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Abstract

Learning neural program embeddings is key to utilizing deep
neural networks in program languages research — precise
and efficient program representations enable the application
of deep models to a wide range of program analysis tasks.
Existing approaches predominately learn to embed programs
from their source code, and, as a result, they do not capture
deep, precise program semantics. On the other hand, mod-
els learned from runtime information critically depend on
the quality of program executions, thus leading to trained
models with highly variant quality. This paper tackles these
inherent weaknesses of prior approaches by introducing
a new deep neural network, LiGer, which learns program
representations from a mixture of symbolic and concrete exe-
cution traces.We have evaluated LiGer on two tasks: method
name prediction and semantics classification. Results show
that LiGer is significantly more accurate than the state-of-
the-art static model code2seq in predicting method names,
and requires on average around 10x fewer executions cover-
ing nearly 4x fewer paths than the state-of-the-art dynamic
model DYPRO in both tasks. LiGer offers a new, interesting
design point in the space of neural program embeddings and
opens up this new direction for exploration.

CCS Concepts: • Software and its engineering→ Gen-

eral programming languages; •Computingmethodolo-

gies→ Learning latent representations.

Keywords: Semantic Program Embedding, Attention Net-
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1 Introduction

Learning representations has been a major focus in deep
learning research for the past several years. Mikolov et al.
pioneered the field with their seminal work on learning
word embeddings [18, 19]. The idea is to construct a vector
space for a corpus of text such that words found in simi-
lar contexts in the corpus are located in close proximity to
one another in the vector space. Word embeddings, along
with other representation learning (e.g. doc2vec [17]), be-
come vital in solving many downstream Natural Language
Processing (NLP) tasks, such as language modeling [7] and
sentiment classification [12].
Similar to word embeddings, the goal of this paper is to

learn program embeddings, vector representations of pro-
gram semantics. By learning program embeddings, the power
of deep neural networks (DNNs) can be utilized to tackle
many program analysis tasks. For example, Alon et al. [3]
present a DNN to predict the name of amethod given its body.
Wang et al. [28] propose a deep model to guide the repair of
student programs inMassive Open Online Courses (MOOCs).
Despite such notable advances, an important challenge re-
mains: How to tackle the precision and efficiency issues
in learning program embeddings? As illustrated by Wang
and Christodorescu [27], due to the inherent gap between
program syntax and semantics, models learned from source
code (i.e., the static models) can be imprecise at capturing
semantic properties. Consider, for example, the programs in
Figure 1. State-of-the-art static models can neither recognize
the equivalent semantics between programs in Figures 1a
and 1c, nor the different semantics between programs in Fig-
ures 1a and 1b. The reason for this is quite obvious — static
models base their predictions on the surface-level program
syntax. Specifically, programs 1a and 1b are syntactically
much more similar than programs 1a and 1c despite that
programs 1a and 1c implement the same sorting strategy,
namely Bubble Sort.
In parallel, a separate class of models has been proposed

that embed programs from their concrete execution traces
(i.e., the dynamic models). Compared to source code, program
executions capture accurate, deep program semantics, thus
offering benefits beyond static models that reason over syn-
tactic representations. Figure 2 shows the executions of the
three programs with an input array A = [8,5,1,4,3] ac-
cording to the state-based encoding proposed by Wang et al.
[28]. Naturally, the semantic relationship among the three
programs becomes much clearer. Despite their advantages,
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static int SortI(int[] A)
{

int left = 0;
int right = A.Length - 1;

for(int i=right;i>left;i--) {
for(int j=left;j<i;j++) {

if (A[j] > A[j + 1]) {
int tmp = A[j];
A[j] = A[j + 1];
A[j + 1] = tmp;

}}}

return A;
}

(a) Bubble Sort

static int SortII(int[] A)
{

int left = 0;
int right = A.Length;

for(int i=left;i<right;i++){
for(int j=i-1;j>=left;j--){

if (A[j] > A[j + 1]){
int tmp = A[j];
A[j] = A[j + 1];
A[j + 1] = tmp;

}}}

return A;
}

(b) Insertion Sort

static int SortIII(int[] A)
{

int swappbit = 1;
while (swappbit != 0) {

swappbit = 0;
for (int i=0;i<A.Length -1;i++)
{

if (A[i + 1] > A[i]) {
int tmp = A[i];
A[i] = A[i + 1];
A[i + 1] = tmp;
swappbit = 1;

}}}
return A;

}

(c) Bubble Sort

Figure 1. Example programs that implement a sorting routine. Code highlighted within the shadow boxes depicts the syntactic
differences between programs 1a and 1b.

{A:[8, 5, 1, 4, 3]; left:0; right:⊥}
{A:[8, 5, 1, 4, 3]; left:0; right:4}
{A:[5, 5, 1, 4, 3]; left:0; right:4}
{A:[5, 8, 1, 4, 3]; left:0; right:4}
{A:[5, 1, 1, 4, 3]; left:0; right:4}
{A:[5, 1, 8, 4, 3]; left:0; right:4}
{A:[5, 1, 4, 4, 3]; left:0; right:4}
{A:[5, 1, 4, 8, 3]; left:0; right:4}
{A:[5, 1, 4, 3, 3]; left:0; right:4}
{A:[5, 1, 4, 3, 8]; left:0; right:4}
{A:[1, 1, 4, 3, 8]; left:0; right:4}
{A:[1, 5, 4, 3, 8]; left:0; right:4}
{A:[1, 4, 4, 3, 8]; left:0; right:4}
{A:[1, 4, 5, 3, 8]; left:0; right:4}
{A:[1, 4, 3, 3, 8]; left:0; right:4}
{A:[1, 4, 3, 5, 8]; left:0; right:4}
{A:[1, 3, 3, 5, 8]; left:0; right:4}
{A:[1, 3, 4, 5, 8]; left:0; right:4}

(a)

{A:[8, 5, 1, 4, 3]; left:0; right:⊥}
{A:[8, 5, 1, 4, 3]; left:0; right:5}
{A:[5, 5, 1, 4, 3]; left:0; right:5}
{A:[5, 8, 1, 4, 3]; left:0; right:5}
{A:[5, 1, 1, 4, 3]; left:0; right:5}
{A:[5, 1, 8, 4, 3]; left:0; right:5}
{A:[1, 1, 8, 4, 3]; left:0; right:5}
{A:[1, 5, 8, 4, 3]; left:0; right:5}
{A:[1, 5, 4, 4, 3]; left:0; right:5}
{A:[1, 5, 4, 8, 3]; left:0; right:5}
{A:[1, 4, 4, 8, 3]; left:0; right:5}
{A:[1, 4, 5, 8, 3]; left:0; right:5}
{A:[1, 4, 5, 3, 3]; left:0; right:5}
{A:[1, 4, 5, 3, 8]; left:0; right:5}
{A:[1, 4, 3, 3, 8]; left:0; right:5}
{A:[1, 4, 3, 5, 8]; left:0; right:5}
{A:[1, 3, 3, 5, 8]; left:0; right:5}
{A:[1, 3, 4, 5, 8]; left:0; right:5}

(b)

