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Abstract

Neural machine translation (NMT) often demands a large amount of high-quality training
data when adapting to a new domain with a carefully designed fine-tuning strategy. How-
ever, constructing a sufficient amount of parallel data for training poses challenges even for
fine-tuning. This work proposes to fine-tune a generic NMT model using only the mono-
lingual lexical distribution estimated from a small amount of in-domain data in the target
language. Word frequency plays a critical role in analyzing the differences among corpora in
various fields, e.g., psycholinguistic and language education, and our challenge lies in whether
we can fit a model using the naive statistics collected from a target language domain in NMT.
We leverage a variant of energy-based models (EBMs) based on Conditional Distributional
Policy Gradients (CDPG) with a large number of EBMs to constrain the fine-tuning process
with lexical distribution. We conduct experiments across four translation directions and four
domain datasets, totaling 16 domain adaptation scenarios. The results demonstrate that
our method enables robust domain shift while mitigating catastrophic forgetting, achieving
effective domain adaptation using only a small amount of monolingual resources.

1 Introduction

Thanks to the crawling technology and corpora construction efforts (Tiedemann) [2012; Banén et al.l 2020;
Morishita et al.l [2022)), we have access to abundant parallel translation data, resulting in the development
of high-performance pre-trained neural machine translation (NMT) models. However, NMT models suffer
from performance degradation when translating text from the domains different from the domain of the
training corpus due to the mismatch of the domain-specific terminologies (Koehn & Knowles, |2017; |Shen
et al., |2021; [Pang et al., |2025). While general-purpose parallel translation data is abundantly available,
automatically collecting a sufficient amount of domain-specific parallel data is challenging, and such special-
purpose translation tends to require custom-made parallel data due to its specialized environment, e.g.,
terminologies in the medical domain or textual styles for a specific company, demanding a specialist to
construct or check the quality of the parallel data (Chu & Wang) 2018} [Yeganova et al., [2021)).
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In this study, we leverage easily accessible pre-trained NMT models and propose to adapt a general domain
NMT model to a specific domain by using only the monolingual lexical distribution obtained from mono-
lingual domain data in the target language. Lexical distribution, or word frequency, is crucial in analyzing
the differences of corpora (Kilgarriff] 1997; |Rayson & Garside, 2000), and the simple statistics have been
investigated in various fields, such as psycholinguistic (Garlock et al. 2001)) and language learning (Laufer
& Nationl [1995), to quantify language usages. Our challenge lies in whether we can adapt a model to a
new domain using the naive statistics, i.e., monolingual lexical distribution, which are already employed in
various language assessments and easily estimated from the specific domain in the target language without
consulting a specialist to translate or check the bilingual data qualities.

However, naively performing fine-tuning of a pre-trained NMT model and forcibly changing its token predic-
tion distribution can lead to catastrophic forgetting issues, ranging from the loss of fluency (Korbak et al.)
2022 |Choshen et al., |2020; Kiegeland & Kreutzer, [2021)) to degradation in non-specific domains (Saunders
& DeNeefe, |2024; (Gu & Feng| 2020; [Thompson et al., |2019), thereby causing a reduction in translation
performance. To achieve the domain shift while reducing catastrophic forgetting, i.e., harmlessly modifying
the model’s knowledge without degradation in generalization performance or excessive overfit to a spe-
cific domain, we represent the lexical distribution of the target domain as conditional energy-based models
(EBMs) and approximate the EBMs using Conditional Distributional Policy Gradients (CDPG) (Korbak
et al., 2022)), which is a variant of the Generation under Distributional Control (GDC) framework (Khalifa
et al.l [2021). |[Korbak et al.| (2022)) had only verified the effectiveness of CDPG for small shifts, such as
translating numeral nouns (e.g., “two”) as digits (e.g., “2”), while our method employs sparse features, i.e.,
the monolingual lexical distribution of the target domain by treating each token-level statistic as a feature,
enabling domain shifts in a fine-grained manner without catastrophic forgetting.

We confirm its effectiveness across several domain adaptation benchmarks (Tian et al., [2014; [Koehn &
Knowles, 2017 [Aharoni & Goldberg, 2020)) and scenarios, covering four language directions and four domain
datasets, resulting in a total of 16 settings, thus we achieved unsupervised domain adaptation using only
target-side domain data. Moreover, we propose DYNAMIC CDPG, which dynamically adjusts parameters
using a small amount of bilingual validation data (or back-translated data in a fully unsupervised setting) to
search for better configurations and analyze ideal settings for unsupervised domain adaptation. Our analysis
of CDPG and DyNamic CDPG reveals that while selecting parameters sensitively can sometimes yield the
best results, a simple CDPG can sufficiently achieve domain shift while reducing catastrophic forgetting.

To summarize this work, our contributions are as follows:

o We first demonstrate that unsupervised domain adaptation of neural machine translation can be per-
formed robustly under a challenging yet realistic scenario where only a small amount of monolingual
in-domain data is available. We leverage the lexical distribution, i.e., the word-frequency statistics of
the target-domain data, and train a large number of EBMs within the CDPG framework to achieve
robust domain shift without catastrophic forgetting and to demonstrate strong resilience to noise.

e We explore the applicability of CDPG to more realistic downstream tasks, i.e., domain translation.
While prior GDC work has only been validated under small, pointwise shifts, we extend the frame-
work to utilize large numbers of EBMs constructed from rich feature sets such as lexical distributions,
demonstrating that large-scale domain shifts can be effectively modeled by CDPG.

e We propose DyNaMIC CDPG, which dynamically adjusts its configurations to explore better CDPG
settings for unsupervised domain adaptation. This adaptive mechanism enables the model to better
capture and align with the target-domain distribution. As a result, Dynamic CDPG can yield
further improvements in some cases and achieve more robust domain shifts.

e We conduct a comprehensive evaluation across 16 experimental scenarios and thorough analyses,
including lexical-distribution similarity, qualitative case studies, robustness to noise and randomness,
and parameter investigations, to clarify when CDPG is the most effective. This provides a practical
contribution for low-resource or sensitive domains where parallel data is scarce.
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2 Conditional Distributional Policy Gradients

Conditional Distributional Policy Gradients (CDPG) (Korbak et al.| |2022) approximates the generative
probabilities of a language model to a target distribution while preventing catastrophic forgetting. It softly
modifies the pre-trained parameters 6 by slightly shifting its generation distribution using energy-based
models (EBMs) through fine-tuning. We briefly summarize the minimal background needed to follow our
method and defer further details to Korbak et al.| (2022)).

We define the pre-trained conditional language model a(x|c) where ¢ is a context, i.e., an input source
language sentence, and « is a sentence, i.e., in a target language, sampled from the entire distribution X
given ¢. We introduce an EBM p.(x) as a controlled distribution defined as:

pelw) = -a(ale)b(a, ), 1)
C
where Z. = ) a(x|c)b(x, c) is a partition function that normalizes the entire EBM p.(x), and b(zx, c)
is a control condition function which is 1 when a certain constraint is met, e.g., digits are used in & when
translating numeral nouns in ¢. When b(z, ¢) is reduced to a product of binary scorers ¢;(x) € {0,1} in
order to encode rich constraints as proposed by [Khalifa et al.| (2021), the EBM is formulated as:

point = 71 alxzle (T
e’ (w) = i (| )1:[@( ), (2)

where “point” (pi"t and ZE°") indicates pointwise (binary) constraints.

However, such binary constraints can represent only two outcomes, namely whether a sentence satisfies the
condition, or not. This limitation makes it impossible to express preferences over partial fulfillment, e.g.,
enforcing that a constraint should hold with probability 0.5. For instance, when attempting to mitigate
gender bias in generated text, one may want the model to produce female and male entities with equal
probability, that is, 0.5 for each. In narrative generation or stylistic control, one may further require skewed
preferences such as generating certain attributes with probabilities 0.8 and 0.2. Such requirements cannot
be encoded using binary scorers alone, because they only allow all-or-nothing fulfillment of the constraint.

To overcome this limitation, [Khalifa et al.| (2021) proposed a distributional constraint method for the un-
conditional case p(x) = La(x)b(x), and Kruszewski et al.| (2023) extended this idea to the conditional EBM
with an exponential family form as follows:

g

e (@|X) = g a(@le) exp(X - d(, ), 3)
c

where A is a parameter vector controlling the desired expected feature values encoded in ¢. “dist” simply

indicates the distributional version of the EBM, in contrast to the pointwise binary case above.

