Cross-lingual Transfer for Automatic Question Generation
by Learning Interrogative Structures in Target Languages

Anonymous ACL submission

Abstract

Automatic question generation (QG) is used
for various purposes, such as building question
answering (QA) corpora, creating educational
materials, and developing chatbots. However,
despite its significance, the majority of existing
datasets primarily focus on English, leaving a
notable gap in data availability for other lan-
guages. Cross-lingual transfer for QG (XLT-
QG) has addressed this concern by enabling
the utilization of models trained with source
language data in other languages. In this pa-
per, we introduce a straightforward and effi-
cient XLT-QG approach that enables the QG
model to learn interrogative structures in the
target language during inference. Our model
is trained to leverage the interrogative patterns
found in the given question exemplars to gen-
erate questions, using only English QA data.
Experimental results demonstrate that the pro-
posed method surpasses various XLT-QG base-
lines and achieves comparable performance to
GPT-3.5-turbo. Moreover, the synthetic data
generated by our models proves beneficial for
training multilingual QA models. With sig-
nificantly fewer parameters compared to large
language models and without the need for addi-
tional training for new languages, our method
offers an effective solution for performing QG
and QA tasks across diverse languages.'

1 Introduction

Automatic question generation (QG) aims to gen-
erate questions from a given context. QG models
have been utilized not only to augment question
answering (QA) datasets but also to generate educa-
tional materials and develop chatbots, and various
types of QA datasets have been proposed, includ-
ing SQuAD (Rajpurkar et al., 2016), HotpotQA
(Yang et al., 2018), and QuAC (Choi et al., 2018).

'We release our code and question exemplars used in

the experiments at https://anonymous.4open.science/r/
QuIST-DD51

However, the majority of QA datasets are in En-
glish, leaving a notable lack of data in languages
other than English. Moreover, translating English
datasets into other languages or crafting new QA
dataset, despite the existence of similar English
dataset, is deemed inefficient in terms of both time
and financial resources.

Recently, researchers have focused on cross-
lingual transfer (XLT) to solve these data deficiency
in non-English languages (Sherborne and Lapata,
2022; Wu et al., 2022a; Vu et al., 2022; Deb et al.,
2023; Pfeiffer et al., 2023). XLT involves deploy-
ing models trained on English datasets to other lan-
guages in cases where there is a limited or nonex-
istent availability of annotated data in the target
language. Prior studies on XLT for QG (XLT-QG)
have typically utilized target language data, such
as monolingual corpora, source-target parallel cor-
pora, or a limited number of QA examples (Kumar
et al., 2019; Chi et al., 2020; Shakeri et al., 2021;
Wang et al., 2021; Agrawal et al., 2023). Never-
theless, integrating language-specific data during
model training leads to inflexibility in language
scalability, necessitating additional training efforts
for application in new languages.

Furthermore, in recent years, multilingual large
language models (mLLMs), such as the GPT se-
ries2, BLOOM (Workshop et al., 2022), and PaLM
(Chowdhery et al., 2023), have demonstrated re-
markable performance across various natural lan-
guage generation (NLG) tasks, often achieving
high efficacy through zero or few-shot inference
techniques. Yet, there remains a significant cost
burden associated with utilizing commercial APISs,
and employing open-source LL.Ms also necessitates
substantial computing resources.

In this paper, we present a simple and effi-
cient XLT-QG method that generates Questions
by learning Interrogative Structures in Target lan-
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guages (QulST). Drawing inspiration from in-
context learning (Brown et al., 2020), where the
language model acquires knowledge from the input
sequence and generates output without parameter
updates, our model learns interrogative structures
from question exemplars of the target language dur-
ing inference. By training the model solely with
English data, we ensure that our model generates
questions in other languages without additional
training.

QuIST comprises two stages: 1) Question Type
Classification (QTC) and 2) QG utilizing ques-
tion exemplars. We categorize questions into eight
types based on English interrogative words (e.g.,
who, when, and where), and the QTC model deter-
mines the type of question to be generated consid-
ering the input context and answer. Once the ques-
tion type is determined, it is utilized to select the
question exemplars for the QG stage. With input
comprising a context, answer, and question exem-
plars, the QG model generates a question. During
the training stage using English data, the QG model
learns to recognize the interrogative structure spe-
cific to the type of question from the provided ques-
tion exemplars. This strategy empowers the model
to generate questions that are not only semantically
linked to the input context and answer but also
syntactically akin to the question exemplars.

In our experiments, we evaluate the performance
of QulIST across nine linguistically diverse lan-
guages. Through both automatic and human eval-
uation, we demonstrate that QuIST outperforms
the XLT-QG baselines and achieves performance
comparable to GPT-3.5-turbo in several languages.
Furthermore, we confirm that synthetic questions
generated by QulIST are more effective for train-
ing high-performance multilingual QA models than
those generated by GPT-3.5-turbo.

Our contributions can be summarized as follows:

* We introduce QulST, a straightforward and
efficient XLT-QG method that leverages inter-
rogative structures in target languages from
question exemplars during inference.

* QulST demonstrates high language scalability,
as it can be readily applied to new languages
with only a few question exemplars, without
requiring additional parameter updates.

* QulIST generates questions of quality com-
parable to those generated by GPT-3.5-turbo,
despite utilizing relatively smaller language

models such as mBERT (Devlin et al., 2018)
with 110 million parameters and mT5 (Xue
et al., 2021) with 1.2 billion parameters.

* QuIST proves to be more beneficial for data
augmentation for multilingual QA compared
to GPT-3.5-turbo.

2 Cross-lingual Transfer for Automatic
Question Generation

In text classification tasks, the zero-shot XLT ap-
proach, which utilizes multilingual pretrained lan-
guage models (mPLMs) fine-tuned solely on En-
glish data for the target language, has demon-
strated promising performance (Conneau and Lam-
ple, 2019; Li and Murray, 2023). However, in NLG
tasks, employing this transferring method results in
catastrophic forgetting of the target language. To
address this issue, Maurya et al. (2021) fine-tuned
only the encoder layers of the mPLM while keep-
ing the word embeddings and all the parameters of
decoder layers frozen.

