
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SAMPLE MORE TO THINK LESS:
GROUP FILTERED POLICY OPTIMIZATION FOR
CONCISE REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models trained with reinforcement learning on verifiable rewards
often inflate response length—trading brevity for accuracy. While longer reasoning
can help on hard problems, many extra tokens are filler: verbose text making little
progress. We introduce GFPO (Group Filtered Policy Optimization), which curbs
this length explosion by sampling larger groups per problem and only training
on responses filtered by (1) length and (2) token efficiency (reward per token).
By sampling more during training time, GFPO teaches models to think less at
inference time. On Phi-4-reasoning, GFPO cuts GRPO’s length inflation by up to
85% across STEM and coding benchmarks (AIME 24/25, GPQA, Omni-MATH,
LiveCodeBench) while preserving accuracy. We further propose Adaptive Diffi-
culty GFPO, which allocates more training exploration to harder problems, yielding
better efficiency-accuracy trade-offs on challenging questions. With only a 7%
increase in training time, GFPO reduces end-to-end latency by ∼30%, cutting
response time on hard queries by 90 seconds. GFPO trades modest training-time
increases for lasting gains in inference—an effective recipe for efficient reasoning.

GRPO

Âi,t =
R(q,oi)−mean{R(q,o1),...,R(q,oG)}

std{R(q,o1),...,R(q,oG)}

LGRPOi,t = min

[
πθ

(
oi,t | q, oi,<t

)

πθold

(
oi,t | q, oi,<t

) Âi,t, clip
(

πθ

(
oi,t | q, oi,<t

)

πθold

(
oi,t | q, oi,<t

) , 1 − ε, 1 + ε

)
Âi,t

]

GFPO
S = REJECTIONSAMPLE(G, k, metric), mi = I{i∈S}

Â (m)
i,t =

R(q,oi)−mean
{

R(q,os1),...,R(q,osk)
}

std
{

R(q,os1),...,R(q,osk)
} mi

LGFPOi,t = min
[

πθ

(
oi,t |q,oi,<t

)

πθold

(
oi,t |q,oi,<t

) Â (m)
i,t , clip

(
πθ

(
oi,t |q,oi,<t

)

πθold

(
oi,t |q,oi,<t

) , 1 − ε, 1 + ε

)
Â (m)

i,t

]

Figure 1: Left: GFPO introduces simple yet powerful modifications to GRPO: sample more responses
during training (↑ G), rank them by a target attribute (e.g., length, token efficiency), and learn only
from the top-k—setting the advantages of the rest to zero. This selective learning functions as implicit
reward shaping, steering the policy toward desired behaviors. Right: When optimizing for length or
token efficiency, GFPO curbs GRPO’s length inflation—letting the model think less at inference-time
by sampling more at training-time—while maintaining its core reasoning capabilities.

1 INTRODUCTION

Reinforcement learning from verifier rewards (RLVR) methods such as GRPO (Shao et al., 2024)
and PPO (Schulman et al., 2017) have been pivotal for test-time scaling—enabling models like O3

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(OpenAI, 2025) and DeepSeek-R1 (Guo et al., 2025) to “think longer” and achieve state-of-the-art
results on challenging reasoning tasks such as AIME and IMO. Yet longer chains are not always better:
prior work shows that long responses don’t correlate with correct answers—shorter responses can
even be more accurate. For instance, Balachandran et al. (2025) report that DeepSeek-R1 produces
responses nearly 5× longer than Claude 3.7 Sonnet on AIME 25 with no accuracy gain, while Hassid
et al. (2025) find that QwQ-32B’s shortest responses outperform random ones by 2% while using
31% fewer tokens.

One may suspect that longer responses simply reflect harder problems. However, by comparing
correct and incorrect responses to the same AIME 25 questions with Phi-4-reasoning-plus (Abdin
et al., 2025), we find the opposite: in 72% of cases, the longer responses are more likely to be wrong.
This suggests that verbosity is not just a byproduct of difficulty but a distinct failure mode.

Works such as Dr. GRPO (Liu et al., 2025) and DAPO (Yu et al., 2025) apply token-level nor-
malization to address this failure mode. However, even with these methods, response length for
Phi-4-reasoning-plus balloons from 4k to 14k tokens within 100 GRPO steps. We hypothesize that
while token-level normalization penalizes long incorrect outputs, it also amplifies rewards for long
correct ones—reinforcing verbosity in models already SFTed for step-by-step reasoning (Abdin et al.,
2025; Guo et al., 2025).

Motivated by these observations, our goal is to train efficient reasoning models: ones that preserve
GRPO’s accuracy while producing far shorter reasoning chains. Our contributions are as follows:

• GFPO (Group Filtered Policy Optimization): A variant of GRPO that samples larger
groups of candidate chains to increase exposure to desirable outputs, filters them based on a
target metric, and learns only from the filtered subset. GFPO optimized for response length
reduces GRPO’s length inflation by 46–71% across AIME 24/25, GPQA, Omni-MATH, and
LiveCodeBench, with no loss in accuracy (§4.1).

• Token Efficiency (§4.2): Defined as the ratio of reward to response length—allows longer
chains when justified by higher rewards. GFPO with this metric cuts length inflation by
71–85%.

• Adaptive Difficulty GFPO (§4.3): A dynamic variant of GFPO that allocates more exploration
to hard problems using unsupervised difficulty estimates, striking a better balance between
efficiency and accuracy.

• Out-of-Distribution Generalization (§4.4): We demonstrate that GFPO preserves accuracy
while curbing response length even for out-of-distribution tasks.

Our best GFPO variant increases training time by only 7%, yet reduces inference latency by nearly
30% for hard problems compared to GRPO. This translates to long responses arriving ∼90 seconds
faster for users—an immediate and substantial benefit (§5.3). GFPO provides a favorable train-test
trade-off, delivering materially lower inference latency with only marginal additional training cost.

2 GROUP FILTERED POLICY OPTIMIZATION

Group Relative Policy Optimization (GRPO; Shao et al. (2024)) simplifies Proximal Policy Opti-
mization (PPO; Schulman et al. (2017)) by removing the value model and instead using the average
reward of sampled responses as a baseline, while retaining PPO’s clipped surrogate objective.

We propose Group Filtered Policy Optimization (GFPO), a simple yet effective method for targeted
policy optimization of desirable response properties. GFPO samples a larger group of candidate
responses per question, broadening the response pool to include more candidates with desirable traits,
and then explicitly filters for these traits when computing the policy gradient. While it may seem
natural to directly encode desirable attributes such as brevity or informativeness into the scalar reward,
doing so for multiple traits can be challenging, especially when correctness must already be captured.

Data filtration instead serves as an implicit, flexible form of reward shaping—akin to iterative self-
improvement methods that use selective sampling to amplify specific model behaviors (Zelikman
et al., 2022). After this explicit filtering step isolates the preferred responses, standard rewards are
then used solely to compute relative advantages within the selected group. Thus, GFPO optimizes for
multiple desirable properties (e.g., length and accuracy) simultaneously, without requiring complex

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

reward engineering. Since our goal is to reduce the response length inflation in RL, we focus on
using GFPO to optimize for shorter responses while matching GRPO’s accuracy.

Given a question q, we sample a large set of responses G = {o1, . . . , oG} from the current policy.
Rather than training equally on all responses, GFPO applies a selection step based on a user-specified
metric to filter a subset of size k of the most desirable responses to train on. We compute a metric
score for each response and sort accordingly, selecting the top-k responses to form the retained subset
S ⊆ G. We define a binary mask m ∈ {0, 1}G, where mi = 1 indicates a selected response and
mi = 0 indicates a rejected response.

Formally, we define the GFPO objective1 as:

JGFPO(θ) = Eq∼P (Q), {oi}G
i=1∼πθold (O|q)

1
∑G

i=1 |oi|

G∑

i=1

|oi|∑

t=1

min
(
ri,t Â

(m)
i,t , clip(ri,t, 1− ε, 1 + ε) Â

(m)
i,t

)

−βDKL

(
πθ ∥πθold

)
+ γ Entropy(πθ) (1)

where
S,m = REJECTIONSAMPLE(G, k,metric, order), mi = I{i∈S}

Â
(m)
i,t =

R(q, oi)− 1
k

∑
j∈SR(q, oj)√

1
k

∑
j∈S

(
R(q, oj)− 1

k

∑
p∈SR(q, op)

)2mi, ri,t =
πθ(oi,t | q, oi,<t)

πθold(oi,t | q, oi,<t)

and βDKL(πθ ∥πθold) denotes the KL penalty.

We normalize the advantages for responses in the selected subset S using the mean and standard
deviation of the response-level rewards in S . This enables meaningful comparisons among responses
already exhibiting the desired property, ensuring GFPO prioritizes the highest-reward responses
within the filtered subset. Responses not in S receive zero advantage, effectively excluding them
from influencing policy updates. Thus, GFPO’s primary intervention is at the level of advantage
estimation, making it compatible with any GRPO variant such as DAPO (Yu et al., 2025), Dr. GRPO
(Liu et al., 2025), or GRPO with the Dual-Clip PPO loss (Ye et al., 2020).