The parameter A is determined through fine-tuning by starting from random initialization and iteratively
updating by stochastic gradient descent (SGD) to minimize the loss function considering a distribution over
contexts 7(c) as follows:

v)\ﬁcoef (A) = ECNT(C)EII‘:Npgi’St(m|)\)¢(SC7 C) -, (4)
where p is the probability vector specifying the desired feature distribution, and the inner expectation
Eg~pdist(;n), 1.e., the feature moments under the controlled EBM, is estimated through self-normalized
importance sampling using a(-), following |[Korbak et al| (2022). In the previous example, if the neutral
gender is expected, the desired probability is 0.5 for a female binary scorer. L.ocs refers to the coefficient
update objective for adjusting the parameter vector A so that the controlled distribution matches the desired
feature expectations.

However, since the EBM p.(x) in Equation [I| and its exponential variant of Equation [3|is not an autore-
gressive language model, it cannot be used directly for inference. Therefore, training is conducted using
the autoregressive model my(x|c) to approximate p across contexts on average by minimizing the expected
cross-entropy loss CE(-) between my(x|c) and multiple p. of the EBM as follows:

L(0) = Ecrc) CE (2 (-|A), mo(- | €)) - (5)
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The gradient of this objective takes the following importance-weighted form:

VoL(0) =Ecr(e) Vo CE (p25 (1| X), 7o (- | €)) (6)
= ECNT(C)EmNpg“t (z|A)v9 log 7o ((B | C) (7)
past (x| \)

= ECN’T(C)EENW(; (z]e) Vo log o (m | C). (8)

mo(z | c)
The loss is estimated via importance sampling from my. By iteratively applying these updates to 6, my
can approximate the generative probability of the target EBM, enabling autoregressive generation. Note
that CDPG is a fine-tuning method; thus, it does not introduce any changes to parameter size, model
architecture, or inference speed. For clarity, we note that CDPG alternates between two steps: (i) updating
A so that the controlled EBM matches the desired feature expectations, and (ii) updating 6 so that the
autoregressive model approximates this controlled distribution. These two coupled updates constitute the
core mechanism, and full derivations can be found in [Korbak et al.| (2022).

3 Domain Adaptation by CDPG

3.1 Adaptation to Monolingual Lexical Distribution

We leverage monolingual data in the specific domain in the target language, e.g., English reports in the
medical domain, and propose domain adaptation for NMT with CDPG using only the subword frequency
information as features. When applying CDPG for NMT, the source sentence corresponds to a context
¢ drawn from the source language in general domain, e.g., German news, and the ideal target sentence is
derived from pdist(x|X). For training CDPG under distribution constraints in Equation 3| it requires a
binary scorer ¢;(x, c) and a parameter \; for each feature.

Under this setting, we employ ¢(x, ¢) as features whether each subword of the target domain is included in
x. Moreover, when learning the parameter vector A in Equation |4} we set the probability of each constraint,
1, as the ratio of the frequency of subwords in the whole text in the target domain as follows:

/j. B F,,,eqtarget(xi)
T )
>, ex Freq@rset(z))

9)

where Freqt9¢t denotes the frequency of each subword x; in the target text in the vocabulary X. By
performing the above operations, we attempt to address the domain shift by utilizing the frequency of all
subwords of the target domain text. Since this feature selection only uses data from the target side, the
creation of the EBM model only requires the target side domain text.

Note that the computational cost of each CDPG iteration is dominated by two components: (i) estimating
the feature moments Egpaist(.x) (2, €) in Equation and (ii) the autoregressive LM update in Equation
For N contexts and M samples per context, the moment estimator evaluates ¢(x, ¢) only for the subwords
that actually appear in each sampled sequence . Consequently, the per-sample cost scales with the sequence
length L, rather than with the full feature dimension |¢|. Intuitively, constructing the sparse lexical histogram
for a sampled sequence is O(L), and computing the importance weights over the M samples in a context is
linear in M. Therefore, the overall EBM-side complexity across N contexts is O(NML). Moreover, because
the feature scorers factor across tokens and samples, the EBM-side computations parallelize trivially over
(e, ). The LM update, i.e., the importance-weighted forward/backward passes of 7y, is also O(NM L) and
typically dominates the wall-clock time. Thus, despite the large ambient feature space, the effective per-
iteration complexity remains O(NM L). We operate on sparse, sequence-derived features that admit efficient
vectorized and parallel computation, avoiding any need to process the full vocabulary-sized feature vector.

3.2 Dynamic CDPG

EBM is iteratively updated by Equation ] to approximate the generative language model toward the ex-
pected probability distribution of the target domain. The procedure involves generating multiple sentences
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Algorithm 1: Dynamic CDPG (Sketch)
Given : Dev set Dqev; target features pi; feature extractor ¢; metric M; outer iters T'; LRs nx, no;
schedules A = [0.5,0.4,0.3,0.2,0.1], B = [0.6,0.7,0.8,0.9, 1.0]
Input : Pre-trained LM a(z | ¢); Conditional EBM p3st(z | A)
Output : Fine-tuned autoregressive model mg

*

1 7p ¢ a; initialize A; S+ A; i+ 1; p+ S[i]; s+ —o0 // initialization
2 fort<+ 1to 7 do

// (1) EBM coefficients update (Equation EI)

3 | Sample contexts {c} ~ 7(c);

Estimate EENP(Clist [¢] via self-normalized IS using nucleus sampling & ~ a(- | ¢; top-p = p);

5 | A X—m (IE[qb} — u) // push to target features (Equation EI)

// (2) Autoregressive model update (Equation
6 | Sample (¢, ) with & ~ (- | ¢);

dist

v |we P @)

mo( | )
8 |0+ 0—mpwVelogme(x|c) // importance-weighted update (Equation

// (3) Dev evaluation and schedule update (Dynamic core part)
9 s+ M(mg, Daev) // e.g., BLEU
10 | if s > s* then
11 ‘ s s+ i+1 // accept: advance within S
12 | else
13 S+ {B’ §= A; i1 // reject: switch schedule
A S=B

14 | if 4 > |S| then
15 ‘ break // stop when a schedule is exhausted
16 | p <« SJi // set next top-p

17 return my

x conditioned on context ¢. To sample x from the entire distribution X given ¢, we often employ nucleus
sampling or ancestral sampling as a decoding strategy (Khalifa et al., [2021; Meng et al.| 2022; Korbak et al.,
2022). Nucleus sampling (Holtzman et al.l |2020)) selects tokens in descending order of probability until their
cumulative probability mass reaches a threshold p, and then samples from this set according to the multino-
mial distribution. The nucleus sampling parameter top-p controls the diversity of the generated outputs, and
when p = 1, i.e., ancestral sampling, it produces fully diverse samples from the full multinomial distribution.
A higher top-p produces more diverse outputs, whereas a lower top-p yields more conservative ones.

However, when there is a large gap between the distribution of the pre-trained model and that of the target
domain, simple ancestral sampling, which produces fully diverse samples, is not effective (Eikema et al., [2022;
Kim et al.| 2025). In practice, modifying the sampling distribution by changing the sampling method or
adjusting its parameters can make sampling more effective in practical settings (Go et al.,[2023; [Freitag et al.|
2023; Nadeem et al.| |2020; Kamigaito et all 2025)). Therefore, the sampling diversity must be controlled to
obtain better contrastive samples for precise scoring, and CDPG should apply different top-p settings for
different domains, e.g., higher top-p for larger gap in distance, and lower top-p values for closer domains.
Furthermore, when the EBM becomes closer to the target domain as training proceeds, a lower value of
top-p will be sufficient, but it still demands a higher value of top-p for the larger distance. Therefore, we
introduce Dynamic CDPG, which dynamically adjusts top-p at each iteration of the approximation to the
EBM in Equation [I} searching for better configurations of CDPG.

Algorithm [T]outlines the procedure of DyNnamic CDPG. DyNaMIC CDPG leverages a bilingual development
setE| to monitor training progress and guide adjustments to the sampling strategy. The core idea of DYNAMIC

IThe development set refers to the text used to generate features. These data can be constructed from the target-side
monolingual corpus via back-translation, as described later. Therefore, the development set remains completely disjoint from
the test data, ensuring that it functions as a proper held-out validation set.
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CDPG is to divide the training process into several iterations, then start with a constant parameter for top-
p, and reconsider it in each training iteration such that a smaller top-p will be selected in the next iteration
if a larger top-p leads to inferior performance on the development set (lines 10-17). Note that if synthetic
bilingual data can be obtained via back-translation from the target in-domain data, the setting can still be
regarded as fully unsupervised. For each iteration, we use an evaluation method, such as BLEU (Papineni
et al., 2002)), to assess the model’s performance (line 10) and decide whether to accept the update.