{A:[8, 5, 1, 4, 3]; swapbit:1}
{A:[8, 5, 1, 4, 3]; swapbit:0}
{A:[5, 5, 1, 4, 3]; swapbit:1}
{A:[5, 8, 1, 4, 3]; swapbit:1}
{A:[5, 1, 1, 4, 3]; swapbit:1}
{A:[5, 1, 8, 4, 3]; swapbit:1}
{A:[1, 1, 8, 4, 3]; swapbit:1}
{A:[1, 5, 8, 4, 3]; swapbit:1}
{A:[1, 5, 4, 4, 3]; swapbit:1}
{A:[1, 5, 4, 8, 3]; swapbit:1}
{A:[1, 4, 4, 8, 3]; swapbit:1}
{A:[1, 4, 5, 8, 3]; swapbit:1}
{A:[1, 4, 5, 3, 3]; swapbit:1}
{A:[1, 4, 5, 3, 8]; swapbit:1}
{A:[1, 4, 3, 3, 8]; swapbit:1}
{A:[1, 4, 3, 5, 8]; swapbit:1}
{A:[1, 3, 3, 5, 8]; swapbit:1}
{A:[1, 3, 4, 5, 8]; swapbit:1}

(c)

Figure 2. Encoding the executions of the programs in Figure 1 with the input array A = [8,5,1,4,3]. At each step, the
variable in italics is updated. Steps that are in red illustrate the semantic differences between bubble sort (program 1a) and
insertion sort (program 1b) concerning only the manipulation of the input array A. Note that we have omitted all loop induction
variables, variable tmp in both programs 1a and 1b as well as some steps that update the variable swapbit in program 1c to
simply our presentation.

the performance of dynamic models heavily depends on the
quality of program executions. In particular, dynamic models,
similar to dynamic program analysis, can suffer from insuffi-
cient code coverage. Even for each covered path, dynamic
models may need a large number of execution instances to
generalize, resulting in a lengthy, expensive training process.
To tackle those aforementioned issues of both strands

of prior work, we introduce a novel, blended approach for

learning precise and efficient representations of program
semantics. Our insight is to blend the respective strengths of
static and dynamic models to mitigate their respective weak-
nesses. Different from dynamic models that consider only
program states created along an execution path, our blended
model incorporates the additional symbolic representation
of each statement (i.e. symbolic trace) whose execution leads
to a corresponding program state.
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The benefits of blending these feature dimensions are
twofold. First, learning from symbolic program encodings is
shown difficult for DNNs. Concrete program states, which
give live illustrations of program behavior, provide explana-
tions to DNNs about each symbolic statement’s semantics.
As a result, models trained on the combined features capture
deeper semantic properties than symbolic traces alone (cf.
Section 6.3.2). Second, a symbolic trace typically generalizes
a large number of concrete executions. Therefore, symbolic
traces present high-level, general descriptions of program
meaning to DNNs. It is for this very reason that symbolic
traces stand out as the major feature dimension from which
models generalize. In the presence of the symbolic feature
dimension, DNNs deemphasize the role of dynamic program
features, leading to reduced demand on the number of con-
crete executions. As another benefit of our blended model,
we observe that DNNs trained on both feature dimensions
are also more resilient to the varying diversity on program
executions. Indeed, when the path coverage on the targeted
program is systematically reduced, our blended network
largely maintains its accuracy, and thus has improved data
reliance (cf. Section 6.1.2).
Dynamic vs. Static Embeddings. LiGer is grounded as a
dynamic approach, and thus shares the well-known trade-
offs between dynamic and static approaches in programming
languages, such as dynamic and static program analyses —
while static approaches suffer from imprecision, dynamic
approaches are weak in generality and coverage since they
depend on executions. Thus, we do not claim that dynamic
approaches are always superior to static approaches; rather,
they both are valuable, complementary design choices. We
design LiGer centered on being dynamic to learn deep, pre-
cise semantic program embeddings for settings where qual-
ity executions exist. The primary goal of this work is to
reduce dynamic models’ reliance on program executions. In-
deed, by incorporating symbolic features into a pure dynamic
model, we show that LiGer offers strong advantages over
both purely static and dynamic models where it is applicable.

We have realized our approach in a new DNN, LiGer, and
extensively evaluated it. To demonstrate LiGer’s generality,
we pick two downstream tasks: method name prediction and
semantics classification. In method name prediction task, we
measure LiGer’s performance on two Java datasets, Java-
med and Java-large, proposed in prior work [3]. We use
Randoop [22], a feedback-directed, unit test generator for
Java programs, to produce meaningful executions for LiGer
to learn from. Our results show that LiGer is highly accurate.
In particular, it significantly outperforms code2seq [3], the
state-of-the-art static model. In addition, we find in both
tasks LiGer yields comparable performance to DYPRO [26],
the state-of-the-art dynamic model, when consuming on
average around 10x fewer executions covering nearly 4x
fewer code paths.

Contributions.We make the following main contributions:
• We propose a novel, blended approach that combines
static and dynamic program features for learning pre-
cise, efficient representations of program semantics.
• We realize our approach in LiGer and evaluate it on
the tasks of method name prediction and semantics
classification. Results show that LiGer both signifi-
cantly outperforms the state-of-the-art static model,
code2seq, and requires far fewer program executions
for both training and testing than the state-of-the-art
dynamic model, DYPRO. Thus, LiGer offers an inter-
esting, valuable design point in the space of program
embeddings.
• We present the details of our extensive evaluation of
LiGer, including an ablation study that analyzes the
contributions of LiGer’s several crucial components
to its overall performance.

The remainder of this paper is organized as follows. Sec-
tion 2 formalizes the notion of execution traces and several
pertinent concepts. Section 3 provides our insight that moti-
vates the design of LiGer. Section 4 describes the background
of this work. Section 5 presents LiGer’s architecture. Sec-
tion 6 details our evaluation results. We survey related work
in Section 7 and conclude in Section 8 with a discussion of
future work.

2 Formalization

In general, given a program 𝑃 and an input 𝐼 , an execution
trace is obtained by executing 𝑃 on 𝐼 . Its concept and nota-
tions are standard, which we formalize more precisely below.

Definition 2.1. (Execution Trace) An execution trace, de-
noted by 𝜋 , is a sequence in the form of 𝑠0 → (𝑒𝑖 → 𝑠𝑖 )∗,
where 𝑒𝑖 denotes a statement encountered as 𝑃 executes
on an input 𝐼 ; 𝑠𝑖 denotes a program state, which is a set of
variable/memory and value pairs immediately after the exe-
cution of statement 𝑒𝑖 ; 𝑠0 is the initial program state; and ∗
denotes the Kleene star.

As an example, Figure 3 presents a graphical illustration
of an execution trace of the program in Figure 4 with input
A = "abc" and B = "bca".
Definition 2.2. (Symbolic Trace) Given an execution trace,
𝜋 , a symbolic trace, 𝜎 , is the sequence of statements visited
in 𝜋 in the form of (𝑒𝑖 → 𝑒𝑖+1)∗.

Similarly, Figure 3 also gives an example of symbolic trace,
which is a projection of the execution tracew.r.t. the program
statements.