Finnish

Synthetic Question (mT5) : How long is Pyh&jarven pituus?
Synthetic Question (NBART) : How pitka on Pyh&jarven muoto?
Ground Truth : Kuinka pitka Pyhajarvi on?

Translation: How long is Pyhajérvi?

Korean

Synthetic Question (MT5) : When did 7}& w}2 32 ST}

Synthetic Question (NBART) : When was 712 34912 3] vh = 22 birthday?
Ground Truth : v}2 3 2% A A AFESA =712

Translation: When did Marx die?

Telugu

Synthetic Question (MT5) : How many S S Susss&a0Eren &) on?
Synthetic Question (NBART) : How many £03583tiorentr (083rc>?
Ground Truth : £00° dawgren ) c—.,v%on?

Translation: How many great oceans are there?

Figure 1: Examples of questions generated by mPLMs
fine-tuned using English QA data. The questions typi-
cally include English interrogative expressions such as
“How long” and “When did.”

In our preliminary investigation, we observed
that this training technique did not entirely mitigate
code-switching in XLT-QG as shown in Figure 1.
In particular, the models exhibited a deficiency in
understanding interrogative structures in the tar-
get language, which we term “interrogative code-
switching”. In this study, we explore a method
enabling the model to grasp interrogative structures
without relying on data from the target languages
in the training phase.

As depicted in Figure 2, we divide the task into
two stages. In the QTC stage, the classification
model determines the type of question to be gen-
erated. We focus on Wh-questions and classify
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(The first World Cup was held in 1930.)

Question Exemplars: Where do you find a lead out? Where does morphine come from? ...
Where are the most visited monuments located in Paris?

Answer: Caprivi

Context: Namibia is ... the highest rainfall occurs in the Caprivi ...

-
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(When was the first traffic light erected? When does the spread of antimicrobial resistance
often occur? ...When was Hard Candy released?)
Answer: 1930
Context: ... =712 1930l 3 o 3)7k A5t ...
(The first World Cup was held in 1930.)

Where does the highest rainfall occur in Namibia?

Question
Generator
HEH L A A& A= AtL?

(When did the World Cup first start?)

[Inference Step]

Figure 2: Overview of our proposed method: The QG model generates questions utilizing the question exemplars
corresponding to the question type determined by the QTC model.

the questions into eight types based on English
interrogative words. While the type of question
is primarily influenced by the type of answer, the
model takes into account both the answer and con-
text. This is essential because the same answer
can yield various types of questions based on the
context. For example, the number “911” could
represent a count of objects, a historical year, or a
proper noun.

The set of question exemplars corresponding to
the question type determined by the QTC model
is utilized in the QG stage. The question exem-
plars are pre-created for each question type and
language, as explained in Section 3.1 for further
details. Using the question exemplars, answer, and
context, the QG model generates questions by lever-
aging the shared interrogative structure among the
exemplars. The QTC and QG models are trained
exclusively on English QA data and then deployed
to new languages without requiring additional train-
ing with target language data.

2.1 Question Type Classification

We categorize questions into eight types: When,
Where, What, Which, Who, Why, Howq,, and
Howpymper.> To train the QTC model, we first
annotate the types of questions in the English QA
dataset. We only use questions that start with inter-
rogative words and categorize them based on these
words*. In particular, the questions beginning with
“how” are classified into either How,qy if the sub-

* How.way-questions inquire about the manner of how
something is done and How,ymper-questions seek informa-
tion regarding a degree or a specific number.

“We only used the examples that fall into one of the eight
types.

sequent word is an auxiliary verb, or How,,,mper if
it is an adjective or adverb.

In this stage, we employ the zero-shot XLT ap-
proach, wherein the model trained only on English
data is directly utilized for other languages. We
fine-tune mBERT (Devlin et al., 2018) with a feed-
forward classification layer using English QA data.
The concatenation of the answer and context, sepa-
rated by special tokens (i.e., [CLS] answer [SEP]
context [SEP]), is fed into the QTC model. Af-
ter encoding the input sequence using mBERT, the
output hidden vector corresponding to the [CLS]
token is processed through the feed-forward layer,
followed by the softmax function, to calculate prob-
abilities for the eight question types. We employed
the cross-entropy loss between the predicted and
ground-truth labels to update all model parameters.
During the inference step in target languages, the
fine-tuned model predicts the question type by tak-
ing into account the answer and context in those
languages.

2.2 Question Generation with Question
Exemplars

We use mT5 (Xue et al., 2021) as the backbone of
our QG model and approach this task as sequence-
to-sequence prediction. The model is trained to
generate the ground-truth question given the ques-
tion exemplars, answer, and context using the
teacher-forcing technique. During training, the
model learns to utilize syntax information from the
question exemplars to generate questions that are
also semantically appropriate for the given context
and answer. During inference, the question exem-
plars corresponding to the question type predicted
by the QT'C model are fed into the QG model, aid-



ing in understanding the interrogative structures of
the target language.

3 Experimental Setup

In this section, we describe the datasets and base-
line models we used in our experiments. Training
details and evaluation metrics are explained in Ap-
pendix A and B.1.