While GFPO is general-purpose and can accommodate various scoring metrics, our experiments
specifically leverage metrics aimed at reducing response length inflation:

• Response Length: Training on short responses directly encourages brevity.

• Token Efficiency (reward/length): Training on highly token-efficient responses encourages
succinctness, but still allows longer responses if sufficiently “justified” by proportionately
higher rewards.

Other metrics—such as factuality, diversity, or external quality scores—could also be integrated into
GFPO to optimize different attributes of interest.

2.1 Adaptive Difficulty GFPO. We introduce Adaptive Difficulty GFPO, which allocates more
training signal to harder questions. At each step, we estimate difficulty from the average reward of
sampled responses—lower averages indicate higher difficulty.

To scale the number of retained responses k, we maintain a streaming summary of prompt difficulties
using a lightweight t-digest, which approximates quartiles over past rewards. New questions are
bucketed into difficulty levels, and assigned k = 4 (easy), k = 6 (medium), or k = 8 (hard/very hard)
out of 16 sampled.2 The number of buckets and k per bucket are hyperparameters.

This curriculum sharpens filtering on easy prompts while encouraging exploration on harder ones,
reducing verbosity where correctness is already high and preserving accuracy on challenging cases.
To our knowledge, this is the first RLVR method that adapts group size based on question difficulty.

1Note we use the DAPO token-level loss aggregation for both GFPO and GRPO which is the default choice
in verl. We employ a slightly modified version of the clipped surrogate policy gradient loss introduced in prior
work (Li et al., 2025), which reduces training instabilities caused by negative advantages and large policy ratios.

2During a short warmup period, all questions use k = 8 to avoid unstable estimates.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 SETUP

Model. We build on Phi-4-reasoning (Abdin et al., 2025), a 14B-parameter Phi-4 model (Abdin et al.,
2024) extensively SFTed on synthetic o3-mini reasoning traces in STEM, but never trained with RL.
We refer to Phi-4-reasoning as the SFT baseline.

Baseline. We compare our GFPO trained models with Phi-4-reasoning-plus (Abdin et al., 2025),
which is trained with GRPO and DAPO’s token-level loss aggregation on top of the Phi-4-reasoning
model. We refer to this as the GRPO baseline. We match the training setup of Phi-4-reasoning, and
use a slightly modified clipped surrogate objective for training stability (§2).

Dataset. RL training uses 72k math problems from the same corpus as Abdin et al. (2025). With 100
training steps and batch size 64, models see only 6.4k problems—identical to the GRPO baseline.

Reward Function. We adopt the GRPO baseline reward: a weighted sum of (i) a length-aware binary
accuracy reward Racc and (ii) a 5-gram repetition penalty Rrep:

R = waccLENGTHSCALE(Racc) + wrepRrep, R ∈ [−1, 1]. (2)

Accuracy is 0/1 based on extracted final answers, with GPT-4o fallback if regex extraction fails.
Formatting violations receive the minimum reward. Long correct responses are penalized by cosine
reward scaling. However, this length penalty is insufficient to prevent GRPO’s length inflation.

Training Configuration. We train with verl (Sheng et al., 2024) on 32 H100s, with global batch
size of 64, for 100 steps. We use Adam with learning rate 1 × 10−7 , cosine warmup (10 steps),
temperature T = 1.0, KL regularization (β = 0.001), and entropy coefficient (γ = 0.001). Models
are trained with a 32k context, reserving 1k tokens for the prompt. GRPO uses group size G = 8.
GFPO increases G ∈ {8, 16, 24} to expose the model to more candidates, but retains only k ≤ 8
responses for policy gradients, ensuring a fair comparison.

Evaluation. We evaluate on: AIME 25/24 (AIME, 2025; 2024) (32 samples), GPQA (Rein et al.,
2024) (5 samples), Omni-MATH (Gao et al., 2025) (1 sample), and LiveCodeBench (8/24–1/25) (Jain
et al., 2024) (3 samples). Responses are sampled at T = 0.8, top-p=0.95 with 32k max length,
with a maximum of 1k prompt tokens. Final answers are extracted via regex, with GPT-4o fallback.
LiveCodeBench tests OOD generalization to code, which is unseen during RL training.

We report pass@1 accuracy, raw response length L, and excess length reduction (ELR):

ELR =
LGRPO − LGFPO

LGRPO − LSFT
. (3)

Statistical significance is tested using the Wilcoxon signed-rank test (Wilcoxon, 1992) over per-
question differences in pass@1 accuracy without assuming a normal distribution.

4 RESULTS

4.1 GFPO Reduces Length by Sampling More and Retaining Less. An initial question is whether
rejection sampling alone, without increasing sampled responses, suffices to shorten reasoning chains.
To examine this, we evaluate Shortest 6/8 GFPO, which retains the six shortest responses from a
group of eight. While accuracy remains comparable to GRPO on AIME 25/24, GPQA, and Omni-
MATH, length reductions are minimal (1.8–11.5%) and even negative on Omni-MATH (+5.5%).
This indicates that subsampling within small response groups offers little efficiency benefit.

Substantial improvements emerge once the group size is increased. With Shortest 8/16 GFPO, which
filters the shortest half of 16 candidates, excess length is reduced by 24–37% across benchmarks
without statistically significant accuracy loss. Further decreasing the number of retained responses
strengthens this effect: Shortest 6/16 and 4/16 achieve an additional 2–22% reduction relative to
8/16. Scaling the group size amplifies these gains—for example, increasing from 8/16 to 8/24 yields
20–30% additional reduction, while 4/24 results in an addition 4% reduction over 8/24 (Table 1).

Taken together, these results indicate that the decisive factor is the retention fraction k/G (Figure 6).
Decreasing this fraction—either by reducing k or increasing G—consistently shortens reasoning
chains. 4/16 and 6/24 both retain 25% of responses, and their length reductions are nearly iden-
tical—confirming that k/G is the key factor. Sampling from a larger group offers only a slight

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

AIME 25 AIME 24 GPQA Omni-
MATH

LiveCode
Bench Average

% Len
Inf (↓)

% Len
Inf (↓)

% Len
Inf (↓)

% Len
Inf (↓)

% Len
Inf (↓) Acc Len % Len

Inf (↓)

SFT N/A N/A N/A N/A N/A 69.2 9.5k N/A
GRPO 0.0 0.0 0.0 0.0 0.0 72.1 13k 0.0

6 of 8 1.8 9.5 11.5 -5.5 7.0 72.7 12.9k 4.8
8 of 16 23.8 33.0 23.7 31.5 36.5 73.4 12k 29.7
6 of 16 25.6 35.6 38.8 43.7 37.2 72.3 11.8k 36.2
4 of 16 38.0 46.8 45.7 47.3 43.2 72.0 11.5k 44.2

8 of 24 54.4 52.7 52.2 51.9 59.4 71.7 11.1k 54.1
6 of 24 41.0 44.9 48.6 58.2 42.7 72.2 11.4k 47.1
4 of 24 46.1 59.8 57.3 71.0 57.0 72.3 11k 58.2

Token Eff. 70.9 84.6 79.7 82.6 79.7 71.7 10.2k 79.5

Adaptive Diff. 50.8 52.9 41.7 35.1 49.4 72.9 11.4k 46.0

Table 1: Pass@1 Accuracy, Response Lengths, and Length Inflation Reduction. Across all bench-
marks, GFPO cuts length inflation while matching GRPO accuracy (no significant difference under
Wilcoxon signed-rank test). Sampling more responses is key and lowering k/G effectively controls
length. Token Efficiency delivers the largest reduction in length inflation (79.5%) at GRPO-level
accuracy, and Adaptive Difficulty outperforms shortest k/G at equal compute. On LiveCodeBench
(OOD coding), GRPO lengthens chains without accuracy gains, whereas GFPO shortens them and
sometimes improves accuracy (e.g., 8/16, 4/24). Pass@1 accuracy uses 32 (AIME-25/24), 5 (GPQA),
1 (Omni-MATH), and 3 (LCB) samples. See Table 3 for per-dataset response lengths and pass@1.

additional benefit, as seen with 6/24. Beyond a point, however, returns diminish: moving from 8/24
to 4/24 yields only marginal additional gains. The strongest reductions are observed at retention
fractions of about 25–33%.

4.2 Reinforcing Token Efficiency. Reducing the k/G ratio eventually stalls learning—failing to
deliver meaningfully shorter chains beyond a certain group size. To break this ceiling, we introduce
Token Efficiency GFPO, which ranks responses by reward-per-token (Ri/|oi|)—favoring longer
chains only when their rewards justify the added cost. Token Efficiency GFPO filters for high
reward-per-token responses—typically short correct chains, plus some long correct and long incorrect
ones. Within this set, short correct chains receive the strongest positive gradients, long correct ones
are modestly penalized, and long incorrect ones are sharply cut back, providing more direct length
control than shortest-k, which relies on the KL penalty to implicitly suppress late-token probabilities.