Definition 2.3. (State Trace) Given an execution trace, 𝜋 , a
state trace, 𝜖 , is the sequence of program states created in 𝜋

in the form of (𝑠𝑖 → 𝑠𝑖+1)∗.
Again, Figure 3 shows an example of state trace, which is

a projection of the execution trace w.r.t. the program states.
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Figure 3. Execution traces, symbolic traces and concrete
traces of the program in Figure 4.

public bool IsStringRotation(string A, string B)
{

if (A.Length != B.Length)
return false;

for (int i = 1; i < A.Length; i++)
{

string tail = A.Substring(i,A.Length -i);
string wrap = A.Substring(0, i);

if (tail + wrap == B)
return true;

}

return false;
}

Figure 4. An example program.

3 Motivation and Insight

Learning program embeddings from execution traces has
been explored in the literature. The prior work can be divided
into two categories: static and dynamic. The former refers
to learning program embeddings exclusively on symbolic
traces. As an example, Henkel et al. [14] train a model from
symbolic traces for a code analogy task. Although learning
from symbolic traces captures, to a certain degree, program
properties more at the semantic level than purely the syntac-
tic source code, it suffers from the same fundamental issue
of all static models. That is such approaches leave the bur-
den on the deep models to reason about program semantics
through a syntactic representation, a task that is proven to
be challenging even for state-of-the-art DNNs. To give a
simple example, a capable neural network needs to recog-
nize the identical semantics i+=i and i*=2 denote because
such variations are ubiquitous in real-world code. Note that
Henkel et al.’s approach relies on user-defined abstraction
templates, which unfortunately do not address the problem’s
root cause.

In contrast to the symbolic trace-based approaches, an-
other line of work only considers concrete state traces for
learning program representations. In particular, Wang et al.
[28] propose a model learned from concrete state traces to
predict the type of errors students make in their program-
ming assignments. The intuition behind the approach is to
capture the semantics of a program through the states that
are created in an execution. The advantage of their approach
is the canonicalization of syntactic variations as programs
of equivalent semantics will always create identical program
states regardless of their syntactic differences (e.g., the ear-
lier example involving i+=i and i*=2). Despite this strength,
models that embed programs from concrete state traces have
their own weaknesses. In principle, a symbolic trace can
be instantiated to a large or arbitrary number of concrete
states traces. Therefore, symbolic traces lay the foundation
of feature representations. By completely disregarding the
program syntax, deep models lose the high-level overview
of the execution trace, therefore demanding a large number
of concrete traces to compensate. Assuming that a model
requires𝑀 concrete traces to estimate the semantics of one
symbolic trace, learning a program yielding 𝑁 total sym-
bolic traces amounts to𝑀 × 𝑁 concrete traces. This drastic
increase in the amount of training data leads to lengthy and
inefficient training.

The deficiencies of the static and dynamic models together
motivate the design of LiGer. By simply exposing the entire
execution traces (i.e. both symbolic and concrete state traces)
as structured inputs, LiGer combines the strengths of both
types of models and outperforms ones learned from either
symbolic or concrete traces alone. On one hand, concrete
traces help LiGer deal with the challenge of learning from
symbolic program representations. Instead of generalizing
from high-level program symbols, LiGer is also provided
with low-level concrete explanations. Consider the earlier
example with i+=i and i*=2. Although the two statements
are represented differently in terms of symbolic traces, their
identical program states force LiGer to inject the notion
of equivalent semantics between the two statements. Ulti-
mately, this allows LiGer’s to reduce the difficulty of reason-
ing about program semantics from syntax.
Additionally, since the symbolic representation of an ex-

ecution trace is still present in the feature representation,
LiGer has a general, symbolic view of the execution trace,
therefore does not need a large number of concrete traces to
generalize. Thus, it needs less training data.

Through our extensive experiments, we observe that LiGer
possesses an interesting benefit. As we systematically lower
the path coverage of programs in both training and test sets,
LiGer is able to maintain its accuracy. This property helps
LiGer address the intrinsic limitations of the dynamic mod-
els. That is, even when programs are hard to cover, LiGer can
still reason about their semantics from the limited available
traces, thus further reducing its reliance on training data.
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4 Preliminaries

This section reviews the necessary background, in partic-
ular, recurrent neural networks [15], TreeLSTM [24], and
attention neural networks, the building blocks of LiGer.

4.1 Recurrent Neural Network

A recurrent neural network (RNN) [15] is a class of artificial
neural networks that are distinguished from feedforward
networks by their feedback loops. This allows RNNs to ingest
their own outputs as inputs. It is often said that RNNs have
memory, enabling them to process sequences of inputs.
Here we briefly describe the computation model of a

vanilla RNN. Given an input sequence, embedded into a
sequence of vectors 𝑥 = (𝑥1, · · ·, 𝑥𝑇𝑥 ), an RNN with 𝑁 inputs,
a single hidden layer with 𝑀 hidden units, and 𝑄 output
units. We define the RNN’s computation as follows:

ℎ𝑡 = 𝑓 (𝑊 ∗ 𝑥𝑡 +𝑉 ∗ ℎ𝑡−1) (1)
𝑜𝑡 = softmax (𝑍 ∗ ℎ𝑡 )

where 𝑥𝑡 ∈ R𝑁 , ℎ𝑡 ∈ R𝑀 , 𝑜𝑡 ∈ R𝑄 is the RNN’s input,
hidden state and output at time 𝑡 , 𝑓 is a non-linear function
(e.g. tanh or sigmoid),𝑊 ∈ R𝑀∗𝑁 denotes the weight matrix
for connections from input layer to hidden layer, 𝑉 ∈ R𝑀∗𝑀
is the weight matrix for the recursive connections (i.e. from
hidden state to itself) and 𝑍 ∈ R𝑄∗𝑀 is the weight matrix
from hidden to the output layer.

4.2 TreeLSTM

TreeLSTM [24], a variant of LSTM, was proposed to work on
tree topology. The following equation sums up how TreeL-
STM works at a high-level.

ℎ 𝑗 = 𝑜 𝑗 ⊙ tanh(𝑖 𝑗 ⊙ 𝑐 𝑗 +
∑
𝑘∈𝐶 𝑗

𝑓𝑗𝑘 ⊙ 𝑐𝑘 )

where 𝐶 𝑗 is the set of children of node 𝑗 .
Like a standard LSTM,ℎ 𝑗 , 𝑜 𝑗 and 𝑖 𝑗 denote the hidden state,

output gate and input gate of node 𝑗 . 𝑐 𝑗 is new candidate
value proposed for updating the cell state of node 𝑗 . A sig-
nificant adaption TreeLSTM introduced is the multiplication
of forget gates, which allow itself to selectively incorporate
information from each child to the parent node. In particular,
the output of each forget gate of node 𝑗 is multiplied with
the cell state of the corresponding child (𝑓𝑗𝑘 ⊙ 𝑐𝑘 ), which
then are combined into a single output (

∑
𝑘∈𝐶 𝑗
(·)). Another

difference TreeLSTM makes is in how 𝑖 𝑗 , 𝑜 𝑗 , 𝑐 𝑗 get updated.
In a traditional LSTM, the update stems from the hidden
state, ℎ 𝑗 , in the previous step whereas TreeLSTM uses the
sum of the hidden states of its children.

4.3 Neural Attention Network

Before we describe attention neural networks, we give a brief
overview of the underlying framework — Encoder-Decoder —
proposed by Cho et al. [8] and Devlin et al. [11].