3.1 Data

QA Datasets We utilized SQuAD1.1 (Rajpurkar
et al., 2016) as the English QA data (C-Q-A.,) to
train both QTC and QG models. For evaluation
purposes, we collected QA examples in nine target
languages (C-Q-A;y) from multilingual human-
annotated QA datasets, including TyDiQA (Clark
et al., 2020), XQuAD (Artetxe et al., 2020) and
MLQA (Lewis et al., 2020). These datasets con-
sist of context—question—answer triplets, where the
answer is a span within the context. Refer to Ap-
pendix C for more detailed information, including
the number of examples and statistics on question
types.
Question Exemplars The English question ex-
emplars (Q.,,) were randomly selected from the
questions in the training set of C-Q-A.,, after label-
ing question types as described in Section 2.1. To
gather question exemplars in the target languages
(Qtg4t) written by native speakers, we utilized the
questions from the training set of C-Q-A;y. Af-
ter translating these questions into English using
Google Translation API, we constructed the ques-
tion exemplars in the same manner as for English.
We experimented with several versions of ques-
tion exemplars containing different number of ques-
tions: {1, 5, 10, 15}. In addition, we randomly
sampled each version of the exemplars five times
using different random seeds. Consequently, we
trained five distinct QuIST models using five sets
of English question exemplars. During the infer-
ence stage, five sets of exemplars for each target
language were utilized for evaluation. As a result,
in Section 4, we report the average of 25 automatic
evaluation results.

3.2 Baselines

We compared our QulST with several XLT-QG
models that share the same backbone, mT5. All
baselines treat the QG task as a sequence-to-
sequence prediction, wherein the models are
trained to generate the question given the con-
catenation of the input answer and context. The

datasets used by each model for training and infer-
ence are summarized in Appendix C.
Baseline,,.p.. This baseline model was simply
trained by fine-tuning all parameters of mT5 us-
ing C-Q-A.,,. We employ this baseline to prove
that updating the word embeddings and parameters
in the decoder layers using English data leads to
catastrophic forgetting for other languages.
Baselinez,,. Unlike Baselineg;,.pec, only param-
eters of the encoder layers of mTS were updated for
this baseline model. This training technique was
also employed to train QulST, but the two mod-
els differ in whether the question exemplars are
utilized.

Baseline,;,;;; Inspired by the method proposed
by Shakeri et al. (2021), we adopt multi-task fine-
tuning, where mT5 simultaneously learns the En-
glish QG task and the question denoising task. The
denoising task aims to restore questions with ran-
domly masked tokens and we used Q4 with 15 ex-
emplars for each question type (i.e., 120 questions)
for a fair comparison with QuIST. We use this
baseline to check whether utilizing a small num-
ber of question exemplars during the fine-tuning
stage is also effective in XLT-QG. As this baseline
learned language-specific data during training, we
constructed different models for each language.
Baseline 4 4.t We implemented the Adapter-
based mPLM, which have been recently utilized in
XLT for various NLP tasks (Pfeiffer et al., 2020;
Deb et al., 2023; Pfeiffer et al., 2023; Wu et al.,
2023). After training language-specific adapters
using monolingual corpora®, we trained the task-
specific adapters using C-Q-A.,,, where the English
adapters are incorporated. While updating each
type of adapter, we froze all other model parame-
ters. In contrast to QulST, this baseline does not
utilize Q4¢, but instead requires large-scale mono-
lingual corpora in target languages.

4 Main Results

Comparison with Baselines Table 1 presents the
performance of QulST and baselines on nine tar-
get languages. According to the results, QulSTy5,
which achieved the highest performance among
our models using different numbers of question ex-
emplars, outperforms several XLT-QG baselines,

SWe extracted 50k raw sentences for each language
from the Wikipedia dump (https://dumps.wikimedia.
org) using WikiExtractor (https://github.com/attardi/
wikiextractor), and the language-specific adapters were up-
dated through a text denoising task.
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Model | en | bn de fi hi id ko te sw zh AVG
Baselinegnecpee | 4425 072 1011 1448 211 1333 2.17 392 1607  27.63 | 10.06
Baseline e 4445 | 1453 2500 1995 2345 2037 1176 1479 1672  40.83 | 20.82
Baseline pruri 4184 | 623 191 1565 1512 1592  7.92 872 1365 3093 | 1481
Baselineagaprer | 44.16 | 1929 2344 2026  3141* 2273 1575 2221 2109 4460 | 2453
QuIST; 4348 | 1496 2575 2773 21.82 2306 1151 1044 2084 4240 | 22.06
QuISTs 4347 | 1747 2680  37.89 2244 2704 1590 2057  27.82  46.09 | 26.89
QuIST 4340 | 2023 2708 3836 2726 2832 2386 2998  3132* 47.82* | 3047
QuISTy5 43.08 | 1907 2684 3879 2756 2836  25.14* 30.74* 3059 4771 | 30.53*
GPT-3.5-turbocr, | 3398 | 2130 2776 3555 2484 3118 1856 1731 2790  41.67 | 2734
GPT-3.5-turboyy | 37.63 | 21.51*  29.49*  39.41* 2660  32.54* 2228 2313 3012 4447 | 29.95

Table 1: Automatic evaluation results for the nine target languages. This table shows the ROUGE-L performance
of the models (SP-ROUGE (Vu et al., 2022) scores for Chinese). The best scores among mT5-based models are in
bold and the highest scores among all models are marked with x. We also report BLEU4 and METEOR scores and

standard deviations in Appendix E.

showing a margin of 6.00 points when compared to
the most robust baseline, Baseline oqqpter. While
adapting Baseline 4qqpter 10 @ new language neces-
sitates training language-specific adapter modules,
our model can be readily employed in new lan-
guages without the need for additional training.
Therefore, QulST stands out for its parameter effi-
ciency and simplicity.

QulIST notably outperforms Baseline gy, across
all languages. Interestingly, both models have an
equal number of trainable parameters during the
fine-tuning stage. From this result, we confirm that
learning the interrogative structure of the target lan-
guage from a small number of question exemplars
is beneficial for generating high-quality questions.

Despite Baseline;,,; learning questions in the
target language via the denoising task, it dis-
played poor performance, even scoring lower than
Baselineg,,.. Upon reviewing the generated results
of Baseline .1, we frequently observed instances
where the questions were unrelated to the input
context or answer. These findings suggest that uti-
lizing a small number of question exemplars during
the training stage may lead to overfitting, thereby
resulting in a decline in model performance.

