
Energy-based generator matching:
A neural sampler for general state space

Dongyeop Woo1∗ Minsu Kim1,2 Minkyu Kim1 Kiyoung Seong1 Sungsoo Ahn1

1Korea Advanced Institute of Science and Technology (KAIST) 2Mila - Quebec AI Institute

Abstract

We propose Energy-based generator matching (EGM), a modality-agnostic ap-
proach to train generative models from energy functions in the absence of data.
Extending the recently proposed generator matching, EGM enables training of
arbitrary continuous-time Markov processes, e.g., diffusion, flow, and jump, and
can generate data from continuous, discrete, and a mixture of two modalities. To
this end, we propose estimating the generator matching loss using self-normalized
importance sampling with an additional bootstrapping trick to reduce variance in
the importance weight. We validate EGM on both discrete and multimodal tasks
up to 100 and 20 dimensions, respectively.

1 Introduction

We tackle the problem of drawing samples from a Boltzmann distribution ptarget(x) ∝ exp(−E(x))
given only oracle access to the energy function E(x) and no pre-computed equilibrium samples.
Such “energy-only” inference arises throughout machine learning, e.g., Bayesian inference [15]
and statistical physics, e.g., computing thermodynamic averages [29], yet it remains intractable in
high-dimensional or combinatorial state spaces. Classical methods based on Markov processes, e.g.,
Metropolis–Hastings [28, 18], Gibbs sampling [16], and Metropolis-adjusted Langevin algorithm
[17, 33], provide asymptotically exact guarantees, but at the cost of long mixing times. In practice,
one must run chains for a vast number of steps to traverse metastable regions, and each transition
incurs an expensive energy evaluation, limiting applicability to large-scale systems [32].

Deep generative models, particularly diffusion and flow models tied to continuous-time processes [36,
25], offer a compelling alternative: after training, a cheap constant-cost network evaluation can
produce independent samples. Once trained, they do not require energy queries for inference. These
models show great success in vision [34], language [24], and audio [21], and can be transferred
to unseen conditions. However, their success critically depends on data-driven training on a large
number of true equilibrium samples, which are unavailable when only an energy function is known.

In response, researchers have designed new energy-driven algorithms, coined diffusion samplers, to
train diffusion-based generative models to sample from the Boltzmann distribution. For example, path
integral samplers (PIS) [42] and denoising diffusion samplers (DDS) [38] minimize the divergence
between a forward SDE and the backward SDE defined by a Brownian bridge. Akhound-Sadegh
et al. [1] proposed iterated denoising energy matching (iDEM), a simulation-free approach to train
diffusion models, highlighting the expensive simulation procedure for acquiring new samples from
the diffusion-based models. Generative flow networks (GFNs) [3, 22], originating from reinforcement
learning, can also be interpreted as a continuous-time Markov process (CTMP) in the limit [6].

However, there still exists a gap between the data- and energy-driven training schemes, particularly on
the choice of state spaces and CTMP. Especially, Holderrieth et al. [19] recently proposed generator

∗Correspondence to: dongyeop.woo@kaist.ac.kr

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

matching (GM), which allows unified data-driven training of continuous-time processes ranging from
flow, diffusion, and jump processes for both continuous and discrete state spaces. This allows training
a generative model for hybrid data, e.g. amino acid sequences and 3D coordinates of a protein [7],
and greatly expands the available space of parameterization.

Table 1: Comparison of sampling methods
by state space type and underlying Markov
process. “D”, “F”, “J”, “J (D)” denotes the
diffusion, flow, continuous jump, and dis-
crete jump process respectively.

Method D F J J (D)
PIS [42], iDEM [1], CMCD [39] Ë é é é
iEFM [40], LFIS [37], NFS2 [8] é Ë é é
LEAPS [20] é é é Ë
EGM (ours) Ë Ë Ë Ë

Contribution. We propose energy-based generator
matching (EGM), an energy-driven training frame-
work for continuous-time Markov processes parame-
terized by a neural network. EGM accommodates con-
tinuous, discrete, and mixed state spaces and applies
to various process types, including diffusion-, flow-,
and jump-based models. Our work greatly expands the
scope of energy-driven training for continuous-time
neural processes (See Table 1).

To this end, our EGM estimates the generator match-
ing loss with self-normalized importance sampling, which requires approximating samples from the
target distribution. However, this is challenging due to the high variance in importance weights. To
alleviate this issue, we introduce bootstrapping, which allows the generator to be estimated using
easy-to-approximate samples from the nearby future time step. It reduces the variance of importance
weights, significantly boosting the sampler’s performance.

We validate our work through experiments on various target distributions: discrete Ising model and
three joint discrete-continuous tasks, i.e., the Gaussian-Bernoulli restricted Boltzmann machine (GB-
RBM) [9], joint double-well potential (JointDW4), and joint mixture of Gaussians (JointMoG). Our
findings demonstrate that the training algorithm enables parameterized CTMP to learn the desired
distribution and is scalable to reasonably-sized problems.

2 Preliminary: Generator matching on general state space

In this section, we provide preliminaries on generator matching (GM) [19], which allows generative
modeling using arbitrary continuous-time Markov processes (CTMP).

Notation. Let S denote the state space with a reference measure ν. We let ptarget denote the target
distribution with samples x1 ∼ ptarget. We denote a probability measure p on S by p(dx), where “dx”
indicates integration with respect to p in the variable x. If p admits a density, and when no confusion
arises, we use p both for the measure p(dx) and its density p(x) := dp

dν (x) with respect to ν.

Overview of generator matching. GM relies on a set of time-varying probability distributions
(pt|1(dx|x1))0≤t≤1 depending on a data point x1 ∈ S, coined a conditional probability path. This
induces a corresponding marginal probability path (pt)0≤t≤1 via the hierarchical sampling procedure:

x1 ∼ ptarget, x ∼ pt|1(dx|x1) ⇒ x ∼ pt(dx). (1)

GM trains a Markov process (Xθ
t)0≤t≤1, parameterized by a neural network, to match the marginal

probability path pt. After training, the induced probability path of the Markov process aligns with pt,
enabling sampling from ptarget = p1 by simulating the trained process Xθ

t .

Generators. A generator characterizes a CTMP through the expected change of a test function
f : S → R in an infinitesimal time frame. It is a linear operator defined as:

Ltf(x) =
d

dh

∣∣∣∣
h=0

EXt+h∼pt+h|t(·|x)[f(Xt+h)] = lim
h→0

EXt+h∼pt+h|t(·|x)[f(Xt+h)]− f(x)

h
, (2)

where pt+h|t denotes the transition kernel of Markov process Xt. If two Markov processes X1 and
X2 have identical generators L1

t and L2
t , the processes are equivalent.

Linear parametrization of generators. For commonly used Markov processes, e.g., diffusion, flow,
and jump processes, the generator can be linearly parameterized as Ltf(x) = ⟨Kf(x), Ft(x)⟩V
where K is an operator fixed for each type of Markov process, V is a vector space, and Ft(x) ∈ V is
the parameterization. For example, Ft = ut for flow model with ODE dx = ut(x)dt, Ft = σ2

t for
diffusion with SDE dx = σt(x)dw, or Ft = Qt for discrete jump with transition rate matrix Qt(y, x)
described by the Kolmogorov equation ∂tpt(y) =

∑
y∈S Qt(y, x)pt(x).

2

𝑝! 𝑝"𝑝#

Forward SDE (data noise)

Reverse SDE (noise data)

score function

Forward SDE (data noise)

Reverse SDE (noise data)

score function
𝑋# 𝑋! 𝑋"

Forward SDE (data noise)

Reverse SDE (noise data)

score function

(a) Probability path

𝑝!𝑝"
𝐹"|!
$!(𝑥)

𝑝!|"(⋅ |𝑥)

𝑥

𝐹"(𝑥)

(b) Generator matching

𝑝!

𝐹"|!
$!(𝑥)

𝑞!|"(⋅ |𝑥)

𝑝!𝑝"

𝑥

𝐹"(𝑥)

(c) EGM

𝑝!

𝑞"|$(⋅ |𝑥)

𝑥

𝐹$(𝑥)

𝐹$|"
%!(𝑥)

𝑝!𝑝$

𝑝"|$(⋅ |𝑥)

(d) EGM w/ bootstrapping

Figure 1: Overview of energy-based generator matching (EGM). (a) The target probability path that
interpolates between the prior and the target distribution; we aim to estimate the Ft(x) as a (weighted)
average of conditional generators. (b) GM draws x1 ∼ p1|t(·|x) with uniformly weighted F x1

t|1(x).
(c) EGM draws x1 ∼ q1|t(·|x) with importance weighted F x1

t|1(x). (d) EGM w/ bootstrapping
draws xr ∼ qr|t(·|x) with importance weighted F xr

t|r (x).

Marginalization trick. The key idea of GM is to express a marginal generator Lt that generates
probability path pt by conditional generator Lx1

t|1 for the conditional probability path pt|1(·|x1). This
leads to the expression of the parameterization Ft for the generator Lt using parameterization F x1

t|1 of
conditional generator Lx1

t|1. To be specific, the marginalization trick is expressed as:

Ltf(x) = Ex1∼p1|t(·|x)
[
Lx1

t|1f(x)
]
, Ft(x) = Ex1∼p1|t(·|x)

[
F x1

t|1(x)
]
, (3)

where p1|t(dx1|x) is the posterior distribution, i.e., the conditional distribution over data x1 given
an observation x at time t. Intuitively, at any point (x, t), the marginal generator Lt steers x in the
average direction of endpoints x1 sampled from the target distribution.

Conditional generator matching. GM trains a neural network F θ
t to approximate the parametrization

Ft of marginal generator Lt using a Bregman divergence D : V × V → R≥0:

LGM(θ) = Et∼Unif, xt∼pt

[
D
(
Ft(xt), F

θ
t (xt)

)]
, (4)

which is hard to minimize since Ft is intractable to estimate. Instead, one can minimize the conditional
generator matching (CGM) loss expressed as follows:

LCGM(θ) = Et∼Unif, x1∼ptarget, xt∼pt|1(·|x1)

[
D
(
F x1

t|1(xt), F
θ
t (xt)

)]
. (5)

One can derive that ∇θLGM(θ) = ∇θLCGM(θ), and gradient-based minimization of the CGM loss is
equivalent to that of the GM loss.

3 Energy-based generator matching

In this section, we introduce energy-based generator matching (EGM), the first method for learning
neural samplers on general state spaces via continuous-time Markov processes. EGM extends the
GM framework to energy-driven training by estimating the marginal generator with self-normalized
importance sampling (SNIS). To this end, we define a variant of GM loss LGM in Equation (4):

LEGM(θ) = Et∼Unif, xt∼pref
t

[
D
(
F̂t(xt), F

θ
t (xt)

)]
, (6)

where F̂t is the energy-driven estimator of the parametrization Ft and pref
t is a reference distribution

whose support covers the probability path pt. Note that, when F̂t = Ft, minimizing LEGM guarantees
that the learned sampler F θ

t recovers samples from the target distribution ptarget.

We first present our scheme to compute the estimator F̂t, then describe a bootstrapping technique
for variance reduction of the importance weight, and finally provide the training algorithm. Figure 1
provides a visual overview of these estimators. We also include examples demonstrating how EGM
accommodates diffusion, flow, and jump processes.2

2We include the derivation and example in Appendix B for mixed state space.

3

3.1 Marginal generator estimation via self-normalized importance sampling

Problem setup. We consider the sampling problem from a density3 p1(x) = p̃1(x)/Z given only
the unnormalized density p̃1(x) = exp(−E1(x)) with intractable partition function Z =

∫
p̃1(dx).

Following GM, our goal is to train a neural network F θ
t to approximate the parametrization Ft of the

marginal generator Lt in Equation (3).

SNIS estimation of the generator. First, consider the following importance sampling estimator:

Ltf(x) = Ex1∼q1|t(·|x)

[
w(x, x1)Lx1

t|1f(x)
]
, w(x, x1) :=

p1|t(x1|x)
q1|t(x1|x)

=
p̃1(x1)pt|1(x|x1)
Zpt(x)q1|t(x1|x)

, (7)

where p1|t is the target posterior and q1|t is a proposal kernel. We avoid computing intractable Zpt(x)
for the importance weights by using SNIS scheme:

w̃(x, x1) :=
p̃1(x1)pt|1(x|x1)

q1|t(x1|x)
, w(x, x1) =

w̃(x, x1)

Zpt(x)
=

w̃(x, x1)

Ex1∼q1|t(·|x)[w̃(x, x1)]
, (8)

where w̃ is the unnormalized importance weight that is tractable to compute. In this way, one can
compute the self-normalized weight without knowing the normalization constant Zpt(x). Further-
more, when we use the same samples for estimating the generator and normalization constant, we
obtain a low-variance estimator at the cost of inducing a bias.

Energy-based generator matching (EGM). The linear parametrization of the generator admits the
importance sampling expression Ft(x) = Ex1∼q1|t(·|x)

[
w(x, x1)F

x1

t|1(x)
]
. Then the loss is:

LEGM(θ) = Et∼Unif, xt∼pref
t

[
D
(
F̂t(xt), F

θ
t (xt)

)]
, F̂t(x) =

∑
i w̃(x, x

(i)
1)F

x
(i)
1

t|1 (x)∑
i w̃(x, x

(i)
1)

, (9)

where x(i)1 are sampled from the proposal q1|t(·|x). We implement F̂t using the LogSumExp trick,
which provides a numerically stable estimator even in the low-density region.