The encoder-decoder [8, 11] neural architecture was first
introduced in the field of machine translation. An encoder
neural network reads and encodes a source sentence into a
vector, based on which a decoder outputs a translation. From
a probabilistic point of view, the goal of translation is to find
the target sentence 𝐿𝑡 that maximizes the conditional proba-
bility of 𝐿𝑡 given source sentence 𝐿𝑠 (i.e. argmax𝐿𝑡𝑃 (𝐿𝑡 |𝐿𝑠 )).

Using the terminologies defined in Section 4.1, we explain
the computation model of an encoder-decoder. Given an
input sequence 𝑥 , the encoder performs the computation
defined in Equation 1 and spits out its final hidden state 𝑐
(i.e. 𝑐 = ℎ𝑇𝑥 ). The decoder is responsible for predicting each
word 𝑦𝑡 given the vector 𝑐 and all the previously predicted
words (𝑦1, · · ·, 𝑦𝑡−1). In other words, the decoder outputs the
probability distribution of 𝑦 = (𝑦1, · · ·, 𝑦𝑇𝑦 ) by decomposing
the joint probability into the ordered conditionals:

𝑃 (𝑦) =
𝑇𝑦∏
𝑡=1

𝑃 (𝑦𝑡 | (𝑦1, · · ·, 𝑦𝑡−1), 𝑐)

With an RNN, each ordered conditional is defined as:

𝑃 (𝑦𝑡 | (𝑦1, · · ·, 𝑦𝑡−1), 𝑐) = 𝑔(𝑦𝑡−1, 𝑑𝑡 , 𝑐)

where 𝑑𝑡 is the hidden state of the decoder RNN at time 𝑡 .
An issue of this encoder–decoder architecture is that the

encoder has to compress all the information from a source
sentence into a vector to feed the decoder. This is especially
problematic when the encoder has to deal with long sen-
tences. To address this issue, Bahdanau et al. [5] introduced
an attention mechanism on top of the standard encoder-
decoder framework that learns to align and translate simul-
taneously. The proposed solution is to enable the decoder
network to search the most relevant information from the
source sentence to concentrate when decoding each target
word. In particular, instead of fixing each conditional proba-
bility on the vector 𝑐 in Equation 2, a distinct context vector
𝑐𝑡 for each 𝑦𝑡 is used:

𝑃 (𝑦𝑡 | (𝑦1, · · ·, 𝑦𝑡−1), 𝑥) = 𝑔(𝑦𝑡−1, 𝑑𝑡 , 𝑐𝑡 )

where 𝑔 is a nonlinear, potentially multi-layered function
that outputs the probability of 𝑦𝑡 , and 𝑑𝑡 is the hidden state
of the RNN.
To compute the context vector 𝑐𝑡 , a bi-directional RNN

is adopted which reads the input sequence 𝑥 from both di-
rections (i.e., from 𝑥1 to 𝑥𝑇𝑥 and vice versa), and produces a
sequence of forward hidden states (

−→
ℎ1, · · ·,

−−→
ℎ𝑇𝑥 ) and backward

hidden states (
←−
ℎ1, · · ·,

←−−
ℎ𝑇𝑥 ). We obtain an annotation ℎ𝑑 for

each word 𝑥𝑑 by concatenating the forward hidden state
−→
ℎ𝑑 and the backward one

←−
ℎ𝑑 . Now 𝑐𝑡 can be computed as a

weighted sum of these annotations ℎ𝑑 :

𝑐𝑡 =

𝑇𝑥∑
𝑑=1

𝛼tdℎ𝑑 (2)
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The attention weight 𝛼td of each annotation ℎ𝑑 is computed
by

𝛼td =
exp(𝜇td)∑𝑇𝑥
𝑘=1 exp(𝜇tk)

where 𝜇td = 𝑎(𝑑𝑡−1, ℎ𝑑 ) is the attention score which reflects
the importance of the annotation ℎ𝑑 w.r.t. the previous hid-
den state 𝑑𝑡−1 in deciding the next state 𝑑𝑡 and generating 𝑦𝑡 .
The parameter 𝑎 stands for a feed-forward neural network
that is jointly trained with the system’s other components.

5 Model

This section presents the technical details of LiGer’s archi-
tecture w.r.t. the problem of predicting method names.

5.1 LiGer’s Architecture

LiGer’s architecture is depicted in Figure 5. At a high level,
LiGer employs a typical encoder-decoder architecture, in
which the encoder learns the semantic embedding of amethod
while the decoder generates the method name as a sequence
of words.

5.1.1 Encoder. We split LiGer’s encoder architecture into
four layers and discuss each layer in detail.
Terminology. To turn a program 𝑃 in its source code form
to the format LiGer requires, we symbolically execute 𝑃 to
obtain 𝑈 distinct paths, where each path 𝜎𝑖 is associated
with a condition 𝜙𝑖 . By solving 𝜙𝑖 , we obtain concrete traces
𝜖𝑖_1, · · ·, 𝜖𝑖_𝑁𝜖

. Each program state in a concrete trace, 𝜖𝑖_𝑖′ , is
a tuple (𝑣1, · · ·, 𝑣𝑁𝑣

), where 𝑣𝑖 ∈ D𝑑 is the value of a variable
in 𝑃 . D𝑑 refers to the set of all values any variable has ever
been assigned in any concrete trace of any program in our
dataset. Note that the order of variables are fixed across all
program states in any concrete trace of 𝑃 . We also define
D𝑠 to include all tokens extracted from all programs in our
dataset together with all AST (non-leaf) node types of the
language 𝑃 is written in.
Object Types. Unlike Wang et al. [28] which only considers
primitive data types, LiGer is capable of handling object
variables. Specifically, it treats the value of an object, 𝑣𝑖 , as
an array attr (𝑣𝑖 ). In other words, LiGer flattens 𝑣𝑖 into an
array of primitive data types, attr (𝑣𝑖 ) [0], · · ·, attr (𝑣𝑖 ) [−1],
where attr (𝑣𝑖 ) [0]/attr (𝑣𝑖 ) [−1] denotes the first/last value in
the flattened array.
Vocabulary Embedding Layer. In this layer, each item in
D𝑠 andD𝑑 will be assigned a vector. Consider the 𝑗-th state-
ment in 𝜎𝑖 , the state it creates in 𝜖𝑖_𝑖′ will be encoded as
(𝑥𝑖_𝑖′_𝑗_attr (𝑣0) [0], · · ·, 𝑥𝑖_𝑖′_𝑗_attr (𝑣0) [−1]) · · · (𝑥𝑖_𝑖′_𝑗_attr (𝑣𝑁𝑣 ) [0], · ·
·, 𝑥𝑖_𝑖′_𝑗_attr (𝑣𝑁𝑣 ) [−1]).
Fusion Layer. This layer embeds each statement in 𝜎𝑖 and
each state in 𝜖𝑖_𝑖′ before fusing the two feature dimensions,
which forms the core of our blended approach. To facilitate
the later presentation, we introduce and formalize the notion
of blended traces.