Comparison with LLMs We also compared
QulIST and GPT-3.5-turbo, which stands out as a
relatively cost-effective option among various com-
mercial LLMs and demonstrates satisfactory re-
sults using only a few examples. We evaluated the
performance of GPT-3.5-turbo through zero-shot
inference and 10-shot inference, using prompts that
included 10 English examples sampled from C-Q-
Aepn- The prompt templates we used are provided
in Appendix D.

According to the results, QuIST;5 shows higher

scores on average than the zero-shot and 10-shot
inference of GPT-3.5-turbo. In detail, our model ex-
hibits better performance in Hindi, Korean, Telugu,
Swahili, and Chinese, while performing slightly
behind in the remaining languages. Additionally,
we investigated the few-shot inference of GPT-3.5-
turbo that utilized our QTC model and question
exemplars. The results are reported in Appendix F.

1 G C A AM.

bn

Baseline pggpter 1.10 1.60 76.6 76.1 72.3

QuiIST 1.05 1.65 73.8 70.5 68.2

GPT-3.5-turboyy 1.69 1.82 64.7 647 64.7
de

Baseline gggpter 1.62 148 792 779 551

QuIST 1.88 194 974 96.2 96.2

GPT-3.5-turbo;p  1.96 2.00 100 98.8 95.0
fi

Baseline ggapter  0.82 1.08 100 100 73.8

QuIST 197 191 100 100 100

GPT-3.5-turbo;y  2.00 198 100 100 98.2
hi

Baseline pggpter 1.83 1.84 313 323 207

QuIST 1.73 150 28.6 265 257

GPT-3.5-turboyy 1.99 196 32.5 329 24.6
id

Baseline ggapter 1.78 1.86 89.2 77.0 47.3

QuIST 196 2.00 100 98.7 97.5

GPT-3.5-turbo;p  2.00 2.00 100 100 98.8
SW

Baseline ggapter  1.36 1.73 424 339 6.8

QuIST 194 182 825 763 55.0

GPT-3.5-turbo;y  2.00 1.95 98.8 98.8 96.3

Table 2: Human evaluation results.

Human Evaluation We conducted human eval-
uation in six languages where QulST and GPT-
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Figure 3: Percentage of questions that contain non-target languages. The lower part of the bar indicates the

proportion of occurrences of interrogative code-switching.

3.5-turboy( exhibit similar automatic evaluation
results, and we also evaluated the strongest base-
line, Baseline 44qpter- We collected a total of 240
questions generated by the three models per lan-
guage, then asked three native speakers to evaluate
the question quality based on five criteria: Inter-
rogative Sentence (I), Grammatical Correctness
(G), Clarity (C), Answerability (A), Answer-Match
(A.M.). The first two metrics were rated on a scale
of 0, 1, 2, while for the remaining categories, the
response was either yes or no. More information
regarding these criteria is described in Appendix
B.2.

Table 2 reports the majority responses from the
three raters. In German, Finnish, and Indonesian,
synthetic questions of QuIST and GPT-3.5-turbo;g
consistently achieved high scores across all crite-
ria. Specifically, both models successfully generate
questions appropriate for the given answers com-
pared to Baseline gqqpter- In Bengali and Hindi,
our model achieves lower overall scores compared
to the previously mentioned languages. However,
this performance degradation is also observed in
GPT-3.5-turboyo and Baseline 4qapter-

In Swahili, QulST lagged significantly be-
hind GPT-3.5-turbo;g in terms of “Answerability”
and “Answer-Match.” However, considering that
Baseline g gqpter generates questions of significantly
lower quality, despite outperforming all other base-
lines in automated evaluation, it is a meaningful
finding that our model can generate Swahili ques-
tions of acceptable quality without any specific
training in the target language.

5 Analysis

5.1 Interrogative Code-switching

We investigated the frequency of interrogative code-
switching occurrence in questions generated by dif-

ferent XLT-QG models®. As depicted in Figure
3, interrogative code-switching is observed in the
majority of questions generated by Baseline g, pec.
This phenomenon can be attributed to catastrophic
forgetting in target languages, as both the encoder
and decoder were fine-tuned using English data.
In Baselineg,,., where only the encoder was fine-
tuned, this issue is slightly alleviated; nevertheless,
more than half of the synthetic questions still ex-
hibit this code-switching problem.

Through the results of Baselinej,;;;, we con-
firm that interrogative code-switching is alleviated
in numerous languages due to the impact of the
question denoising task specific to the target lan-
guage. Both QulST and Baseline 4qqpter prove
comparable effectiveness in mitigating interroga-
tive code-switching, surpassing other baseline ap-
proaches. Specifically, our model demonstrates ef-
fective in alleviating interrogative code-switching
observed in low-resource languages such as Ben-
gali and Swabhili.

5.2 Data Augmentation for Question
Answering

QA Data Synthesis Method Average EM

English-only 49.86
Baseline gy, 58.62
Baseline g qqpter 56.84
Prompt-tuned PaLM 59.54
GPT-3.5-turboq 57.79
QuiST 59.65

Table 3: Performance of multilingual QA models.

We examined the potential usefulness of QuIST

in augmenting training data for multilingual QA

*We utilized cld3 (https://github.com/google/cld3)
to identify the languages.
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models’. We compared synthetic data from QuIST
and baseline models to the multilingual QA dataset
generated by Agrawal et al. (2023) using their
prompt-tuned PalLM-540B model (QAMELEON).
Table 3 presents the average EM scores across six
languages (bn, fi, id, ko, sw, te) for the multilingual
QA models. The training details can be seen in
Appendix A.