Specifically, we heuristically define two candidate schedules for top-p: A = [0.5,0.4,0.3,0.2,0.1] (descending),
which gradually reduces sampling diversity and encourages the model to fit more closely to the target
features, and B = [0.6,0.7,0.8,0.9,1.0] (ascending), which increases sampling diversity and serves as a
fallback exploration schedule. We start the iteration with the first element of A as the value of top-p. If an
iteration is accepted, the algorithm proceeds to the next iteration with the second element of A (line 12); if
rejected, the algorithm switches to B (line 14) and continues through its elements. The process terminates
once all values in either A or B have been exhausted (lines 15-16). Our preliminary studies showed that the
training under DyNAMIC CDPG is always stable under our top-p scheduling.

4 Experimental Setup

4.1 Datasets

We conduct experiments with four translation pairs of English to German (en—de), German to English
(de—en), English to Chinese (en—zh), and Chinese to English (zh—en). For pairs involving de, we collect
four domains, including IT, Medical, Law, and Koran from the public corpusﬂ released by [Koehn & Knowles
(2017); |Aharoni & Goldberg (2020), where each domain has 2,000 sentences for the development set and
test set, respectivelylﬂ For pairs involving zh, we collect four domains, including Education, Laws, Thesis,
and Science, from the UM-Corpus (Tian et al., [2014), which is publicﬁ with high quality. Although this
corpus provides 456 — 790 sentences for test sets in those 4 domains, the development set is not provided.
Therefore, we randomly select 3,000 sentences from the training data for each domain as the development
sets. Moreover, we use the development set of WMT from 2018 — 2022 (Bojar et al.,|2018; |Barrault et al.)
2019; 2020; |)Akhbardeh et al., |2021; Kocmi et al., 2022)), i.e., 14,482 translation instances of the newsdev set
from a news domain, to train CDPG for all translation directions by treating them as a generic domain data
set. Specifically, the contexts 7(c) are collected from the 14,482 source language sentences of the newsdev set,
and the domain features g are derived from the target language sentences of the domain-specific instances.

4.2 Models

Baselines We employ four open-source NMT models (Tiedemann & Thottingal, 2020)) from HuggingFace
Transformersﬂ (Wolf et al.l |2020) as backbones in our experiments, denoted as PRE-TRAINED. These models
are based on the Transformer architecture (Vaswani et al.,[2017)) and are trained on OPUS (Tiedemann)|2012)
with the same conﬁguratiorﬂ comprising the 6 encoder and decoder layers, 8 attention heads, embedding
size of 512, and an inner size of 2048. Since CDPG fine-tunes all parameters, we first establish a baseline by
naively fine-tuning the model on the development sets, denoted as FINE-TUNED. We also adopt LORA (Hu
et al., [2022) as a second baseline, which adapts attention weights with an inner rank of 8. The baseline
is then fine-tuned using the same setup as FINE-TUNED, offering robustness and reduced susceptibility to
catastrophic forgetting when working with smaller datasets (Xu et al. |2023; [Biderman et al., 2024). We set
the batch size to 128 and the learning rate to 2e-7 for both settings with the Adam optimizer (Kingma & Bay,
2017)). As another baseline, we conduct back-translation (Sennrich et al., |2016)), denoted as BACK-TRANS.

2https://github.com/roeeaharoni/unsupervised-domain-clusters

3Given the low quality of this corpus, we clean it and re-align the test set using de as the basis to avoid potential bias in
evaluation. The low quality includes but is not limited to repetition, no alignment, and noise. Furthermore, the refined test
data is completely unseen, enabling evaluation without any data contamination issues in the existing training corpus (Raunak
& Menezes| 2022)). The cleaned datasets are publicly available at https://github.com/naist-nlp/cdpg.

%http://nlp2ct.cis.umac.mo/um-corpus/

Shttp://data.statmt.org/wmt23/general-task/dev.tgz

6https://huggingface.co/Helsinki-NLP,

"Details in: https://huggingface.co/Helsinki-NLP/opus-mt-en-zh/blob/main/config. json
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Specifically, we generate source-language data using a reverse-direction model and the same target-language
data used for fine-tuning. The model is then fine-tuned on the generated data using the same settings. All
fine-tuning experiments are conducted for 10 epochs. The checkpoint achieving the best performance on the
development set is selected as baselines.

CDPG For training the parameter vector A in Equation |4 we set the batch size to 8 and the learning
rate 1) to 0.05 with a constant learning rate scheduler based on the training loss in our preliminary studies.
Likewise, for fine-tuning CDPG model parameters 6 in Equation 5, we set the batch size to 128, the number
of epochs to 10, and the learning rate 7y to 2e-5 with a constant learning rate scheduler and the Adam
optimizer. We always set top-p to 0.5 in training A and fine-tuning 6. Moreover, we set the character length
of the considered features, i.e., subwords, to be no less than 3 to filter insignificant features, and the input
texts are pre-processed by the tokenizer in each pre-trained model. We used disco (Kruszewski et al.| [2023)
to implement the CDPG.

Dynamic CDPG We maintain the hyperparameters of CDPG for Dynamic CDPG. DyNamic CDPG
additionally uses a bilingual development set to guide the dynamic selection of the top-p value at each
iteration, as described in Section [3.2 We construct this development set via back-translation from the
target-side monolingual corpus, similar to BACK-TRANS. Therefore, the procedure remains fully unsupervised
and is completely isolated from the test data, just as in CDPG. In our preliminary experiment comparing
back-translated bilingual data and the actual bilingual development set, the tuning results were the same.
One possible reason is that the target-side lexical distribution plays a more important role than the source-
side or full parallel data. Thus, we use back-translated data for DyNaMic CDPG while maintaining the
unsupervised setting. We set each iteration of DynaAMIC CDPG to 10 epochs. We use BLEU (Papineni
et al., [2002) to calculate the validation score for each epoch. Additionally, we set a threshold that requires
at least three improvements in the validation score for an iteration to be accepted. The initial learning rate
of each subsequent iteration is set by dividing that of the previously accepted iteration by the square root
of the number of epochs, to ensure training stability.

4.3 Evaluation

We set the beam size of 4 for each model to generate translations for the entire test set, and did not employ
nucleus sampling (Holtzman et all 2020) in the final evaluation for consistent evaluation in all settings.
Then, translations are evaluated by four automatic MT evaluation methods: 1) Confidence (Muller et al.,
2019; Wang et al., |2020)), calculated as the average of the Softmax probabilities assigned to each generated
token by the NMT system. 2) BLEU (Papineni et al., 2002)), assessed with the implementation of SacreBLEU
(Post}, |2018) to measure the surface-level similarities, 3) NIST (Doddington} |2002), which is similar to BLEU
but gives special attention to low-frequency words to assess the qualities of domain-specific terminologies,
and 4) BERTScore (Zhang et al., 2020), which reports embedding similarities by Precision, Recall, and F1
scores, where the F1 score being the harmonic mean of Precision and Recall.

5 Experimental Results

Table [1] shows the experimental results for en—de and de—en translation pairs, and Table [2] shows the
results for en—zh and zh—en translation pairs.

Finding 1: Naive supervised fine-tuning methods (almost) fail at domain adaptation with
limited in-domain data. First, compared to PRE-TRAINED, both FINE-TUNED and LORA, which naively
utilize supervision signals from parallel in-domain sentences, generally fail to achieve improvements, except
for slight gains in Medical of en—de, Laws of en—zh, and Thesis and Science of zh—en. Furthermore,
BACK-TRANS, which synthesizes pseudo-parallel data for fine-tuning, often performs comparably or worse
than FINE-TUNED, which uses a small amount of curated in-domain data. These results indicate that in
limited-resource settings, such as domain adaptation, naive adaptation from a pure NMT model, such as
PRE-TRAINED, not only fails to improve performance but often leads to degradation.
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Table 1: Our main evaluation results for the en—de and de—en translation pairs. PRE-TRAINED indicates
the performance of the original models without any fine-tuning, while the other methods are described in
Section Conf. is the abbreviation of Confidence, and P and R represent the Precision and Recall scores
of BERTScore, respectively. The best score in each block, which is divided by domain and language pair, is
highlighted in bold. The checkmark (v') indicates that parallel in-domain sentences were used as supervision
signals. Identical scores between DynaMic CDPG and CDPG, such as Koran domain in de—en, indicate
that DynaMIC CDPG rejected all updates after initialization. Red cells indicate improvements from the
base model PRE-TRAINED to the CDPG-based model.

