et al., 2023). In robotics, many works bypass
neural tokenizers, instead stringifying actions for direct use with default LLM tokenizers (Brohan
et al., 2023b;a), or applying lightweight algorithmic encodings (Pertsch et al., 2025). Time-series
modeling has explored both neural tokenizers based on attention architectures (Nie et al., 2023) and
classic tokenization methods (Li et al., 2025a).

Prior CAD works are task-specific on tokenizations. Classical CAD generation methods train separate
encoders and decoders for different inputs, such as sketches and extrusions (Xu et al., 2022; 2023;
Khan et al., 2024b;a), resulting in multi-encoder pipelines. Recent text-based CAD efforts typically
rely on off-the-shelf LLM tokenizers, directly applying LLM tokenizations to CAD sequences without
adaptation (Wang et al., 2025; Yuan et al., 2025; Zhang et al., 2025). In contrast, our work introduces
the first encoder–decoder tokenizer specifically designed to integrate with LLMs. We employ a single
VQ-VAE–variant encoder–decoder pair to tokenize all CAD inputs and align its vocabulary with
the LLM backbone. This unified tokenization allows the model to reason over CAD primitives as
discrete units, addressing the fragmentation issues inherent in natural-language tokenizers.

3 METHODOLOGY

3.1 APPROACH OVERVIEW

The text-based CAD prototyping task unifies Text-to-CAD generation and CAD editing. Formally,
given a prompt x = (I, Corig) consisting of an instruction I and an optional original sequence
Corig, the goal is to learn a mapping f(·) that outputs a parametric sequence Cgen. For Text-to-CAD,
Corig = ∅, while for editing tasks, Corig is a valid CAD sequence. The generated sequence should
reflect the design intent expressed by the instruction and, when applicable, the original shape.

CAD-Tokenizer addresses this unified task by fine-tuning LLMs with CAD-specific tokens produced
by a pretrained VQ-VAE (Figure 2). Specifically, (1) a primitive-based VQ-VAE is trained on CAD
sequences to compresses the sketch-extrusion pairs into discrete tokens, and adapters are deployed to
align these tokens with the backbone’s embedding space (Section 3.2), (2) the backbone is fine-tuned
on the encoded CAD data (Section 3.3), and (3) an FSA-based decoding strategy enforces CAD
grammar during inference (Section 3.4). We describe each step below.

3.2 PRIMITIVE-BASED VQ-VAE AS CAD TOKENIZER

Pretraining Primitive VQ-VAE. To convert CAD sequences into compact symbolic representations,
we modify and pretrain a VQ-VAE variant that outputs primitive-level tokens. Each input sequence
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Figure 2: Overview of the CAD-Tokenizer framework. (1) A primitive-based VQ-VAE tokenizes
CAD sequences into discrete primitive tokens. (2) Adapter modules align these tokens with the LLM
embedding space. (3) The backbone LLM is fine-tuned using CAD-specific tokens. (4) At inference,
an FSA-guided sampling strategy ensures syntactically valid CAD generation.

C needs to be decomposed into sketch–extrusion pairs SE = {t1, . . . , tn} and encoded into latent
vectors {p′1, . . . , p′k}, with k < n, in pairs by transformer encoders. Unlike standard VQ-VAEs that
pool the entire sequence into a single latent vector, we introduce a primitive-specific pooling layer,
producing multiple discrete representations for each sketch–extrusion pair. This design captures
both local and contextual information from the surrounding sequence. Training follows a sequence
reconstruction objective with an accumulated VQ loss across all pooled tokens:

LV Q-Prim =
∑
i∈n

EMD(Decoder({p′}, t1,i−1), 𝟙i) +
∑
j∈k

V Q(T
E

j , p
′
j),

where EMD is the squared Earth Mover’s Distance Loss, and T
E

j denotes the pooled vector of the
tokens construct up the j-th primitive. We demonstrate this method in Figure 2(1) and provide
additional details such as the detailed pooling procedure in Appendix B.

Aligning CAD Tokenizer with LLM Embeddings.

The raw primitive vectors {p′j} have dimension dvq , while the LLM requires tokens in its embedding
space of dimension dtok. Typically, this adaptation is performed during co-training with LLM
backbones (Liu et al., 2023), which is compute-intensive and does not guarantee alignment in
the reverse direction. We introduce a novel use of adapters that map VQ-VAE outputs and LLM
embeddings bi-directionally. In detail, we leverage the frozen embedding and logit layers of the
pretrained LLM. Adapters are trained with a vector reconstruction loss that encourages the mapped
tokens {pj = argmax(Llogit(W

dvq

dtok
(p′j)))} to remain faithful to their raw representations:

Lrecon =
∑
j∈k

∥p̂′j − p′j∥22.

p̂′j = W dtok

dvq
(Lembed(pj)) is the reconstructed embedding corresponding to {p′j}. This alignment

produces native LLM-recognizable primitive IDs, enabling seamless integration without modifying
the backbone. The alignment procedure is illustrated by Figure 2(2).