According to the results, QuIST shows the best
performance, outperforming GPT-3.5-turbo and
prompt-tuned PalLM-540B. Interestingly, in con-
trast to the findings from automatic evaluation and
interrogative code-switching analysis, Baseline g,
shows better efficacy in QA data augmentation
compared to Baseline gqqpter- In the previous ex-
periment, code-switching problems were observed
in more than 70% of the questions generated by
Baselineg,,.. However, unlike Baseline sqqpter
which relies solely on task-specific adapters to
learn the QG task, Baseline gy, utilized all parame-
ters in the encoder. Therefore, it is presumed that
Baseline g, is able to generate semantically higher
quality questions.

5.3 Impact of Different Question Exemplars

Characteristic of Question Exemplars

Model RL

Train (en) Inference (tgt)
QuIST Human & Classified Human & Classified 30.53
(1) Human & Classified Translator & Classified 27.65
2) Human & Typeless Human & Typeless 23.59
3) X Human & Classified 16.96
Baseline gy, X X 20.82

Table 4: Performance of XLT-QG models using ques-
tion exemplars in different ways.

We investigated the impact on performance
when utilizing question exemplars constructed
in ways different from our proposed approach.
We compared these approaches to Baselineg,,,
wherein only the encoder is fine-tuned with En-
glish data without using additional data in target
languages during training and inference. Table 4
shows the average ROUGE-L (RL) scores across
nine languages of each model.

(1) QuIST employs human-written question ex-
emplars of target languages during inference. Ad-
ditionally, we assess the model’s performance by
employing exemplars translated from English ques-
tions using the Google Translation API. According
to the result, exemplars obtained through machine

"We generated questions based on the context and answer
pairs within the dataset generated by QAMELEON.

translation are also beneficial for the generation
of target language questions when compared to
Baseline g, although they do not exhibit as much
effectiveness as when the human-written exemplars
are used.

(2) We conducted training and inference using
exemplars that cover all question types to ascertain
the effectiveness of utilizing type-specific question
exemplars. The exemplars consisted of two in-
stances of each of the eight question types, and the
QTC model was not employed in this setting. Ac-
cording to the results, there is a slight performance
improvement compared to Baseline g,,.; however,
the effect is marginal.

(3) We investigated whether input question ex-
emplars in the inference stage are beneficial even
without the training process for generating ques-
tions using question exemplars. The model was
trained to generate a question from the given con-
text and answer without utilizing the question ex-
emplars, similar to Baselineg;,., and only used the
exemplars in the inference stage. The results show
that the model exhibits lower performance com-
pared to Baseline gy, which suggests that QuIST
is trained to utilize question exemplars for QG.

5.4 Question Type Classification

Labeling Type ‘ en ‘ tgt (Avg)
Hard 62.92 | 52.86

Relaxed 96.38 91.13

Table 5: Performance of the QTC model.

To measure the zero-shot inference performance
of the QTC model for the target languages, we
initially annotated the ground-truth question types
of the target language QA data. We translated the
questions into English and conducted annotation as
explained in Section 2.1 (i.e., hard labeling). Table
5 displays the macro F1 scores of the QTC model,
measured based on ground-truth labels constructed
in two ways. Since most Wh-questions can be
paraphrased into questions starting with “what” and
“which,”® we also evaluate the QTC performance in
a setting where “What” and “Which” are accepted
as additional gold labels (i.e., relaxed labeling).
According to the results measured with the relaxed
labels, the model correctly classified more than

8For example, “How large is the Mupartifad village?” has
equivalent meaning to “What is the area of Mupartifad vil-
lage?”



90% of questions. Thus, it can be inferred that the
error propagation resulting from misclassification
in QTC is minor in the whole pipeline of QulST.

5.5 Case Study

Context: Malawi, Zambia na Zimbabwe wakati mwingine zinehesabiwa
kuwa sehemu ya Afrika ya Kusini (zamani zilikuwa pamoja kama Rhodesia
ya Kusini, Rhodesia ya Kaskazini na Unyasa katika Shirikisho la Afrika ya
Kati)

(Malawi, Zambia and Zimbabwe are sometimes considered part of South
Africa (they used to be together as Southern Rhodesia, Northern Rhodesia
and Nyasa in the Central African Federation))

Answer: Zambia

Along with Malawi, Zimbabwe and Zimbabwe, which
nations sometimes zinehesabiwa sehemu ya Africa ya
Kusini?

(Along with Malawi, Zimbabwe and Zimbabwe, which
nations are sometimes considered part of South Africa?)

Baselineg,cpec

Baselineg,, What nchi zinahesabiwa kuwa sehemu ya Afrika ya
Kusini?
(What countries are considered to be part of South Africa?)
Baseliney Malawi, Zimbabwe, na eneo gani lilikuwa "mji mzuri

zaidi nchini Uingereza" mbele ya Southampton mnamo
2007?

(Malawi, Zimbabwe, and which region was the "best city in
England" ahead of Southampton in 20077?)

Baselinegaper Malawi, Zimbabwe na Zimbabwe wakati mwingine
zinahesabiwa kuwa sehemu ya Afrika ya Kusini
(Malawi, Zimbabwe and Zimbabwe are sometimes

considered part of South Africa?)

Ni nchi gani inahesabiwa kuwa sehemu ya Afrika ya
Kusini pamoja na Malawi na Zimbabwe?

(Which country is considered part of South Africa along with
Malawi and Zimbabwe?)

GPT-3.5-turbo,,

QuIST
Kusini?
(Which country is considered part of South Africa?)

Ground-Truth Je, Rhodesia ya Kaskazini ina jina gani kwa sasa?

(What is the current name of Northern Rhodesia?)

Figure 4: Examples of synthetic questions in Swahili.

We analyzed the questions generated by the mod-
els we used in the experiments, particularly focus-
ing on Swabhili, where our model received lower
rating than GPT-3.5-turbo in human evaluation.
In Figure 4, we can see that the question gener-
ated by QulIST is insufficient to explain the given
answer, and these incorrect generations resulted
in the low “Answer-Match” score. We also note
that Baselineg,.p.. and Baselineg,. encounter
code-switching issues, and the question generated
by Baseline y,,;;; contains information that is not
present in the context. Furthermore, the question
generated by Baseline 44qp¢er Was assessed as not
being a question, as it is a descriptive sentence
ending with a question mark.