en—de de—ren
Domain Method
Conf. BLEU NIST P R F1 Conf. BLEU NIST P R F1

PRE-TRAINED 68.39 27.58 5.97 87.48 87.70 87.52 72.02 38.80 7.96 94.93 94.92 9491

v/ FINE-TUNED 67.91 2792 6.04 87.38 87.60 87.42 71.76 38.83 7.95 94.94 94.93 94.92

v LoRA 67.79 26.88 5.83 87.33 87.56 87.37 7146 38.32 7.86 94.92 94.91 9491

IT BACK-TRANS 67.90 27.89 6.01 87.38 87.59 8741 7149 38.35 7.86 94.93 94.92 9491
CDPG 74.44 29.01 6.25 &87.68 87.77 87.67 T7.91 39.79 830 94.95 94.94 94.93

Dynamic CDPG 79.36 30.78 6.58 88.00 87.87 87.89 77.65 40.55 8.34 95.01 94.96 94.98
PRE-TRAINED 75.93 43.19 845 91.55 91.17 91.31 78.06 45.50 847 96.65 96.50 96.57

v FINE-TUNED 75.71 43.23 846 91.53 91.14 91.29 T7.77 4548 847 96.64 96.50 96.56

) v LoRA 75.50 43.56 852 9155 91.15 91.30 T77.72 4431 835 96.61 96.49 96.54
Medical BACK-TRANS 75.50 43.56 852 91.57 91.17 91.32 T77.65 4547 855 96.64 96.49 96.56
CDPG 80.85 42.54 8.60 91.61 91.28 91.40 82.84 44.56 8.56 96.57 96.50 96.53

Dynamic CDPG 82.32 43.51 8.54 91.60 91.20 91.36 82.84 44.56 8.56 96.57 96.50 96.53
PRE-TRAINED 72.49 44.82 9.01 89.38 89.11 89.22 72.89 51.75 10.05 96.06 95.75 95.90

v FINE-TUNED 72.08 44.83 9.01 89.39 89.10 89.22 72,53 51.70 10.04 96.06 95.74 95.89

v LoRA 72.05 44.80 9.01 89.42 89.12 89.25 72.55 51.67 10.04 96.05 95.73 95.89

Law BACK-TRANS 72.05 44.62 897 89.39 89.10 89.22 72.45 51.69 10.05 96.06 95.74 95.89
CDPG 77.36 44.12 9.05 89.33 89.17 89.22 78.12 51.61 10.12 96.02 95.72 95.86

Dynamic CDPG 78.18 44.87 9.03 89.40 89.09 89.22 73.02 51.64 10.15 96.07 95.73 95.89
PRE-TRAINED 61.51 18.90 5.25 81.59 80.18 80.84 59.23 20.86 5.66 91.95 91.07 91.49

v FINE-TUNED 61.39 18.86 5.24 81.56 80.16 80.82 58.80 20.81 5.65 91.94 91.06 91.48

v LoRA 61.18 18.86 5.24 81.54 80.13 80.80 5894 20.83 5.65 91.94 91.05 91.48

Koran BACK-TRANS 61.15 18.84 5.24 81.53 80.13 80.79 58.78 20.79 5.65 91.94 91.06 91.49
CDPG 67.00 18.40 5.26 81.46 80.06 80.72 64.75 20.94 5.67 91.90 91.09 91.48

Dynamic CDPG 61.30 1885 5.25 81.63 80.16 80.85 64.75 20.94 5.67 91.90 91.09 91.48

Finding 2: CDPG improves confidences and performances on low-frequency, domain-specific
terms. Next, compared to PRE-TRAINED, although CDPG consistently improves Confidence, its perfor-
mance in BLEU and BERTScore varies across domains. Specifically, in domains such as IT of en<+de and
Education of en<>zh, where other baseline methods show only limited gains, CDPG achieves improvements
across all metrics. In contrast, in domains like Law and Koran of en<>de, Medical of de—en, and Laws of
en—zh, the improvements in BLEU and BERTScore are limited. However, NIST scores, which place greater
emphasis on low-frequency words, still improve in all cases. This indicates that the consistent increases in
Confidence and NIST scores are due to improved handling of domain-specific terms, which are often struggle
to capture in general MT evaluation metrics such as BLEU because of their relatively low frequency. There-
fore, compared to the baselines, domain adaptation using CDPG is shown to be more robust, even in the
settings where access to parallel in-domain data is limited or unavailable.

Finding 3: While Dynamic CDPG often provides slight improvements, CDPG with fixed
parameters already demonstrates sufficient performance. DynNamic CDPG aims to improve MT
metrics, such as BLEU, by dynamically controlling and selecting parameters based on evaluations using a
small amount of parallel in-domain development data at each epoch. Since BLEU is used as the guiding
signal, DYNAMIC CDPG consistently achieves higher BLEU scores than CDPG. In domains such as IT
of en<»de, Thesis of en—zh, and FEducation of zh—en, DYNaAMIC CDPG selects parameters that further
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Table 2: Our main evaluation results for the en—zh and zh—en translation pairs. Notation and other
corresponding information are the same as in Table E

en—zh zh—ren
Domain Method
Conf. BLEU NIST P R F1 Conf. BLEU NIST P R F1
PRE-TRAINED 49.88 30.26 0.73 83.82 82.18 82.94 60.15 23.49 5.56 94.44 94.16 94.30
v/ FINE-TUNED 49.28 30.07 0.68 83.70 81.96 82.78 59.63 23.54 5.56 94.43 94.16 94.29
. v LoRA 49.03 30.19 0.68 83.70 81.92 82.75 59.64 23.69 5.57 94.49 94.16 94.30
Education BACK-TRANS 49.13 30.04 0.67 83.69 81.91 82.74 59.65 23.48 5.56 94.44 94.15 94.29
CDPG 57.88 31.03 0.93 84.59 83.23 83.86 66.05 23.69 5.60 94.52 94.28 94.40

Dynamic CDPG 5722 31.16 0.94 84.71 83.01 83.81 67.02 24.23 5.67 94.60 94.28 94.44
PRE-TRAINED 62.06 51.73 0.59 89.67 89.70 89.65 63.84 32.36 6.11 94.55 93.52 94.02

v FINE-TUNED 61.46 51.71 0.59 89.74 89.70 89.69 63.47 32.27 6.10 94.52 93.49 93.99

v LoRA 61.38 51.87 0.60 89.75 89.63 89.66 63.16 32.33 6.09 94.51 93.45 93.97

Laws BACK-TRANS 61.26 51.61 0.56 89.75 89.69 89.69 63.18 32.22 6.07 94.52 93.46 93.97
CDPG 68.50 50.81 0.68 89.60 89.65 89.60 69.68 34.54 6.34 94.68 93.77 94.21

Dynamic CDPG 68.50 50.81 0.68 89.60 89.65 89.60 70.50 35.06 6.38 94.74 93.87 94.29
PRE-TRAINED 47.62 1895 1.14 76.09 75.69 75.78 50.83 8.65 3.48 89.55 88.33 88.92

v FINE-TUNED 4723 1994 139 76.42 75.75 7599 50.11 860 3.46 89.56 88.31 88.91

) v LoRA 47.22 1934 1.25 76.36 75.72 75.93 50.15 8.71 3.48 89.58 88.33 88.93
Thesis BACK-TRANS 46.98 19.95 1.36 76.40 75.70 7595 50.05 8.67 3.47 89.58 88.30 88.92
CDPG 54.19 19.94 1.29 76.11 7553 75.72 57.16 849 3.51 89.52 88.38 88.93

Dynamic CDPG 51.22 20.14 1.52 76.53 75.72 76.03 58.57 8.53 3.54 89.67 88.37 89.00
PRE-TRAINED 4756 24.45 094 81.28 79.06 80.09 57.97 16.20 4.86 92.80 92.60 92.69

v FINE-TUNED 47.00 24.52 094 81.26 79.05 80.07 57.48 16.36 4.88 92.82 92.60 92.70

) v LoRA 46.75 24.57 096 81.38 79.09 80.15 57.49 16.29 4.88 92.81 92.60 92.70
Science BACK-TRANS 46.77 24.46 093 81.26 79.07 80.08 57.48 16.33 4.87 92.81 92.60 92.70
CDPG 56.27 24.78 1.02 81.48 79.70 80.53 64.06 1596 4.88 92.76 92.66 92.70

Dy~namic CDPG 52.38 24.80 1.00 81.63 79.39 80.43 65.55 16.34 4.86 92.79 92.60 92.69

Table 3: The top-p values used in DYNAMIC CDPG. Values are presented in the order they are used.