3.3 INSTRUCTION TUNING WITH CAD TOKENS

With aligned tokens, CAD sequences can be encoded into compact symbolic forms and directly used
for instruction tuning. Given an input prompt x = (I, Corig) and target sequence Cgen, we define
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x′ = (I,CAD-Encoder(Corig)) and y′ = CAD-Encoder(Cgen). We fine-tune the pretrained
LLM by minimizing the standard cross-entropy loss between the generated tokens ŷ = f(x′) and
ground-truth y′ as described below:

LSFT = −E(x′,y′)

[
1

T

T∑
t=1

log p(ŷ = y′t|x′)

]
.

Because CAD sequences are significantly compressed, i.e., |x′| < |x|, fine-tuning is not only more
effective but also more computationally efficient. Figure 2(3) illustrates this stage.

3.4 MODEL INFERENCE AND TOKEN DECODING

During inference, naive autoregressive sampling may produce invalid CAD sequences, as standard
LLM decoding strategies (e.g., top-p, beam search) are unaware of CAD grammar. However, unlike
natural language, CAD sequences are formal languages and can be fully described by states and
transitions. Therefore, we can improve the sample quality by designing a finite-state automaton (FSA)
that formalizes valid CAD construction rules (Figure 2(4)).

At each step, the FSA provides a series of masks restricting the candidate logits to grammar-compliant
tokens, ensuring syntactic validity. The automaton state evolves with the decoder, whose choice
for the next token is also passed to the automaton for deciding if a transition is going to take place.
Despite some context-dependent geometric constraints are unable to fully catched, this method
significantly reduces syntactic errors and improves sampling robustness by preventing obvious
grammatical mistakes. Further implementation details are given in Appendix B.2 and the FSA design
is illustrated in Figure 8.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets. For training the VQ-VAE, we convert the SkexGen (Xu et al., 2022) dataset into the
formatting used by CADFusion (Wang et al., 2025) and CAD-Editor (Yuan et al., 2025). We include
the formatting details in the Appendix A. To prevent a distribution gap for the tokenizer between
seen and unseen data, we use half of the training data for VQ-VAE training, ensuring the LLM also
encounters samples not seen by the VQ-VAE encoder during its training. For training the backbone
LLM, we use the datasets of CADFusion and CAD-Editor. Although both originate from SkexGen,
the two datasets have different content, so we merge them for training our model without further
deduplication. Since CAD-Editor uses the original split of SkexGen but the entire CADFusion dataset
is split from its training set, we consolidate the CADFusion dataset and additionally annotated 200
pairs for our test set. We also balance this combined dataset by randomly selecting five CAD-Editing
data points for every Text-to-CAD data point. Ultimately, this results in approximately 100k training
pairs and 1000 testing pairs.

Implementation Details. The CAD sequence formalization and primitive selection is detailed in
Appendix A. The VQ-VAE is trained with 5 encoder and 5 decoder layers, a codebook size of
2048, and an internal dimension of 512. It is trained with a learning rate of 3e-4 for up to 250
epochs, using early stopping with a patience of 25. The logit and embedding layers inserted are from
LLaMA-3-8b-Instruct (4096-dim), which is also used as our LLM backbone. The alignment
uses exactly the same setup, but the encoder, decoder and LLM layers are frozen, and only the two
adapter layers are trained. For LLM training, the backbone is configured with a maximum token
length of 1024 and a hidden dimension of 4096. We adopt Low-Rank Adaptation (LoRA) (Hu
et al., 2021) for efficient fine-tuning, with a rank of 32 and an α value of 32. The model is trained
for 20 epochs with a learning rate of 1e-4 and the AdamW optimizer. The VQ-VAE training is
run on a single NVIDIA A100-80G GPU, and the LLM fine-tuning is conducted on four NVIDIA
A6000-48GB SMX GPUs using Distributed Data Parallel (DDP).