6 Related Work

Prior work on XLT for generation tasks has focused
on training models using source language datasets
while maintaining generation proficiency in the

target language. To achieve this, Mallinson et al.
(2020) and Chi et al. (2020) utilized parallel cor-
pora to enhance alignment between source and tar-
get languages, enabling a more effective transfer of
task-related knowledge. More recently, numerous
researchers have investigated methods that enable
models to learn language-specific and language-
agnostic knowledge separately (Wang et al., 2021;
Wu et al., 2022b; Deb et al., 2023; Pfeiffer et al.,
2023).

Unlike most generation tasks, which typically
produce declarative sentences, QG faces the chal-
lenge of generating interrogative sentences aimed
at seeking specific information. In contrast to our
approach, which abstains from training models
with data from the target language, the majority of
previous studies have relied on such data. Kumar
et al. (2019) employed a blend of English Question-
Answer (QA) data along with a restricted quantity
of target language data. On the other hand, Shak-
eri et al. (2021) trained its model on a denoising
task utilizing question corpus in the target language.
Agrawal et al. (2023) fine-tuned the PaLM model
with 540 billion parameters using five sets of tar-
get language QA data. Chi et al. (2020) further
utilized language modeling with parallel corpora
and restricted its vocabulary solely to tokens from
the target language during the question decoding
phase.

7 Conclusion

This paper introduces a straightforward and effi-
cient XLT-QG method that utilizes English QA
data and a small number of question exemplars in
the target languages. Our model is trained to gener-
ate questions by leveraging the interrogative struc-
tures learned from the question exemplars. With
this capability, it proficiently generates questions
in a new language. Experimental results demon-
strate that our method significantly outperforms
XLT-QG baselines and achieves comparable results
to GPT-3.5-turbo. Furthermore, we validate the
effectiveness of our method’s synthetic data for
training multilingual QA models. Our approach ex-
clusively utilizes English QA data during training,
enabling scalability and parameter efficiency as it
can seamlessly extend to new languages without
additional parameter updates. Moreover, compared
to LLMs, our method employs smaller-sized back-
bone models, making it easily deployable at a lower
cost and with minimal computing power.



8 Limitations

The applicability of our model is restricted to
languages on which the mPLMs had been pre-
trained. However, it’s noteworthy that the mT5
model utilized in our study was pre-trained on a
wide spectrum of languages, totaling 101 in num-
ber. In addition, the phenomenon of interroga-
tive code-switching is still present in some of the
questions generated by QulST. However, this can
be addressed through a simple rule-based filtering
method.
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A Implementation Details

We utilized a single NVIDIA Tesla A100-
80GB GPU for model training. The QTC
and QG models were initialized using
bert-base-multilingual-cased with 110M
parameters and google/mt5-large with 1.2B
parameters, sourced from HuggingFace®. Training
was conducted employing stochastic gradient
descent with the AdamW optimizer (Loshchilov
and Hutter, 2018) coupled with a linear learning
rate scheduler encompassing 1000 warm-up steps.
Batch sizes and learning rates were set as (8, 1e-5)
and (16, Se-5) for QTC and QG, respectively.
Training ceased upon optimization of the models
on the validation set.

Due to variations in the number of examples
across different question types, we employed data
upsampling based on the type with the highest num-
ber of examples for training the QTC model. Dur-
ing the inference stage, we determined the question
type with the highest predicted probability from
the QTC model and generated questions using the
beam search algorithm with a beam size of 4.

To train multilingual QA models in Section 5.2,
we adopted the methodologies used by Agrawal
et al. (2023). Each QA model underwent train-
ing using a combination of English data sourced
from the TyDiQA training set and synthetic data
for all languages, generated by each XLT-QG
model. Given the unavailability of the TyDiQA test
set, we evaluated the validation performance in-
stead. The backbone of the QA model consisted of
google/mt5-x1 with 3.7B parameters, fine-tuned
with a learning rate of 2e-4 and a batch size of
64. We selected the model checkpoint yielding the
highest EM score for each language and reported
the average scores obtained from utilizing three
different random seeds.

B Metric

B.1 Automatic Evaluation

In accordance with previous studies on QG, we use
BLEU4 (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), ROUGE-L (Lin, 2004), and
SP-ROUGE (Vu et al., 2022) as automatic evalu-
ation metrics. These metrics measure the n-gram
similarity between model predictions and refer-
ences. However, these evaluation metrics are not
suitable for Chinese (zh), where words are not sep-

https://huggingface.co
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arated by white space. Therefore, we additionally
used SP-ROUGE that using SentencePiece sub-
word tokenization (Kudo and Richardson, 2018).

B.2 Human Evaluation

We enlisted three native speakers for each language
via Upwork!? to evaluate the quality of our syn-
thetic questions. The questions were rated based
on five criteria:

* Interrogative Sentence evaluates whether the
question has an interrogative structure.
0: This is not a question.
1: This is a question, but it doesn’t have the
typical structure of an interrogative sentence.
2: This is a natural interrogative structure.

Grammatical Correctness evaluates the gram-
matical accuracy of the question.

0: Numerous grammatical errors make the
question unacceptable.

1: Some errors exist but do not hinder under-
standing of the question.

2: The question is grammatically correct.

Clarity determines whether the question is
clear and easily understandable given the con-
text. Answer yes or no.

* Answerability determines whether the ques-
tion can be answered using information from
the context. Answer yes or no.

* Answer-Match determines whether the input
answer could be a valid answer to the ques-
tion considering the content of the provided
context. Answer yes or no.