1T Medical Law  Koran Education Laws Thesis Science
en—de 0.5,0.4,0.8 0.5,0.7,1.0 0.5,0.8 1.0 en—zh 0.5,0.9 0.5 0.5,0.7 0.5,0.6,0.7
de—en 0.5,0.9 0.5 0.5,0.9 0.5 zh—en 0.5,0.4 0.5,0.4 0.5,0.6,0.7,0.8 0.5,0.3,0.2,0.1

boost the improvements already observed in CDPG. Moreover, DYNAMIC CDPG mitigates the performance
degradation seen with CDPG in some domains, including Medical, Law, and Koran of en—de, and Science of
zh—en. Table[3|summarizes the top-p values selected and how they changed during training. In Medical and
Koran of de—en and Laws of en—zh, the selected top-p remained identical to the default CDPG setting,
resulting in the same scores reported in Tables[[]and 2] These findings suggest that while DyNamic CDPG
can yield further improvements under metric supervision, the fixed-parameter CDPG already delivers strong
and stable results. Therefore, although parameter tuning is ideal, CDPG is not overly sensitive to the top-p
value, and a fixed value of 0.5 is generally sufficient.

6 Discussion

6.1 When Is CDPG Effective?

Based on the results in Tables [I] and [2} and the discussion in Section [5 although CDPG-based methods
consistently improved Confidence and NIST, performance fluctuations were observed depending on each
domain. To better understand under what conditions CDPG is effective, we conduct a detailed analy-

sis focusing on the distributional differences between the pre-trained models and the monolingual lexical
distribution features of CDPG described in Section [3.1]
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Table 4: Comparisons of the target-side lexical distribution features. The prefix len. indicates the number
of features, and sim. denotes the cosine similarity (in percent). len.1 and len.2 refer to the lengths of the
first and second feature sets in each comparison. itr and uni indicate that the similarity was computed over
the intersection or the union of the two sets, respectively.

Case (i): Dev Features v.s. Pretrained Features  Case (ii): Dev Features v.s. Test Features

Pair Domain len.l1 len.2 len.itr sim.itr len.uni sim.uni len.1 len.2 len.itr sim.itr len.uni sim.uni

en—de IT 5,832 5,553 4,152 83.14 7,233  65.09 5,832 5,475 3,366 93.14 7,941  90.99
en—de Koran 4,543 3,948 2,931 95.69 5,560 9548 4,543 4,435 3,300 98.81 5,678  98.67

de—en  Law 7,054 6,469 5668 98.80 7,855 98.66 7,054 7,014 4,754 98.19 9,314 97.91
de—en Medical 6,543 6,130 5367 95.83 7,306 94.97 6,543 6,577 4,604 94.22 8516  93.48

en—zh Thesis 7,533 7,518 5,395 74.88 9,656 73.23 7,533 3,755 3,188 92.81 8,100 91.82
en—zh  Laws 6,903 6,783 4,865 68.11 8,821 64.99 6,903 1,852 1,373 29.43 7,382  24.64

zh—en Education 10,680 9,546 7,379 80.64 12,847 79.92 10,680 2,357 1,885 70.37 10,711 65.13
zh—en Science 9,807 9,127 6,866 61.38 12,068 60.64 9,807 3,089 2,317 65.39 11,692 56.79

Table 5: Results of CDPG with fixed top-p values of 0.5, 0.8, and 1.0. The results for top-p = 0.5 are the
same as those reported in Tables [I| and |2} and the abbreviations are consistent with those tables. The best
score in each row is highlighted in bold. The row order aligns with Table

top-p = 0.5 top-p = 0.8 top-p = 1.0
Pair Domain  Conf. BLEU NIST F1 Conf. BLEU NIST F1 Conf. BLEU NIST F1
en—de 1T 74.44 29.01 6.25 87.67 74.67 29.13 6.28 87.66 67.87 28.19 6.08 87.47

en—de Koran 67.00 18.40 5.25 80.72 67.14 1850 5.29 80.74 61.30 18.85 5.35 80.85

de—en Law 78.12 51.61 10.12 9586 78.33 51.53 10.16 9586 71.83 51.58 10.16 95.87
de—en  Medical 82.84 44.56 8.56 96.53 83.06 44.82 8.61 96.54 77.72 45.06 8.61 96.54

en—zh Thesis 54.19 1994 129 7572 5393 19.98 1.48 75.86 46.96 19.95 1.47 75.76
en—zh Laws 68.50 50.81 0.68 89.60 68.78 51.16 0.65 89.63 61.68 51.90 0.61 89.71

zh—en Education 66.05 23.69 5.60 94.40 6586 23.92 5.65 94.37 59.68 23.50 5.58 94.31
zh—en  Science 64.06 15.96 4.88 92.70 63.93 16.14 4.87 92.70 5729 16.34 4.88 92.69

First, we extract the term frequency-based features p from the development set (Dev Features) and the test
set (Test Features). Next, we generate translations for the development set using the pre-trained model
and extract features from these translations (Pretrained Features). Using these three types of features,
we compute the cosine similarity between two feature sets in the following two cases. Case (i) compares
Dev Features and Pretrained Features to examine how much CDPG can improve over PRE-TRAINED. Case
(ii) compares Dev Features and Test Features to indicate how uniformly the lexical distributions are aligned
across the sampled sets. To account for differences in feature set lengths, which arise from zero counts due
to mismatches in word usage, we compute similarity using both the intersection and the union of the sets.

Table [] presents the analysis of features to complement Tables [I] and [2] in some representative domains.
Focusing on IT of en—de, we observe that in Case (i), the similarity sim.uni is low (65.09), suggesting that
the pre-trained model does not perform well on this domain. Consequently, CDPG successfully improves
overall performance by aligning features more closely with those of the IT domain. Similar trends are
also observed in the Thesis domain of en—zh and the Education domain of zh—en. In contrast, in the
Koran domain, the similarity is already high (95.69), so the impact of CDPG is limited. A similar trend
is observed in de—en. Turning to Laws of en—zh and Science of zh—en, although the similarity in Case
(i) is relatively low, CDPG-based methods show only limited improvement. Looking at Case (ii), the
similarity sim.uni is also quite low, indicating that the lexical distribution is scattered. In such cases, simply
approximating the feature space is insufficient to improve BLEU or other metrics, as the issue lies in a
distribution mismatch within the same domain data. However, even in these scenarios, both NIST and
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Table 6: Translation examples from the outputs of PRE-TRAINED and CDPG. We select one short and one
long sentence for each of en—de and en—zh. In #Changes, the numerator indicates the number of sentences
in which CDPG made changes compared to PRE-TRAINED, and the denominator indicates the size of the
test set. Words highlighted in red indicate correct domain-specific usage, those in blue represent updated
terms that do not match the correct target term, and underlined words indicate inaccurate translations.

Domain: IT Pair: en—de #Changes: 662/2000
Input SubDialog has one state, default.

Reference SubDialog hat nur einen Status, Standard.

PRE-TRAINED  SubDialog hat einen Zustand, default.

CDPG SubDialog hat einen Zustand, Standard.

Domain: Medical Pair: en—de #Changes: 748/2000

4 ml of solution in a 5 ml vial (type I glass) closed with a latex-free stopper

(bromobutyl/ isoprene polymer) and a seal (lacquered plastic).

4 ml Lésung in einer 5 ml-Durchstechflasche (Glastyp I), die mit einem latexfreien Stopfen
(Bromobutyl/Isoprenpolymer) und eine Kappe (lackierter Kunststoff) verschlossen ist.

4 ml Losung in einer 5-ml-Durchstechflasche (Glas Typ I), die mit einem latexfreien Stopfen
(Brombutyl/Isoprenpolymer) und einem Siegel (Lackkunststoff) verschlossen ist.

4 ml Losung in einer 5 ml Durchstechflasche (Glas Typ I), die mit einem latexfreien Stopfen

Input
Reference

PRE-TRAINED

CDPG (Brombutyl/Isoprenpolymer) und einem Siegel (lackierter Kunststoff) verschlossen ist.

Domain: Education Pair: en—zh #Changes: 408/790
Input What an absurd suggestion!

Reference Z I B R |

PRE-TRAINED  #Hi5i/\i& !