Baselines. We select two types of baselines. First, we include CADFusion and CAD-Editor as
state-of-the-art methods in Text-to-CAD and CAD-editing tasks, respectively. However, since these
are for individual text-based tasks only and no existing works address text-based CAD prototyping,
we propose two additional baselines for the unified task. First, we train a vanilla LLM model using
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Methods F1-Skt F1-Ext CD COV JSD MMD IR VLM HE
CAD-Editor∗ 73.3 82.6 40.7 51.1 1.63 1.25 1.50 4.28 1.63
GPT-4o 80.0 78.1 42.9 51.8 4.00 2.14 47.9 1.94 -
Vanilla-LLaMA 78.8 84.9 42.4 48.6 3.90 2.37 48.6 4.31 2.64
CAD-Tokenizer 88.6 94.8 13.5 52.4 2.54 1.97 8.38 5.09 1.72

(a) CAD-Editing quantitative results. ∗CAD-Editor is the task-specific model on it.

Methods F1-Skt F1-Ext CD COV JSD MMD IR VLM HE
CADFusion† 68.8 80.1 38.5 54.4 10.6 3.86 22.5 5.41 1.91
GPT-4o 66.7 66.8 79.8 52.6 62.0 13.5 90.5 1.47 -
Vanilla-LLaMA 66.4 80.9 48.4 53.8 27.4 72.6 80.5 3.45 2.58
CAD-Tokenizer 77.9 84.7 26.7 54.5 7.26 3.74 1.50 3.82 1.62

(b) Text-to-CAD quantitative results. †CADFusion is the task-specific model on it.

Table 1: Results in (a) and (b) include F1 scores for sketches (F1-skt ↑) and extrusions (F1-ext ↑),
Chamfer Distance (CD ↓), Coverage(COV ↑), Minimum Matching Distance (MMD ↓), Jensen-
Shannon Divergence (JSD ↓), Invalidity Ratio (IR ↓), the VLM Score (VLM ↑), and average rank
from Human Evaluation (HE ↓). GPT-4o generations were not included in the human evaluation
process. (↑) marks the higher the better, and (↓) marks the opposite. The best results are marked in
bold, and second-best results are underlined.

the native LLaMA tokenizer (Vanilla-LLaMA), with all other aspects of the setup identical to
CAD-Tokenizer. Second, we prompt a five-shot GPT-4o to examine how modern commercial LLMs
perform on the text-based CAD prototyping task. Details including baseline implementation and
prompting samples can be found in the Appendix C.1.

Metrics. Our evaluation focuses on different aspects of the generated CAD models. First, we
measure the pairwise correspondence between generated outputs and the ground truth sequences.
For this criterion, we use F1 scores and Chamfer Distance (CD). We follow CADFusion’s (Wang
et al., 2025) measurements of F1-Sketch and F1-Extrusion for simplicity. Second, we measure
distributional similarity. Between the generated samples and the ground truths, we follow (Xu et al.,
2022; Yuan et al., 2025; Wang et al., 2025) and measure: Coverage (COV), which quantifies how
well the generated distribution covers the ground truth; Minimum Matching Distance (MMD), which
evaluates similarity by finding the closest matches between samples from the two distributions; and
Jensen-Shannon Divergence (JSD) for distributional similarity. Third, we measure the Invalidity
Ratio (IR) as an indicator of sequence robustness; and fourth, we measure the generated outputs’
alignment with instructions using a VLM-based score (VLM) and Human Evaluation (HE). The
VLM is prompted to rate instruction following on a scale of 0 to 10, and human judges are asked to
rank the outputs from different models based on the same criterion. Details on VLM prompting and
human evaluation methodology can be found in Appendix C.1.

For the clarity of the presentation, the results of the distribution scores (COV, JSD, MMD) and
chamfer distance in all records are multiplied by 102.

4.2 MAIN RESULTS

Quantitative Evaluation. Table 1 reports results on CAD editing (a) and Text-to-CAD generation
(b). On CAD editing, CAD-Tokenizer achieves the best results across almost all metrics. It improves
the F1 scores by around 10 points each. Compared to the task-specific CAD-Editor, CAD-Tokenizer
leads in F1 metrics while also achieving stronger VLM and human evaluation scores. Moreover,
discoveries detailed in the supplementary results of Appendix C.2.1 suggest that our model is best
intended to edit the original object despite being disfavored by the distributional metrics by doing so.