Example 1: Conditional optimal-transport (OT) path. EGM can be applied to train a neural
flow sampler driven by the conditional OT path [25]. In the flow model4, the conditional probability
path and its conditional velocity field are expressed by pt|1(x|x1) = N (x; tx1, (1 − t)2Id) and
ut|1(x|x1) = x1−x

1−t for x, x1 ∈ Rd. Choosing the proposal q1|t(x1|x) ∝ pt|1(x|x1), one obtains,

q1|t(x1|x) = N
(
x1;

x

t
,
(1− t)2

t2
I

)
, ût(x) =

∑
i p̃1(x

(i)
1)ut|1(x|x

(i)
1)∑

i p̃1(x
(i)
1)

. (10)

Example 2: Discrete masked diffusion. EGM also supports masked diffusion path5, which has
recently gained popularity in language modeling. In the masked diffusion path2, the conditional
probability path and the conditional transition rate matrix are expressed as pt|1(x|x1) = κtδx1

(x) +

(1 − κt)δM (x) and ut|1(y, x|x1) = κ̇t

1−κt
(δx1(y) − δx(y)) where M ∈ S is the mask token, κt :

[0, 1] → R is a schedule, and δx is Dirac delta distribution at x. In this setting, the proposal and the
estimator are,

q1|t(x1|x) =
{

Unif(x1;S −M) (x =M)

δx(x1) (x ̸=M)
, ût(y, x) =

∑
i p̃1(x

(i)
1)ut|1(y, x|x

(i)
1)∑

i p̃1(x
(i)
1)

. (11)

3.2 Bootstrapping tricks for low-variance estimation

The quality of the estimator in Equation (9) depends critically on the proposal distribution q1|t. In the
ideal case, the proposal q1|t that matches the posterior p1|t ensures that EGM is unbiased and aligns
with GM. However, the simple choice of q1|t(x1|xt) ∝ pt|1(xt|x1) leads to a mismatch with the true
posterior p1|t, resulting in high variance in the importance weight.

3Though density may not be defined in general, it is given a priori in the sampling problem.
4For a detailed description of flow model and masked diffusion path, see Appendix C.
5Discrete masked diffusion is a discrete jump process which has transition rate matrix ut(y, x).

4

For a nearby future time step r > t, the posterior pr|t(xr|xt) is similar to the backward transition
kernel pt|r(xt|xr) because pr|t(xr|xt)

pt|r(xt|xr)
= pr(xr)

pt(xt)
≈ 1 for continuous densities. Thus, a simple proposal

qr|t(xr|xt) ∝ pt|r(xt|xr) can effectively match the posterior pr|t(xr|xt), reducing the variance
of importance weights. To exploit this, we derive a generalized marginalization trick using the
intermediate state xr.

Backward transition kernel with marginal consistency. To derive bootstrapping, we need to
choose a backward transition kernel pt|r which satisfies the marginal consistency described by the
Chapman-Kolmogorov equation:

pt|1(·|x1) =
∫
pt|r(·|xr)pr|1(dxr|x1). (12)

Not every pt|r with marginal consistency is tractable. For instance, in the flow model, pt|r is
deterministic, making density evaluation infeasible. We give examples of tractable backward transition
kernels satisfying our condition for diffusion, flow, and masked-diffusion paths in Appendix C.

Bootstrapped marginalization trick. Now, we generalize Equation (3) and show that the
marginal generator Lt can be expressed as marginalization over generators Lxr

t|r for probability
paths (pt|r(dx|xr))0≤t≤r conditioned on time r, instead of the conditional generators Lx1

t|1. To this
end, we define marginal consistency of conditional generators as follows:

Exr∼pr|1,t(·|x1,x)[L
xr

t|rf(x)] = Lx1

t|1f(x). (13)

With generators Lxr

t|r conditioned on time r satisfying the consistency, we express the marginal
generator Lt. We provide the corresponding proof in Appendix A.

Theorem 1. Let Lxr

t|r denote the conditional generator for conditional probability path pt|r(·|xr)
for 0 ≤ t < r ≤ 1. If the backward transition kernels pt|r satisfy the Equation (12) and the
conditional generators satisfy Equation (13), then the marginal generator can be expressed as follows,
regardless of r:

Ltf(x) = Exr∼pr|t(·|x)[L
xr

t|rf(x)], (14)

where pr|t(dxr|x) is the posterior distribution (i.e., the conditional distribution over intermediate
state xr given an observation x at time t).

Bootstrapped SNIS estimation of the generator. Using a proposal distribution qr|t(·|x), the
marginal generator can be estimated as follows:

Ltf(x) = Exr∼qr|t(·|x)[w(x, xr)L
xr

t|rf(x)], w(x, xr) =
pr|t(xr|x)
qr|t(xr|x)

=
pr(xr)pt|r(x|xr)
pt(x)qr|t(xr|x)

. (15)

Similar to Section 3.1, we also consider the estimator based on the self-normalized importance
sampling scheme to reduce the variance of the IS estimator. With a simple choice of qr|t(xr|xt) ∝
pt|r(xt|xr), unnormalized importance weight becomes:

w̃(x, xr) =
p̃r(xr)

Exr∼qr|t(·|x)[p̃r(xr)]
, p̃r(xr) :=

∫
pr|1(xr|x1)p̃1(dx1). (16)

Then we obtain the following marginal estimators:

L̂tf(x) =

∑
i w̃(x, x

(i)
r)Lx(i)

r

t|r f(x)∑
i w̃(x, x

(i)
r)

, F̂t(x) =

∑
i w̃(x, x

(i)
r)F

x(i)
r

t|r (x)∑
i w̃(x, x

(i)
r)

, (17)

where x(i)r are sampled from the proposal qr|t(·|x) and F xr

t|r is the parametrization of Lxr

t|r.

Intermediate energy estimator. Note that the unnormalized density p̃r is intractable, unlike p̃1 in
Equation (9). Therfore, we train a surrogate p̃ϕr (x) to approximate the unnormalized density of the
intermediate state xr. This surrogate can be learned using the following estimator:

p̃r(xr) :=

∫
pr|1(xr|x1)p̃1(x1)dx1 = Z1|r(xr)Ex1∼q1|r(·|xr)[p̃1(x1)], (18)

5

Algorithm 1 Iterated training with EGM loss with bootstrapping

Require: Network F θ
t , Eϕt , replay buffer B ← ∅, bootstrapping step size ϵ and batch size b.

1: while Outer-loop do
2: Sample {x1}bi=1 from the simulation of the current sampler F θ

t and set B ← B ∪ {x1}bi=1.
3: while Inner-loop do
4: if bootstrapping then
5: Sample t ∼ Unif[0, 1], r ← min(t+ ϵ, 1), x1 ∼ B and xt ∼ pt|1(·|x1).
6: Update ϕ to minimize LNEM as defined in Equation (20).
7: Compute the bootstrapped estimator F̂t(x;ϕ, r) with the proposed sample x

(i)
r ∼ qr|t(·|xt).

8: Update θ to minimize LEGM-BS as defined in Equation (21).
9: else

10: Compute the SNIS estimator F̂t(x) with the proposed sample x
(i)
1 ∼ q1|t(·|xt).

11: Update θ to minimize LEGM as defined in Equation (9).
12: end if
13: end while
14: end while

where Z1|r(xr) is the normalization constant of the proposal q1|r(x1|xr) ∝ pr|1(xr|x1). The
estimator is unbiased, but exhibits high variance. Therefore, we learn the energy of intermediate state,
Er(xr) := − log p̃r(xr) that can be expressed using the target energy function E1(x):

Er(xr) = − logEx1∼q1|r(·|xr)[exp(−E1(x1))]− logZ1|r(xr), (19)

To learn the surrogate, we train on a general version of noised energy matching (NEM) [30] objective:

LNEM(ϕ) = Exr∼pref
r
[∥Eϕ

r (xr)−Êr(xr)∥22], Êr(xr) = − log
1

K

∑
i

exp(−E1(x(i)1))− logZ1|r(xr),

(20)
where x(1)1 , . . . , x

(K)
1 is sampled from q1|t. Then our final loss from Equation (9) becomes:

LEGM-BS(θ;ϕ) = Ext∼pref
t

[
D
(
F̂t(xt;ϕ), F

θ
t (xt)

)]
, F̂t(xt;ϕ, r) =

∑
i exp(−Eϕ

r (x
(i)
r))F

x(i)
r

t|r (xt)∑
i exp(−Eϕ

r (x
(i)
r))

,

(21)
where x(i)r is sampled from the proposal qr|t(·|x).
Example 1: Conditional OT path. To apply bootstrapping with conditional OT path, we
show that the backward transition kernel pt|r(xt|xr) = N

(
xt;

t
rxr, σtI

)
and conditional veloc-

ity ut|r(xt|xr) = 1
rxr +

σ̇t

2σt

(
xt − t

rxr
)

satisfy backward Kolmogorov equation with above pro-

posed conditional probability path pt|1 where σt = (1− t)2 − t2

r2 (1− r)2. Choosing the proposal
qr|t(xr|xt) ∝ pt|r(xt|xr), one obtains,

qr|t(xr|xt) = N
(
xt;

r

t
xt,

r2

t2
σtI

)
, ût(xt) =

∑
i p̃r(x

(i)
r)ut|r(xt|xr)∑
i p̃r(x

(i)
r)

. (22)

We check that the transition kernel pt|r satisfies the assumption we proposed in Appendix C.

Example 2: Discrete masked diffusion. For masked-diffusion path, the backward transition kernel
and conditional transition rate matrix are given as pt|r(xt|xr) = κt

κr
δxr

(xt) +
κr−κt

κr
δM (xt) and

ut|r(y, xt|xr) = κ̇t

κr−κt
(δxr (y)− δxt(y)). Then, the proposal and the estimator are6,

qr|t(xr|xt =M) =
κt
κr
δM (xr) +

κr − κt
κr

, ût(y, x) =

∑
i p̃r(x

(i)
r)ut|r(y, x|x

(i)
r)∑

i p̃r(x
(i)
r)

. (23)

3.3 Training details

We now describe the training algorithm for EGM, with the full procedure provided in Algorithm 1.

6Note that qr|t(xr|xt ̸= M) = δxt(xr), the token flipped to the data token does not change thereafter.

6

Bi-level training scheme. To choose a reference distribution pref
t that is close to pt, we use hierarchical

sampling procedure x1 ∼ B, xt ∼ pt|1(·|x1) with replay-buffer B that approximates p1. This leads
to the following form of EGM objective:

LEGM(θ) = Et∼Unif,x1∼B,xt∼pt|1(·|x1)

[
D
(
F̂t(xt), F

θ
t (xt)

)]
. (24)

When the buffer remains close to p1, our loss approximates the generator matching loss in Equation (4).
We achieve this by continuously updating the buffer, using the bi-level scheme introduced in Akhound-
Sadegh et al. [1]. The bi-level scheme alternates between an outer loop and an inner loop, where
in the outer loop the buffer B is improved by drawing samples from the current sampler F θ

t . For
the inner loop, the sampler F θ

t is trained to minimize the EGM loss with B held fixed. Because the
sampler is updated in the inner loop, the samples collected in the subsequent outer loop reflect its
improved performance, thus progressively improving the buffer.

Forward-looking parametrization for masked diffusion. We also introduce a trick to further boost
the training of masked diffusion samplers for graphical models via inductive bias on the estimator Eϕ

t .
To this end, consider a graphical model defined on graph G = (V,E) with vertices V and edges E. It
defines a distribution of vertex-wise variables x = {xi}i∈V using an energy function E expressed as
a product of edge-wise potentials {ψi,j}{i,j}∈E , i.e., p1(x) ∝ exp

(
−E(x)

)
=
∏

{i,j}∈E ψi,j(x
i, xj)

where we let xi denote the variable associated with vertex i ∈ V .

For these models, we can express the intermediate distribution pt(xt) using fixed configurations,
since once a token is converted from a mask to a data token, it remains fixed thereafter. To this end,
let It denote the set of edges with deterministic value at time t, and the intermediate distribution can
be expressed as follows:

pt(xt) =
∏

{i,j}∈It

ψi,j

(
xit, x

j
t

) ∫
pt(xt|x1)

∏
{i,j}∈E\It

ψi,j

(
xi1, x

j
1

)
dx1. (25)

Hence, it suffices to estimate the contributions of the undetermined region, which leads to our
parameterization Eϕ

t as: Eϕ
t (xt) = NNϕ(xt, t)−

∑
(i,j)∈It

logψi,j(x
i
t, x

j
t).

4 Experiments

In prior work, research has concentrated mainly on diffusion-based samplers, leaving purely discrete
and multimodal settings underexplored. To fill this gap, we evaluate EGM on purely discrete and
joint discrete–continuous tasks. Specifically, we employ jump-based neural samplers for purely
discrete tasks and combine discrete jumps with continuous flow to tackle multimodal tasks. These
experiments demonstrate EGM’s performance and versatility.

Our primary evaluation metric is the energy-W1 (E-W1) distance, consistently applied across tasks
and complemented by qualitative visualizations. Since no jump-based or hybrid discrete–continuous
neural sampler baselines exist, we include a traditional Gibbs sampler [16] as our competitive baseline.
Although Gibbs sampling is guaranteed to converge given sufficiently many iterations, we use four
parallel chains with 6000 steps each to reflect a realistic computational budget for the per-sample cost
and to yield reasonably competitive results. Detailed descriptions of the energy functions, evaluation
metrics, and experimental protocols are provided in Appendix D.