With k = 8, G = 16, this method yields the largest length reductions across tasks—70.9%
(AIME 25), 84.6% (AIME 24), 79.7% (GPQA), 82.6% (Omni-MATH), and 79.7% (Live-
CodeBench)—outperforming shortest-k at similar or smaller G (Table 1). These gains come with
small, non-significant drops in accuracy. Still, Token Efficiency GFPO consistently delivers the
sharpest token savings without compromising accuracy—showing reward-per-token to be a powerful
proxy for concise reasoning.

4.3 Adaptive Difficulty GFPO. Beyond intelligent sampling through improved rejection metrics,
we introduce Adaptive Difficulty GFPO, which adjusts the retained group size k by question diffi-
culty—allocating more training resources to harder questions. We estimate question difficulty using
the average reward of responses per question, efficiently compute problem difficulty quartiles at
each training step, and categorize questions into four difficulty buckets: very hard (bottom 25%),
hard (25–50%), medium (50–75%), and easy (top 25%). For these categories, we retain 8, 8, 6, and
4 shortest responses (from G=16 samples), respectively. This yields an average k = 6.5, making
Shortest 6/16 GFPO a natural baseline for comparison.

Adaptive Difficulty GFPO achieves stronger excess length reductions than Shortest 6/16 on AIME
25 (51% vs. 26%), AIME 24 (53% vs. 36%), GPQA (42% vs. 39%), and LiveCodeBench (46% vs
36%) though Shortest 6/16 is more effective on Omni-MATH (44% vs. 35%). Even against the more
aggressive Shortest 4/16, it performs better on AIME 25 (51% vs. 38%), AIME 24 (53% vs. 47%),

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Figure 2: Pareto Trade-off Between Accuracy and Response Length. For all benchmarks except
AIME 25, at least one GFPO variant strictly dominates GRPO—achieving both higher accuracy
and shorter responses (green region above and to the left of GRPO). For AIME 25, GRPO attains
the highest accuracy, but several GFPO variants, while taking non-significant accuracy dips, remain
Pareto-optimal because their responses are shorter, and no other method is simultaneously more
accurate and more concise. On average, Shortest 4/24, Adaptive Difficulty, and Shortest 8/16 are
strictly Pareto-superior to GRPO with Token Efficiency close behind.

and LiveCodeBench (49% vs 43%) (Table 1). It also delivers the highest accuracy on GPQA (71%)
and on the hardest AIME 25 quartile (27%) compared to GRPO and other GFPO variants (Figure 3b).

4.4 Out-of-Distribution Effects of GFPO. Our RL training recipe is geared towards enhancing
mathematical reasoning performance. To investigate potential adverse effects of GFPO’s bias
toward shorter responses, we assess out-of-distribution generalization on the LiveCodeBench coding
benchmark. Note that coding is not a part of our RL training set. GRPO inflates response length even
out-of-distribution—outputs grow from 10.3k tokens (SFT) to 13.9k, while accuracy stagnates (57%
vs. 58%) (Table 3). This verbosity is undesirable, especially without accuracy gains. GFPO counters
this: Token Efficiency reduces excess length by 80%, and Shortest 8/24 trims 57% while modestly
improving accuracy to 59% (vs. 58% SFT, 57% GRPO). GFPO not only reins in unnecessary length
but can also enhance out-of-distribution generalization.

4.5 Accuracy-Length Pareto Comparison. Figure 2 shows the accuracy–length frontier. On
four of five benchmarks, at least one GFPO variant is strictly Pareto-superior to GRPO (green
region), demonstrating that GFPO can yield both shorter and more accurate answers. Even on AIME
25, where GRPO is slightly more accurate, GFPO variants remain on the Pareto front by offering
meaningful length reductions without significant accuracy loss. Aggregated results (bottom-right)
highlight Shortest 4/24, Adaptive Difficulty, and Shortest 8/16 as the most consistently concise and
accurate, with Token Efficiency trailing in accuracy by a narrow margin.

5 ANALYSIS

We analyze performance of GFPO models on AIME 2025 by measuring question difficulty as
1−SFT accuracy, which captures how hard each problem is for the SFT model prior to RL. Problems
are partitioned into quartiles (easy–very hard) to study how GFPO affects length and accuracy across
difficulty and accuracy of long responses at fixed difficulty. We also examine which parts of responses
GFPO trims, with qualitative comparisons to GRPO for AIME 25 and GPQA in Appendix A.2.

5.1 Length and Accuracy Across Problem Difficulty. On AIME 2025, response lengths grow
steeply with problem difficulty—from roughly 4k tokens on easy questions to over 20k on very hard
ones (Figure 7). GFPO consistently reduces this verbosity across all quartiles (Figure 3a). Token
Efficiency GFPO delivers the largest overall reductions, exceeding 120% excess length reduction on

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

(a) Excess Length Reduction Across Problem
Difficulties.

(b) Accuracy Across Problem Difficulties.

Figure 3: Excess Length Reductions and Accuracy Across AIME 25 Problem Difficulties.
(a) GFPO reduces excess length across all difficulties. Token efficiency has the strongest overall
reductions–with outputs more brief than the SFT model on easy questions. Shortest 8/24 has the best
reductions on very hard questions. (b) Adaptive Difficulty and Shortest 8/24 have the best accuracies.

easy problems—producing shorter outputs than the SFT baseline, while maintaining accuracy. Its
impact diminishes on harder problems (56–79% reduction) because the token efficiency criterion
permits longer responses when justified by higher rewards. Adaptive Difficulty GFPO follows the
opposite trend: modest gains on easy questions (38%) but substantially stronger reductions on very
hard ones (60%), effectively suppressing the “long tail” of overly verbose outputs. Shortest 8/24 also
consistently surpasses Shortest 8/16, achieving the strongest reductions on very hard problems.

Accuracy patterns mirror these differences (Figure 3b). All methods perform near-perfectly on easy
problems, while GRPO and GFPO both improve over the SFT baseline on harder ones. Token
Efficiency’s reductions come with small, statistically insignificant accuracy dips. Adaptive Difficulty,
by contrast, matches or exceeds GRPO accuracy across easy, medium, and very hard questions (e.g.,
90% vs. 88% on medium; 27% vs. 27% on very hard) while simultaneously reducing length by up to
60%. Its only shortcoming appears on “hard” questions, where filtering occasionally removes useful
longer responses. This can be mitigated by increasing the group size: for example, Shortest 8/24 fully
recovers GRPO’s 73% accuracy on hard questions while producing substantially shorter outputs.

5.2 Accuracy of Long Responses under GFPO. Reasoning models often produce less accurate
answers as response length grows, but this effect is entangled with problem difficulty—harder
questions naturally elicit longer chains. To isolate verbosity, we fix difficulty and examine accuracy
by response length on AIME 2025. Using SFT per-question accuracy as a difficulty proxy, we
partition responses to hard and very hard problems into length quartiles and plot accuracy (Figure 4b).

Accuracy falls steadily with length even under fixed difficulty. On hard problems, most models
peak in the mid-length range (12k–16k tokens, Table 4), suggesting a sweet spot: long enough for
reasoning but short enough to avoid over-thinking. Beyond this, accuracy drops consistently. GFPO
variants outperform GRPO in the longest bin (67% vs 52% on Hard; 20% vs 17% on Very Hard,
Table 5), as their longest responses are both shorter (20k vs 24k on Hard; 27k vs 28k on Very Hard)
and more accurate. On very hard problems, degradation is sharper. Adaptive Difficulty and Token
Efficiency briefly improve from short to mid-low bins, but all methods decline at longer lengths.
Token Efficiency and Shortest 8/24 show the steepest drops, likely from reduced exposure to long
chains. Adaptive Difficulty is the most robust, maintaining stable accuracy across bins. By contrast,
SFT degrades little with length but rarely solves hard problems, producing a flat yet low curve.

We complement this with an absolute-length analysis across models (Figure 4a). GFPO shifts
substantial mass away from the long tail (≥20k tokens), cutting it from 32% under GRPO to 22–23%,
and increasing the share of <15k responses. These shorter chains often solve harder problems: in the
≤5k bin, GFPO’s prompt difficulty is ∼9× higher than GRPO’s (16–18% vs 2%) with only minor
accuracy loss (100% → 97%). Lower accuracy in GFPO’s longest bins reflects that most solvable
prompts are already handled at shorter lengths; the remaining long chains correspond to the hardest,
out-of-distribution cases.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) Accuracy, Response Share, and Prompt Diffi-
culty by Response Length. Each cell shows accuracy
(center), response share (top left), and prompt difficulty
(bottom right; avg difficulty (1− SFTacc) of prompts
corresponding to responses in cell, for a fixed response
length range.

(b) Accuracy vs Relative Length for Hard and Very
Hard Problems. On very hard problems, Adaptive
Difficulty is most robust. Token efficiency and Shortest
8/24 drop in the longer bins, likely due to aggressive
filtering.