Definition 5.1. (Blended Trace) Given a symbolic trace 𝜎
and multiple concrete traces, 𝜖1, · · ·, 𝜖𝑁𝜖

that traverse the
same program path as 𝜎 , a blended trace, 𝜆, is a sequence of
the form (𝜃𝑖 → 𝜃𝑖+1)∗, where 𝜃𝑖 is an ordered pair <𝑒𝑖 , 𝑆𝑖>,
where 𝑒𝑖 is a statement in 𝜎 and 𝑆𝑖 = {𝑠𝑖_1, · · ·, 𝑠𝑖_𝑁𝜖

} is the
set of program states 𝑒𝑖 created in 𝜖1, · · ·, 𝜖𝑁𝜖

.

For simplicity, we assume that a blended trace 𝜆𝑖 is com-
posed of 𝜎𝑖 and two concrete traces, 𝜖𝑖_1 and 𝜖𝑖_2. Given the
𝑗-th ordered pair in 𝜆𝑖 , LiGer employs a TreeLSTM to embed
a statement via its abstract syntax tree. At each step, given
the vector representation of the tokens (for terminal nodes)
and AST node types (for non-terminal nodes) produced by
the vocabulary embedding layer, we recursively updating
the hidden states of parent nodes based on those of the child
nodes. Finally, we extract the hidden state of the root to be
the embedding vector of the statement denoted by ℎ𝑖_𝑗_𝑠𝑡𝑎 .
As for embedding the program states in the 𝑗-th ordered

pair, first, we compute the vector representation of each
variable depending on its type. If the variable is an object
type, we will use a RNN to embed its value:

ℎ′𝑖_𝑖′_𝑗_𝑣𝐼𝑣 = 𝑓1 (𝑥𝑖_𝑖′_𝑗_attr (𝑣𝐼𝑣 ) [−1], ℎ
′
𝑖_𝑖′_𝑗_attr (𝑣𝐼𝑣 ) [−1]

) (3)

If the variable is a primitive type, we directly use the em-
bedding of its value produced by the vocabulary embedding
layer s.t. ℎ′

𝑖_𝑖′_𝑗_𝑣𝐼𝑣
= 𝑥𝑖_𝑖′_𝑗_𝑣𝐼𝑣 . Next, we use the second RNN

to embed a program state with each variable embedding
computed from Equation 3:

ℎ𝑖_1_𝑗 = 𝑓2 (ℎ′𝑖_1_𝑗_𝑣𝑁𝑣
, ℎ𝑖_1_𝑗_𝑣𝑁𝑣−1 )

ℎ𝑖_2_𝑗 = 𝑓2 (ℎ′𝑖_2_𝑗_𝑣𝑁𝑣
, ℎ𝑖_2_𝑗_𝑣𝑁𝑣−1 )

Now we present the idea key to LiGer’s success. To com-
bine the strengths of both approaches, we fuse the vector
representations across the feature dimensions to compute
a single embedding of each ordered pair in a blended trace.
Specifically, we adopt the attention mechanism to allocate a
weight for each feature vector ℎ𝑖_𝑗_𝑠𝑡𝑎 , ℎ𝑖_1_𝑗 and ℎ𝑖_2_𝑗 :

𝛼𝑖_𝑗_𝑠𝑡𝑎 =
exp(𝜇𝑖_𝑗_𝑠𝑡𝑎)

exp(𝜇𝑖_𝑗_𝑠𝑡𝑎) + exp(𝜇𝑖_1_𝑗 ) + exp(𝜇𝑖_2_𝑗 )

𝛼𝑖_1_𝑗 =
exp(𝜇𝑖_1_𝑗 )

exp(𝜇𝑖_𝑗_𝑠𝑡𝑎) + exp(𝜇𝑖_1_𝑗 ) + exp(𝜇𝑖_2_𝑗 )

𝛼𝑖_2_𝑗 =
exp(𝜇𝑖_2_𝑗 )

exp(𝜇𝑖_𝑗_𝑠𝑡𝑎) + exp(𝜇𝑖_1_𝑗 ) + exp(𝜇𝑖_2_𝑗 )

where 𝜇𝑖_𝑗_𝑠𝑡𝑎 , 𝜇𝑖_1_𝑗 and 𝜇𝑖_2_𝑗 are defined below:

𝜇𝑖_𝑗_𝑠𝑡𝑎 = 𝑎1 (ℎ𝑖_𝑗_𝑠𝑡𝑎 ⊕ 𝐻𝑒
𝑖_𝑗−1)

𝜇𝑖_1_𝑗 = 𝑎1 (ℎ𝑖_1_𝑗 ⊕ 𝐻𝑒
𝑖_𝑗−1)

𝜇𝑖_2_𝑗 = 𝑎1 (ℎ𝑖_2_𝑗 ⊕ 𝐻𝑒
𝑖_𝑗−1)
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Figure 5. LiGer’s architecture.

where 𝐻𝑒
𝑖_𝑗−1 denotes the embedding that represents 𝜆𝑖 be-

fore 𝑗-th ordered pair,1 ⊕ denotes vector concatenation and
𝑎1 stands for a feedforward neural network.

Using the attention weights, we compute the embedding
of the 𝑗-th ordered pair in 𝜆𝑖 as:

ℎ𝑖_𝑗 = 𝛼𝑖_𝑗_𝑠𝑡𝑎 ∗ ℎ𝑖_𝑗_𝑠𝑡𝑎 + 𝛼𝑖_1_𝑗 ∗ ℎ𝑖_1_𝑗 + 𝛼𝑖_2_𝑗 ∗ ℎ𝑖_2_𝑗
Note that we evenly distribute the weights across all fea-

ture vectors embedded from the first ordered pair in any
blended trace.
Executions Embedding Layer. Given ℎ𝑖_1, · · ·, ℎ𝑖_ |𝜆𝑖 | , the
embeddings for all ordered pairs in 𝜆𝑖 , we use the third RNN
to model the flow of the blended trace.

𝐻𝑒
𝑖 = 𝑓3 (𝐻𝑒

𝑖_ |𝜆𝑖 |−1, ℎ𝑖_ |𝜆𝑖 |)

where 𝐻𝑒
𝑖_𝑗 is the embedding that represents the partial

blended trace from the first ordered pair to the 𝑗-th ordered
pair (including the 𝑗-th ordered pair). In other words, 𝐻𝑒

𝑖

represents the entire 𝜆𝑖 .
Programs Embedding Layer.We design a pooling layer to
compress the embeddings of all the blended traces,𝐻𝑒

1 , ···, 𝐻𝑒
𝑈
,

one for each path to a program embeddingH𝑃 .