4.1 Discrete EGM on the 2D Ising Model

We assess the performance and scalability of EGM using the two-dimensional Ising model, varying
both grid dimension and temperature. The Ising model is a canonical benchmark in probabilistic
inference and sampling, with well-established ground-truth samples facilitating robust evaluation.
The Ising model, whose complexity can be tuned via temperature and grid size, serves as an ideal
testbed for our jump-based sampler.

We report the quantitative results in Table 2, alongside comparisons to the traditional parallel-Gibbs
sampler as a baseline. Given the absence of metric structure in the discrete Ising model, we adopt
the W1 distance over energy and average magnetization M =

∑
i xi as metrics. EGM consistently

matches or exceeds baseline performance across metrics. Especially, bootstrapping improves the
performance even in high-dimensional settings near critical temperatures β = 0.4.

7

Table 2: Performance of EGM on Ising model in terms of energy W1 (E-W1) and magnetization W1

(M -W1). For reference, we report the metric of the Gibbs sampler. Each sampler is evaluated with
three random seeds, and we report the mean ± standard deviation for each metric. Results shown in
bold denote the best result in each column.
Energy → 5 x 5 Ising (d = 25) 10 x 10 Ising (d = 100)
Parameters → β = 0.2, J = 1.0 β = 0.4, J = 1.0 β = 0.2, J = 1.0 β = 0.4, J = 1.0

Algorithm ↓ E-W1 ↓ M -W1 ↓ E-W1 ↓ M -W1 ↓ E-W1 ↓ M -W1 ↓ E-W1 ↓ M -W1 ↓
Gibbs 0.10±0.02 0.06±0.02 0.71±0.43 0.23±0.18 0.53±0.04 0.04±0.01 5.29±1.95 0.29±0.11

EGM (ours) 0.20±0.06 0.02±0.01 3.73±0.39 0.24±0.02 0.84±0.07 0.02±0.00 19.94±0.69 0.36±0.01

+Bootstrapping (ours) 0.10±0.06 0.02±0.01 0.60±0.12 0.04±0.01 0.39±0.34 0.06±0.07 2.51±0.16 0.24±0.01

10 5 0 5
Energy

0.0

0.1

0.2

D
en

si
ty

Ising (5 × 5, =0.2)

20 10 0
Energy

0.00

0.05

0.10

0.15

Ising (5 × 5, =0.4)

20 15 10 5 0
Energy

0.00

0.05

0.10

0.15

Ising (10 × 10, =0.2)

80 60 40 20
Energy

0.00

0.02

0.04

0.06
Ising (10 × 10, =0.4)

1.0 0.5 0.0 0.5 1.0
Magnetization

0.0

0.5

1.0

1.5

D
en

si
ty

Ising (5 × 5, =0.2)

1.0 0.5 0.0 0.5 1.0
Magnetization

0

1

2

Ising (5 × 5, =0.4)

0.50 0.25 0.00 0.25 0.50
Magnetization

0

1

2

3

4
Ising (10 × 10, =0.2)

1.0 0.5 0.0 0.5 1.0
Magnetization

0.0

0.5

1.0

1.5

2.0
Ising (10 × 10, =0.4)

Ground Truth Gibbs EGM Bootstrapping

Figure 2: Comparison of energy (top) and magnetization (bottom) histograms for ground-truth
samples and various sampling methods.

Qualitative evaluations presented in Figure 2 depict energy and average magnetization histograms for
the Ising model with low temperature β = 0.4, showing EGM’s ability to accurately capture the true
energy distribution.

4.2 Multimodal EGM on GB-RBM, JointDW4 and JointMoG

We validate EGM on joint discrete–continuous sampling tasks using three synthetic benchmarks:
Gaussian-Bernoulli restricted Boltzmann machine (GB-RBM) [9], double-well potential with type-
dependent interactions (JointDW4), and discrete-continuous joint mixture of Gaussians (JointMoG).
We choose GB-RBM to show an application of sampling from the energy-based model. JointDW4
mimics a simplified molecular sequence-structure co-generation problem. JointMoG is a mixed-state
extension of MoG that is common in diffusion-sampler benchmarks. For all the experiments, we
adopt conditional-OT or variance exploding paths as a conditional probability path for the continuous
flow sampler, and a masked diffusion path for the discrete jump sampler.

0 10 20 30 40
Energy

0.00

0.05

0.10

0.15

0.20

D
en

si
ty

Ground Truth
EGM
Bootstrapping
Gibbs

Figure 4: Energy histograms on the
samples from multiple samplers vs.
ground truth of JointMOG.

Quantitative outcomes are summarized in Table 3. For GB-
RBM, we also use x-W2 for the first two continuous dimen-
sions. Qualitative results for GB-RBM and JointMoG in Fig-
ure 3 visually demonstrate EGM’s capacity to capture all dis-
tinct modes accurately. In Figure 4, we observe that EGM (with
bootstrapping) correctly models the true energy distribution
in JointMoG compared to the Gibbs sampler. Bootstrapping
consistently improves performance in capturing multiple modes
of the distributions.

5 Related Works

Diffusion samplers. Diffusion samplers cast sampling as a stochastic control or denoising problem.
Early work, such as the path integral sampler (PIS) [42], required on-policy SDE simulations per
update, leading to high computational costs. Subsequent variants explored different probability

8

Table 3: Performance of EGM on multimodal task. For reference, we report the metric of the Gibbs
sampler. Each sampler is evaluated with three random seeds, and we report the mean ± standard
deviation for each metric. Results shown in bold denote the best result in each column.

Energy → GB-RBM (d = 5) JointDW4 (d = 12) JointMoG (d = 20)
Algorithm ↓ E-W1 ↓ x-W2 ↓ E-W1 ↓ E-W1 ↓
Gibbs 0.77±0.03 5.12±0.21 4.80±0.02 7.76±0.02

EGM (ours) 0.33±0.02 0.63±0.10 2.45±0.07 8.83±0.12

+Bootstrapping (ours) 0.20±0.15 0.61±0.09 1.65±0.96 1.20±0.32

(a) Gibbs (b) EGM (c) EGM + BS (d) Gibbs (e) EGM (f) EGM + BS

Figure 3: Sample plots of GB-RBM (a-c) and JointMoG (d-f). Samples are projected onto the
first two continuous dimensions. BS stands for bootstrapping. Contour lines represent the target
distribution, and colored points indicate samples from each method.

paths [38, 5, 39] and divergences [39, 31], yet most still rely on solving or simulating SDEs to
compute their objectives. To reduce this burden, off-policy methods like iDEM [1], iEFM [40], and
BNEM [30] estimate the marginal score (or flow) directly and eliminate inner-loop simulation; PINN-
based approaches such as NETS [2] similarly train samplers without rollouts. While these advances
improve efficiency in continuous spaces, discrete or jump process samplers remain underexplored.
Recently, LEAPS [20] introduced a proactive importance sampling scheme for discrete state spaces
using locally equivariant networks. However, it requires many energy evaluations at inference since it
uses escorted transport.

Generative flow networks (GFNs). GFNs [3, 22] formulate sampling as a sequential decision
process: a forward policy constructs an object step by step, and a backward policy enforces consistency
so that trajectories terminate with probability proportional to a target reward (or unnormalized density).
Training objectives like trajectory balance [26] and detailed balance [4] enable off-policy updates.
Furthermore, Falet et al. [12] propose the sampler for a sparse graphical model with a local objective
similar to our forward-looking parametrization. Though diffusion sampler is a special case of a
continuous-state continuous-time GFNs [41, 6], it remains an interesting question that training a
CTMP on a general state space, as ours, can be unified under the GFNs framework.

Relation to iDEM and BNEM. In EGM, choosing q1|t(x1|x) ∝ pt|1(x|x1) yields simple weights
w̃(x, x1) = p̃1(x1) = exp(−E(x1)). In the VE path on continuous space where target score
identity [11] is available, the integrand can be replaced with the target score instead of the conditional
score. This yields the same estimator used in iDEM [1] and NEM [30]. Yet, it remains an open
question whether it’s possible to derive the target score identity on a general state space. Recently,
Zhang et al. [43] introduce the target score identity on discrete states with neighborhood structure,
which might improve the accuracy of our estimator on discrete space when combined.

6 Conclusion

We introduce energy-based generator matching (EGM), a training method for neural samplers on
general state spaces that directly estimates the marginal generator of a continuous-time Markov pro-
cess (CTMP). EGM is the first neural-sampler framework to handle discrete, continuous, and hybrid
multimodal distributions via a principled generator-matching objective. We also propose a boot-
strapping scheme using intermediate energy estimates to reduce variance in importance weights. We
empirically validate EGM on both high-dimensional discrete systems and hybrid discrete–continuous
domains. Our results show that EGM, especially with bootstrapping, performs competitively when
sampling from complex distributions with multiple modes. This work opens new avenues for training
expressive neural samplers beyond diffusion-based models. Future work may explore unbiased
and low-variance estimation of the generator, learned proposal for better estimation, theoretical

9

connections to physics-informed neural network (PINN) objectives, and unifying the training of
general CTMP into the GFNs framework.

Acknowledgments and Disclosure of Funding

This work was partly supported by Institute for Information & communications Technology Planning
& Evaluation(IITP) grant funded by the Korea government(MSIT) (RS-2019-II190075, Artificial In-
telligence Graduate School Support Program(KAIST)), National Research Foundation of Korea(NRF)
grant funded by the Ministry of Science and ICT(MSIT) (No. RS-2022-NR072184), GRDC(Global
Research Development Center) Cooperative Hub Program through the National Research Foundation
of Korea(NRF) grant funded by the Ministry of Science and ICT(MSIT) (No. RS-2024-00436165),
and the Institute of Information & Communications Technology Planning & Evaluation(IITP) grant
funded by the Korea government(MSIT) (RS-2025-02304967, AI Star Fellowship(KAIST)). Minsu
Kim acknowledges funding from KAIST Jang Yeong Sil Fellowship.

References
[1] Tara Akhound-Sadegh, Jarrid Rector-Brooks, Avishek Joey Bose, Sarthak Mittal, Pablo Lemos,

Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, et al.
Iterated denoising energy matching for sampling from boltzmann densities. International
Conference on Machine Learning (ICML), 2024.

[2] Michael S Albergo and Eric Vanden-Eijnden. Nets: A non-equilibrium transport sampler. arXiv
preprint arXiv:2410.02711, 2024.

[3] Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio.
Flow network based generative models for non-iterative diverse candidate generation. Neural
Information Processing Systmes (NeurIPS), 2021.

[4] Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio.
Gflownet foundations. Journal of Machine Learning Research, 2023.

[5] Julius Berner, Lorenz Richter, and Karen Ullrich. An optimal control perspective on diffusion-
based generative modeling. Transactions on Machine Learning Research, 2022.

[6] Julius Berner, Lorenz Richter, Marcin Sendera, Jarrid Rector-Brooks, and Nikolay Malkin.
From discrete-time policies to continuous-time diffusion samplers: Asymptotic equivalences
and faster training. arXiv preprint arXiv:2501.06148, 2025.

[7] Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Gener-
ative flows on discrete state-spaces: Enabling multimodal flows with applications to protein
co-design. International Conference on Machine Learning (ICML), 2024.

[8] Wuhao Chen, Zijing Ou, and Yingzhen Li. Neural flow samplers with shortcut models. arXiv
preprint arXiv:2502.07337, 2025.

[9] KyungHyun Cho, Alexander Ilin, and Tapani Raiko. Improved learning of gaussian-bernoulli
restricted boltzmann machines. In Artificial Neural Networks and Machine Learning–ICANN
2011: 21st International Conference on Artificial Neural Networks, Espoo, Finland, June 14-17,
2011, Proceedings, Part I 21, pages 10–17. Springer, 2011.

[10] Mark HA Davis. Piecewise-deterministic markov processes: A general class of non-diffusion
stochastic models. Journal of the Royal Statistical Society: Series B (Methodological), 46(3):
353–376, 1984.

[11] Valentin De Bortoli, Michael Hutchinson, Peter Wirnsberger, and Arnaud Doucet. Target score
matching. arXiv preprint arXiv:2402.08667, 2024.

[12] Jean-Pierre Falet, Hae Beom Lee, Nikolay Malkin, Chen Sun, Dragos Secrieru, Thomas
Jiralerspong, Dinghuai Zhang, Guillaume Lajoie, and Yoshua Bengio. Delta-ai: Local objectives
for amortized inference in sparse graphical models. International Conference on Learning
Represantations (ICLR), 2024.

10

[13] Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon,
Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. Pot:
Python optimal transport. Journal of Machine Learning Research, 22(78):1–8, 2021.

[14] Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky TQ Chen, Gabriel Synnaeve, Yossi Adi,
and Yaron Lipman. Discrete flow matching. Neural Information Processing Systmes (NeurIPS),
37:133345–133385, 2024.

[15] Andrew Gelman, John B Carlin, Hal S Stern, and Donald B Rubin. Bayesian data analysis.
Chapman and Hall/CRC, 1995.

[16] Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on pattern analysis and machine intelligence, (6):
721–741, 1984.

[17] Ulf Grenander and Michael I Miller. Representations of knowledge in complex systems. Journal
of the Royal Statistical Society: Series B (Methodological), 56(4):549–581, 1994.

[18] W Keith Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Oxford University Press, 1970.

[19] Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian
Karrer, Ricky TQ Chen, and Yaron Lipman. Generator matching: Generative modeling with
arbitrary markov processes. International Conference on Learning Represantations (ICLR),
2024.

[20] Peter Holderrieth, Michael S Albergo, and Tommi Jaakkola. Leaps: A discrete neural sampler
via locally equivariant networks. arXiv preprint arXiv:2502.10843, 2025.