On Text-to-CAD generation, CAD-Tokenizer again shows clear improvements. It significantly
improves the F1 scores, indicating strong matching in CAD sequential information. Chamfer
Distance is also decreased by a large margin. Although CADFusion attains a slightly higher VLM
score (5.41 vs. 3.82), CAD-Tokenizer surpasses it in nearly every other metric, including a lower
human evaluation rank that indicates preference.
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Figure 3: Qualitative results. The upper and lower sections display results for the Text-to-CAD and
CAD editing tasks, respectively. In each subfigure, the top-left corner shows the input instruction and
CAD object (or only the instruction in Text-to-CAD), the top-right corner shows the ground truth, and
the bottom three show outputs from CADFusion/CAD-Editor, Vanilla-LLaMA, and CAD-Tokenizer.

Besides the advantage of our framework over task-specific baselines, it is noteworthy that Vanilla-
LLaMA almost collapses on the majority of metrics. This supports our conjecture that text-based
CAD prototyping is inherently a challenging task for conventional tokenizers, and highlights that our
improvements over the vanilla tokenizer and training paradigm are substantial.

Qualitative Evaluation. Figure3 illustrates typical generations of our model and selected baselines.
In Text-to-CAD, CAD-Tokenizer produces more faithful multi-face objects compared to Vanilla-
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LLaMA, which often drops faces or misaligns structures. Also, the outputs are natural and balanced,
which resemble human designs. Its qualitative performance is competitive with CADFusion, the
task-specific baseline.

For CAD editing, CAD-Tokenizer demonstrates stronger instruction-following: it modifies existing
shapes as required rather than persisting the original form, a failure mode described in Appendix
C.2.3. Compared to the vanilla tokenizer, CAD-Tokenizer better respects structural templates and
achieves higher-quality modifications.

Additional results including more complex prompts and designs can be found in Appendix C.2.2.

4.3 ABLATION STUDIES

We analyze the contribution of each component in CAD-Tokenizer across three stages: pre-SFT
tokenization, in-SFT integration with the LLM, and post-SFT sampling.

Methods F1-Skt (↑) COV (↑) JSD (↓)
HNC-CAD 85.5 57.5 29.8
CAD-Tokenizer (curve) 94.1 64.5 8.19
CAD-Tokenizer loop 91.5 59.5 18.4
CAD-Tokenizer single 76.5 54.0 35.9

Table 2: The reconstruction quality of the CAD-Tokenizer
variants and HNC-CAD. Only the sketch scores are reported
for the F1 score because the CAD-Tokenizer encodes objects
by sketch-extrusion pairs and always achieves full score for
this sub-metric. CAD-Tokenizer (curve) is the default vari-
ant which we reported in the main quantitative results.

Figure 4: The Compression ratio
of the different tokenization algo-
rithms. The compression ratio is
100% for no compression.

Before LLM Finetuning: the Quality of Tokenizers. The tokenizer quality is critical to downstream
LLM performance. We evaluate two aspects: (i) reconstruction quality, in terms of selected
sequence and distribution metrics, and (ii) compression ratio for efficiency. We compare CAD-
Tokenizer against the following: 1. HNC-CAD (Xu et al., 2023), a strong neural coding baseline
on conditional and unconditional CAD generation, 2.BPE (Gage, 1994), the Byte-pair Encoding, a
standard tokenization algorithm, 3. CAD-Tokenizer (curve), our default tokenizer with curve-based
pooling, 4. CAD-Tokenizer (loop), a variant pooling loops instead, and 5. CAD-Tokenizer (single),
which omits primitive pooling and encodes each sketch–extrusion pair as a single unit.

Table2 and Figure 4 presents the results. Except that BPE is not involved in the reconstruction
evaluation as it guarantees returning original vectors algorithmically, the exploration is three-fold:
First, all CAD-Tokenizer variants outperform prior methods on both reconstruction quality and
compression. The CAD-Tokenizer variants perform uniformly better than other tokenization methods,
while having better compression rate. Second, within CAD-Tokenizer, the results also highlight the
trade-off between compression rate and the reconstruction accuracy, as the variants that compress
more tokens into one embedding tend to have worse quality after reconstruction. Third, the sharp
degradation of the single variant underscores the importance of primitive-level pooling.