If a score of “0” is assigned to the Interrogative
Sentence category, evaluations for the remaining
categories did not conducted. Additionally, if a
score of 0 is rated in Grammatical Correctness, or
if “no” is selected for Clarity, Answerability, or
Answer-Match categories, subsequent evaluations
can not be carried out. Therefore, in this case, the
lowest scores were assigned for these criteria.

C Data Usage

We utilized SQuAD1.1 (Rajpurkar et al., 2016)
as the English QA data C-Q-A.,, for training our
models. As only training and validation sets are
publicly available, we partitioned the training set

https://www.upwork.com
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and employed a portion of the examples for vali-
dation purposes. The original validation set served
as our test set. The training, validation, and test
sets comprised 79,321, 8,283, and 1,190 examples,
respectively. Furthermore, the distribution of ex-
amples by question type is summarized in Table
6.

What  Who
33,777 7,951

How-num When Which Where How-way Why
5,657 4,780 3,931 2,953 1,600 1,054

Table 6: Number of examples by question type in train-
ing set of C-Q-A.,,.

# examples
Language Code Train  Test
Bengali bn 2,390 113
Chinese zh 5,137 1,190
German de 4,517 1,190
Finnish fi 6,855 782
Hindi hi 4918 1,190
Indonesian id 5,702 565
Korean ko 1,625 276
Telugu te 5,563 669
Swahili sw 2,755 499

Table 7: Language codes and the number of examples
in C-0-A; 4 dataset. In our method, only a small portion
of the training examples are used as question exemplars.

Table 7 presents the statistics of target language
QA data C-Q-A;y; utilized by our models during
inference. Note that training examples were solely
employed for sampling question exemplars Q.
Test examples in Chinese, German, and Hindi were
collected from the XQuAD (Artetxe et al., 2020)
test set, whereas training examples were sourced
from the MLQA (Lewis et al., 2020) validation set
because XQuAD does not contain a training dataset.
Training and test examples in other languages were
obtained from TyDiQA (Clark et al., 2020).

As indicated in the table, QulST, Baseline gy,cpec,
and Baselineg,,. are exclusively trained on En-
glish datasets. In contrast, Baselineys,;;; and
Baseline g gqpier make use of language-specific data
during training. Consequently, distinct language-
specific models were trained for these two base-
lines.

D Prompt Template for GPT-3.5-turbo

Prompt Type | BLEU-4 METEOR  ROUGE-L
Zero-shot | 15.01 53.28 40.32

1 | 17.58 (3.04) 52.99 (0.80) 40.20 (3.11)

3 | 18.28(1.82) 53.43(1.01) 41.13(1.71)

Few-shot | 5| 19,09 (0.85) 54.02(1.11) 41.43(1.27)

10 | 19.42 (1.02) 54.37 (0.69) 42.10 (1.01)

Table 9: Performance of GPT-3.5-turbo on the

SQuADI1.1 validation set. The results of few-shot in-
ference are presented in the form of mean (standard
deviation).

We evaluated the zero-shot and few-shot perfor-
mance of gpt-3.5-turbo-0125 model. We ex-
tracted sets with different numbers of examples: 1,
3,5, and 10, from C-Q-A., to employ for few-shot
inference. In addition, we used five versions of
each set, varying the random seed. Based on the
English validation set, we determined the optimal
number of examples (see Table 9), and used the set
with the median performance as the component in
the few-shot prompt. Subsequently, we conducted
zero-shot and 10-shot inference for various lan-
guages using the prompts described in Figure 5 and
6, respectively.

Additionally, we empirically observed that spec-
ifying the language of the questions to be gener-
ated is essential for effective few-shot inference.
Even when the input context and answer are in
non-English languages, the model frequently gen-
erated English questions when the language to be
generated was not specified.

Model Training Inference
Input Template
Basel%neE"CDec C-Q-Acn C-Q-Atgt Considering the given context, generate a question for the given
Baseline g, C-Q-Acn, C-Q-Agg answer in the same language as the given context:
: . _0)- _0)- Context: {context}
BaseyneMultz C Q Aens tht C Q Atgt Answer: {answer}
Baseline ggapter | C-Q-Aen, Sty C-0-Atgt Question:
QulIST C-0-Acp, Qe C-O-Aggt, Oige Model Prediction
{question}

Table 8: Dataset used by QulST and baselines.

Table 8 summarizes the datasets utilized by each
model during both the training and inference stages.
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Figure 5: The input and output template for zero-shot
inference of GPT-3.5-turbo.



Input Template

Considering the given context, generate a question for the given
answer in the same language as the given context:

[Example 1]

Context: ... In total, Afrikaans is the first language in South Africa
alone of about 6.8 million people and is estimated to be a second
language for at least 10 million people worldwide, compared to over
23 million and 5 million respectively, for Dutch.

Answer: 6.8 million

English question: About how many South Africans speak Afrikaans
as their primary language?

[Example 10]

Context: ... In ring-porous species, such as ash, black locust, catalpa,
chestnut, elm, hickory, mulberry, and oak, the larger vessels or pores
(as cross sections of vessels are called) are localised in the part of the
growth ring formed in spring, thus forming a region of more or less
open and porous tissue. The rest of the ring, produced in summer, is
made up of smaller vessels and a much greater proportion of wood
fibers. ...

Answer: ring-porous

English question: What species of hardwood are hickory and
mulberry trees?

[Example 11]

Context: {context}
Answer: {answer}
{language} question:

Model Prediction

{question}

Figure 6: The input and output template for 10-shot
inference of GPT-3.5-turbo.

E Automatic Evaluation Results

Table 10, 11, and 12 show detailed results for the
experiments in Section 4.