[21] Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. International Conference on Learning Represantations
(ICLR), 2020.

[22] Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex
Hernández-Garcıa, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A theory of
continuous generative flow networks. International Conference on Machine Learning (ICML),
2023.

[23] Serge Lang. Real and functional analysis, volume 142. Springer Science & Business Media,
2012.

[24] Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B Hashimoto.
Diffusion-lm improves controllable text generation. Neural Information Processing Systmes
(NeurIPS), 2022.

[25] Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. International Conference on Learning Represantations
(ICLR), 2023.

[26] Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory
balance: Improved credit assignment in gflownets. Neural Information Processing Systmes
(NeurIPS), 2022.

[27] Bálint Máté and François Fleuret. Learning interpolations between boltzmann densities. Trans-
actions on Machine Learning Research, 2023.

[28] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and
Edward Teller. Equation of state calculations by fast computing machines. The journal of
chemical physics, 21(6):1087–1092, 1953.

[29] Mark EJ Newman and Gerard T Barkema. Monte Carlo methods in statistical physics. Clarendon
Press, 1999.

11

[30] RuiKang OuYang, Bo Qiang, Zixing Song, and José Miguel Hernández-Lobato. Bnem: A boltz-
mann sampler based on bootstrapped noised energy matching. arXiv preprint arXiv:2409.09787,
2024.

[31] Lorenz Richter and Julius Berner. Improved sampling via learned diffusions. International
Conference on Learning Represantations (ICLR), 2023.

[32] Christian P Robert, George Casella, and George Casella. Monte Carlo statistical methods,
volume 2. Springer, 1999.

[33] Gareth O Roberts and Richard L Tweedie. Exponential convergence of langevin distributions
and their discrete approximations. Bernoulli, 2(3):341–363, 1996.

[34] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[35] Marcin Sendera, Minsu Kim, Sarthak Mittal, Pablo Lemos, Luca Scimeca, Jarrid Rector-Brooks,
Alexandre Adam, Yoshua Bengio, and Nikolay Malkin. Improved off-policy training of diffusion
samplers. Neural Information Processing Systems (NeurIPS), 37:81016–81045, 2024.

[36] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations.
International Conference on Learning Represantations (ICLR), 2020.

[37] Yifeng Tian, Nishant Panda, and Yen Ting Lin. Liouville flow importance sampler. International
Conference on Machine Learning (ICML), 2024.

[38] Francisco Vargas, Will Grathwohl, and Arnaud Doucet. Denoising diffusion samplers. Interna-
tional Conference on Learning Represantations (ICLR), 2023.

[39] Francisco Vargas, Shreyas Padhy, Denis Blessing, and Nikolas Nüsken. Transport meets
variational inference: Controlled monte carlo diffusions. International Conference on Learning
Represantations (ICLR), 2023.

[40] Dongyeop Woo and Sungsoo Ahn. Iterated energy-based flow matching for sampling from
boltzmann densities. arXiv preprint arXiv:2408.16249, 2024.

[41] Dinghuai Zhang, Ricky TQ Chen, Nikolay Malkin, and Yoshua Bengio. Unifying generative
models with gflownets and beyond. arXiv preprint arXiv:2209.02606, 2022.

[42] Qinsheng Zhang and Yongxin Chen. Path integral sampler: a stochastic control approach for
sampling. International Conference on Learning Represantations (ICLR), 2021.

[43] Ruixiang Zhang, Shuangfei Zhai, Yizhe Zhang, James Thornton, Zijing Ou, Joshua Susskind,
and Navdeep Jaitly. Target concrete score matching: A holistic framework for discrete diffusion.
arXiv preprint arXiv:2504.16431, 2025.

12

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See the methods Section 3 and experiments Section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: See Appendix E where relevant.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

13

Justification: See Appendix A, Appendix B, and Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: See Section 4. More detailed information is provided in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

14

Answer: [Yes]

Justification: We provide the code to reproduce all of our experimental results in Section 4.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Section 4. More detailed information is provided in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental tables include standard deviation and indicate significance of
the best metric.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We believe there are no violations of the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper studies a ML problem with no immediate societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

16

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper studies a ML problem with no immediate application to generation
of new image or text content, nor other functions that have the potential for misuse, to the
best of our knowledge.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the works introducing all datasets we study.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

17

paperswithcode.com/datasets

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No human studies.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human studies.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

18

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were used only for writing and editing assistance, not in the design or
implementation of the core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Proofs

A.1 Importance sampling for the generator estimation

This section provides a detailed derivation of the importance sampling estimator for the generator
and its parametrization presented in Equation (9).

Existence of densities. Consider the measurable space (S,Σ) with a Σ-measurable reference measure
ν (e.g., counting measure if S is discrete and Lebesgue measure if S = Rd), as introduced in the
Section 2. Since we focus on a sampling problem, the target distribution p1 admits a ν-density
dp1

dν : S → R≥0. Assume that the joint probability measure pt,1 is absolutely continuous with
respect to the product measure ν ⊗ ν. Then, all related probability measures pt, pt|1, p1|t admits
corresponding ν-densities, expressed as:

pt(dxt) =

∫
pt,1(dxt, dx1) (26)

=

∫
pt,1(xt, x1)(ν ⊗ ν)(dxt, dx1) (27)

=
(∫

pt,1(xt, x1)ν(dx1)
)

︸ ︷︷ ︸
pt(xt)

ν(dxt), (28)

pt,1(dxt, dx1) =

∫
pt,1(xt, x1)(ν ⊗ ν)(dxt, dx1) (29)

=

∫
pt,1(xt, x1)

pt(xt)
pt(xt)ν(dxt)ν(dx1) (30)

=

∫
pt,1(xt, x1)

pt(xt)︸ ︷︷ ︸
=p1|t(x1|xt)

ν(dx1)pt(dxt), (31)

pt,1(dxt, dx1) =

∫
pt,1(xt, x1)(ν ⊗ ν)(dxt, dx1) (32)

=

∫
pt,1(xt, x1)

p1(x1)
p1(x1)ν(dx1)ν(dxt) (33)

=

∫
pt,1(xt, x1)

p1(x1)︸ ︷︷ ︸
=pt|1(xt|x1)

ν(dxt)p1(dx1), (34)

where pt,1(xt, x1) denotes the density of the joint probability measure.

SNIS estimation of the generator. We introduce a proposal distribution q1|t : Σ × S → R≥0,
satisfying absolute continuity conditions: p1|t(·|x) ≪ q1|t(·|x), q1|t(·|x) ≪ ν and ν ≪ q1|t(·|x)
for all x ∈ S. Using the marginalization trick Equation (3) and the Radon-Nikodym theorem [23,
Chapter 7], we have:

Ltf(x) = Ex1∼p1|t(·|x)[L
x1

t|1f(x)] (35)

= Ex1∼q1|t(·|x)

[
dp1|t

dq1|t
(x1|x)Lx1

t|1f(x)

]
. (36)

20

Since the Bayes’ rule holds for the ν-density, i.e., p1|t(x1|xt) =
pt|1(xt|x1)p1(x1)

pt(xt)
, we obtain:

Ltf(xt) = Ex1∼q1|t(·|xt)

[
dp1|t

dq1|t
(x1|xt)Lx1

t|1f(xt)

]
(37)

= Ex1∼q1|t(·|xt)

[
dp1|t

dν
(x1|xt)

dν

dq1|t
(x1|xt)Lx1

t|1f(xt)

]
(38)

= Ex1∼q1|t(·|xt)

[
p1|t(x1|xt)
q1|t(x1|xt)

Lx1

t|1f(xt)

]
(39)

= Ex1∼q1|t(·|xt)

[
w(xt, x1)Lx1

t|1f(xt)
]

(40)

where w(xt, x1) :=
p1|t(x1|xt)

q1|t(x1|xt)
=

p̃1(x1)pt|1(xt|x1)

Zpt(xt)q1|t(x1|xt)
. We estimate the normalization term Zpt(xt)

with tractable unnormalized density w̃(xt, x1) :=
p̃1(x1)pt|1(xt|x1)

q1|t(x1|xt)
:

Ex1∼q1|t(·|x) [w̃(xt, x1)] = Ex1∼q1|t(·|x)

[
p̃1(x1)pt|1(xt|x1)

q1|t(x1|xt)

]
(41)

=

∫
p̃1(x1)pt|1(xt|x1)ν(dx1) (42)

=

∫
Z
p̃1(x1)

Z
pt|1(xt|x1)ν(dx1) (43)

= Z

∫
p1(x1)pt|1(xt|x1)ν(dx1) (44)

= Zpt(xt). (45)

Thus, we derive the self-normalized importance sampling (SNIS) estimator for the generator:

Ltf(xt) =
Ex1∼q1|t(·|xt)

[
w̃(xt, x1)Lx1

t|1f(xt)
]

Ex1∼q1|t(·|xt) [w̃(xt, x1)]
(46)

SNIS estimation of the parametrization. Similarly, the SNIS estimator for the parameterization Ft

is:

Ft(xt) = Ex1∼p1|t(·|xt)[F
x1

t|1(xt)] (47)

= Ex1∼q1|t(·|xt)

[
dp1|t

dq1|t
(x1|xt)F x1

t|1(xt)

]
(48)

= Ex1∼q1|t(·|xt)

[
p1|t(x1|xt)
q1|t(x1|xt)

F x1

t|1(xt)

]
(49)

=
Ex1∼q1|t(·|xt)

[
w̃(xt, x1)F

x1

t|1(xt)
]

Ex1∼q1|t(·|xt) [w̃(xt, x1)]
(50)

Specifically, the expression above suggests the Monte-Carlo (MC) estimator with K samples
x
(1)
1 , . . . , x

(K)
1 ∼ q1|t(·|x) as follows:

F̂t(xt) =

∑K
i=1 w̃(xt, x

(i)
1)F

x
(i)
1

t|1 (xt)∑K
i=1 w̃(xt, x

(i)
1)

. (51)

This is a SNIS estimator of the parametrization Ft(x).

A.2 Proof of Theorem 1

For convenience, we repeat the theorem and its assumptions below.

21

Theorem 2 (Restatement of Theorem 1). Let Lxr

t|r denote the conditional generator for conditional
probability path pt|r(·|xr) for 0 ≤ t ≤ r ≤ 1. If the backward transition kernels pt|r satisfy the
Chapman-Kolmogorov equation,

pt|1(dxt|x1) =
∫
pt|r(dxt|xr)pr|1(dxr|x1), (52)

and the conditional generators Lxr

t|r satisfy the marginal consistency as follows,

Exr∼pr|1,t(·|x1,xt)

[
Lxr

t|rf(xt)
]
= Lx1

t|1f(xt). (53)

Then the marginal generator can be expressed as follows, regardless of r:

Ltf(xt) = Exr∼pr|t(·|xt)

[
Lxr

t|rf(xt)
]
, (54)

where pr|t(dxr|x) is the posterior distribution (i.e., the conditional distribution over intermediate
state xr given an observation x at time t).

Proof. Define the marginal generator conditioned at time r as Lt;rf(x) := Exr∼pr|t(·|x)[L
xr

t|rf(x)].
Although this definition depends explicitly on r, we aim to demonstrate its independence from r.
This invariance is crucial since any dependence on r would result in conflicting objectives at times
t < r1, r2 for distinct r1, r2. The proof proceeds in two main steps:

1. Verify that the marginal generator Lt;r generates the probability path (pt)0≤t≤r.

2. Show the marginal generator’s independence from r (i.e., Lt;r = Lt).

To establish the first step, it suffices to verify that the Kolmogorov Forward Equation (KFE) holds for
the probability path (pt)0≤t≤r and the generator Lt;r:

d

dt
Ext∼pt

[f(xt)] = Ext∼pt
[Lt;rf(xt)] for 0 ≤ t ≤ r ≤ 1. (55)

The KFE is satisfied for the conditional probability path pt|r by definition:

d

dt
Ext∼pt|r(·|xr)[f(xt)] = Ext∼pt|r(·|xr)

[
Lxr

t|rf(xt)
]
, 0 ≤ t ≤ r ≤ 1, xr ∈ S. (56)

Thus, we have:

Ext∼pt
[Lt;rf(xt)] = Ext∼pt

Exr∼pr|t(·|xt)

[
Lxr

t|rf(xt)
]

(57)

= Exr∼pr
Ext∼pt|r(·|xr)

[
Lxr

t|rf(xt)
]

(58)

= Exr∼pr

d

dt
Ext∼pt|r(·|xr) [f(xt)] (59)

=
d

dt
Exr∼pr

Ext∼pt|r(·|xr) [f(xt)] (60)

=
d

dt
Ext∼pt [f(xt)] (61)

Hence, Lt;r indeed generates the probability path (pt)0≤t≤r.

Next, we demonstrate the independence of Lt;r from the choice of r:

Lt;rf(xt) = Exr∼pr|t(·|xt)

[
Lxr

t|rf(xt)
]

(62)

= Ex1∼p1|t(·|xt)Exr∼pr|t,1(·|xt,x1)

[
Lxr

t|rf(xt)
]

(63)

= Ex1∼p1|t(·|xt)

[
Lx1

t|1f(xt)
]

(64)

= Ltf(xt) (65)

where the marginal consistency assumption Equation (13) is applied in the third equality. This
concludes the proof.

22

A.3 Derivation of bootstrapping estimator for generator estimation

We derive a bootstrapping estimator for the marginal generator and its parametrization proposed in
Equation (21), based on the marginalization trick in Equation (54).