Methods F1-Avg (↑) CD (↓) COV (↑) JSD (↓) IR (↓)
CAD-Tokenizer (curve) 86.5 20.1 53.4 4.90 4.94
CAD-Tokenizer loop 86.3 32.6 53.6 7.05 4.91
CAD-Tokenizer single 78.3 59.1 43.4 48.5 70.7
BPE 76.2 56.8 48.8 48.3 88.5

Table 3: The performance of each tokenizer when integrated and trained with the backbone LLM.
CAD-Tokenizer (curve) is the default variant which we reported in the main quantitative results,
while loop is a variant on pooling loop primitives and single does not perform specific pooling.
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Methods F1-Avg (↑) CD (↓) COV (↑) JSD (↓) IR (↓)
CAD-Tokenizer(+FSA) 86.5 20.1 53.4 4.90 4.94
CAD-Tokenizer+top-p 80.4 66.4 30.3 61.2 17.2
CAD-Tokenizer+beam search 82.8 49.8 51.2 46.7 45.2

Table 4: The generation quality of each sampling method after training. The base model used for
evaluation is the fine-tuned CAD-Tokenizer. CAD-Tokenizer(+FSA) is the default variant which we
reported in the main quantitative results.

In LLM Finetuning: the Performance of Different Tokenizion Methods. We next evaluate the
tokenizers during supervised fine-tuning (SFT) with the LLM backbone. All methods are included
except HNC-CAD, which was not designed for LLM training.

As shown in Table 3, both BPE and the single variant of CAD-Tokenizer perform poorly, with high
invalidity ratios and consistently weak metrics. Their setups justify the unsatisfactory performance:
the single variant performed already poor enough during the pre-finetuning reconstruction evaluation;
and BPE does not align the post-tokenization tokens with the LLM vocabulary, which adds up
additional burden during finetuning. The loop variant achieves performance close to the default
curve tokenizer, with slightly lower reconstruction but higher compression. This not only indicates
that primitive pooling—whether curve- or loop-based—is essential, but also offers flexibility and
alternatives in trading off accuracy against efficiency.

After LLM Finetuning: Different Sampling Strategies. Finally, we assess the impact of our
FSA-based decoding strategy described in Section 3.4. We fix the backbone to the fine-tuned CAD-
Tokenizer and apply different sampling strategies on top of it, and compare our method with the two
mainstream approaches: top-p sampling and beam search.

Table 4 shows that FSA-guided sampling consistently outperforms both alternatives across all metrics.
Its CAD-specific design leverages formal sequence constraints, enabling it to utilize structural
formatting information that general-purpose decoding methods do not take into account. Also notably,
beam search improves the model performance in all aspects comparing to the top-p sampling, but
encounters a significant tradeoff in invalidity ratio.

5 LIMITATIONS

Our work’s limitations are two-fold. First, the quality gap between the open-source and private-
sector CAD data limits us from training on further complex shapes. Second, as mentioned and
referred, we observe a gap between the distributional metrics and the actual performance in CAD
Editing, which stems from the failure to evaluate the ’intent to keep the original shape.’ We therefore
anticipate both better datasets and metrics that can create a better ground for future works to improve.
Additionally, our failure study in Appendix C.2.3 suggests better spatial or commonsense reasoning
capabilities, which can only be improved by better pretrained backbones. We include some of the
related discussions, as well as the detail of our failure study, in Appendix C.2.

6 CONCLUSION

In this work, we presented CAD-Tokenizer, the first framework to address the unified text-based CAD
prototyping problem, a task that requires a unified model on both Text-to-CAD generation and CAD
editing. Key to CAD-Tokenizer’s approach is a pretrained transformer-based VQ-VAE module that
enables CAD-specific tokenization by converting sequential CAD inputs into meaningful primitive
tokens, instead of the word pieces produced by vanilla tokenizers. LLM backbones that were finetuned
on the CAD specific tokens demonstrated better performance and training efficiency. Our extensive
experiments validated these core design choices, including the primitive-specific pooling mechanism
within the VQ-VAE and the FSA-driven sampling, and demonstrated the advantage of CAD-Tokenizer
over both task-specific and general-purpose baselines. We also improved inference-time decoding
quality by introducing a novel finite-state automaton–driven sampling method, designed to enforce
sequence formatting and hence improve generation quality.
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ETHICS STATEMENT

The data used in this work is tailored for CAD generation. Due to its specialized nature, the misuse
risk is naturally minimized, ensuring the developed methods primarily benefit CAD development.

REPRODUCIBILITY STATEMENT

We have included sufficient information on our all aspects of our experimentations including dataset
resources and setups, model hyperparameters and LLM backbones, computational resources and
setups, and metric setups. Relevant detail can be found in Section 4.1 and Appendix C.1.

We will release the source code after the peer-review procedure.

THE USE OF LARGE LANGUAGE MODELS

THe use of LLMs is restricted in revising the word choices and grammar only. No LLMs are used for
research ideation or contributive enough to be regarded as a contributor.