H𝑃 = max_pooling(𝐻𝑒
1 , · · ·, 𝐻𝑒

𝑈 )

5.1.2 Decoder. Given the encoder outputsH𝑃 , and {{𝐻𝑒
𝑖_𝑗

| 𝑗 ∈ [1, |𝜆𝑖 |]}|𝑖 ∈ [1,𝑈 ]}, the set of embeddings for each
blended trace of program 𝑃 , we use another RNN to decode
the method names. For initialization, we provide the decoder
with the program embeddingH𝑃 . The decoder also receives

1We give the formal definition of 𝐻𝑒
𝑖_𝑗−1 in the next paragraph.

a special token to begin, and emits another to end the gener-
ation.
Attention. As explained in Section 4.3, we incorporate the
attention mechanism to the extended architecture to aid
the decoding process. Unlike the attention neural network
introduced previously where the decoder attends over the
input symbols from a single source sentence, our decoder
attends over the flow of all blended traces (i.e. {{𝐻𝑒

𝑖_𝑗 | 𝑗 ∈
[1, |𝜆𝑖 |]}|𝑖 ∈ [1,𝑈 ]}).
We recompute the context vector 𝑐𝑡 (defined in Equation 2)

for each generated word 𝑦𝑡 as:

𝑐𝑡 =

𝑈∑
𝑖=1

|𝜆𝑖 |∑
𝑗=1

𝛼𝑡_𝑖_𝑗𝐻
𝑒
𝑖_𝑗

Each attention weight 𝛼𝑡_𝑖_𝑗 is computed by

𝛼𝑡_𝑖_𝑗 =
exp(𝜇t_i_j)∑𝑈

𝑖=1
∑ |𝜆𝑖 |

𝑗=1 exp(𝜇𝑡_𝑖_𝑗 )

where 𝜇𝑡_𝑖_𝑗 = 𝑎2 (𝐻𝑑
𝑡−1, 𝐻

𝑒
𝑖_𝑗 ) is the attention score which

measures how well each 𝐻𝑒
𝑖_𝑗 correlates with the previous

hidden state of the decoder, 𝐻𝑑
𝑡−1. The parameter 𝑎2 stands

for a feedforward neural network that is jointly trained with
other components in LiGer’s architecture.

6 Evaluation

This section presents the details of our evaluation. First, we
evaluate how well LiGer predicts method names. Then, we
evaluate LiGer on COSET [27] for a semantics classifica-
tion task. Finally, we perform substantial ablation studies to
evaluate LiGer’s internal design and realization.
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6.1 Method Name Prediction Task

Datasets. We use Java-med and Java-large, two datasets
proposed by Alon et al. [3] for the task of method name
prediction. We parse programs into token sequences and
abstract syntax trees (ASTs) using JavaParser. To collect exe-
cution traces, we rely on Randoop [22], a random unit test
generator for Java program, to trigger high-coverage execu-
tions. Ideally, we would like to use Java-med and Java-large
in their entirety. However, there are several engineering is-
sues that force us to settle for a subset of both datasets: (1)
some programs do not compile. (2) some programs refer-
ence external packages that Randoop does not have access
to. To alleviate this issue, we have made many popular Java
libraries available to Randoop such as Apache Commons and
Google Core Libraries for Java. Nevertheless, the list won’t
be inclusive, and some libraries will be missed out. (3) some
programs take too long (exceeding a pre-defined timeout)
for Randoop to generate test inputs. (4) some programs are
too small to be considered (a couple of lines). Table 1 shows
the detailed statistics of both datasets before and after the
filtering. Following the protocol proposed by Alon et al. [3],
methods in training, validation and test sets are extracted
from distinct projects. We serialize each object to register its
value during instrumentation; we reserve a special symbol
for the value of the objects whose definitions are not accessi-
ble. For symbolic traces, we group concrete executions that
traverse the same program path, and then decompose each
path into a list of statements. In the end, we collected on
average 20 symbolic traces, each of which is coupled with 5
concrete executions for each method in both datasets.
Baselines.We choose code2seq [2], the state-of-the-art static
model for predicting method names, and code2vec [3], an-
other static model that has achieved good results on the
same problem. We re-train both models using their imple-
mentations open-sourced at GitHub repositories. To ensure
the models we trained yield comparable performance, we
perform a pre-test of both models on the entire Java-med and
Java-large, and results2 show the re-trained models achieve
either better or very similar results to those reported in Alon
et al. [2]. We also include in this experiment a slightly modi-
fied version of DYPRO [26], a dynamic model that suppos-
edly learns from pure execution traces. In particular, we feed
the variable names together with their values for DYPRO to
embed execution traces.
Implementation. LiGer is implemented in Tensorflow. All
RNNs have one single recurrent layer with 100 hidden units.
We adopt random initialization for weight initialization. Our
vocabulary has 9,641 unique tokens (for both static and dy-
namic feature dimensions), each of which is embedded into
a 100-dimensional vector. We have experimented with other
model parameters and included the results in Appendix for

2See Appendix at https://kbwang.bitbucket.io/Appendices/PLDI20.pdf.

Table 1. Dataset statistics. Original column denotes the # of
methods in the original datasets. Filtered column denotes
the remaining # of methods after the filtering.

Datasets Java-med Java-large
Original Filtered Original Filtered

Training 3,004,536 74,951 15,344,512 338,126
Validation 410,699 5,000 320,866 5,000

Test 411,751 5,000 417,003 5,000
Total 3,826,986 84,951 16,082,381 438,126

Table 2. Compare LiGer against other models.

Models Java-med Java-large
Precision Recall F1 Precision Recall F1

code2vec 14.64 13.18 13.87 19.85 14.26 16.60
code2seq 32.95 20.23 25.07 36.49 22.51 27.84
DYPRO 37.84 24.31 29.60 41.57 26.69 32.51
LiGer 39.88 27.14 32.30 43.28 31.43 36.42

readers’ perusal. All networks are trained using the Adam op-
timizer [16] with learning and decay rates set to their default
values (i.e., learning rate = 0.0001, beta1 = 0.9, beta2 = 0.999)
and a mini-batch size of 100. We use a Red Hat Linux server
hosting four Tesla V100 GPUs (with 32GB GPU memory).

6.1.1 Accuracy. Weadopt themetric used by priorwork [3]
to measure precision, recall, and F1 score over case insensi-
tive sub-tokens. The idea is that the prediction of a whole
method name highly depends on that of the sub-words. For
example, given a method named computeDiff, a predic-
tion of diffCompute is considered a perfect answer (i.e.,
the order of the sub-words does not matter), a prediction of
compute has a full precision, but low recall, and a prediction
of compute- FileDiff has full recall, but low precision. Ta-
ble 2 shows the results all models achieve on our datasets
(Table 1). LiGer is the most accurate model among all ac-
cording to the F1 score, albeit not a substantial improvement
over DYPRO. In contrast, static models, both code2vec and
code2seq, perform significantly worse, and far away from
what they achieved on the original Java-med and Java-large
due to the substantial reduction of the training data.
Remarks. We also conduct a manual inspection on the
results of code2seq and LiGer to reveal their respective
strengths and weaknesses. Apart from the methods of simple,
straight-forward data manipulations on which both mod-
els perform well, LiGer is more accurate in handling those
that present greater algorithmic complexity.3 Moreover, we
discover that code2seq’s prediction is more of a keywords
mining process. That is, finding the most relevant words in
the method body that describes its functionality. We did not

3We have provided a couple of example methods in the Appendix.

https://kbwang.bitbucket.io/Appendices/PLDI20.pdf
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Figure 6. Evaluate LiGer’s performance when either concrete or symbolic traces are down-sampled. Hereinafter, for the
method name prediction task, charts on the left/right depict the results models achieved on Java-med/Java-large.

manage to catch one single method code2seq correctly pre-
dicts whose name does not appear in its body. Additionally,
replacing keywords with less informative names for variable
identifiers sways code2seq’s previous correct predictions
most of the time. On the contrary, LiGer incorporates the
information of program states, which captures the essence
of the program behavior. As a result, it is able to learn pro-
gram properties at the semantic rather than syntactic level.
Despite the weaknesses, static models enjoy an important
advantage over LiGer in their applicability, namely, they
will always function without executing or even compiling
programs.