Bootstrapped SNIS estimation of the generator. Assume that the backward kernel pt|r admits
a ν-density. Then, the posterior pr|t also admits a ν-density. Let the proposal distribution qr|t :
Σ×S → R≥0 satisfy pr|t(·|x) ≪ qr|t(·|x), qr|t(·|x) ≪ ν, and ν ≪ qr|t(·|x) for all x ∈ S. Applying
the same change-of-measure trick as before:

Ltf(xt) = Exr∼pr|t(·|xt)

[
Lxr

t|rf(xt)
]

(66)

= Exr∼qr|t(·|xt)

[
dpr|t

dqr|t
(xr|xt)Lxr

t|rf(xt)

]
(67)

= Exr∼qr|t(·|xt)

[
dpr|t

dν
(xr|xt)

dν

dqr|t
(xr|xt)Lxr

t|rf(xt)

]
(68)

= Exr∼qr|t(·|x)

[
pr|t(xr|xt)
qr|t(xr|xt)

Lxr

t|rf(xt)

]
(69)

= Exr∼qr|t(·|x)

[
pr(xr)pt|r(xt|xr)
pt(xt)qr|t(xr|xt)

Lxr

t|rf(xt)

]
(70)

= Exr∼qr|t(·|x)

[
w(xt, xr)Lxr

t|rf(xt)
]
, (71)

where the importance weight w(xt, xr) is given by

w(xt, xr) :=
pr|t(xr|xt)
qr|t(xr|xt)

=
p̃r(xr)pt|r(xt|xr)
p̃t(xt)qr|t(xr|xt)

. (72)

To estimate the unnormalized density p̃t(xt), we define the unnormalized importance weight:

w̃(xt, xr) :=
p̃r(x)pt|r(xt|xr)
qr|t(xr|xt)

, (73)

and compute:

p̃t(xt) =

∫
pt|r(xt|xr)p̃r(xr)ν(dxr) (74)

=

∫
pt|r(xt|xr)p̃r(xr)

qr|t(xr|xt)
qr|t(xr|xt)ν(dxr) (75)

= Exr∼qr|t(·|xt)

[
pt|r(xt|xr)p̃r(xr)

qr|t(xr|xt)

]
(76)

= Exr∼qr|t(·|xt) [w̃(xt, xr)] . (77)

Thus, the marginal generator can be expressed in SNIS form as:

Ltf(xt) =
Exr∼qr|t(·|xt)[w̃(xt, xr)L

xr

t|rf(xt)]

Exr∼qr|t(·|xt)[w̃(xt, xr)]
(78)

Bootstrapped SNIS estimation of the parametrization. Now we derive a similar expression for
the parametrization of the generator. Suppose the conditional generator Lxr

t|r admits a parametrization
F xr

t|r such that,

Lxr

t|rf(xt) = ⟨Kf(xt), F xr

t|r (xt)⟩, (79)

23

where K is an operator fixed for each type of Markov processes. From the marginalization trick again:

Ltf(xt) = Exr∼pr|t(·|xt)

[
Lxr

t|rf(xt)
]

(80)

= Exr∼pr|t(·|xt)

[
⟨Kf(xt), F xr

t|r (xt)⟩
]

(81)

=

〈
Kf(xt),Exr∼pr|t(·|xt)

[
F xr

t|r (xt)
]

︸ ︷︷ ︸
:=Ft(xt)

〉
(82)

by linearity of the inner product. Thus, the marginal generator is parametrized by

Ft(xt) = Exr∼pr|t(·|xt)[F
xr

t|r (xt)]. (83)

By applying the same importance sampling trick, we obtain the SNIS estimator:

Ft(xt) = Exr∼pr|t(·|xt)

[
F xr

t|r (xt)
]

(84)

= Exr∼qr|t(·|xt)

[
dpr|t

dqr|t
(xr|xt)F xr

t|r (xt)

]
(85)

= Exr∼qr|t(·|xt)

[
pr|t(xr|xt)
qr|t(xr|xt)

F xr

t|r (xt)

]
(86)

=
Exr∼qr|t(·|xt)

[
w̃(xt, xr)F

xr

t|r (xt)
]

Exr∼qr|t(·|xt) [w̃(xt, xr)]
. (87)

Specifically, this yields the following Monte Carlo estimator using K samples x(1)r , . . . , x
(K)
r ∼

qr|t(·|xt):

F̂t(xt) =

∑K
i=1 w̃(xt, x

(i)
r)F

x(i)
r

t|r (xt)∑K
i=1 w̃(xt, x

(i)
r)

(88)

A.4 Analysis on bias and variance of the IS and bootstrapping estimator

In this section, we investigate the bias and variance of the IS and bootstrapping estimator. The
goal of the analysis is to support the bootstrapping estimation with a theoretical argument and
demonstrate that it provides a lower variance estimator compared to the IS method. To do so, we
first derive asymptotic bounds on bias and variance for IS estimation. Then, we derive the bounds
for bootstrapping estimation, assuming that the intermediate energy is well-trained. Under this
assumption, we show that bootstrapping reduces estimation variance compared to IS, demonstrating
that bootstrapping trades off the estimation variance with the model learning bias.

Bias and variance of IS estimation. We show that the SNIS estimator’s error decays as O(1/
√
K)

and its bais and variance decays as O(1/K), where K is the sample size.
Proposition 1. Consider an unnormalized density p̃1(x1) and a conditional generator F x1

t|1(xt)

evaluated on a sample x1 ∼ q1|t. Suppose p̃1(x1) and
∥∥∥p̃1(x1)F x1

t|1(xt)
∥∥∥ are sub-Gaussian. Then

there exists a constant c(xt) such that with probability at least 1− δ,∥∥∥F̂t(xt)− Ft(xt)
∥∥∥ ≤ c(xt)

√
log(2/δ)

K
,

where F̂t(xt) denotes the SNIS estimator from Equation (9) using K samples x(1)1 , . . . , x
(K)
1 ∼ q1|t :

F̂t(xt) =

∑K
i=1 p̃1(x

(i)
1)F

x
(i)
1

t|1 (xt)∑K
i=1 p̃1(x

(i)
1)

.

Moreover, its bias and variance are expressed as:

Bias[F̂t] =
1

Kpt(xt)2
(
−Cov

[
p̃1Ft|1, p̃1

]
+ Ft(xt)Var[p̃1]

)
+O

(
1

K2

)
,

24

Var[F̂t] =
4Var[p̃1(x1)]
p2t (xt)K

(1 + ∥Ft(xt)∥)2.

Proof. Let Â and B̂ denote the numerator and the denominator of F̂t, respectively, i.e.,

Â =
1

K

K∑
i=1

p̃1(x
(i)
1)F

x
(i)
1

t|1 (xt), B̂ =

K∑
i=1

p̃1(x
(i)
1). (89)

We also let E[Â] = A = p̃t(xt)Ft(xt) and E[B̂] = B = p̃t(xt). By Hoeffding’s inequality for
sub-Gaussian random variables, there exists a constant C such that∥∥∥Â−A

∥∥∥ ≤ C

√
log(2/δ)

K
,

∣∣∣B̂ −B
∣∣∣ ≤ C

√
log(2/δ)

K
, (90)

with 1− δ probability. (Here, C =
√

Var[p̃1(x1)] is a possible choice.)

Since we have bounds for both numerator and denominator of F̂t, we can also bound the error of F̂t

to Ft. The result is as follows:∥∥∥F̂t(xt)− Ft(xt)
∥∥∥ =

∥∥∥∥∥ ÂB̂ − A

B

∥∥∥∥∥ =

∥∥∥∥∥ ÂB −AB̂

B̂B

∥∥∥∥∥ (91)

≤
∥A∥

∣∣∣B̂ −B
∣∣∣+B

∥∥∥Â−A
∥∥∥

B̂B
(92)

≤ 1

B̂B
Cpt(xt)(1 + ∥Ft(xt)∥)

√
log(2/δ)

K
(93)

≤ 2C

pt(xt)
(1 + ∥Ft(xt)∥)

√
log(2/δ)

K
= c(xt)

√
log(2/δ)

K
, (94)

where we assume sufficiently large K such that B̂ ≥ 1
2B.

Now, for sufficiently large K, the Taylor expansion of F̂t is expressed as:

F̂t =
A

B
+

1

B
(Â−A)− A

B2
(B̂ −B)− 1

B2
(Â−A)(B̂ −B) +

A

B3
(B̂ −B)2 +O

(
1

K2

)
.

To derive the final equation for the bias term, one can express the bias term as follows:

Bias[F̂t] = E[F̂t]−
A

B
= − 1

B2
Cov[Â, B̂] +

A

B3
Var[B̂].

Since Cov[Â, B̂] = Cov
[
p̃1Ft|1, p̃1

]
/K and Var[B̂] = Var[p̃1]/K, one obtains the conclusion for

Bias[F̂t].

To derive the final equation for the variance term, one can combine the sub-Gaussianity of F̂t with
the error bound on

∥∥∥F̂t(xt)− Ft(xt)
∥∥∥.

Bias and variance of bootstrapping estimation. Now, we derive analogous asymptotic bounds for
the bias and variance of the bootstrapping estimator. We assume a fully trained intermediate energy
model, which allows us to isolate the impact of estimation bias on the intermediate energy while
disregarding any neural network learning bias.

Proposition 2. Consider a fully trained surrogate energy model Eϕ
r (xr) = E[Êr(xr)], where Êr(xr)

is a biased energy estimator from Equation (20). Let F̂t(xt; Er) be the bootstrapping estimator using
Er as the intermediate energy function:

F̂t(xt; Er) =
∑

i exp(−Er(x(i)r))F
x(i)
r

t|r (xt)∑
i exp(−Er(x(i)r))

. (95)

25

Then, the bias and the variance bound of the bootstrapping estimator with surrogate model F̂t(xt; Eϕ
r)

are given by:

Bias[F̂t(xt; Eϕ
r)] = Bias[F̂t(xt; Er)] +O

(
1

K2

)
,

Var[F̂t(xt; Eϕ
r)] = Var[F̂t(xt; Er)] =

Var[p̃r(xr)]
Var[p̃1(x1)]

Var[F̂t(xt)].

where F̂t(xt) is the estimator without bootstrapping. Since Var[p̃r(xr)] < Var[p̃1(x1)], the variance
of bootstrapping estimator is smaller than the F̂t(xt).

Proof. The bias of the energy estimator Êr is given as follows (refer to Corollary 3.2 of [30]):

Bias[Êr(xr)] =
Var[p̃1(x1)]
2p2r(xr)K

+O

(
1

K2

)
(96)

Thus, we can approximate the surrogate energy as,

Eϕ
r (xr) = E[Êr(xr)] = Er(xr) +

Var[p̃1(x1)]
2p2r(xr)K︸ ︷︷ ︸

:=b(xr)

. (97)

Plugging the above equation into the F̂t(xt; Eϕ
r), we get,

F̂t(xt; Eϕ
r) =

∑
i exp(−Eϕ

r (x
(i)
r))F

x(i)
r

t|r (x)∑
i exp(−Eϕ

r (x
(i)
r))

=

∑
i exp(−Er(x(i)r)− b(x

(i)
r))F

x(i)
r

t|r (x)∑
i exp(−Er(x(i)r)− b(x

(i)
r))

. (98)

Here, b(x(i)r) is close to 0 and concentrated to:

mb = b(xt) =
Var[p̃1(x1)]
2p2r(xt)K

, (99)

when t is close to r andK is sufficiently large. To keep notation concise, let wi be the self-normalized
importance weight with true energy Er(xr) and F (i)

t|r be conditional generator with the sample x(i)r :

wi =
exp(−Er(x(i)r))∑
j exp(−Er(x(j)r))

, F
(i)
t|r = F

x(i)
r

t|r (x). (100)

Then, by applying first-order Taylor expansion to the F̂t(xt; Eϕ
r) and approximation b(x(i)r) ≈ mb,

we obtain:

F̂t(xt; Eϕ
r) =

∑
i wi exp(−b(x(i)r))F

(i)
t|r∑

i wi exp(−b(x(i)r))
(101)

≈
∑

i wi(1− b(x
(i)
r))F

(i)
t|r∑

i wi(1− b(x
(i)
r))

(102)

=

∑
i wiF

(i)
t|r −

∑
i wib(x

(i)
r)F

(i)
t|r

1−
∑

i wib(x
(i)
r)

(103)

≈

(∑
i

wiF
(i)
t|r −

∑
i

wib(x
(i)
r)F

(i)
t|r

)(
1 +

∑
i

wib(x
(i)
r)

)
(104)

≈

(∑
i

wiF
(i)
t|r −mb

∑
i

wiF
(i)
t|r

)
(1 +mb) (105)

≈ (1−m2
b)

∑
i exp(−Er(x(i)r))F

x(i)
r

t|r (x)∑
i exp(−Er(x(i)r)))

(106)

= (1−m2
b)F̂t(xt; Er) (107)

26

Therefore, the bias of the bootstrapping estimator F̂t(xt; Eϕ
r) is:

Bias[F̂t(xt; Eϕ
r)] = E[F̂t(xt; Eϕ

r)]− Ft(xt) (108)

= (1−m2
b)E[F̂t(xt; Er)]− Ft(xt) (109)

= (1−m2
b)(Ft + Bias[F̂t(xt; Er)])− Ft(xt) (110)

= (1−m2
b)Bias[F̂t(xt; Er)]−m2

bFt(xt) (111)

= Bias[F̂t(xt; Er)]−
v21r(xt)

4p4r(xt)K
2

(
Ft(xt) + Bias[F̂t(xt; Er)]

)
(112)

= Bias[F̂t(xt; Er)] +O

(
1

K2

)
(113)

Similarly, the variance of the bootstrapping estimator is:

Var[F̂t(xt; Eϕ
r)] = (1−m2

b)
2Var[F̂t(xt; Er)] ≈ Var[F̂t(xt; Er)] (114)

since mb < 1 for sufficiently large K.