A ADDITIONAL INFORMATION OF THE CAD REPRESENTATION

A.1 SEQUENCE REPRESENTATION

We follow the practice of Zhang et al. (2025); Yuan et al. (2025); Wang et al. (2025). In detail, a CAD
object is defined by a series of sketches and extrusions, termed the Sketch-and-Extrude Modeling
(SEM) format.

Each sketch consists of multiple faces, with each face typically containing one or more loops.
Primitives in each loop include lines, arcs, and circles. They are defined by an identifier and, for their
geometric properties, one, two, or four key coordinates or sets of parameters, respectively.

Each extrusion is represented as a BVVTTTRRRRRRRRRSOO sequence. B refers to the boolean
operation selected from add, cut, intersect; the two V values define the respective displace-
ments of the top and bottom extrusion planes from a reference plane; the three T values form the
translation vector; the nine R values represent rotation parameters; S is the scaling factor; and the two
O values identify the origin of scaling.

Figure 5 illustrates the components of the sketch and extrusion operations.

l i ne, 10, 7 <cur ve_end> . . . , <l oop_end> . . . , <f ace_end> . . . , <sket ch_end> 

add, 16, 31, 31, 31, 31, 1, 0, 0, 0, 0, 1, 0, - 1, 0, 29, 31, 48, <ext r ude_end>

B V T R S O END

Over vi ew of  a Sket ch Sequence

Over vi ew of  an Ext r usi on Sequence

Figure 5: An overview of the CAD sequence structure. Top: sketch components; bottom: extrusion
components.

In our VQ-VAE training, we tokenize CAD sequences into their smallest semantic units. These units
are defined in Table 5. This tokenizer differs from native LLM tokenizers in that it does not further
split these semantic units into word pieces.

A.2 PRIMITIVE DEFINITION

We define our primitives differently for sketches and extrusions. For sketches, we define one primitive
as a curve and any succeeding end tokens, if present. For extrusions, we split each into three parts:
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Token Name Vocabulary Index Description
pad 0 Padding token
line 1 Identifier token of curve: line
arc 2 Identifier token of curve: arc

circle 3 Identifier token of curve: circle
<curve_end> 4 End token of curves
<loop_end> 5 End token of loops
<face_end> 6 End token of faces

<sketch_end> 7 End token of sketches
add 8 Identifier token of extrusion operation: add
cut 9 Identifier token of extrusion operation: cut

intersect 10 Identifier token of extrusion operation: intersect
<extrusion_end> 11 End token of extrusions

-1 12 Number -1
0-63 13-76 Numbers from 0 to 63

Table 5: Token vocabulary for the CAD sequence representation used in training our VQ-VAE.

B,V,T, R, and S,O,END, and split R into 3 distinct tokens. This partitioning is designed to prevent
the VQ-VAE from having to summarize overly long sequences, which can be difficult to learn
effectively.

Our primitive design offers several advantages. First, limiting the scope to the loop level restricts the
number of tokens the VQ-VAE model generates for the LLM to a manageable quantity. Generating
one token per curve would provide the LLM with too many tokens; conversely, one token per face
or per sketch would yield too few for the LLM to extract meaningful correlations and, in the case
of per-sketch tokenization, might also represent too much information for a VQ-VAE to compress
effectively into a single token. Second, compared to works that do not pool primitives but instead
train on smaller ‘particles’ (Xu et al., 2022; 2023), our approach improves representation quality by
embedding all primitive representations into a unified subspace (which is not guaranteed by methods
training separate models for different CAD pieces) and by posing contextualization. Furthermore,
those approaches may not adequately address the challenge of long extrusion sequences, which are
difficult for a VQ-VAE to compress meaningfully into a single token.

B IMPLEMENTATION DETAILS

PRELIMINARY: TERMINOLOGIES AND NOTATIONS

We use the term Encoder and Decoder to refer the transformer encoder and decoder layers in
with in the VQ module. We refer the term VQ Encoder to the entire module before token extraction,
i.e. the transformer encoder layers, the primitive pooling, and the VQ layer. The same applies to VQ
Decoder, but since no additional modules are added, it is in fact equivalent to the Decoder. CAD
Encoder and CAD Decoder describe the combination of the VQ Encoder/Decoder and the
corresponding adapter layers.

B.1 VQ AND PRIMITIVE POOLING

A classic VQ-VAE for sequential data consists of transformer encoder layers, a VQ layer to quantize
vectors, and transformer decoder layers. Input tokens are encoded, pooled into a single hidden
vector, and then mapped to codebook vectors. These VQ vectors are then fed into the decoder, which
typically reconstructs the output sequence via a cross-attention mechanism. A traditional training
procedure includes a reconstruction loss between the decoder outputs and the initial inputs, as well as
a quantization loss.