6.1.2 DataReliance. More importantly, we examine LiGer
w.r.t. one of our main goals. That is, how reliant is LiGer on
executions to produce precise program embeddings. Reusing
the method name prediction task, we evaluate LiGer from
two aspects. First, we randomly reduce the number of con-
crete traces used to construct a blended trace while keeping
the total number of symbolic traces constant for eachmethod
in Java-med and Java-large. In other words, we aim to under-
stand how LiGer would perform when each symbolic trace
is accompanied by fewer concrete traces. For comparison,

we also evaluate the performance trend of DYPRO on the
same concrete traces that LiGer is trained and tested on.

Figures 6a (6b) shows our results on Java-med (Java-large).
In general, reducing concrete traces in a blended trace path
has a small effect on LiGer’s performance. Perhaps more un-
expectedly, LiGer exhibits almost the same accuracy when
it is supplied with no fewer than three concrete traces. For
a more in-depth understanding, we also investigate how
attention weights of each symbolic trace change when ex-
ecutions are down-sampled. We observe that, upon model
convergence, the attention weight for each statement along
each symbolic trace is 0.598 on average, and the weight stays
largely unchanged throughout the reduction. Furthermore,
the rest of the attention weight (i.e., 0.412) is almost evenly
split into the concrete traces regardless of their number. This
finding shows that LiGer relies more on the symbolic feature
dimension while generalizing from the training programs.
Meanwhile, it views concrete traces as parallel instantiations
of the same symbolic trace. Most importantly, LiGer is capa-
ble of compensating the loss of concrete traces by increasing
the importance of the remaining ones, therefore preserving
its accuracy.
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Next, we investigate how LiGer reacts when the number
of symbolic traces decreases. We emphasize that any dy-
namic technique will be (severely) affected if the given execu-
tions only cover a small part of a program under test. There-
fore, we assume the preservation of line coverage throughout
the reduction of symbolic traces, and study how decreased
path coverage impacts LiGer’s performance. In this regard,
we first identify a minimum set of symbolic traces for each
method in Java-med and Java-large that achieve the same
line coverage as before, and then gradually remove symbolic
traces that are not in the minimum set.
In this experiment, we randomly select three out of the

original five concrete traces, from which we generate a min-
imum set of blended traces. As a baseline, we show how
LiGer compares against DYPRO when given the concrete
traces out of the blended ones.
When line coverage is preserved during path reduction,

LiGer’s performance is largely unaffected (Figure 6c/6d for
Java-med/Java-large), indicating its strong resilience on the
reduced program paths. Even if training and testing on the
minimum set of blended traces, LiGer is comparable to
DYPRO trained and tested on the entire set of concrete traces
(25.88 vs. 29.60 F1 score on Java-med, and 30.42 vs. 32.51 F1
score on Java-large). As the average size of the minimum
set of symbolic traces is calculated to be 5.3 (i.e., 15.9 con-
crete executions) for each program, LiGer used almost 7x
fewer executions covering nearly 4x fewer program paths.
By learning from the minimum set of blended traces, LiGer
also reduces the training time by more than ten times on
both Java-med and Java-large with the same model archi-
tecture. It is worth mentioning that LiGer’s accuracy drops
sharply when it is provided with a single symbolic trace as
expected. To a certain extent, LiGer predicts programs that
are almost unrelated to those programs it is trained on due to
the excessively low code coverage. Therefore, LiGer displays
as poor a performance as DYPRO.

To conclude, compared to DYPRO, LiGer relies much less
on program executions. First, LiGer has shown its resilience
against the loss of concrete execution traces given that the
path coverage of the targeted programs is maintained. In
addition, LiGer is also largely unaffected even when the
path coverage decreases given that the line coverage is main-
tained, arguably a prerequisite for any dynamic technique
to be effective.

6.2 Semantics Classification

Experiment Setup. We use COSET, a dataset recently pro-
posed by Wang and Christodorescu [27], to perform the
semantics classification task. It consists of close to 85K pro-
grams developed by a large number of programmers while
solving ten coding problems. The challenge for models to
resolve is to differentiate a variety of algorithms applied for
solving each coding problem (e.g. bubble sort vs. insertion
sort vs. merge sort). Since wemostly deal with C# and Python

programs, we use the Microsoft Roslyn compiler framework
and IronPython for extracting a program’s abstract syntax
tree (AST) and instrumenting the program’s source code.
To collect execution traces, we run each program with ran-
domly generated inputs. Because all programs in COSET
only take inputs of primitive data types, we forgo Randoop
and implement a random input generation engine on our
own. We remove programs that fail to pass all test cases (i.e.
crashes or having incorrect results) from the dataset. In the
end, we are left with 63,596 programs which we split into a
training set containing 45,596 programs, a validation set of
9,000 programs and a test set with the remaining 9,000.

Since LiGer is presented with a classification problem in
this setting, we remove decoder from its architecture (Fig-
ure 5), and directly feed the learned program embedding
to a linear transformation layer. Then, we add a one layer
softmax regression to serve the prediction task. The rest of
LiGer’s architecture is kept intact. For comparison, we use
DYPRO [26] as a baseline in this experiment.

Table 3. LiGer’s results on COSET.

Models Accuracy F1 Score
DYPRO 81.6% 0.81
LiGer 85.4% 0.85

Results. As depicted in Table 3, LiGer outperforms DYPRO
in both accuracy and F1 score. Similar to the experiment doc-
umented in Section 6.1.2, we study the performance trend of
both models against the decreased number of traces. Specifi-
cally, we reduce the number of concrete and symbolic traces
while preserving the path and line coverage, and evaluate
how the model accuracy vary under both circumstances. As
shown in Figure 7, LiGer is far more resilient in weathering
the loss of training data, in particular, it achieves slightly
better results than DYPRO (82.3% vs. 81.6% in accuracy, and
0.82 vs. 0.81 in F1 score) when trained on almost 10x fewer
executions covering nearly 4x fewer program paths (4.7 sym-
bolic traces × 2 concrete traces vs. 18 symbolic traces × 5
concrete traces). To sum up, our results show that LiGer is
not only more accurate but also far less data dependent than
DYPRO in classifying the program semantics.

6.3 Ablation Study

In this section, we conduct an ablation study to understand
the contribution of each component in LiGer’s architec-
ture. Since all layers except the fusion layer are essential to
LiGer’s functionality, our ablation study will only examine
the causality among components in the fusion layer, more
precisely, the effect of both feature dimensions as well as
the attention mechanism that fuses the feature dimensions.
We pick the method name prediction task for our ablation
study, and evaluate each new configuration of LiGer from
the same aspects of model accuracy and data reliance.
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Figure 7. LiGer’s performance trend when concrete and symbolic traces are down-sampled.
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Figure 8. Evaluate LiGer (w/o static feature) when either concrete or symbolic traces are down-sampled.