The variance of the IS estimator F̂t(xt) without bootstrapping is given by:

Var[F̂t(xt)] =
4Var[p̃1(xr)]
p2t (xt)K

(1 + ∥Ft(xt)∥)2, (115)

Also, the variance of the bootstrapping estimator F̂t(xt; Er) with true energy is given by:

Var[F̂t(xt; Er)] =
4Var[p̃r(xr)]
p2t (xt)K

(1 + ∥Ft(xt)∥)2, (116)

Consequently,

Var[F̂t(xt; Eϕ
r)] ≈ Var[F̂t(xt; Er)] =

Var[p̃r(xr)]
Var[p̃1(x1)]

Var[F̂t(xt)]. (117)

Because Var[p̃r(xr)] ≪ Var[p̃1(x1)], the variance of the bootstrapping estimator is smaller than
the F̂t(xt). Consequently, with an fully trained energy model, we reduce the variance of the SNIS
generator estimation.

27

B Generator estimation in the multimodal spaces

Our estimator can also be applied to the mixed state spaces S = X×Y within the generator matching
framework. Let {p̃t|1(·|x1)}0≤t≤1 and {p̄t|1(·|y1)}0≤t≤1 denote the conditional probability paths on
the X and Y , respectively, and let L̃x1

t|1 and L̄y1

t|1 denote the corresponding conditional generators

for x1 ∈ X and y1 ∈ Y . Assume these generators are parameterized by F̃ x1

t|1 : [0, 1]× S → V1 and
F̄ y1

t|1 : [0, 1] × S → V2, respectively. For the joint space S = X × Y , we consider the factorized
conditional path:

pt|1(dxt, dyt|x1, y1) := p̃t|1(dxt|x1) p̄t|1(dyt|y1),
where xt, x1 ∈ X and yt, y1 ∈ Y .

According to Proposition 5 in Holderrieth et al. [19], the conditional generator associated with pt|1
admits the following parameterization:

F x1,y1

t|1 (xt, yt) =
(
F̃ x1

t|1(xt), F̄
y1

t|1(yt)
)
,

where the sum, scalar product, and inner product are naturally defined over the tuple (·, ·) ∈ V1 × V2.
Thus, the importance sampling estimator for the parameterized generator can be written as:

Ft(xt, yt) = Ex1,y1∼p1|t(·|xt,yt)

[
F x1,y1

t|1 (xt, yt)
]
, (118)

= Ex1,y1∼q1|t(·|xt,yt)

[
dp1|t

dq1|t
(x1, y1|xt, yt)

(
F̃ x1

t|1(xt), F̄
y1

t|1(yt)
)]
. (119)

As in the uni-modality case, this leads to a self-normalized importance sampling estimator, which
can be directly extended to the bootstrapping setting. This demonstrates the generality and flexibility
of our framework in handling multi-modal spaces.

28

C Example of EGM with application to flow and masked diffusion

C.1 Generator of flow and jump model

In this section, we provide the definition of flow and discrete jump models, their generators and
parametrizations. For the case of diffusion processes or more rigorous derivations, we refer the reader
to Holderrieth et al. [19]. The discrete jump model is often referred to as a continuous-time Markov
chain (CTMC).

Flow model. Let the state space be S = Rd, and let ut : Rd × [0, 1] → Rd be a time-dependent
vector field. The flow Xt is defined by the following ordinary differential equation:

dXt

dt
= ut(Xt), X0 ∼ p0. (120)

By definition of the generator, the generator of the flow model is given by

Ltf(x) = lim
h→0

E[f(Xt+h)|Xt = x]− f(x)

h
(121)

= lim
h→0

E[f(Xt + hut(Xt) + o(h))|Xt = x]− f(x)

h
(122)

= lim
h→0

E[f(Xt) + h∇f(x)Tut(Xt) + o(h)|Xt = x]− f(x)

h
(123)

= ∇f(x)Tut(Xt), (124)

where we use a first-order Taylor expansion. Hence, the generator of the flow model admits the
following linear parametrization:

Ltf(x) = ⟨Kf(x), ut(x)⟩, Kf(x) = ∇f(x), (125)

i.e., the generator is parameterized by the ODE vector field ut, and EGM aims to learn ut via its
conditional counterpart ut|1.

Discrete jump model. Let the state space S be discrete with |S| < ∞, and define the time-
dependent transition rate matrix Qt : S × S × [0, 1] → R such that Qt(x, x) = −

∑
y ̸=xQt(y, x)

and Qt(y, x) ≥ 0 for all y ̸= x. The CTMC is defined by the transition rule:

Xt+h ∼ pt+h|t(·|Xt) = δXt(·) + hQt(·, Xt). (126)

We derive the generator informally; see Davis [10] for a formal treatment:

Ltf(x) = lim
h→0

E[f(Xt+h)|Xt = x]− f(x)

h
(127)

= lim
h→0

E[f(Xt+h)− f(Xt)|Xt = x, Jump in [t, t+ h)]P(Jump in [t, t+ h))

h
(128)

+ lim
h→0

E[f(Xt+h)− f(Xt)|Xt = x,No jump in [t, t+ h)]P(No jump in [t, t+ h))

h︸ ︷︷ ︸
=0

(129)

= lim
h→0

∑
y ̸=x(f(y)− f(x))(Qt(y,x)h

−Qt(x,x)h
)(−Qt(x, x)h)

h
(130)

=
∑
y ̸=x

(f(y)− f(x))Qt(y, x) =
∑
y∈S

f(y)Qt(y, x) (131)

Therefore, the generator of the CTMC can be linearly parameterized as:

Ltf(x) = ⟨Kf(x), Qt(·, x)⟩, Kf(x) = (f(y)− f(x))y∈S , ⟨a, b⟩ :=
∑
y∈S

ayby, (132)

i.e., the generator is parameterized by the transition rate matrix Qt(·, x), and EGM aims to learn Qt

via its conditional form Qt|1.

29

Remark on linear parametrization. Under mild regularity conditions (e.g., Feller processes),
Holderrieth et al. [19] shows that Markov processes on both discrete and continuous state spaces can
be universally expressed via linear parameterizations:

1. Discrete state space (|S| <∞): The generator is parameterized by the transition rate matrix
Qt, corresponding to a CTMC.

2. Euclidean space (S = Rd): The generator is parameterized as a combination of flow,
diffusion, and jump components.

This implies that, like GM, EGM is capable of modeling a wide range of Markov processes on both
discrete and Euclidean spaces.

C.2 Application to the conditional OT flow model

This section details the application of the EGM framework to flow models defined via the conditional
optimal transport (CondOT) path.

Definition of the CondOT path. The conditional OT probability path is defined as:

Xt = tX1 + (1− t)X0, (133)

where X1 ∼ p1, X0 ∼ p0 = N (0, I), and X0, X1 are independent. It linearly interpolates between a
Gaussian prior and the target distribution. By construction, the conditional distribution is given by:

pt|1(xt|x1) = N (xt; tx1, (1− t)2I). (134)

EGM on the CondOT path. First, consider a naive implementation of EGM with a simple proposal
distribution defined as:

q1|t(x1|xt) ∝ pt|1(xt|x1) = N (xt; tx1, (1− t)2I) (135)

∝ exp

(
−∥xt − tx1∥22

2(1− t)2

)
(136)

= exp

(
−
∥x1 − xt

t ∥
2
2

2 (1−t)2

t2

)
, (137)

which implies that

q1|t(x1|xt) = N
(
x1;

xt
t
,
(1− t)2

t2
I

)
. (138)

This choice yields a simple importance weight of the form w̃(xt, x1) = p̃1(x1)/Z1|t(xt).

Using the identity from Equation (51), the estimated vector field ut(xt) becomes:

ut(xt) =

∑
i
p̃1(x

(i)
1)

Z1|t(xt)
u
x
(i)
1

t|1 (xt)∑
i
p̃1(x

(i)
1)

Z1|t(xt)

(139)

=

∑
i p̃1(x

(i)
1)u

x
(i)
1

t|1 (xt)∑
i p̃1(x

(i)
1)

, (140)

where x(i)1 ∼ q1|t(·|xt). This is precisely the same estimator used in Woo and Ahn [40] for the
flow-based sampler.

Assumption check for bootstrapping. Next, we derive the bootstrapping estimator. We construct
the backward transition kernel pt|r satisfying the marginal consistency Equation (52):

pt|r(xt|xr) = N (xt;
t

r
xr, σtI), σt = (1− t)2 − t2

r2
(1− r)2. (141)

We verify the consistency via:∫
pt|r(xt|xr)pr|1(xr|x1)dxr = pt|1(xt|x1). (142)

30

Using reparameterization tricks Xt =
t
rXr +

√
σtϵt, Xr = rX1 + (1− r)ϵr, ϵt ⊥ ϵr, we have:

Xt =
t

r
(rX1 + (1− r)ϵr) +

√
σtϵt (143)

= tX1 +
t

r
(1− r)ϵr +

√
σtϵt (144)

d
= tX1 + (1− t)ϵ′t, ϵ′t ∼ N (0, I), (145)

where d
= denotes that two random variables have same distribution. Thus, marginal consistency holds.

The conditional vector field ut|r is defined as:

ut|r(xt|xr) =
1

r
xr +

σ̇t
2σt

(xt −
t

r
xr). (146)

This vector field arises naturally from differentiation of the reparameterization:

Xt =
t

r
Xr +

√
σtX0 =⇒ Ẋt =

1

r
Xr + ˙√σtX0 (147)

=
1

r
Xr +

˙√σt√
σt

(
Xt −

t

r
Xr

)
(148)

=
1

r
Xr +

σ̇t
2σt

(
Xt −

t

r
Xr

)
. (149)

Now, verify that the conditional vector field ut|r satisfies the marginal consistency Equation (53):
Exr∼pr|1,t(·|x1,xt)[ut|r(xt|xr)] = ut|1(xt|x1). (150)

With pr|1,t(xr|x1, xt) =
pt|r(xt|xr)pr|1(xr|x1)

pt|1(xt|x1)
being Gaussian, its mean is explicitly:

µr|1,t(x1, xt) =
t(1− r)2

r(1− t)2
xt +

rσt
(1− t)2

x1. (151)

Direct calculation confirms consistency:

Exr∼pr|1,t(·|x1,xt)[ut|r(xt|xr)] = Exr∼pr|1,t(·|x1,xt)

[
1

r
xr +

σ̇t
2σt

(
xt −

t

r
xr

)]
(152)

=
1

r
Exr∼pr|1,t(·|x1,xt)[xr] +

σ̇t
2σt

(
xt −

t

r
Exr∼pr|1,t(·|x1,xt)[xr]

)
(153)

=
1

r
µr|1,t(x1, xt) +

σ̇t
2σt

(
xt −

t

r
µr|1,t(x1, xt)

)
. (154)

The first term 1
rµr|1,t reduces to,

1

r
µr|1,t(x1, xt) =

t(1− r)2

r2(1− t)2
xt +

σt
(1− t)2

x1 (155)

=
t(1− r)2xt + r2σtx1

r2(1− t)2
(156)

=
t(1− r)2

r2(1− t)2
(xt − tx1) + x1, (157)

where we used σt = (1− t)2 − t2

r2 (1− r)2 in the third equality.

The part of second term xt − t
rµr|1,t(x1, xt) reduces to,

xt −
t

r
µr|1,t(x1, xt) = xt −

t2(1− r)2

r2(1− t)2
xt −

tσt
(1− t)2

x1 (158)

=
r2(1− t)2 − t2(1− r)2

r2(1− t)2
xt −

tσt
(1− t)2

x1 (159)

=
σt

(1− t)2
xt −

tσt
(1− t)2

x1, (160)

31

where we used σt = (1− t)2 − t2

r2 (1− r)2 in the third equality.

Put it all together, we conclude that,

Exr∼pr|1,t(·|x1,xt)[ut|r(xt|xr)] =
1

r
µr|1,t(x1, xt) +

σ̇t
2σt

(xt −
t

r
µr|1,t(x1, xt)) (161)

=
t(1− r)2

r2(1− t)2
(xt − tx1) + x1 +

σ̇t
2σt

(
σt

(1− t)2
xt −

tσt
(1− t)2

x1

)
(162)

=
t(1− r)2

r2(1− t)2
(xt − tx1) + x1 +

σ̇t
2(1− t)2

(xt − tx1) (163)

=

(
t(1− r)2

r2
+
σ̇t
2

)
xt − tx1
(1− t)2

+ x1 (164)

= (1− t)
xt − tx1
(1− t)2

+ x1 (165)

=
x1 − xt
1− t

(166)

= ut|1(xt|x1), (167)

which implies the proposed transition kernel pt|r(xt|xr) and conditional vector field ut|r(xt|xr)
satisfies the assumption of our Theorem 1.

Bootstrapped estimator for the CondOT. Lastly, we define the bootstrapping estimator for the
CondOT flow model using proposal as follows:

qr|t(xr|xt) ∝ pt|r(xt|xr) = N (xt;
t

r
xr, σtI) (168)

∝ exp

(
−
∥xt − t

rxr∥
2
2

2σt

)
(169)

∝ exp

(
−
∥xr − r

txt∥
2
2

2 r2

t2 σt

)
, (170)

which implies that

qr|t(xr|xt) = N
(
xr;

r

t
xt,

r2

t2
σtI

)
. (171)

The bootstrapping estimator is then given by:

ût(xt) =

∑K
i=1 w̃(xt, x

(i)
r)ut|r(xt|xr)∑K

i=1 w̃(xt, x
(i)
r)

, w̃(xt, xr) = p̃r(xr) = exp(−Eϕ
r (xr)), (172)

where samples x(1)r , . . . , x
(K)
r ∼ qr|t(·|xt) and Eϕ

r (xr) is learned energy estimator.