This traditional approach of relying on a single hidden vector can be insufficient for representing
complex sequences like those in CAD. To obtain richer primitive representations, previous CAD
works (Xu et al., 2022; 2023) separated CAD objects into multiple primitives and trained individual
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Figure 6: A detailed overview of the VQ-VAE pretraining and finetuning.

Figure 7: An overview of our primitive pooling procedure for each sequence.
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VQ models on them. We argue that this approach has limitations because training separate models
can introduce alignment issues, and primitives may not receive contextualized information that
could be beneficial for their encoding. In contrast, we split each CAD sequence into its constituent
sketch-extrusion pairs and propose a primitive-specific pooling layer—replacing standard global
pooling—to generate distinct representations for these pairs.

Our primitive pooling is achieved by masking; i.e., we generate masks for each input sketch-extrusion
pair to isolate each primitive within it. Figure 7 demonstrates our method. In detail, we extract pooling
masks from the input sequence that reflect the primitive corresponding to each token. Subsequently,
we perform element-wise multiplication between each individual mask and the encoded representation
output by the encoder. At this point, the resulting matrix contains information related only to the
specific primitive isolated by the mask, allowing us to perform max pooling to obtain the pooled
representation for that primitive. By concatenating these pooled primitive representations, we obtain
a sequence of primitive-specific representations used for the decoder’s cross-attention mechanism
and for subsequent LLM alignment.

We set the maximum number of primitives in our method to 12. This corresponds to 9 flexible
slots for loop primitives and 3 fixed slots for extrusion primitives. The limit for loop primitives is
generally not restrictive, as the average number of loops per sketch-extrusion pair in our dataset is
approximately 4, and during VQ-VAE training, we filtered out only around 900 sequences (out of
90,000) due to exceeding this limit.

B.2 FSA SAMPLING

Our FSA sampling is based on a specially-designed Finite State Automaton (FSA) that determines
the set of permissible next tokens (referred to as logit options). The system generates a token (or
tokens) based on these allowed options, and then updates the FSA by inputting the current FSA state
and the last generated token as an action, to determine the options for the subsequent step.

The algorithm is described in Algorithm 1, and the FSA’s detailed design is illustrated in Figure 8.
The specific logit masks employed by the FSA are listed in Table 6.

Mask Name Mask Content Description
Init [line, arc, circle] Enforces that the first token is a curve type.

Numbers [0-63] Restricts selection to numerical values (0-63).
End-of-curve [<curve_end>] Enforces the <curve_end> token.

Primitive-start [line, arc, circle] Enforces a new curve; identical to Init.
End-of-loop [<loop_end>] Enforces the <loop_end> token.
End-of-face [<face_end>] Enforces the <face_end> token.

End-of-sketch [<sketch_end>] Enforces the <sketch_end> token.
B [add, cut, intersect] Boolean extrusion operations.
V [0-63] Numerical values for V parameter.
T [0-63] Numerical values for T parameters.
R [-1, 0, 1] -1, 0, or 1 for rotation parameters.
S [0-63] Numerical values for the S parameter.
O [0-63] Numerical values for O parameters.

End-of-extrusion [<extrusion_end>] Enforces <extrusion_end>.
Pad [pad] Restricts selection to the padding token.

Table 6: Details of the logit masks provided by the FSA to guide token generation during decoding.

C EXPERIMENTAL RESULTS

C.1 EVALUATION SETUP

Instruction of Human Judges. Five human judges were provided with 50 generation outputs for
evaluation (40 from editing tasks and 10 from Text-to-CAD tasks). All participants had completed
college-level to graduate-level education. The judges were given specific instructions on the evaluation
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Figure 8: An overview of our FSA design. At each step, the FSA receives an input action, transitions
to the corresponding new state (i.e., updates its internal state), and returns the mask(s) associated
with that new state (node).

Algorithm 1 The FSA-driven decoding algorithm.

Given: LLM-generated primitive tokens T
Given: Max length of generation max_len
State← ‘init’
M ← [initial_mask]
Seq ← ∅
while |Seq| < max_len do
m←M .next()
logits← Decoder(Seq, T )
choice← argmax(m ⊗ logits)
Seq.insert(choice)
if M = ∅ then

new_state, new_M = FSA(State, choice)
State← new_state
M ← new_M

end if
end while

task and were shown visual examples similar to those in the main qualitative results, but without
model identifiers.