Figure 4: Accuracy Across Response Lengths for AIME 25. (a) GFPO cuts long-tail verbosity
(32% to 22% outputs ≥ 20k tokens) and solves hard problems with shorter responses (∼9x harder
prompts solved with ≤ 5k tokens). (b) Accuracy declines with increasing response length even
at fixed difficulty. On hard problems, most models peak at 12k-16k tokens, while GFPO variants
outperform GRPO in the longest bin by producing shorter, more accurate long responses.

Method Step Time (m) % ↑ Step Time Latency (s) % ↓ Latency % ↓ Latency
Overhead

SFT — — 196.8 — —
GRPO 28.5 0.0% 315.1 0.0% —
8 of 16 35.8 25.7% 272.9 13.4% 35.7%
8 of 24 47.3 66.4% 251.3 20.3% 53.9%

Token Eff. 30.4 6.8% 225.0 28.6% 76.2%
Adaptive Diff. 36.8 29.5% 255.7 18.9% 50.2%

Table 2: Train–Test Trade-off. Training step time vs. end-to-end latency for GRPO and GFPO
variants. Token Efficiency GFPO reduces latency by ∼29% with only a 7% increase in training time,
eliminating three-quarters of the latency overhead introduced by GRPO over SFT.

Together, the relative and absolute-length analyses show verbosity—not difficulty—is the main driver
of GRPO’s long-chain errors. GFPO mitigates this by solving harder problems more succinctly while
maintaining or improving accuracy. Among variants, Shortest 8/24 and Adaptive Difficulty achieve
the best balance—substantially shortening responses while preserving performance. Further gains
may be possible by tuning the k/G ratio for Token Efficiency and Adaptive Difficulty.

5.3 Train vs Test-time Trade-off. We compare GRPO and several GFPO variants on training
cost and inference latency (Table 2; see Appendix A.4 for details on calculations). Latencies are
averaged over AIME 24, AIME 25, and GPQA, capturing the long tail of hard problems. GRPO
slows inference dramatically, raising latency from 196.8 seconds for SFT to 315.1 seconds. Although
GFPO samples 2x the responses of GRPO, we find this cost is almost completely offset as the
learned policy produces shorter responses than GRPO at most time steps. Token Efficiency GFPO
delivers nearly identical training cost (+6.8% step time, ∼3.2 extra hours) while cutting latency by
28.6% (315.1 s → 225.0 s), eliminating over three-quarters of GRPO’s overhead relative to SFT. In
practical terms, users wait about 90 seconds less per hard query—a substantial improvement. Other
GFPO variants also reduce latency but at 29–66% higher training cost. Token Efficiency GFPO
provides the clearest Pareto improvement: much faster responses for nearly the same training time.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: Average Token Counts by Reasoning
Segment. GRPO inflates the Solution and Ver-
ification phases relative to SFT. GFPO variants
markedly reduce this excess. On AIME 25, Short-
est 8/24 cuts Solution length inflation by 94.4%
and Verification by 66.7%.

5.4 What is GFPO trimming? To analyze
where GFPO’s length savings arise, we anno-
tate AIME 25 traces from five models—SFT,
GRPO, Shortest 8/24 GFPO, Token Efficiency
GFPO, and Adaptive Difficulty GFPO—using
GPT-4o. Each trace is segmented into Problem
(problem setup), Solution (developing candidate
solutions), Verification (checking intermediate
results), and Final (answer statements).

GRPO inflates mid-trace reasoning compared
to SFT—on AIME 25 the Solution segment ex-
pands from 6.5k to 8.3k tokens, and Verification
from 1.9k to 3.1k (Figure 5). GFPO reverses
this trend: Shortest 8/24 GFPO shrinks the Solu-
tion phase from 8.3k to 6.6k tokens (↓ 94.4% of
excess length), trimming many digressive solu-
tion attempts. It also reduces Verification from
3.1k to 2.3k tokens (↓ 66.7% of excess length),
cutting the redundant, circular checks in GRPO.

6 RELATED WORK

GRPO Loss Modifications. Several works refine GRPO’s loss normalization to better handle token
efficiency and stability. Dr. GRPO (Liu et al., 2025) normalizes by the longest chain in the batch,
and DAPO (Yu et al., 2025) by the total token count—both amplifying penalties on long incorrect
outputs. GFPO adopts DAPO’s normalization (as in verl (Sheng et al., 2024), TRL (von Werra
et al., 2020)) but shows that normalization alone cannot prevent verbosity: it penalizes long failures
yet also rewards long successes. GFPO instead modifies the advantage function—filtering which
chains count for learning—orthogonal to normalization and compatible with variants like Dr. GRPO.

Length-Aware Penalties. Another line of work directly penalizes verbosity, e.g., capping rewards
beyond a token limit (Hou et al., 2025), applying adaptive or solve-rate scaled penalties (Su & Cardie,
2025; Xiang et al., 2025), or optimizing toward target lengths (Aggarwal & Welleck, 2025). Such
reward engineering can reduce length but often harms accuracy or requires careful tuning. GFPO
sidesteps explicit penalties: its rejection step implicitly shapes which outputs drive learning.

Inference-Time Interventions. Reasoning length can also be managed without retraining. Prior
work includes voting over the shortest m of k responses (Hassid et al., 2025), using “budget forcing”
phrases to stop generation (Muennighoff et al., 2025), or halting once answers stabilize (Liu & Wang,
2025; Yang et al., 2025). These inference-time approaches are complementary to GFPO.

Rejection Sampling Methods. Rejection sampling has been applied post-training for length control,
e.g., fine-tuning or DPO on shortest correct outputs (Kim et al., 2024), or stabilizing RL updates via
prompt filtering (Yu et al., 2025; Xiong et al., 2025). GFPO integrates rejection within RL itself:
sampling larger groups and updating only on top-ranked chains by length or reward efficiency. Related
methods use rejection for contrastive pair selection (Khaki et al., 2024), constrained decoding (Lipkin
et al., 2025), or efficient Best-of-N search (Sun et al., 2024). GFPO differs in embedding this
principle directly into the policy update, avoiding extra distillation or explicit penalties.

7 CONCLUSION

We present Group-Filtered Policy Optimization (GFPO), a simple extension of GRPO that samples
more responses and trains only on those aligned with target attributes. This filtering serves as implicit
reward shaping, curbing length inflation without complex reward design. Across several challenging
benchmarks, GFPO preserves GRPO-level accuracy while materially improving efficiency: with
only a 7% increase in training time, it lowers end-to-end inference latency by nearly 30%, yielding
90-second faster response times on hard STEM queries. GFPO shifts modest additional compute to
training to deliver decisively faster test-time reasoning without sacrificing response accuracy.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

We detail our training and evaluation setup in Section 3, including our model, baselines, training
configurations and infrastructure, evaluation metrics and datasets. We provide further details on how
we compute our training time and inference latency estimates in Appendix A.4.

REFERENCES

Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
Michael Harrison, Russell J. Hewett, Mojan Javaheripi, Piero Kauffmann, James R. Lee, Yin Tat
Lee, Yuanzhi Li, Weishung Liu, Caio C. T. Mendes, Anh Nguyen, Eric Price, Gustavo de Rosa, Olli
Saarikivi, Adil Salim, Shital Shah, Xin Wang, Rachel Ward, Yue Wu, Dingli Yu, Cyril Zhang, and
Yi Zhang. Phi-4 technical report, 2024. URL https://arxiv.org/abs/2412.08905.

Marah Abdin, Sahaj Agarwal, Ahmed Awadallah, Vidhisha Balachandran, Harkirat Behl, Lingjiao
Chen, Gustavo de Rosa, Suriya Gunasekar, Mojan Javaheripi, Neel Joshi, Piero Kauffmann, Yash
Lara, Caio César Teodoro Mendes, Arindam Mitra, Besmira Nushi, Dimitris Papailiopoulos,
Olli Saarikivi, Shital Shah, Vaishnavi Shrivastava, Vibhav Vineet, Yue Wu, Safoora Yousefi, and
Guoqing Zheng. Phi-4-reasoning technical report, 2025. URL https://arxiv.org/abs/
2504.21318.

Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
reinforcement learning, 2025. URL https://arxiv. org/abs/2503.04697, 2025.

AIME. Aime 83-24. https://huggingface.co/datasets/di-zhang-fdu/AIME_
1983_2024, 2024. Accessed: 2025-03-17.

AIME. Aime 2025. https://huggingface.co/datasets/lchen001/AIME2025, 2025.
Accessed: 2025-03-17.

Vidhisha Balachandran, Jingya Chen, Lingjiao Chen, Shivam Garg, Neel Joshi, Yash Lara, John
Langford, Besmira Nushi, Vibhav Vineet, Yue Wu, et al. Inference-time scaling for complex tasks:
Where we stand and what lies ahead. arXiv preprint arXiv:2504.00294, 2025.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark for
large language models. ICLR, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Michael Hassid, Gabriel Synnaeve, Yossi Adi, and Roy Schwartz. Don’t overthink it. preferring
shorter thinking chains for improved llm reasoning. arXiv preprint arXiv:2505.17813, 2025.