CDPG Z 2 BRI

Domain: Thesis Pair: en—zh #Changes: 414/625
Input Newton’s transformation family f w(z)=z-1wz w-1 containing only one complex parameter w(w#0 or 1) is

constructed from the transcendental mapping z—e z w+-c.
Reference PR M (2) =eaw-+cHiis H &7 8 55w (we 0301) BYA U HERw (2) =2~ Twaw- 1L,
fw(z) B ATEUE S £ MRME A, -
PRE-TRAINED B fw(z) =z-1wz W-1 [NEE—1EE528w(w)0 51) #f(z) =z-1wz W-1-
CDPG P fw (2) =2z-1wz W-1 NEE—NEESHw(w)0 51), ERAMBTEREze z+c &R w- 1R .

Confidence scores consistently improve, suggesting that CDPG still succeeds in generating domain-specific
terms. In summary, CDPG is most effective when there exists a relatively large gap in feature distribution
in the pre-trained model, indicating that it can achieve faithful domain shifts under such conditions.

Finally, to evaluate the sensitivity of CDPG to parameter settings, we fix the top-p value at three levels:
0.5, 0.8, and 1.0. Table [5| shows the resulting score variations. Based on these results and the analysis in
Table [} we categorize the outcomes into two scenarios. First, when the similarity between Dev Features
and Pretrained Features (Case i) is low and the similarity between Dev Features and Test Features (Case ii)
is high, smaller top-p values tend to yield better performance. This pattern is observed in domains such as
Thesis of en—zh and IT of en—de. In contrast, using top-p = 1.0 helps maintain performance in domains
like Laws of en—zh and Science of zh—en. Second, when the similarity between Dev Features and Pretrained
Features (Case i) is already high, the performance improvement from CDPG is generally limited. In such
cases, score variation across different top-p values is small, and top-p = 1.0 tends to be the safest choice.
In addition, we observe that the Confidence score consistently changes with the top-p value, regardless of
the actual translation quality. These results support our earlier discussion that the performance of CDPG
is influenced by the properties of the provided monolingual lexical distribution features, such as the gap
between the pre-trained model and the target domain, as well as the consistency of domain distributions.

6.2 Qualitative Analysis

Table [6] presents four representative translation instances that illustrate subtle effects of CDPG not fully
captured by quantitative metrics. We first observe that CDPG only partially modifies the original model’s
knowledge, as demonstrated by conservative changes in the translations, and primarily enhances the model’s
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Table 7: Human evaluation results. In (i) Automatic Statistics, #test indicates the number of sentences in
the test set, #diff denotes the number of sentences whose outputs differ between CDPG and PRE-TRAINED,
change% is the proportion of changed outputs (#diff/#test), and win% is the percentage of sentences where
CDPG obtains a BLEU score not lower than PRE-TRAINED. In (ii) Count by Feature, #term. represents
the number of changes caused by terminology, #fit indicates how many of these changes match the provided
monolingual features, term.% is the proportion of terminology-related changes (#term./#diff), and fit% is
the percentage of terminology changes that correspond to target-domain features (#fit/#term.). In (iii)
Human Judgment, #win, #lose, and #tie show human preferences for term selection among the #term.
cases. win% indicates the proportion of clear improvements and win-tie% indicates the proportion of outputs
that are judged as improved or at least reasonable under the conservative soft-constraint behavior of CDPG.

(i) Automatic Statistics (ii) Count by Features (iii) Human Judgment
Pair  Domain #test #diff change% win% #term. #fit term.% fit% #win #tie #lose win% win-tie%

en—zh Education 790 408 51.65 61.38 183 176 46.08 93.62 106 52 30 77.94 84.04
en—zh  Thesis 625 414 66.24 55.08 205 190 49.52 92.68 99 59 47 67.81 T77.07
zh—en  Laws 456 276 60.53 61.83 142 140 51.45 98.60 89 14 39  69.53 72.54
de—en IT 2,000 259 12.95 57.00 147 145 56.76 98.64 67 43 37  64.42 T74.83
en—zh  Laws 456 268 58.77 44.40 107 102 38.06 95.33 30 51 26 53.57 75.70
de—en Medical 2,000 215 10.75 4847 64 59 2977 9219 24 32 8 75.00 87.50

term choice. Specifically, for the two en—de instances, regardless of sentence length, only domain-specific
terms are modified without affecting the overall semantics or syntax, resulting in conservative behavior
where not all test set inferences are altered. These findings confirm our motivation that CDPG can modify
model knowledge harmlessly, avoiding issues such as catastrophic forgetting. Notably, they also explain the
non-significant differences in BERTScore observed in Tables [I] and [2] since representation-level evaluation
methods are not sensitive to word-level changes. In contrast, the consistent improvements in NIST scores
highlight CDPG’s effectiveness in conservatively enhancing domain-specific term usage.

However, these findings do not imply that CDPG benefits only word selection. In Thesis of en—zh, PRE-
TRAINED exhibits issues such as semantic loss and repetitive generation, whereas CDPG complements the
missing semantics and mitigates the repetition. This improvement may be attributed to the enhanced
confidence provided by GDC. Similarly, in the short sentence from en—zh, PRE-TRAINED tends to translate
the source into Chinese idioms that do not fully align semantically with the original sentence, i.e., ignoring
the semantics of the word “suggestion”. In contrast, CDPG correctly translates the key terms, suggesting
that GDC enhances the model’s focus on important words. In addition, in the long sentence of en—zh, the
blue words represent an error in translation. This occurs because CDPG translates “transcendental” and
“mapping” separately, as both words are present in the given features. This suggests that, since CDPG acts
as a soft constraint, its use of keywords is not strictly enforced, but applied in a conservative manner.

6.3 Human Evaluation for Fine-grained Term-level Analysis

In Section [6.2] we found that CDPG makes conservative changes to translations and primarily enhances
the model’s term choice. Because the use of keywords is not strictly enforced but applied in a conservative
manner, it effectively acts as a soft constraint, indicating that CDPG does not introduce destructive or
harmful changes. Moreover, based on the discussion in Section [6.1} it is suggested that CDPG is the most
effective when a relatively large gap exists in feature distribution in the pre-trained model, indicating that
it can achieve faithful domain shifts under such conditions. From these observations, we hypothesize that
CDPG-based methods function by encouraging the model to make term-level improvements according to
the provided feature distributions. To verify this, we conduct human evaluations to analyze the model’s
behavior from a term-level perspective.

This evaluation consists of three steps: (i) a sentence-level analysis using automatic statistics, i.e., BLEU, to
measure improvement rates in order to focus only on examples whose outputs were changed by CDPG; (ii)
a manual examination of sentences where changes were caused by term substitutions, checking whether the
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substituted terms appear in the target-domain features; (iii) finally, for cases where the substituted terms
match the features, we measure the win rate via human evaluation to assess whether CDPG consistently
produces faithful domain shifts at the term level. Table [7] shows the human evaluation results on six
representative cases, including four cases where automatic statistics show substantial improvement, and
two cases where the BLEU improvement is relatively small between CDPG and PRE-TRAINED in Tables [I]
and

First, from the results of (i) Automatic Statistics, we observe that the impact of the soft constraint of CDPG
on outputs (change%) is around 50 to 60% for Chinese-related domains and slightly above 10% for German-
related domains. This suggests that the extent of changes depends on how the test sets are constructed.
Even when the number of changed outputs is small, for example 12.95% for de—en IT, the win rate, i.e.,
how often CDPG outperformed PRE-TRAINED among changed samples, still shows a positive trend. In
contrast, for domains such as en—zh Laws, where the change ratio is high (58.77%), the final win rate is
more limited (44.40%). This suggests that, under a conservative soft-constraint domain shift, the impact is
determined primarily by which terms are substituted, rather than by the number of substitutions.

Next, based on the analysis in Section[6.1] i.e., the effectiveness of CDPG depends on the alignment between
the provided features and the test domain, we further conduct (ii) Count by Features. We manually examine
sentences whose changes come from term substitutions and check whether the substituted terms appear in
our features. The results of fit% show that most terminology-related substitutions indeed correspond to
features in the target domain, while a few mismatches can be attributed to the soft-constraint behavior of
CDPG discussed in Section [6.2] This confirms that the improvements arise from faithful domain-specific
terminology shifts guided by the provided feature distribution.

Finally, we conduct human evaluation in (iii) Human Judgment to assess whether the substitutions are rea-
sonable for sentences involving terminology changes (#term.). Sentence-level comparisons between CDPG
and PRE-TRAINED show that CDPG is preferred in a majority of cases in win%, and when ties are included
(win-tie%), the preference reaches approximately 75%. This indicates that CDPG generally produces faith-
ful yet harmless modifications, consistent with its soft-constraint nature. Taken together, these findings
demonstrate that CDPG induces subtle terminology-level adjustments that may not be fully captured by
automatic metrics such as BLEU, but remain reasonable and domain-appropriate. Therefore, we conclude
that CDPG aligns with our motivation, as it performs a soft-constraint domain shift guided by the provided
feature distribution and shows stable effectiveness through manual validation.