6.3.1 Removing Static FeatureDimension. First, we re-
move the symbolic trace from the feature representation. As
a result, the component for embedding statements is no
longer needed and removed from LiGer’s architecture. Note
that the resulting configuration is not identical to DYPRO’s
architecture where representations of concrete traces are
learned separately before pooled into a single vector as the
program embedding. In contrast, LiGer first learns an em-
bedding for a multitude of concrete traces along the same
program path, and then performs a pooling operation among
all path embeddings to obtain the program embedding. We
reuse the concrete traces for each program in Java-med and
Java-large for this experiment.
After removing the static feature dimension, LiGer ex-

hibits almost the same prediction accuracy (31.16 on Java-
med and 35.21 on Java-large in F1 score). This indicates
that, when given abundant concrete traces to learn, LiGer
is able to generalize from the dynamic features alone, there-
fore, symbolic traces becomes expendable. In addition, even
without the static feature dimension, LiGer still significant
outperforms both static models. Next, we aim to understand
how dependent LiGer becomes on executions after removing
the static feature dimension. In particular, we provide LiGer

with the same concrete traces that DYPRO was trained and
tested on. For brevity, we combine the results of reducing
symbolic and concrete traces in the same diagram. As shown
in Figures 8, after removing the static feature dimension,
LiGer displays a similar performance trend to DYPRO. In
other words, LiGer becomes more dependent on program
executions, manifested in the significantly poorer results
while learning from few concrete traces. This finding reveals
that it is the static feature dimension that contributes to the
moderate reliance LiGer has on program executions.
6.3.2 Removing Dynamic Feature Dimension. We re-
move the dynamic feature dimension from LiGer to reveal
its contribution to the entire network. Since LiGer is left
with the symbolic traces only, each statement in the trace
will receive the full attention weight in the fusion layer. Like
the prior experiment, we first measure LiGer’s F1 score in
the method name prediction task.
Removing dynamic feature has a much larger impact on

LiGer’s precision (20.23/22.95 on Java-med/Java-large). In
particular, LiGer becomes a less accuratemodel than code2seq
without the dynamic features. This finding confirms the chal-
lenges of learning precise program embeddings from sym-
bolic program features directly. Even though symbolic traces
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Figure 9. Evaluate LiGer (w/o dynamic feature) when symbolic traces are down-sampled.
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Figure 10. Evaluate LiGer (w/o attention) when either concrete or symbolic traces are down-sampled.

reflect a certain level of the runtime information, LiGer does
not manage to learn precise program embeddings. Next, we
study how LiGer’s reliance on symbolic traces changes.

After removing the dynamic feature dimension, LiGer is
still shown quite robust against trace reduction. Even though
LiGer starts at a lower F1 score, it outperforms DYPRO as the
number of symbolic traces decreases (Figures 9). In general,
the accuracy trend LiGer displays correlates well before
and after the removal of dynamic features. Thanks to the
static feature dimension, LiGer does not suffer a significant
accuracy drop.

6.3.3 RemovingAttention. Finally, we remove the atten-
tion mechanism that controls the fusion of the two feature
dimensions. To keep other components intact in the fusion
layer, we evenly distribute the weights across all traces in a
blended trace.

Removing attention has a notable impact on LiGer, which
drop its F1 score from 32.30 (36.42) to 28.63 (33.71) on Java-
med (Java-large). This is an unexpected result. As concrete
traces are still abundant, an increase in their attentionweights
should at least leads to a similar performance. We hypoth-
esize that allocating constant weights disrupts the balance

LiGer strikes for the two feature dimensions. Although the
weights for the dynamic feature increase, the presence of
static features limits LiGer’s ability to generalize. In terms
of its reliance on program executions, LiGer becomes less
accurate overall (Figure 10). The explanation is that, without
the attention mechanism, symbolic program features will be
allocated with lower weights. Therefore, the static feature
dimension is unable to issue as strong signals as before to
help LiGer learn, thus causing the drop in LiGer’s accuracy.

6.3.4 Summary. Finally, we summarize the role of each
component in the fusion layer. To provide a direct compari-
son, we show the results of each new configuration of LiGer
on the same diagram (Figure 11).
To summarize, dynamic feature dimension is proven to

be the main reason that LiGer is the most precise model in
predicting method names. This also explains why LiGer is
not a significant upgrade over DYPRO. However, by incor-
porating the symbolic feature dimension and the attention
mechanism that coordinates the feature fusion, LiGer signif-
icantly reduces its reliance on program executions. Again,
we clarify a sufficient line coverage is assumed, and LiGer
is shown to be resilient against the reduction of concrete
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Figure 11. Compare different ablation configurations for LiGer.

traces when path coverage is preserved. More importantly,
LiGer is also resilient against the decrease in path coverage
when line coverage is preserved.

7 Related Work

This section surveys related work from three aspects: neural
program embeddings, attention, and word embeddings.

7.1 Neural Program Embeddings

Recently, learning neural program representations has gen-
erated significant interest in the program languages com-
munity. As a first step, early methods [13, 21, 23] primar-
ily focus on learning syntactic features. Despite these pio-
neering efforts, these approaches do not precisely represent
program semantics. More recently, a number of new deep
neural architectures have been developed to tackle this is-
sue [1, 3, 10, 26, 28]. This line of work can be divided into two
categories: dynamic and static. The former [26, 28] learns
from concrete program executions, while the latter [1, 3, 10]
attempts to dissect program semantics from source code.
Unlike these prior efforts, this paper presents an effective
blended approach of learning program embeddings from
both concrete and symbolic traces.

7.2 Attention

Attention has achieved ground-breaking results inmanyNLP
tasks, such as neural machine translation [5, 25], computer
vision [4, 20], image captioning [29] and speech recogni-
tion [6, 9]. Attention models work by selectively choosing
parts of the input to focus on while producing the output.
code2vec is among the most notable that incorporate atten-
tion in their neural network architectures. Specifically, they
attend over multiple AST paths and assign different weights
for each before aggregating them into a program embedding.
This paper uses attention to coordinate the combination of
the two feature dimensions as well as to decode the method
name as a sequence of words.

7.3 Word Embeddings

The seminal work word2vec [18, 19] stimulated the field of
learning continuous representation. They propose to em-
bed words into a numerical space where those of similar
meanings would appear in close proximity. By embedding
words into vectors, they also discover that simple arith-
metic operations can reflect the analogies among words (e.g.
US −Washington = China − Beijing). word2vec, along with
later efforts on learning representations of sentences and
documents [17], have greatly contributed to state-of-the-art
results in many downstream tasks [7, 12].

8 Conclusion

This paper has introduced a novel, blended approach of learn-
ing program embeddings from the combination of symbolic
and concrete execution traces. We demonstrate the effective-
ness of our approach by applying it to solve method name
prediction and semantics classification task.

Through an extensive evaluation, we have shown that our
approach is the most accurate in both tasks, especially it
outperforms the state-of-the-art, code2seq, in method name
prediction by a wide margin. An important takeaway of
our work is that concrete executions when supplied in large
quantities help train highly precise models. Symbolic traces,
on the other hand, reduce dynamic models’ heavy reliance
on executions.

For its strong distinct benefits, we believe that our blended
approach, when applicable, can be adapted to tackle a wide
range of problems in program analysis, program comprehen-
sion, and developer productivity.
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