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi Qian, Jacob Andreas, and Shiyu Chang.
Thinkprune: Pruning long chain-of-thought of llms via reinforcement learning. arXiv preprint
arXiv:2504.01296, 2025.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Saeed Khaki, JinJin Li, Lan Ma, Liu Yang, and Prathap Ramachandra. Rs-dpo: A hybrid rejection
sampling and direct preference optimization method for alignment of large language models. arXiv
preprint arXiv:2402.10038, 2024.

Sunnie SY Kim, Q Vera Liao, Mihaela Vorvoreanu, Stephanie Ballard, and Jennifer Wortman
Vaughan. " i’m not sure, but...": Examining the impact of large language models’ uncertainty
expression on user reliance and trust. In Proceedings of the 2024 ACM Conference on Fairness,
Accountability, and Transparency, pp. 822–835, 2024.

10

https://arxiv.org/abs/2412.08905
https://arxiv.org/abs/2504.21318
https://arxiv.org/abs/2504.21318
https://huggingface.co/datasets/di-zhang-fdu/AIME_1983_2024
https://huggingface.co/datasets/di-zhang-fdu/AIME_1983_2024
https://huggingface.co/datasets/lchen001/AIME2025

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aonian Li, Bangwei Gong, Bo Yang, Boji Shan, Chang Liu, Cheng Zhu, Chunhao Zhang, Congchao
Guo, Da Chen, Dong Li, et al. Minimax-01: Scaling foundation models with lightning attention.
arXiv preprint arXiv:2501.08313, 2025.

Benjamin Lipkin, Benjamin LeBrun, Jacob Hoover Vigly, João Loula, David R MacIver, Li Du,
Jason Eisner, Ryan Cotterell, Vikash Mansinghka, Timothy J O’Donnell, et al. Fast controlled
generation from language models with adaptive weighted rejection sampling. arXiv preprint
arXiv:2504.05410, 2025.

Xin Liu and Lu Wang. Answer convergence as a signal for early stopping in reasoning. arXiv preprint
arXiv:2506.02536, 2025.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and Min
Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint arXiv:2503.20783,
2025.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xiang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and Tatsunori Hashimoto. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393, 2025.

OpenAI. Introducing openai o3 and o4-mini. https://openai.com/index/
introducing-o3-and-o4-mini/, April 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a benchmark. In
First Conference on Language Modeling, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. In Proceedings of the 5th International Conference on Learning Repre-
sentations (ICLR), 2017. URL https://openreview.net/forum?id=r1etN1rtPB.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of
mathematical reasoning in open language models, 2024. URL https://arxiv.org/abs/
2402.03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Jinyan Su and Claire Cardie. Thinking fast and right: Balancing accuracy and reasoning length with
adaptive rewards. arXiv preprint arXiv:2505.18298, 2025.

Hanshi Sun, Momin Haider, Ruiqi Zhang, Huitao Yang, Jiahao Qiu, Ming Yin, Mengdi Wang, Peter
Bartlett, and Andrea Zanette. Fast best-of-n decoding via speculative rejection. Advances in Neural
Information Processing Systems, 37:32630–32652, 2024.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. Trl: Transformer reinforcement
learning. https://github.com/huggingface/trl, 2020.

Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics:
Methodology and distribution, pp. 196–202. Springer, 1992.

Violet Xiang, Chase Blagden, Rafael Rafailov, Nathan Lile, Sang Truong, Chelsea Finn, and Nick
Haber. Just enough thinking: Efficient reasoning with adaptive length penalties reinforcement
learning. arXiv preprint arXiv:2506.05256, 2025.

Wei Xiong, Jiarui Yao, Yuhui Xu, Bo Pang, Lei Wang, Doyen Sahoo, Junnan Li, Nan Jiang, Tong
Zhang, Caiming Xiong, et al. A minimalist approach to llm reasoning: from rejection sampling to
reinforce. arXiv preprint arXiv:2504.11343, 2025.

11

https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://openreview.net/forum?id=r1etN1rtPB
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://github.com/huggingface/trl

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao,
and Weiping Wang. Dynamic early exit in reasoning models. arXiv preprint arXiv:2504.15895,
2025.

Deheng Ye, Zhao Liu, Mingfei Sun, Bei Shi, Peilin Zhao, Hao Wu, Hongsheng Yu, Shaojie Yang,
Xipeng Wu, Qingwei Guo, et al. Mastering complex control in moba games with deep reinforce-
ment learning. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pp.
6672–6679, 2020.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system at
scale. arXiv preprint arXiv:2503.14476, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LLM USAGE.
We use LLMs for some editing and rephrasing of paper text.

A.2 QUALITATIVE EXAMPLES

AIME 25 II Problem 1: GRPO v/s Token Efficiency GFPO

User:

Six points A,B,C,D,E and F lie in a straight line in that order. Suppose that G is a point not on the
line and that AC = 26, BD = 22, CE = 31, DF = 33, AF = 73, CG = 40, and DG = 30. Find
the area of △BGE.

GRPO

<think>... So now triangle BGE: B = (18, 0), G = (58, 24), E = (57, 0). Its base BE =
distance from 18 to 57 = 39. But then what is the height? The triangle’s base is along x-axis and G has
y coordinate 24, but note that G is not vertically above the segment? Actually, base BE: endpoints
(18, 0) and (57, 0). The distance from G to line BE is simply the absolute y coordinate if G’s x
coordinate lies between 18 and 57? But here xG = 58, so G is to the right of E. But the formula
for area using base and height with base along line is the distance from G to the line containing BE.
But the line containing BE is horizontal (y = 0). So the distance is |24| = 24, regardless of the
x-coordinate. So area = 1

2
· base · height = 1

2
· 39 · 24 = 468.

...
Wait, 39 · 24 = 936, half is 468. But wait, is that the answer? Let’s check: base BE length
= 57− 18 = 39, height = 24. So area = 39·24

2
= 468.

...
But the problem’s answer is expected to be an integer? Possibly yes. But let’s check step 1: “Six points
A,B,C,D,E, F lie in a straight line in that order." Our computed positions are consistent: A = 0,
B = 18, C = 26, D = 40, E = 57, F = 73. Check distances: AC = 26, BD = 40 − 18 = 22,
CE = 57 − 26 = 31, DF = 73 − 40 = 33, AF = 73, correct. Now then triangles: CG =

distance from C = (26, 0) to G = (58, 24) equals
√

(32)2 + 242 =
√
1024 + 576 =

√
1600 = 40,

and DG =
√

(58− 40)2 + 242 =
√
182 + 576 =

√
324 + 576 =

√
900 = 30, so correct. Now

triangle BGE: vertices B = (18, 0), G = (58, 24), E = (57, 0). The base BE has length
57−18 = 39, and the height is the vertical distance from G to the x-axis is 24, so area= 39·24

2
= 468.

So answer is 468.
...
However, double-check: It might be that G could have negative y. But then area is same magnitude,
absolute value. Therefore answer: 468.
...
But wait, check problem statement: “Find the area of triangle BGE." Not necessarily with base BE
horizontal? But we computed that. I want to check if there’s any trick: Possibly the triangle is not
oriented with base along the line containing B and E because then the altitude would be the distance
from G to that line. And indeed the line BE is horizontal, so the altitude is the absolute value of G’s
y-coordinate. We computed G’s y-coordinate as 24. So final answer: 468.
...
Wait, but what about possibility x = 58? Let’s double-check the x-coordinate from difference of
circle equations: We had circles: (x − 26)2 + y2 = 402 = 1600, (x − 40)2 + y2 = 302 = 900.
Subtracting: (x − 26)2 − (x − 40)2 = 700. Expand: (x2 − 52x + 676) − (x2 − 80x + 1600) =
−52x+ 676 + 80x− 1600 = 28x− 924 = 700, so 28x = 1624, x = 58. So that’s consistent. So
yes. Thus final answer: 468. </think>

Token Efficiency GFPO

<think>... Now we want the area of triangle BGE. The vertices are B = (18, 0), G = (58, 24)

or (58,−24), and E = (57, 0). The area is given by 1
2

absolute value of cross product of
−−→
BG and

−−→
BE etc. Let’s compute vectors:

−−→
BG = G−B = (58− 18, 24− 0) = (40, 24).

−−→
BE = E −B =

(57− 18, 0− 0) = (39, 0). Area = 1
2
| det(

−−→
BG,

−−→
BE)| = 1

2
|(40 · 0− 24 · 39)| = 1

2
| − 936| = 468.

Thus answer: 468. So final answer: 468. </think>

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Comparison:

The GRPO response recomputes the area of △BGE six times, while Token Efficiency GFPO computes
it only once.