C.3 Application to the masked diffusion model

This section describes how the EGM framework can be applied to discrete jump models using the
masked diffusion path.

Definition of masked diffusion path. We define the masked diffusion path as follows:

pt|r(xt|xr) =
κt
κr
δxr (xt) +

(
1− κt

κr

)
δM (xt). (173)

where κt : [0, 1] → R>0 is an increasing function satisfying κ0 = 0, κ1 = 1, M is the mask token,
and δx is the Dirac-delta distribution centered at x. Next, we derive the conditional transition rate
matrix generating the conditional probability path pt|r(·|xr). Starting from the Kolmogorov forward

32

equation, we have:

d

dt
pt|r(yt|xr) =

κ̇t
κr

(δxr (yt)− δM (yt)) (174)

=
κ̇t
κr

1

κr − κt
((κr − κt)δxr (yt)− (κr − κt)δM (yt)) (175)

=
κ̇t
κr

κr
κr − κt

(δxr
(yt)− pt|r(yt|xr)) (176)

=
∑
xt

κ̇t
κr − κt

(δxr
(yt)− δxt

(yt))pt|r(xt|xr) (177)

=
∑
xt

ut|r(yt, xt|xr)pt|r(xt|xr), (178)

thus obtaining ut|r(yt, xt|xr) = κ̇t

κr−κt
(δxr (yt)− δxt(yt)).

EGM on the masked diffusion path. We first introduce a naive implementation of EGM using a
simple proposal distribution defined as:

q1|t(x1|xt) ∝ pt|1(xt|x1) = κtδx1
(xt) + (1− κt)δM (xt) (179)

(180)

which implies:

q1|t(x1|xt) =
{

Unif(x;S −M) (x =M)

δxt
(x1) (x ̸=M)

. (181)

This yields the simple importance weight w̃(xt, x1) = p̃1(x1)/Z1|t(xt). Following Equation (51),
the estimator for the transition matrix ut(yt, xt) becomes:

ût(yt, xt) =

∑K
i=1 p̃1(x1)ut|1(yt, xt|x

(i)
1)∑K

i=1 p̃1(x
(i)
1)

(182)

where samples x(1)1 , . . . , x
(K)
1 ∼ q1|t(·|xt).

In practice, the state space S = [N]D factorizes along dimensions, where D is sequence length and
[N] = {1, . . . , N}. We thus factorize the masked diffusion path as follows:

pt|1(xt|x1) =
D∏
i=1

pit|1(x
i
t|xi1), pit|1(x

i
t|xi1) = κtδxi

1
(xit) + (1− κt)δM (xit) (183)

where xi ∈ [N] denotes the i-th token of the sequence x ∈ S. The proposal q1|t and the transition
rate matrix ut(y, x) factorize accordingly. The proposal factorizes as:

q1|t(x1|xt) =
D∏
i=1

qi1|t(x
i
1|xit) ∝

D∏
i=1

pit|1(x
i
t|xi1), (184)

where qi1|t is a proposal defined over each dimensions. The transition matrix factorizes as:

ut(y, x) =

D∑
i=1

δ(y−i, x−i)uit(y
i, x), (185)

where x−i denotes the x without i-th token and uit is transition rate for each dimension. Hence, our
neural network is trained to predict the D ×N matrix NNθ : (xt, t) 7→

(
uit(y

i
t, xt)

)
1≤i≤D, yi

t∈[N]
.

Assumption check for bootstrapping. The backward transition kernel pt|r of masked diffusion
satisfies the marginal consistency since it defines the Markov process (noising process of masked
diffusion). Thus, it is suffice to show that the conditional transition rate matrix ut|r(yt, xt|xr) satisfies
the marginal consistency Equation (53):

Exr∼pr|1,t(·|x1,xt)[ut|r(yt, xt|xr)] = ut|1(yt, xt|x1). (186)

33

This condition can be confirmed via explicit calculations. Note that pr|1,t(xr|x1, xt) =
pt|r(xt|xr)pr|1(xr|x1)

pt|1(xt|x1)
.

(L.H.S.) =
∑
xr

κ̇t
κr − κt

(δxr
(yt)− δxt

(yt)) pr|1,t(xr|x1, xt) (187)

=
∑
xr

κ̇t
κr − κt

(δxr
(yt)− δxt

(yt))
pt|r(xt|xr)pr|1(xr|x1)

pt|1(xt|x1)
(188)

=
κ̇t

(κr − κt)pt|1(xt|x1)
∑
xr

(δxr (yt)− δxt(yt)) pt|r(xt|xr)pr|1(xr|x1) (189)

=
κ̇t

(κr − κt)pt|1(xt|x1)

(
(δM (yt)− δxt(yt))pt|r(xt|M)pr|1(M |x1) (190)

+ (δx1
(yt)− δxt

(yt))pt|r(xt|x1)pr|1(x1|x1)
)

(191)

=
κ̇t

(κr − κt)pt|1(xt|x1)

(
(δM (yt)− δxt

(yt))δM (xt)(1− κr) (192)

+ (δx1(yt)− δxt(yt))pt|r(xt|x1)κr
)

(193)

=

{
0 (xt = x1)

κ̇t

(κr−κt)(1−κt)
(δx1

(yt)− δxt
(yt))

(
1− κt

κr

)
κr (xt =M)

(194)

=
κ̇t

1− κt
(δx1(yt)− δxt(yt)) (195)

= ut|1(yt, xt|x1) (196)

where we used the fact that pr|1(xr|x1) > 0 for only xr = M or xr = x1 in the fourth equality.
Hence, the proposed transition kernel pt|r and conditional transition rate matrix ut|r satisfies the
assumption of our Theorem 1.

Bootstrapped estimator for masked diffusion. Lastly, we define the bootstrapping estimator for the
transition rate matrix of masked diffusion model. We use the following proposal:

qr|t(xr|xt) ∝ pt|r(xt|xr) =
κt
κr
δxr (xt) +

(
1− κt

κr

)
δM (xt) (197)

=


κt

κr
(xt ̸=M,xr = xt)

0 (xt ̸=M,xr ̸= xt)

1− κt

κr
(xt =M,xr ̸=M)

1 (xt =M,xr =M)

(198)

which implies,

qr|t(xr|xt) =

{
δxt

(xr) (xt ̸=M)

Cat(1− κt

κr
, . . . , 1− κt

κr
, 1) (xt =M)

(199)

where the mask token is the last token M = N and Cat is the categorical distribution with unnormal-
ized weight.

The bootstrapping estimator is given by:

ût(yt, xt) =

∑K
i=1 w̃(xt, x

(i)
r)ut|r(yt, xt|x

(i)
r)∑K

i=1 w̃(xt, x
(i)
r)

, w̃(xt, xr) = p̃r(xr) = exp(−Eϕ
r (xr)), (200)

where samples x(1)r , . . . , x
(K)
r ∼ qr|t(·|xt) and Eϕ

r (xr) is learned energy estimator.

Learning energy with generalized NEM objective. We train the Eϕ
r with the following estimator

for the intermediate energy:

Er(xr) = − logEx1∼q1|r(·|xr)[exp(−E1(x1))]− logZ1|r(xr). (201)

34

For masked diffusion, the partition function Z1|r(xr) explicitly depends on xr, is given by:

Z1|r(xr) =
∑
x1

pr|1(xr|x1) (202)

=
∑
x1

κrδx1
(xr) + (1− κr)δM (xr) (203)

=

{
(N − 1)(1− κt) (xr =M)

κr (xr ̸=M)
(204)

where N is the number of token in the state space S = [N]D.

35

D Additional details on the experiments

In this section, we provide detailed descriptions of the experimental tasks, evaluation metrics, and
experimental setups used throughout this work. The code is available at here.

D.1 Task details

Discrete Ising model. We consider the Ising model defined on a 2D grid {−1, 1}L×L with size L.
The energy function E : {−1, 1}L×L → R is given by:

E(x) = β

−J
∑
⟨i,j⟩

xixj + µ
∑
i

xi

 , (205)

where ⟨i, j⟩ denotes pairs of neighboring spins, J is the interaction strength, µ is the magnetic
moment, and β is the inverse temperature. We employ periodic boundary conditions and specifically
focus on the ferromagnetic setting (J > 0) without external fields (µ = 0), reducing the energy
function to:

E(x) = −βJ
∑
⟨i,j⟩

xixj . (206)

We fix the interaction strength at J = 1.0 and examine various temperatures through β.

For evaluation, approximate ground truth samples are generated using an extended Gibbs sampling
run consisting of 10k burn-in steps, thinning every 10 steps, and 4 parallel chains, collecting 300k
samples in total.

GB-RBM. The Gaussian-Bernoulli Restricted Boltzmann Machine (GB-RBM) task involves two
continuous visible units following Gaussian distributions and three binary hidden units following
Bernoulli distributions, with the energy function:

E(x1, x2) = Σ−1∥x1 − a∥22 − ⟨b, x2⟩ − Σ−1xT1Wx2, (207)

where x1, a ∈ R2, x2, b ∈ {0, 1}3, Σ ∈ R, and W ∈ R2×3. Parameters are selected to induce
multiple modes, specifically six modes in continuous dimensions (see Figure 5). We set:

a = [0, 0], b = [−5,−5,−5], Σ = 2, W =

(
10 0 10
0 10 0

)
. (208)

Approximately ground truth samples are generated using Gibbs sampling with 10k burn-in steps,
100-step thinning intervals, and 100 parallel chains, collecting 100k samples.

JointDW4. JointDW4 exemplifies the molecular sequence-structure co-generation task, extending
the classical four-particle double-well (DW4) benchmark with particle-type-dependent interactions.
This setup includes 4 particles in 2D space, each assigned discrete types, yielding a 12-dimensional
(8 continuous, 4 discrete) energy function:

EJointDW4(x, t) =
1

2τ

∑
i,j

a(ti, tj)(dij − d0) + b(ti, tj)(dij − d0)
2 + c(ti, tj)(dij − d0)

4, (209)

where dij = ∥xi − xj∥2 is a Euclidean distance between the particle i, j and ti ∈ {1, 2} is the type
of particle i. The parameters are set as follows:

a(·, ·) = 0, τ = 1, d0 = 2 , b =

(
−3.0 −2.5
−2.5 −2.8

)
, c =

(
0.8 0.4
0.4 0.6

)
, (210)

where b(ti, tj) = btitj and c(ti, tj) = ctitj .

Ground truth samples are similarly obtained from Gibbs sampling, running 10k burn-in steps, thinning
every 50 steps, across 100 parallel chains, collecting 100k samples in total.

JointMoG. The JointMoG extends a Gaussian mixture benchmark commonly used for evaluating
diffusion samplers. It includes one continuous dimension x ∈ R and one binary dimension b ∈
{−1, 1}:

E2D-JointMoG(x, b) =
1

2σ2
∥x− b∥22, (211)

36

https://github.com/dongyeop3813/EGM

Figure 5: Ground truth sample plot of GB-RBM (left) and JointMoG (right). Samples are projected
onto the first two continuous dimensions.

with standard deviation σ. We scale this model to 20 dimensions (10 continuous, 10 discrete) for
benchmarking:

EJointMoG(x, b) =
∑
i

1

2σ2
∥xi − bi∥22, (212)

with σ = 0.3 to create clearly separated modes. Exact sampling is possible by first sampling discrete
variables uniformly and subsequently sampling continuous variables from corresponding Gaussians,
providing exact evaluation samples.

D.2 Metrics

Evaluation metrics in our experiments primarily utilize Wasserstein distances, computed via the
Python Optimal Transport (POT) library [13] using exact linear programming. Specifically, we
measure the distances between 2000 empirical samples generated by our samplers and 2000 ground
truth samples uniformly selected from extensive Gibbs sampling or exact sampling processes.

The Wasserstein distance of order p between two probability measures µ and ν is defined as:

Wp(µ, ν) =

(
inf

π∈
∏

(µ,ν)

∫
d(x, y)pdπ(x, y)

)1/p

, (213)

where
∏
(µ, ν) = {π ∈ P(X × X) | π(A × X) = µ(A), π(X × B) = ν(B)} is the set of all

couplings between µ and ν, and d(x, y) denotes the metric on the space.

Energy 1-Wasserstein (E-W1). We use the Energy 1-Wasserstein distance as our primary evaluation
metric. It measures the 1-Wasserstein distance between the empirical distributions of energy values
computed from generated and ground truth samples. This metric is universally applicable across all
sampling tasks and effectively captures discrepancies in the energy distributions regardless of the
underlying state space and Markov processes involved.

Magnetization 1-Wasserstein (M -W1). For the discrete Ising model, we additionally employ the
magnetization 1-Wasserstein distance. Magnetization for a given spin configuration x ∈ {−1, 1}L×L

is defined as the average spin:

M(x) =
1

L2

∑
i

xi. (214)

This metric assesses the discrepancy in magnetization distributions between generated and ground
truth samples. Particularly in low-temperature scenarios (e.g., β = 0.4), the system exhibits distinct
modes around extreme magnetization values, making this metric especially sensitive to capturing
difficulties in multimodal sampling.