6.4 Will Other Domains Be Influenced?

The primary goal of CDPG is to encourage the distribution of the pre-trained model to align with the
expectations of the given features. However, since CDPG fits the model to a single domain, there is a
potential risk of reduced generalization to other domains. Therefore, as shown in Table 8] we conduct
experiments to measure the performance changes of DYNAMIC CDPG across domains from two perspectives:
(1) the relative difference between FINE-TUNED and DyNAMIC CDPG in the experimented domains; and
(2) the change in performance of both FINE-TUNED and DyNaMIC CDPG on a generic domain.

First, FINE-TUNED consistently shows a decrease in both confidence and performance on the generic domain,
whereas DYNAMIC CDPG achieves a significant increase in confidence in most cases, albeit with some
fluctuations in performance. This indicates that the improvements achieved by our method generalize well,
likely due to its intentionally conservative updates. While DYNAMIC CDPG generally demonstrates better
generalization than FINE-TUNED, there are two types of exceptions: (1) Changes in confidence can affect
generalization, as CDPG induces a global increase in confidence rather than domain-specific gains. However,
this indirect influence is generally limited. For example, although the largest BLEU score drop caused by
increased confidence is 1.13 on Koran of en—de, DYNAMIC CDPG achieves a 2.86 BLEU improvement
on IT, which is significantly better than FINE-TUNED. (2) Performance in aligned cases is lower than in
some cross-domain settings, such as Thesis of en—zh and Medical of en—de, suggesting that the provided
dev features can have a negative impact. These results once again corroborate our analysis in Section [6.1
showing that the effectiveness of CDPG is closely tied to the quality and nature of the provided features.
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Table 8: Relative differences between the scores of FINE-TUNED and DyNAMIC CDPG. The columns and
rows indicate the domains used for training and testing, respectively. Underlined values denote aligned
cases where the training and testing domains are the same. Gen.f.t. and Gen.d.c. indicate the differences
between PRE-TRAINED and FINE-TUNED, and between PRE-TRAINED and DyNaMic CDPG, respectively,
on a generic domain (newstest2020). These serve as pivots for measuring relative differences.

Confidence BLEU

Education Thesis Science Gen.f.t. Gen.d.c. Education Thesis Science Gen.f.t. Gen.d.c.
Education 7.94 8.29 9.21 -1.16 8.52 1.09 0.29 -0.44 -0.76 -0.17
—zh Thesis 6.70 3.99 5.58 -0.31 7.69 0.87 0.20 0.37 -0.28 0.13
Science 4.83 4.20 5.38 -0.68 4.92 0.87 0.50 0.28 -0.02 0.33
Education 7.39 7.86 7.83 -0.59 8.31 0.69 -0.07 -0.27 -0.11 0.19
—en Thesis 7.72 8.46 8.03 -0.51 8.84 0.66 -0.11 0.09 -0.04 0.20
Science 7.81 8.51 8.07 -0.55 8.89 0.64 -0.26 -0.02 -0.07 0.26

1T Medical Koran Gen.f.t Gen.d.c. IT Medical Koran Gen.f.t Gen.d.c.
IT 10.61 8.97 9.90 -0.22 12.75 2.86 0.38 -1.13 -0.15 -1.65
—de Medical 8.32 6.61 7.11 -0.27 9.47 2.44 0.28 -0.63 -0.07 -0.90
Koran 0.65 0.47 -0.09 -0.21 -0.86 1.05 0.93 -0.01 -0.18 -0.08
IT 5.89 6.17 6.76 -0.22 10.38 2.72 -0.78 -0.04 -0.11 -0.81
—en  Medical -1.02 -0.05 -0.82 -0.29 -1.50 -0.65 -0.42 -0.11 -0.06 -0.18
Koran 6.07 5.92 5.95 -0.20 8.28 0.97 -0.91 0.13 -0.14 -0.40

Table 9: Scores from experiments with mixed-domain data from two domains. The main domain data
is fixed, and sentences from a mized domain are added during feature construction. The model is then
evaluated only on the main domain data. #Sent. indicates the number of added sentences from the mixed
domain. The best value for each domain block (across different #Sent. settings) is shown in bold.

English—German (Main: IT, Mix: Medical) English—Chinese (Main: Thesis, Mix: Laws)
Method  #Sent. Conf. BLEU P R F1 Method  #Sent. Conf. BLEU P R F1
0 67.91 27.92 87.38 87.60 87.42 0 47.23 19.94 76.42 75.75 75.99
FINE-TUNED 500 67.82 27.63 87.35 87.57 87.39 FINE-TUNED 750 47.14 19.77 76.44 7573 75.98
1,000 67.75 27.61 87.36 87.58 87.40 1,500 47.05 19.63 76.42 T75.75 75.98
2,000 67.61 27.27 87.32 87.55 87.36 3,000 46.83 19.13 76.37 75.74 75.95
0 74.44 29.01 87.68 87.77 87.67 0 54.19 19.94 76.11 75.53 75.72
CDPG 500 74.24 29.70 87.70 87.80 87.70 CDPG 750 54.16 20.06 76.25 75.59 75.81
1,000 74.22 28.83 87.63 87.77 87.64 1,500 54.12 20.15 76.21 75.59 75.80
2,000 74.14 29.43 87.68 87.79 87.68 3,000 54.01 20.10 76.24 75.58 75.80

Finally, we simulate a more realistic setting where the prepared data is not perfectly clean and may include
content outside the target domain. We demonstrate the robustness of CDPG by comparing its performance
trends to those of FINE-TUNED in mixed-domain scenarios, where an extra domain dataset is intentionally
introduced during tuning as contamination. Table [9] shows the results under several contamination settings.
The results reveal that the performance of FINE-TUNED consistently declines as the degree of domain mixing
increases. In contrast, the performance of CDPG remains stable regardless of the domain mixture.

These findings suggest that, due to its conservative tuning approach, CDPG is less prone to issues such
as catastrophic forgetting and overfitting. Moreover, even under more realistic conditions involving data
contamination, CDPG achieves robust domain adaptation using only a small amount of monolingual data
and target-side lexical distributions, outperforming typical fine-tuning methods that rely solely on parallel
data.
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Table 10: Results of CDPG with fixed top-p values of 0.5, 0.8, and 1.0, evaluated over eight different random
seeds, reporting the mean p and standard deviation o as fi4,. The row order follows Tables [ and [f] The
experimental settings and abbreviations are consistent with those in Table

top-p = 0.5 top-p = 0.8 top-p = 1.0
Pair  Domain Conf. BLEU F1 Conf. BLEU F1 Conf. BLEU F1

en—de 1T 74.4210.05 29.0110.26 87.6610.02 74.57+0.10 29.0040.22 87.6610.02 67.6410.21 28.03+0.34 87.4040.06
en—de Koran 66.9710.04 18.4710.07 80.73+10.02 67.07+0.05 18.60+£0.07 80.75+£0.02 60.9210.21 18.9110.08 80.87+0.02

de—en Law 78,11i0,04 51.60i0,02 95.86:{:0‘01 78.31:{:0‘05 51~55:|:0,03 95.86i0,00 71,65i0,22 51.62i0,04 95.89:{:0‘01
de—en Medical 82.79i0A03 44.57;&)‘04 96.54:|:0A00 83.07i0,07 44.86;‘:0‘04 96.54:5:0‘00 77.65i021 45.313:0‘30 96.54:|:0A01

en—zh Thesis 54.2640.11 19.9840.06 75.8140.06 54.144+0.13 19.96+0.08 75.84+0.06 47.14+0.20 19.96+0.06 75.74+0.06
en—zh Laws 68.57i0,07 50.81i0,15 89.59:{:0‘03 68.88:{:0‘12 51~09:|:0,17 89.59i0,03 61.80i0,12 51.85j:0,10 89.71:{:0‘03

zh—en Education 66.1240.06 23.82+0.18 94.4140.01 66.1940.08 23.90+0.15 94.3840.01 59.85+0.20 23.68+0.12 94.33+0.02
zh—en Science 64.1240.05 16.0240.13 92.69+0.01 64.05+0.10 16.0940.04 92.39+0.01 57.69+0.17 16.30+0.08 92.68+0.02