AIME 25 I Problem 8: GRPO v/s Token Efficiency GFPO

User:

Let k be real numbers such that the system |25 + 20i− z| = 5 and |z − 4− k| = |z − 3i− k| has
exactly one complex solution z. The sum of all possible values of k can be written as m

n
, where m

and n are relatively prime positive integers. Find m+ n. Here i =
√
−1.

GRPO

<think>... Equate squares: (x− (4+k))2+y2 = (x−k)2+(y−3)2. Expand: (x− (4+k))2 =
(x − k − 4)2 = (x − k)2 − 2 · 4 · (x − k) + 16, wait check: actually, let’s expand properly. Let
A = 4 + k, B = k, then equation becomes (x − A)2 + y2 = (x − B)2 + (y − 3)2. Expand
LHS: (x − A)2 = x2 − 2Ax + A2 and then plus y2, so LHS = x2 − 2Ax + A2 + y2. RHS:
(x−B)2+(y−3)2 = (x2−2Bx+B2)+(y2−6y+9) = x2−2Bx+B2+y2−6y+9. Cancel x2 and
y2 yields −2Ax+A2 = −2Bx+B2−6y+9. Rearranging: −2Ax+A2+2Bx−B2+6y−9 = 0,
or 2(B − A)x + 6y + (A2 − B2 − 9) = 0. But note that A2 − B2 = (A + B)(A − B) and
A+B = (4+k)+k = 4+2k, and A−B = (4+k)−k = 4, so A2−B2 = 4(4+2k) = 16+8k.
Then our equation is 2(B −A)x+ 6y + (16 + 8k− 9) = 0, i.e. 2(B −A)x+ 6y + (7 + 8k) = 0,
but note that B − A = k − (4 + k) = −4. Then 2(B − A)x = 2(−4)x = −8x, so the equation
becomes −8x+ 6y + 7 + 8k = 0 or 8x− 6y = 7 + 8k.
...
Alternatively, we can get the perpendicular bisector of the segment connecting (4 + k, 0) and (k, 3).
Let’s check the midpoint: M =

(
4+k+k

2
, 0+3

2

)
=

(
4+2k

2
, 3
2

)
= (2 + k, 3/2). The slope of the

line joining these two points from (4 + k, 0) to (k, 3) equals 3−0
k−(4+k)

= 3
−4

= − 3
4

. So the
perpendicular bisector slope is the positive reciprocal: 4

3
, and it passes through M . Its equation is

y − 3/2 = 4
3
(x − (2 + k)). Multiply both sides by 3: 3y − 9/2 = 4(x − 2 − k). Multiply both

sides by 2: 6y− 9 = 8(x− 2− k) = 8x− 16− 8k. Then rearranging: 6y− 9 = 8x− 16− 8k, so
8x− 6y = 16 + 8k + 9 = 25 + 8k.
...
Let’s re-check... So the equation is (x − (4 + k))2 + (y − 0)2 = (x − k)2 + (y − 3)2. Expand
LHS: (x − 4 − k)2 + y2 = (x − k − 4)2 + y2 = (x2 − 2x(4 + k) + (4 + k)2) + y2. The RHS
is (x− k)2 + (y − 3)2 = x2 − 2kx+ k2 + y2 − 6y + 9. Cancel x2 and y2 from both sides to get
−2(4+ k)x+(4+ k)2 = −2kx+ k2 − 6y+9. Bring terms to one side: −2(4+ k)x+(4+ k)2 +
2kx− k2 + 6y − 9 = 0. Combine the x terms: −2(4 + k)x+ 2kx = −8x− 2kx+ 2kx = −8x.
Then the constant terms: (4 + k)2 − k2 − 9; expanding (4 + k)2 = k2 + 8k + 16, subtracting k2

gives 8k + 16, and subtracting 9 gives 8k + 7. So the equation becomes −8x+ 6y + (8k + 7) = 0,
or equivalently 8x− 6y = 8k + 7.
...... </think>

Token Efficiency GFPO

<think>... Squaring both sides yields: (x − (4 + k))2 + y2 = (x − k)2 + (y − 3)2. Expand:
(x2 − 2(4 + k)x+ (4 + k)2 + y2) = (x2 − 2kx+ k2 + y2 − 6y + 9). Cancel x2 and y2, leaving:
−2(4 + k)x + (4 + k)2 = −2kx + k2 − 6y + 9. Simplify: Bring terms: −2(4 + k)x + (4 +
k)2 + 2kx − k2 + 6y − 9 = 0. Combine x terms: −2(4 + k)x + 2kx = −2(4 + k − k)x =
−2 · 4x = −8x. So equation becomes: −8x + (4 + k)2 − k2 + 6y − 9 = 0. Simplify constant:
(4+k)2−k2 = (16+8k+k2)−k2 = 16+8k. So the equation is: −8x+(16+8k)+6y−9 = 0, or
−8x+6y+(8k+7) = 0, but check: 16+8k−9 = 7+8k. Multiply by −1: 8x−6y−(8k+7) = 0,
or in standard form: 8x− 6y = 8k + 7. </think>

Comparison:

GRPO response recomputes and checks the perpendicular bisector equation 5 times (only 3 instances
shown), while Token Efficiency GFPO computes it only once.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

AIME 25 II Problem 5: GRPO v/s Shortest 8/24

User:

Suppose △ABC has angles ∠BAC = 84◦, ∠ABC = 60◦, and ∠ACB = 36◦. Let D, E, and F
be the midpoints of sides BC, AC, and AB, respectively. The circumcircle of △DEF intersects
BD, AE, and AF at points G, H , and J , respectively. The points G, D, E, H , J , and F divide the
circumcircle of △DEF into six minor arcs, as shown. Find D̄E + 2 · H̃J + 3 · F̃G, where the arcs
are measured in degrees.

A

B CD

EF

G

H
J

GRPO

<think> We need to compute arcs on the circumcircle of triangle DEF . Let’s denote the ver-
tices of triangle DEF in order: It says circle of triangle DEF , and then the points G,D,E,H, J, F
are arranged in order along circle. So the vertices of triangle DEF are D,E, F . But note the circle
has six points in order, and the six arcs are (arc DE), then arc EH? Wait, but check the given: They
mention "the points G,D,E,H, J, and F divide the circumcircle of triangle DEF into six minor
arcs, as shown." That means the circle order is: G, then D, then E, then H , then J , then F , and then
back to G. But we need to be careful: The circumcircle of triangle DEF has vertices D,E, F as
well. So the arcs are between adjacent points in the circle order. The six arcs are: arc GD, arc DE,
arc EH , arc HJ , arc JF , arc FG. But the problem statement says "the points G,D,E,H, J, and F
divide the circumcircle of triangle DEF into six minor arcs, as shown." But then they ask "find arc
DE + 2 · arc HJ + 3 · arc FG." But wait, which arc is arc FG? The arcs, I need to check which
arcs are which from the order: They are given in the diagram: The points in order are: G, then D,
then E, then H , then J , then F , then back to G. So the arcs are: arc GD, arc DE, arc EH , arc
HJ , arc JF , arc FG. But the problem asks for arc DE, then 2 · (arc HJ), then 3 · (arc FG). But
note that arc FG is the arc from F to G, but in our ordering, the arc from F to G is the arc FG, but
careful: the order is G-D-E-H-J-F , so arc FG is the arc from F to G, which is indeed the last arc
in the sequence. So we need to compute these arc measures, but they are not trivial. We need to find
angles related to triangle ABC and midpoints D,E, F . Let coordinates: A,B,C. But maybe we
can use properties: The circle through midpoints of sides of a triangle is the medial circle, but it’s not
necessarily the circumcircle of the medial triangle, but that’s exactly what it is: The circumcircle of
triangle DEF , where D,E, F are midpoints of BC,AC,AB respectively, is the nine-point circle of
triangle ABC. </think>

Shortest 8/24 GFPO

<think> We need to compute arcs on the circumcircle of triangle DEF . Let’s denote the ver-
tices of triangle DEF in order: It says circle of triangle DEF , and then the points G,D,E,H, J, F
are arranged in order along circle. So the vertices of triangle DEF are D,E, F . But note the circle
has intersections with lines BD,AE,AF . Let’s re-read the problem statement. Given triangle ABC
with angles A = 84, B = 60, C = 36. D,E, F are midpoints of sides BC,AC,AB respectively.
The circumcircle of triangle DEF intersects BD,AE,AF at points G,H, and J respectively. The
points G,D,E,H, J, F divide the circumcircle of triangle DEF into six minor arcs, as shown. I want
to label positions: We have triangle ABC, but then midpoints D,E, F are on sides BC,AC,AB
respectively. Now, note that triangle DEF is the medial triangle of ABC. And the circumcircle of
the medial triangle is known to be the nine-point circle of triangle ABC. </think>

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Comparison:

The Shortest 8/24 GFPO response quickly recognizes that △DEF is the medial triangle and its
circumcircle is the nine-point circle, while the GRPO response gets bogged down in arc bookkeeping
before arriving at the same conclusion.