F  GPT-3.5-turbo few-shot Inference with
Question Type Classification

We additionally investigated whether the QTC
model and question exemplars are beneficial for
few-shot inference of GPT-3.5-turbo. In this ex-
periment, we utilized the exemplar set that exhib-
ited the best performance for each language in
our method. We supplemented these exemplars
with the statement “The followings are examples
of language questions:” placed before the prompt
in Figure 6. According to the results in Table 13,
leveraging the QTC model and question exemplars
leads to particularly improved performance in low-
resource languages such as Bengali, Telugu, and
Swahili.
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Model en bn de fi hi id ko te SW AVG

Baseline grepec 23.45 0.00 3.62 291 0.35 5.59 0.00 0.97 4.46 2.24
Baseline ;. 23.72 5.64 13.57 6.27 10.01 10.11 4.38 3.64 5.80 7.43
Baseline pzy4i 23.45 2.04 9.38 3.17 3.63 6.46 1.85 1.77 2.35 3.83
Baseline Adapter 21.79 6.96 11.34 5.57 12.28 9.10 441 6.41 6.38 7.81
QuIST; 22324006 | 5.18+£0.72 13.02+2.04 12.81 £0.88 8244218 2544150 341+1.05 12974+039 7.78+131| 824
QuIST; 22204+0.13 | 6.62+0.97 2050+ 1.54 1478 +0.79 1507 £2.87 557+421 938+4.27 1343+030 7.84+1.19 | 11.65
QuISTyo 22.17+0.14 | 788 £0.70 19.71 £2.57 1559+0.94 1829+ 1.39 1087 £1.97 13.19+3.84 1343 +0.26 9.44+0.75 | 13.55
QuIST;5 21.90+£0.10 | 720 £0.75 20.46 £2.52 1534+ 138 17.34+1.37 1126+1.07 13.83+3.05 1349+0.27 9.15+0.38 | 13.51
GPT-3.5-turboero 12.27 7.76 11.53 11.84 7.53 11.25 5.40 4.59 10.90 8.85
GPT-3.5-turboqg 15.50 7.71 12.40 15.45 7.30 12.84 7.82 5.30 11.55 10.05

Table 10: Automatic evaluation results using BLEU4.

Model en bn de fi hi id ko te SW AVG
Baseline gpepec 50.98 6.95 16.09 21.72 6.29 25.25 10.38 13.06 22.85 15.32
Baseline . 50.68 2221 31.23 27.92 27.73 35.10 17.78 23.05 25.79 26.35
Baseline yryiti 50.99 11.68 24.88 23.16 18.24 28.36 14.99 16.93 18.76 19.63
Baseline 4 dqpter 48.11 24.96 31.30 29.47 33.47 36.57 16.04 23.50 28.03 27.92
QuIST, 48.67 £0.12 | 21.69 £ 1.60 34.14 £2.87 3699 +£1.74 31.73+£3.01 1726 +1.01 22.09+1.69 30.57£0.74 25.15+3.01 | 27.45
QuIST; 48.56 +£0.14 | 23.66 +1.23 41.57 £ 1.60 40.85+1.07 40.19+3.25 19.94+424 2759 +399 31.39+£040 25.36+2.69|31.32
QuISTyo 48.51+£0.19 | 2522 +£1.28 41.78 £ 1.59 41.66+1.96 4389+ 131 2474+352 30.62+3.18 31.33+040 28.85+1.60 | 33.51
QulIST5 48.22+0.12 | 2449 £ 1.45 4238 £2.64 4238 £239 43.15+£1.80 27.65+247 32.65+1.77 3143 +£047 29.51+£0.79 | 3421
GPT-3.5-turboyo 47.61 27.08 35.50 41.48 28.84 45.81 23.19 24.16 41.10 33.40
GPT-3.5-turboyg 49.29 26.82 37.43 44.72 30.16 47.05 27.98 27.49 40.96 35.33

Table 11: Automatic evaluation results using METEOR.

Model en bn de fi hi id ko te sW zh AVG
Baseline gpepec 4425 0.72 10.11 14.48 2.11 13.33 2.17 3.92 16.07 27.63 10.06
Baseline gy, 4445 14.53 25.00 19.95 23.45 20.37 11.76 14.79 16.72 40.83 20.82
Baseline yzyuti 41.84 6.23 19.11 15.65 15.12 15.92 7.92 8.72 13.65 30.93 14.81
Baseline ggqpter 44.16 19.29 23.44 20.26 3141 22.73 15.75 2221 21.09 44.60 24.53
QuIST; 4348 £0.04 | 1496 £2.05 27.73+3.87 23.06+£2.14 20.84+244 11.51+£1.07 1044+322 2575+087 4240+2.32 21.82+3.50 | 22.06
QuIST; 4347+£0.07 | 1747 +£1.49 37894237 27.04+1.09 27824356 1590+5.63 20.57+7.14 26.80+0.61 46.09+224 22.44+3.08 | 26.89
QuISTyo 4340+0.11 | 2023 £ 1.14 38364192 2832+1.76 31324238 23.86+2.51 29984329 27.08+0.52 47.82+0.61 27.26+ 1.78 | 30.47
QuISTy5 43.08 £0.06 | 19.07 £ 1.47 38.79+3.36 28.36+2.63 30.59+ 139 25.14+1.69 30.74+2.02 26.84+049 47.71+0.41 27.56+0.63 | 30.53
GPT-3.5-turbocr 33.98 21.30 27.76 35.55 24.84 31.18 18.56 17.31 27.90 41.67 27.34
GPT-3.5-turboyg 37.63 21.51 29.49 39.41 26.60 32.54 22.28 23.13 30.12 44.47 29.95

Table 12: Automatic evaluation results using ROUGE-L.

Model | bn  de fi hi id ko te sw zh | AVG

GPT-3.5-turboqg 21.51 2949 3941 26.60 32.54 2228 23.13 30.12 44.47 | 29.95
w/ QTC & Target language Question Exemplars | 21.97 28.08 38.99 26.01 34.63 20.15 2646 3243 43.16 | 30.21

Table 13: Performance of GPT-3.5-turbo;o employing the QTC model and question exemplars in target languages.
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