1 """
2 The following are a series of pictures. The upper half is the instruction

and the standand answer. You need to rank the following three
pictures based on their response quality to the instruction.

3

4 For example, if in a picture you like 3 the most, 1 following, and 2 the
worst, rank them as (2 3 1).

5 """

Listing 1: Instructions of human judges.

Instruction of VLM. The prompts we use to generate VLM scorings are listed Listing 3 and 4.

1 """
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Methods COV JSD MMD VLM(left)
GPT-4o <–> Original Seq. 60.8 6.75 2.39 1.94
CAD-Tokenizer <–> Original Seq. 52.4 2.54 1.97 5.09
Original Seq. <–> Ground Truth 55.6 6.07 2.54 2.02

Table 7: Distributional measures for pairwise sequence comparisons from the CAD editing task.
VLM scores of the left-hand-side component are reported.

2 The following is an original image of a CAD instance, a text description
on editing and an image of the edited result. Measure if the figure
corresponds to the given description, and give a score in the scale
of 10. Only return the score. Do not comment on issues such as
texture, smoothness and colors.\n description:{description}\n

3 """

Listing 2: Instructions of VLM on CAD Editing

1 """
2 The following is a text description of a 3D CAD figure and an image of a

CAD instance. Measure if the figure corresponds to the given
description, and give a score in the scale of 10. Only return the
score. Do not comment on issues such as texture, smoothness and
colors.\n description:{description}\n

3 """

Listing 3: Instructions of VLM on Text-to-CAD generation

C.2 EXPERIMENTAL RESULTS

C.2.1 ELABORATION ON CAD EDITING RESULTS ON THE DISTRIBUTIONAL METRICS

In the CAD Editing task, we observe that models such as GPT-4o can achieve high scores on
distributional metrics for the CAD editing task, despite poor actual performance in editing. We
hypothesize that a model can frequently fail to apply edits but still achieve satisfactory distributional
scores by simply reproducing the input CAD sequence without modifications. To investigate this
matter further, we provide additional distributional measures for three comparison types: 1. between
GPT-4o outputs and the original input sequences, 2. between outputs from CAD-Tokenizer and the
original input sequences, and 3. between the original input sequences and the ground truth edited
sequences.

The results are displayed in Table 7. As shown in the third row (comparing original inputs to the
ground truth), the original sequence yields high distributional scores. However, such outputs should
be considered failed edits, as they do not incorporate any of the specified editing instructions. VLMs
capture instruction-following capabilities much better by assigning a low score when an output merely
returns the original sequence. In light of this, we measured the distributional similarity between
the original input sequences and the outputs from GPT-4o and our CAD-Tokenizer. It was found
that GPT-4o’s outputs are much closer to the original sequences than those from CAD-Tokenizer,
suggesting that our model more consistently attempts to modify the original sequence and perform
the requested edits. This pattern, along with our model’s overall advantages, is more accurately
reflected by the difference in VLM scores presented in the main quantitative results.

We draw the conclusion that the interpretation of the distributional metrics should be extra careful
as it may not always reflect the true performance of the model. The analysis on the CAD Editing
performance should take all metrics (especially the qualitative ones) into consideration in order to get
unbiased information.

C.2.2 ADDITIONAL QUALITATIVE RESULTS

We present additional qualitative results for CAD editing and Text-to-CAD generation in Figure 9
and 10, respectively.
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Figure 9: Additional qualitative results for CAD editing.

C.2.3 FAILURE CASES

In this section, we discuss failure cases observed with our method. As shown in Figure 11, we classify
these failures into three categories: overcomplicated testing entries, misleading instructions, and lack
of spatial or commonsense reasoning. We list our findings below:

1. For the first category, the model faces difficulty in generating correct shapes from compli-
cated instructions. For example, an extrusion resembling the number ’4’ poses difficulty,
especially when the instruction phrases it as "four polyhedra" without stating its resemble
with the number.

2. The second category describes instances where the instructions do not always accurately
reflect the relationship between the original and target shape. This issue can arise because
the CAD-Editor dataset was generated by prompting VLMs, for which achieving absolute
robustness and trustworthiness remains an open problem; this, in turn, poses instruction-
following challenges for our model.

3. The last category reflects a lack of common sense or spatial reasoning, likely originating
from limitations in the backbone LLM’s capabilities. Generating concrete shapes such as a
"key" or letter shapes, as well as arranging multiple objects in an organized way, remains
challenging.
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Figure 10: Additional qualitative results for Text-to-CAD generation.
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Figure 11: An overview of our model’s failure cases. The layout follows that of Figures 9 and 10.
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