AIME 25 I Problem 9: GRPO v/s Adaptive Difficulty GFPO

User:

The parabola with equation y = x2 − 4 is rotated 60 degrees counterclockwise around the origin. The
unique point in the fourth quadrant where the original parabola and its image intersect has y-coordinate
a−

√
b

c
. Find a+ b+ c.

GRPO

<think>
But before that, we can attempt to factor the quartic if possible. It is a quartic in u. But perhaps
a substitution might simplify it? Alternatively, note that u might be a "nice" value? Alternatively,
we can try to find the intersection by considering symmetry. Alternatively, consider the fact that the
intersection point is the unique one in the fourth quadrant. Maybe we can try to solve directly by
eliminating u. Alternatively, consider using rotation in reverse: For an intersection point (x, y), we
have y = x2 − 4 and also (y + 4)??? Not sure.
...... </think>

Adaptive Difficulty GFPO

<think>
I think we need to solve for x explicitly from the quartic. Alternatively, we can use the approach:
Let (x, y) be the intersection point. Then (x, y) satisfies: y = x2 − 4, and also (x, y) satisfies the
equation of the rotated parabola, i.e. if we rotate (x, y) by −60 degrees, we get a point on the original
parabola: So let (u, v) =

(
1
2
x+ 3

2
y, − 3

2
x+ 1

2
y
)
. Then y = u2 − 4.

...... </think>

Comparison:

The GRPO response jumps between several different alternatives—factoring the quartic, trying
substitutions, symmetry arguments, and vague rotation ideas without committing to a plan and doesn’t
reduce uncertainty, whereas the Adaptive Difficulty GFPO defines a single clear approach to take.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

GPQA: GRPO v/s Token Efficiency GFPO

User:

Consider this annihilation process p+ p̄ → 2A+ + 2A−

The antiproton is slowly moving and mAc
2 = 300MeV .

What is the velocity of particle A?

GRPO

<think>... Actually, maybe the process is in the lab frame where the antiproton is slow relative to
the proton. But wait, which is slowly moving: "The antiproton is slowly moving" means that maybe
the proton is moving? Wait check: "p + p̄" one of them is slow, but which one? "The antiproton
is slowly moving" means that the proton is moving fast? But then the question states: "Consider
this annihilation process: p+ p̄ → 2A+ + 2A−". The wording "The antiproton is slowly moving"
implies that the initial momentum is coming from the proton, which is fast. But then the question is
asking: "What is the velocity of particle A?" Possibly meaning the outgoing particles have velocity
determined by energy-momentum conservation in the center-of-mass frame.
...
Alternatively, the problem might be set in the center-of-mass frame. Let me think: "Annihilation
process" usually is considered in the center-of-mass frame. But then "The antiproton is slowly
moving" might be a hint that the proton is at rest? Because usually one would take p is at rest, and
the anti-proton is slow relative to p? Actually, "slowly moving" means small velocity. ... But if the
antiproton is slow, then maybe the proton has kinetic energy? But then the process might be not
exactly symmetric. Alternatively, maybe the assumption is that the antiproton is slow relative to the
lab frame. That means the proton is at rest? Because then the antiproton is slow? That is contradictory:
if the proton is at rest, then the anti-proton must be moving if we are in the lab frame?
...
Maybe the intended scenario is that the annihilation takes place in the lab frame where the antiproton
is almost at rest, and the proton is moving with a velocity such that the center-of-mass energy is just
above threshold. But then threshold for production of 4A is 4mA = 1200 MeV.
...
That doesn’t work. Maybe the intended scenario is that both the proton and antiproton are nearly at
rest in the center-of-mass frame...
...... </think>

Token Efficiency GFPO

<think>... Possibly the antiproton is slowly moving, so the reaction is in the lab frame, and one
particle is at rest, but then the total kinetic energy available is the difference of the rest masses? But
careful: if the antiproton is "slowly moving" that means it is non-relativistic? But then the proton
might be at rest or antiproton at rest? Let me re-read: "The antiproton is slowly moving." So perhaps
the proton is at rest? Actually, which one is at rest? The phrase "slowly moving" might indicate
that the antiproton is nearly at rest relative to the proton? But then the total energy available is the
mass difference, but then momentum conservation forces the final products to share momentum such
that they have equal velocity magnitude. But which velocity? Let me analyze the reaction in the
center-of-mass frame. </think>

Comparison:

The GRPO response repeatedly rehashes whether the reaction is in the lab frame or center-of-mass
frame, while Token Efficiency GFPO response correctly makes the assumption of center-of-mass
frame once.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

GPQA: GRPO v/s Adaptive Difficulty GFPO

User:

A quantum mechanical particle of mass m moves in two dimensions in the following potential, as a
function of (r, θ): V (r, θ) = 1

2
kr2 + 3

2
kr2 cos2(θ). Find the energy spectrum.

GRPO

<think>... Let x = r cos θ, y = r sin θ. Then r2 = x2 + y2, cos2 θ = x2

r2
if r ̸= 0. So

potential becomes: V (x, y) = 1
2
k(x2 + y2) + 3

2
k(x2 + y2)

Ä
x2

x2+y2

ä
= 1

2
k(x2 + y2) + 3

2
kx2 =

1
2
kx2 + 1

2
ky2 + 3

2
kx2 = (2)kx2? Let’s check: 1

2
kx2 + 3

2
kx2 = 2kx2, plus 1

2
ky2 remains.

So potential becomes: V (x, y) = 2kx2 + 1
2
ky2. That is a two-dimensional harmonic oscillator

with different frequencies along x and y. But wait, does that match? Let’s recalculate: Given
V (r, θ) = 1

2
kr2 + 3

2
kr2 cos2 θ = 1

2
k(x2 + y2) + 3

2
k cos2 θ(x2 + y2). But cos θ = x/r so

cos2 θ = x2

x2+y2 . So then V = 1
2
k(x2 + y2) + 3

2
k(x2 + y2) · x2

x2+y2 = 1
2
k(x2 + y2) + 3

2
kx2. So

indeed V = 1
2
ky2 +

(
1
2
+ 3

2

)
kx2 = 1

2
ky2 + 2kx2. That is a harmonic oscillator with frequencies:

ωx =
»

4k
m

= 2
»

k
m

and ωy =
»

k
m

.
...
Wait, but our derivation assumed that the potential is separable in Cartesian coordinates, which is valid
if we perform transformation x = r cos θ, y = r sin θ. But is that always valid? Let’s double-check:
The given potential is V (r, θ) = 1

2
kr2 + 3

2
kr2 cos2 θ = 1

2
k(x2 + y2) + 3

2
k
Ä

x2

x2+y2

ä
(x2 + y2) =

1
2
k(x2+y2)+ 3

2
kx2 = 1

2
ky2+2kx2. Yes that is indeed a separable potential in Cartesian coordinates

with x and y degrees of freedom. So the energy eigenvalues are those of two independent harmonic
oscillators with frequencies ωx =

»
4k
m

= 2
»

k
m

and ωy =
»

k
m

.
...... </think>

Adaptive Difficulty GFPO

<think>... Let x = r cos θ, y = r sin θ. Then cos2 θ = x2

r2
if r ̸= 0. So then potential

becomes: V (x, y) = 1
2
k(x2 + y2) + 3

2
k(x2 + y2)

Ä
x2

x2+y2

ä
= 1

2
k(x2 + y2) + 3

2
kx2. So rewriting:

V (x, y) = 1
2
ky2 +

(
1
2
k + 3

2
k
)
x2 = 1

2
ky2 + 2kx2. Wait, check: x2 + y2 multiplied by factor 1

2
k

gives 1
2
kx2 + 1

2
ky2 and then add 3

2
kx2 gives total potential: V (x, y) =

(
1
2
k + 3

2
k
)
x2 + 1

2
ky2 =

(2k)x2 + 1
2
ky2. So then the potential is anisotropic harmonic oscillator in Cartesian coordinates with

frequencies: for x: ωx =
»

4k
m

= 2
»

k
m

and for y: ωy =
»

k
m

.
...... </think>

Comparison:

The GRPO response recalculates the harmonic oscillator frequencies multiple times while the Adaptive
Difficulty GFPO response only calculates this once.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

GPQA: GRPO v/s Shortest 8/24 GFPO

User:

A light beam is propagating through a glass with index of refraction n. The glass is moving at constant
velocity v in the same direction as the beam and toward the observer in laboratory. What is the speed
of light in glass relative to the observer in laboratory? Take the speed of light in vacuum c = 1.

GRPO

<think>... Let me derive from special relativity: The speed of light in a medium is c/n in the
medium’s rest frame. But when the medium is moving with velocity v, the speed of light in the lab
frame is given by the relativistic velocity addition formula: u′ = u+v

1+(uv)/c2
. Here, u = c/n and v is

the velocity of the medium in lab frame. But wait, is it v? But careful: The medium is moving with
velocity v in lab frame and the light moves in the medium frame with speed c/n. But the medium’s
velocity relative to lab is v, so we can use velocity addition. But then the effective speed in lab
frame for light traveling in the same direction as medium is: u = c/n+v

1+(vc/(nc2))
? Wait, let me recalc:

The formula is: u = u′+v
1+u′v/c2 . But c = 1, so u = 1/n+v

1+v/(n)
. Actually, check: If u′ = 1/n then

u = 1/n+v
(n+v)/n

= 1/n+v
(n+v)/n

=
(
1
n
+ v

)
n

n+v
= 1+nv

n+v
. But wait, then answer is 1+nv

n+v
?