6.5 Robustness Analysis of CDPG to Randomness

Finally, in our previous experiments, e.g., Sections [§ and [6] we mainly reported single-run results, e.g.,
Tables and 5| to enable straightforward analysis and discussion based on consistent results. To evaluate
the robustness of CDPG, we additionally conducted multiple runs with different random seeds and report
the mean p and standard deviation o. Table[I0] presents the results obtained from eight different seed values,
while keeping all other settings and hyperparameters the same as in Table

From Table we observe that the standard deviations are small, indicating that CDPG is stable. In fact,
the coefficient of variation (o/u) is at most 1.21%, and in most cases less than 1%. In the CDPG-based
method, the only component largely influenced by the random seed is the step in which the target language
model generates sentences  via nucleus sampling to train the distribution feature A for the EBMs. Since
the sampling is conducted from the entire distribution X of the target language model, a sufficient number
of samples will closely approximate the true distribution, resulting in stable performance regardless of the
random seed value. On the other hand, as discussed in Section varying the top-p value changes the
underlying sampling distribution, introducing fluctuations in diversity and, consequently, degradations in
the results. Even with many samples, such diversity variation inherently affects the outcomes, suggesting
the necessity of controlling the diversity parameter. This further supports the rationale behind methods
such as DynaMic CDPG, which explicitly adapt the sampling parameters to account for such variation.

In summary, when sentences  are sampled from the same distribution X', the method is largely insensitive to
randomness and remains robust. To control or influence the behavior of the system, it is therefore essential to
adjust the sampling method or diversity-related parameters that directly modify the underlying distribution.

7 Limitations and Future Extensions

We conduct a comprehensive analysis; however, we acknowledge three main limitations in this work.

First, as stated in Sections [ and [6.2] representation-level MT evaluation methods are not sensitive to
the improvements made by CDPG, which results in only minor differences in BERTScore in particular.
Moreover, although NIST provides a more reasonable assessment of domain-specific terminology and aligns
more closely with our objectives, it remains limited by its BLEU-style surface-level representation design.
Therefore, exploring how semantic-level evaluation methods can better capture word-specific changes remains
an important direction for future work. Additionally, we did not include modern neural fine-tuned metrics,
such as COMET (Rei et al.} 2020) and BLEURT (Sellam et al., 2020), as part of our main evaluation. These
metrics are fine-tuned on human-generated MT quality annotation data (Ma et al.l [2019), but such data
often fails to capture subtle patterns such as named entity differences (Amrhein & Sennrich) [2022; |Glushkova,
et al.,[2023). Moreover, due to overfitting to the annotation data, these metrics tend to favor outputs that are
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closer to the in-domain data of their fine-tuning sets (Zouhar et al [2024a4b). Consequently, we determined
that such fine-tuned metrics are not suitable for evaluating domain adaptation experiments.

Second, our primary goal is to demonstrate a novel practical application of massive EBMs using CDPG
in a downstream task, with domain adaptation for machine translation as a case study. To maintain a
clear focus on this objective, we adopted simple encoder-decoder architecture NMT models (Tiedemann &
[Thottingal, 2020). We did not employ multilingual large models such as NLLB-200 (Team et al., |2022)) or
M2M100 (Fan et al.,2021)), as they introduce additional complexity, including translation issues arising from
multilingualism. Furthermore, extending our approach to translation-specific decoder-only large language
models (Alves et al., 2024; |Xu et al.l 2025; Feng et al., 2025; |Cui et al., 2025) or applying it to other domain
datasets (Oncevay et al. 2025, [Zhang et al., 2025 |Cui et al., [2025) was not feasible given our available
computational resources and would have made it harder to isolate the core effects of our method. Nonetheless,
we believe our experiments already provide a comprehensive demonstration of the method’s applicability
and sufficiently address our research question. While such extensions remain promising future directions, we
believe this work is a valuable pioneering study that lays the groundwork for broader applications.

Third, in this paper, DYNAMIC CDPG is described primarily using nucleus sampling. However, the method
is not restricted to this choice and can also be applied to other sampling strategies
[jayakumar et al., 2018} Hewitt et al, 2022} [Minh et al.l 2025). The core mechanism lies in adjusting sampling
diversity, and nucleus sampling was adopted merely to maintain consistency with prior work
. The primary focus of this study is domain adaptation for neural machine translation in low-resource
settings. Our key finding is that the selection of sampling diversity during EBM approximation substantially
affects performance, and dynamically adjusting this diversity is effective. Therefore, exploring alternative
parameterized sampling strategies and identifying optimal configurations constitutes a natural direction for
future work. Moreover, we primarily used BLEU to monitor the tuning process, although other evaluation
metrics could also be employed. Even though BLEU was used for monitoring, the results in Sections
and [6] show consistent improvements in other metrics such as BERTScore, suggesting that the approach
generalizes beyond a specific metric. Therefore, we expect similar behavior when using alternative evalu-
ation metrics. Potential future extensions include developing more suitable metrics for guiding CDPG or
exploring monitoring strategies.

8 Related Work

When using parallel data, Luong & Manning] (2015); Freitag & Al-Onaizan| (2016]) perform domain adaptation
by first training on large-scale general-domain data, then fine-tuning on a small amount of in-domain data.
|Chu et al.| (2017) instead mix general and in-domain data for training at once. Further efficiency in domain
adaptation has been pursued through techniques such as adding domain tags (Kobus et al.,|2017; Britz et al.,
2017)), subword-aware tokenization (Enomoto et al) [2023)), and training data sampling (Wang et al., [2017).
However, direct fine-tuning with a small amount of data often leads to overfitting, prompting proposals of
knowledge distillation (Dakwale & Monz, |2017)) and regularization strategies (Miceli Barone et al., 2017).

In the context of monolingual data utilization, several methods have been explored such as back translation
(Sennrich et al., [2016)), direct learning from monolingual data as LM (Gulcehre et all [2015; Zhang & Zong,
[2016; Domhan & Hieber, |2017; [Burlot & Yvon, [2018), exploiting task-specific features (Dou et al., [2019bzal),
utilizing knowledge graphs (Moussallem et al., 2019; Zhao et all, [2020; |Costa et al., 2022} |Conia et al., [2024),
and nearest neighbor search (Farajian et al., 2017; Bapna & Firat| [2019; Zheng et al., 2021} |[Khandelwal et al.,
2021; Wang et al., [2022; Deguchi et al., 2023; |Agrawal et al., 2023)), and the combination of unsupervised
NMT methods and back-translation technique (Mahdieh et al. 2020; |Zhang et al. 2022). However, these
approaches usually require large-scale monolingual data, which is not always available in specialized domains.
Therefore, they may not be suitable for the extremely low-resource domain adaptation settings.

For terminology-constrained decoding, hard-constrained decoding methods (Hokamp & Liul 2017, [Post &/
|Vilar, 2018; [Hu et al 2019; [Post et all 2019), which force the model to decode specific terminology, and
soft-constrained decoding methods (Song et al.} 2019; |Chen et al., [2020), which apply post-editing techniques
using phrase tables, have been proposed. However, since these approaches require predefined constrained
vocabularies, they face challenges in real NMT scenarios that demand inductive domain adaptation.
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CDPG (Korbak et al., [2022)), which our study builds upon, focused only on minor input perturbations, e.g.,
replacing digits with spelled-out numbers, and did not address large-scale domain adaptation based on the
full target-domain distribution. Regarding reinforcement learning methods (Ranzato et al.) |2016; Kreutzer,
et al.| |2017} |Choshen et al.l [2020; [Yang et al.l |2024)), outside of the GDC framework, rewards are based only
on overall scores such as BLEU, without the ability to impose fine-grained constraints. Furthermore, there
is a potential for causing catastrophic forgetting, making scaling like in this study particularly challenging.

9 Conclusion

In this study, we explored whether unsupervised domain adaptation in machine translation can be effectively
performed using only naive statistics, i.e., the monolingual lexical distribution, which can be easily obtained
from target-side domain data without requiring bilingual supervision. We demonstrated this by imposing
large-scale distributional constraints through EBMs at scale using the CDPG method, leveraging features
derived from the entire target-domain corpus, and confirmed its effectiveness across multiple domains and
language directions. This work is the first to demonstrate the practical applicability of CDPG of the GDC
framework to a realistic downstream task, using the unsupervised domain adaptation of pre-trained NMT
models as a case study. Although this work focused on word-level lexical distributions as the guiding signal,
we believe that future work should explore alternative or complementary feature representations, such as
n-gram statistics or language model embeddings, to further enhance fine-tuning within the GDC framework.
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