37

Table 4: The best hyper-parameters combination for EGM and Bootstrapping (BS). Flow LR stands
for the learning rate for the learned intermediate estimator.

Tasks Method Hidden dim. # of layers Flow LR ϵ

Ising 5× 5, β = 0.2
EGM 256 3 - -
BS 256 3 2× 10−3 0.05

Ising 5× 5, β = 0.4
EGM 256 3 - -
BS 256 3 10−3 0.05

Ising 10× 10, β = 0.2
EGM 1024 3 - -
BS 512 3 10−3 0.05

Ising 10× 10, β = 0.4
EGM 256 3 - -
BS 2048 3 10−3 0.05

GB-RBM EGM 128 6 - -
BS 128 6 10−3 0.01

JointDW4 EGM 128 6 - -
BS 128 6 10−3 0.01

JointMoG EGM 128 6 - -
BS 128 6 10−3 0.01

Sample 2-Wasserstein (x-W2). Specifically used for the GB-RBM task, the sample 2-Wasserstein
distance evaluates discrepancies between the empirical distributions of generated and ground truth
samples projected onto the first two continuous dimensions. A high sample 2-Wasserstein distance
coupled with low energy 1-Wasserstein may indicate mode collapse within certain low-energy modes.
Due to interpretability concerns (e.g., a poor sampler generating trivial solutions might misleadingly
score well), we do not employ this metric for tasks beyond GB-RBM.

D.3 Experimental setup

We performed a grid search to determine the optimal hyperparameters for each experimental task and
method, evaluating each configuration using three random seeds.

As a baseline, we report the performance of a traditional Gibbs sampler [16]. Specifically, we ran
Gibbs sampling with four parallel chains, each performing 6000 steps, collecting a total of 24,000
samples. For evaluation purposes, we uniformly subsampled 2000 samples from this set.

Across experiments, we employed 2000 Monte Carlo samples for estimations and a training batch
size of 300. Both EGM and bootstrapping utilized 100 outer-loop iterations, with each iteration
collecting 2000 samples into a buffer with a maximum size of 10k. The inner-loop iterations were
set to 100 for EGM and 1000 for bootstrapping. We adopted a linear masking schedule (κt = t),
a linear conditional OT schedule (αt = t), and an exponential variance exploding (VE) schedule
(σt = σmax(

σmin
σmax

)t). All samplers were trained using the AdamW optimizer with an initial learning
rate of 10−3, applying a cosine learning rate schedule with ηmin = 10−5. Training was conducted on
an NVIDIA-3090 GPU (24GB VRAM).

For bootstrapping, the intermediate energy model Eϕ was trained with a separately tuned learning
rate. Bootstrapping step sizes of ϵ ∈ {0.01, 0.05} were evaluated, and an exponential moving average
(EMA) was applied to stabilize estimates from Eϕ.

In multi-modal tasks, we applied a weighted loss combining discrete transition rate matrix prediction
errors and continuous drift prediction errors: LEGM = λdiscLdiscrete + λcontiLcontinuous, with fixed
coefficients λdisc = 5.0 and λconti = 1.0.

Additional task-specific details are provided below, and optimal hyperparameters are summarized in
Table 4.

Discrete Ising model. We employed a 3-layer MLP with sinusoidal time embeddings for both the
intermediate energy function and the transition rate matrix. Each discrete token representing spin
values -1 or 1 was embedded in 4 dimensions. Following Gat et al. [14], the transition rate matrix
ut(y, x) was parametrized using a probability denoiser p1|t(y|x) analogous to the x1-prediction
in the flow models. Hidden dimensions were explored within {256, 512}, with additional trials at
{1024, 2048} for the 10× 10 Ising grid.

38

GB-RBM. We utilized a 6-layer residual MLP with 128 hidden units, a 4-dimensional discrete
embedding, and a 64-dimensional continuous embedding. Discrete and continuous embeddings
were concatenated and fed into the shared 6-layer MLP. Separate predictor networks subsequently
estimated the continuous drift and discrete transition rate matrix. The conditional OT path performed
best for both EGM and bootstrapping. We clipped the regression target Ft at a maximum norm of 20
and the energy estimator Êt at 100 to stabilize training.

JointDW4. The network architecture matched that used in GB-RBM. The conditional OT path again
yielded optimal performance for both methods. Regression targets Ft and energy estimates Êt were
clipped at maximum norms of 100 and 1000, respectively.

JointMoG. We maintained the same 6-layer residual MLP structure as GB-RBM. The VE path
achieved superior performance for both methods, configured with σmax = 2.0 and σmin = 0.01.
The regression targets and energy estimates were clipped to maximum norms of 100 and 1000,
respectively.

39

E Limitations and Discussion

We have presented an energy-driven training framework for continuous-time Markov processes
(CTMPs). Our method introduces an energy-based importance sampling estimator for the marginal
generator and proposes an additional bootstrapping scheme to reduce the variance of importance
weights. By lowering this variance, we demonstrate that the bootstrapping approach significantly
enhances the sampler’s performance.

Limitations of our work. Despite the strengths of our approach, several limitations remain. First, we
have not extensively evaluated the method on high-dimensional tasks due to limited computational
resources. While our framework performs well on benchmarks of moderate scale, its scalability
to complex high-dimensional domains—such as protein conformer generation—remains an open
question.

Second, we observe that the training process can be unstable. We hypothesize that this instability
stems from the simultaneous optimization of the CTMP and the energy model. This joint training
often leads to degraded sampling performance. We apply exponential moving average updates to the
energy model, which empirically stabilizes training. Nonetheless, further investigation is required to
improve robustness.

Third, our estimator incurs bias due to self-normalized importance sampling and the potential
mismatch between the proposal and the true posterior distributions. This bias may compromise the
accuracy of generator estimation, particularly when the proposal diverges significantly from the
posterior. Although the bootstrapping scheme helps reduce this mismatch, its effectiveness depends
on the intermediate energy estimator’s quality, which may introduce additional bias.

Comparison to LEAPS. We compare our method to LEAPS [20], a neural sampler designed for
discrete spaces. Our framework is more general in that it applies to arbitrary state spaces and Markov
processes, including both continuous and discrete cases, whereas LEAPS is limited to discrete
domains. Even when instantiated with a discrete sampler, EGM and LEAPS differ fundamentally.
EGM relies on the prescribed conditional probability paths that mix the target distribution, while
LEAPS is built on the escorted transport with a temperature annealing. In continuous domains,
it has been shown that geometric annealing paths can lead to optimal drifts with high Lipschitz
constants [27], which limits sampler performance; whether a similar issue arises in discrete spaces
remains an open question.

Additionally, EGM does not utilize an MCMC kernel (analogous to Langevin preconditioning in
continuous settings), whereas LEAPS explicitly relies on this mechanism. We believe exploring both
directions—leveraging and omitting Langevin preconditioning or MCMC kernels—offers promising
avenues for future research.

40

F Additional results

F.1 Additional qualitative results

We provide additional qualitative results for the experiments in Section 4. In Figure 6, we plot the
energy histogram of the GB-RBM and JointDW4 compared to the ground truth sample. The Gibbs
sampler baseline, EGM, and Bootstrapping match the ground truth energy histogram. However, the
Gibbs sampler on GB-RBM suffers from mode collapse as demonstrated in Figure 3.

0 5 10 15
Energy

0.0

0.2

0.4

0.6

0.8

D
en

si
ty

Ground Truth
EGM
Bootstrapping
Gibbs

10 5 0
Energy

0.0

0.1

0.2

0.3

0.4

0.5

D
en

si
ty

Ground Truth
EGM
Bootstrapping
Gibbs

Figure 6: Energy histograms of various samplers on the GB-RBM (left) and JointDW4 (right).

F.2 Effective sample size of our MC estimator

We present quantitative evidence of the bootstrapped estimator’s superiority over the naive EGM.
Since the true marginal generator is intractable, we assess estimator quality via the effective sample
size (ESS):

ESS =
(
∑n

i=1 w̃i)
2∑n

i=1 w̃
2
i

1

n
(215)

where w̃i denotes the unnormalized importance weight with the i-th proposed sample and n is the
total number of MC samples. We report the normalized ESS to indicate the fraction of effectively used
samples. Figure 7 shows the average normalized ESS over the course of training. The bootstrapped
estimator maintains a significantly higher ESS during training, confirming its improved utilization of
proposed samples compared to the naive EGM.

0 20 40 60 80 100
Outer iteration

0.0

0.2

0.4

0.6

0.8

1.0

E
SS

Bootstrapping
EGM

Figure 7: Effective sample size (ESS) of the Monte Carlo estimator during training on the Ising
model (10 × 10, β = 0.4). ESS is evaluated at each regression point and then averaged across all
points. In the early training phase (shaded region), the energy model is insufficiently trained, so ESS
estimates are unreliable.

41

F.3 Additional quantitative results

Comparison to additional baselines. Because our proposed method is applicable to any state
space and any Markov process, it can also be directly applied to purely continuous settings, where
most neural samplers have been developed. Although many of these existing methods are specialized
for continuous domains, we include them as references to contextualize our results. For discrete
settings, we additionally include specialized baselines to further demonstrate the performance of our
approach. As emphasized earlier, prior neural samplers are typically designed for either continuous
or discrete domains and often rely on domain-specific architectures to achieve efficiency, whereas our
method imposes no such constraints.

For continuous tasks, we compare against iDEM and PIS on the ManyWell32 benchmark [35]. For
discrete tasks, we compare against LEAPS on a 15× 15 Ising model.

Table 5: Performance of EGM compared to PIS
and iDEM on ManyWell32. BS denotes boot-
strapping.
Algorithm E-W1 ↓ x-W2 ↓ # of modes

EGM + BS 3.30 7.07 4
PIS 3.39 6.14 1
iDEM 5.53 7.74 4

Table 6: Performance of EGM compared to
LEAPS on the Ising model (15× 15, β = 0.28).
BS denotes bootstrapping.

Algorithm E-W1 ↓ M -W1 ↓
EGM 0.89 0.06
EGM + BS 0.65 0.04
LEAPS 0.68 0.01
LEAPS + MCMC 0.49 0.01

The results show that EGM matches or slightly outperforms existing diffusion-based samplers
(iDEM, PIS) in continuous settings. In the discrete case, LEAPS performs comparably to EGM+BS
(bootstrapping). Notably, LEAPS combined with MCMC achieves slightly better performance than
EGM+BS, albeit at the cost of significantly more energy evaluations (45B vs. 85B).

Computational complexity analysis. For reference, Table 7 summarizes the computational com-
plexity of EGM compared to a classical Gibbs sampler. We report the number of energy evaluations,
wall-clock time per training epoch, and GPU memory usage on a 10× 10 Ising model with β = 0.4.
All experiments are conducted on an NVIDIA RTX 3090 GPU.

Table 7: Computational complexity of EGM compared to the Gibbs sampler.
Method # Energy evals Wall-clock time (1 epoch) Memory footprint

EGM 200M 0.16 s 12 GB
EGM + BS 200M 0.038 s 12 GB
Parallel Gibbs 280K – 1 GB

Effect of bootstrapping time step. We also study how performance varies with the time gap
ϵ = r− t > 0 between two time steps r and t. Table 8 reports the results on a 5× 5 Ising model with
β = 0.4.

Table 8: Effect of the bootstrapping time gap ϵ on performance.
ϵ E-W1 ↓ M -W1 ↓
0.01 2.84 0.32
0.02 0.96 0.09
0.05 0.84 0.08
0.10 0.58 0.08
0.20 1.90 0.09
0.50 3.73 0.20

As ϵ decreases, bootstrapping generally improves performance. However, if ϵ becomes too small, the
scale of the conditional generator Ft|r can grow rapidly, causing large fluctuations in loss magnitude

42

across time steps. This leads to unstable neural network optimization due to inconsistent gradient
scales. Consequently, choosing a moderately small ϵ is critical for stable training.

EMA and training stability. Finally, we examine the effect of applying an exponential moving
average (EMA) to the parameters of the energy model. EMA is a standard stabilization technique in
reinforcement learning, used to mitigate the moving-target problem when regressing on a learned
value function. A similar effect is observed here: applying EMA significantly stabilizes training
when the generator is conditioned on a learned energy model. Table 9 shows results with and without
EMA on a 10× 10 Ising model with β = 0.4. All other hyperparameters are fixed.

Table 9: Effect of EMA on training stability.
E-W1 ↓ M -W1 ↓

With EMA 2.51±0.16 0.24±0.01

Without EMA 10.08±8.65 0.45±0.13

Using EMA substantially reduces the variance of both energy-based and magnetization metrics,
confirming its effectiveness in improving training stability.

43

	Introduction
	Preliminary: Generator matching on general state space
	Energy-based generator matching
	Marginal generator estimation via self-normalized importance sampling
	Bootstrapping tricks for low-variance estimation
	Training details

	Experiments
	Discrete EGM on the 2D Ising Model
	Multimodal EGM on GB-RBM, JointDW4 and JointMoG

	Related Works
	Conclusion
	Proofs
	Importance sampling for the generator estimation
	Proof of thm:bootstrap
	Derivation of bootstrapping estimator for generator estimation
	Analysis on bias and variance of the IS and bootstrapping estimator

	Generator estimation in the multimodal spaces
	Example of EGM with application to flow and masked diffusion
	Generator of flow and jump model
	Application to the conditional OT flow model
	Application to the masked diffusion model

	Additional details on the experiments
	Task details
	Metrics
	Experimental setup

	Limitations and Discussion
	Additional results
	Additional qualitative results
	Effective sample size of our MC estimator
	Additional quantitative results