...
But is that the Fizeau drag effect? The Fizeau drag coefficient is 1− 1/n2. Wait, I recall the formula
for the speed of light in a moving medium in the direction of flow is: u = 1/n + (1 − 1/n2)v.
Let me check with our expression: 1/n+v

1+v/n
= 1/n+v

(n+v)/n
=

(
1
n
+ v

)
n

n+v
= 1+nv

n+v
. Now expand that

in v: Let v be small. Write 1+nv
n+v

= 1+nv
n(1+v/n)

= 1
n

1+nv
1+v/n

. Now expand denominator: 1
1+v/n

=

1− v/n+ (v/n)2 + . . . So we get = 1
n
(1 + nv)(1− v/n) = 1

n
[1 + nv − v/n− nv · (v/n)] =

1
n
[1+nv−v/n−v2]. Actually, let me do it properly: (1+nv)(1−v/n) = 1−v/n+nv−v2. So

that equals 1 + nv − v/n− v2. Dividing by n gives = 1/n+ v − v/n2 − v2/n. So the coefficient
of v is v(1− 1/n2). So indeed, to first order in v, u = 1/n+ (1− 1/n2)v. That is the Fizeau drag
formula. So our expression is consistent with the known formula for the speed of light in a moving
medium. But wait, are we using the correct sign? The medium is moving toward the observer, so the
effective speed of light relative to the observer is increased relative to the medium’s rest frame speed.
So the answer is ulab = 1/n+v

1+v/n
which simplifies to 1+nv

n+v
.

...... </think>

Shortest 8/24 GFPO

<think>...
The transformation from glass frame to lab frame, where the speed of light is c/n in the glass frame
and then add the velocity of glass, which is v. But note that the direction is the same as the beam. But
the lab observer sees the beam speed as v+(1/n)? But wait not exactly, because the addition formula
is: u′ = u+v

1+uv
. But careful: Actually, we have an object moving at speed u (with respect to the glass)

and the glass moving at speed v (with respect to lab) along same direction. The lab speed ulab of the
light beam should be computed using relativistic addition formula: ulab =

uglass+v

1+uglass·v
. But note that

uglass is 1/n. So lab speed = 1/n+v
1+(1/n)v

. Multiply numerator and denominator by n: = 1+nv
n+v

...But

in lab frame, the medium is moving, so the speed of light in lab frame is: u = 1/n+v
1+v/n

= 1+nv
n+v

as
computed. Wait check: Multiply numerator and denominator by n, get 1+nv

n+v
. Yes.

...... </think>

Comparison:

The GRPO response circles back and re-derives the velocity addition with uglass = 1/n multiple times,
while the Shortest 8/24 GFPO response does this once with a small recheck.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

A.3 EXTENDED ACCURACY AND RESPONSE LENGTH ANALYSIS

AIME 25 AIME 24 GPQA Omni-MATH LiveCodeBench

Acc Avg
Len Acc Avg

Len Acc Avg
Len Acc Avg

Len Acc Avg
Len

SFT 64.2 10.9k 72.2 10.1k 67.0 6.6k 84.7 9.6k 57.7 10.3k
GRPO 72.4 14.8k 77.7 13.3k 67.5 10.7k 86.0 12.7k 56.7 13.9k

6 of 8 69.2 14.7k 79.6 13k 70.2 10.2k 88.3 12.9k 56.4 13.6k

8 of 16 70.2 13.9k 77.9 12.3k 70.0 9.7k 89.3 11.8k 59.8 12.6k
6 of 16 70.1 13.8k 76.9 12.2k 68.3 9.1k 87.8 11.4k 58.3 12.6k
4 of 16 69.7 13.3k 76.6 11.8k 68.6 8.8k 88.0 11.3k 57.2 12.3k

8 of 24 70.4 12.6k 75.1 11.6k 68.9 8.6k 87.5 11.1k 56.5 11.8k
6 of 24 68.5 13.1k 75.6 11.9k 70.2 8.7k 88.1 10.9k 58.7 12.4k
4 of 24 70.3 13k 76.5 11.3k 68.1 8.3k 87.6 10.5k 59.2 11.8k

Token
Efficiency 69.5 12k 76.4 10.6k 68.5 7.5k 87.4 10.1k 57.0 11k

Adaptive
Difficulty 70.8 12.8k 76.6 11.6k 70.8 9k 88.9 11.6k 57.2 12.1k

Table 3: Pass@1 Accuracy and Average Response Lengths on AIME 25, AIME 24, GPQA,
Omni-MATH, and LiveCodeBench. GFPO variants substantially reduce response lengths while
matching GRPO accuracy. We find no statistically significant differences in accuracy under the
Wilcoxon signed-rank test for any dataset.

Figure 6: Average Response Length vs k/G.
Reducing k/G, reduces average response
length but beyond a point leads to diminish-
ing returns.

Figure 7: Average Response Length Across Prob-
lem Difficulties. Response lengths rise with prob-
lem difficulty for all methods, but GFPO reduces
response length over all difficulty levels.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Difficulty Bin Method Short Mid-Low Mid-High Long
Hard SFT 7298 9949 12576 18349
Hard GRPO 12719 16292 19846 23834

Hard Shortest 8/16 11292 13948 17897 22211
Hard Shortest 8/24 10087 12839 15711 20837
Hard Token Efficiency 8918 12044 15337 20815
Hard Adaptive Difficulty 9593 12959 16126 21677

Very Hard SFT 10707 15630 20875 25666
Very Hard GRPO 16728 22026 25309 27462

Very Hard Shortest 8/16 15768 20786 24051 26935
Very Hard Shortest 8/24 12657 18219 22671 25911
Very Hard Token Efficiency 13034 18633 23223 26109
Very Hard Adaptive Difficulty 13096 18625 22276 26279

Table 4: Average Response Length by Difficulty and Length Bins for AIME 25. We bin each
model’s responses to hard and very hard problems into length quartiles (short, mid-low, mid-high,
long) and report the average response lengths across length bins. We highlight the shortest average
response length per response length quartile across the different RL methods.

Difficulty Bin Method Short Mid-Low Mid-High Long
Hard SFT 60.42 54.17 58.33 52.08
Hard GRPO 83.33 85.42 64.58 60.42

Hard Shortest 8/16 77.08 79.17 70.83 52.08
Hard Shortest 8/24 72.92 81.25 72.92 66.67
Hard Token Efficiency 75.00 68.75 72.92 54.17
Hard Adaptive Difficulty 62.50 64.58 72.92 56.25

Very Hard SFT 21.88 14.06 12.50 12.50
Very Hard GRPO 32.81 31.25 25.00 17.19

Very Hard Shortest 8/16 25.00 23.44 23.44 20.31
Very Hard Shortest 8/24 35.94 25.00 18.75 10.94
Very Hard Token Efficiency 26.56 29.69 17.19 15.63
Very Hard Adaptive Difficulty 29.69 35.94 23.44 18.75

Table 5: Accuracy (%) by Difficulty and Length Bins for AIME 25. We bin each model’s responses
to hard and very hard problems into length quartiles (short, mid-low, mid-high, long) and report the
accuracies across length bins. We highlight the highest accuracy per response length quartile across
the different RL methods.

A.4 TRAIN TIME AND INFERENCE LATENCY ESTIMATION

Training step times. Each training run was executed for 100 steps. We report the average wall-
clock step time by taking the mean over the 100 per-step times. This corresponds to end-to-end step
duration including data loading, optimization, and logging. We train our models on 32xH100s, with a
global batch size of 64, and 32,768 context. See §3 for more details.

Inference latency. Latencies are computed from evaluation runs on AIME 24, AIME 25, and
GPQA. For AIME 24/25 we sample 32 responses per question and for GPQA we sample 5. For each
response, the evaluation harness records a response_time equal to wall-clock time from request
submission to receipt of the final token. We report average latency over all evaluation responses
on AIME 24, 25, and GPQA. All evaluations were served with vLLM on 8×H100 GPUs with
bfloat16 and maximum context length of 32,768. We used a single-GPU vLLM server per device
with max_num_batched_tokens=65,536. All models were evaluated with identical decoding
parameters (temperature, top-p, EOS/pad ids, and maximum length). See §3 for more details.

21

	Introduction
	Group Filtered Policy Optimization
	Setup
	Results
	Analysis
	Related Work
	Conclusion
	Reproducibility Statement
	Appendix
	LLM Usage.
	Qualitative Examples
	Extended Accuracy and Response Length Analysis
	Train Time and Inference Latency Estimation

