
Achieving Linear Speedup and Near-Optimal Complexity for Decentralized
Optimization over Row-stochastic Networks

Liyuan Liang 1 Xinyi Chen 1 Gan Luo 1 Kun Yuan 2

Abstract

A key challenge in decentralized optimization is
determining the optimal convergence rate and de-
signing algorithms to achieve it. While this prob-
lem has been extensively addressed for doubly-
stochastic and column-stochastic mixing matri-
ces, the row-stochastic scenario remains unex-
plored. This paper bridges this gap by intro-
ducing effective metrics to capture the influence
of row-stochastic mixing matrices and establish-
ing the first convergence lower bound for decen-
tralized learning over row-stochastic networks.
However, existing algorithms fail to attain this
lower bound due to two key issues: deviation
in the descent direction caused by the adapted
gradient tracking (GT) and instability introduced
by the PULL-DIAG protocol. To address de-
scent deviation, we propose a novel analysis
framework demonstrating that PULL-DIAG-GT
achieves linear speedup—the first such result for
row-stochastic decentralized optimization. More-
over, by incorporating a multi-step gossip (MG)
protocol, we resolve the instability issue and at-
tain the lower bound, achieving near-optimal com-
plexity for decentralized optimization over row-
stochastic networks.

1. Introduction
Scaling machine learning tasks to large datasets and mod-
els requires efficient distributed computing across multiple
nodes. This paper investigates decentralized stochastic opti-

1School of Mathematics Science, Peking University, Beijing,
China 2Center for Machine Learning Research, Peking Uni-
versity, Beijing, China. Correspondence to: Kun Yuan <kun-
yuan@pku.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

mization over a network of n nodes:

min
x∈Rd

f(x) =
1

n

n∑
i=1

[
fi(x) := Eξi∼Di

[F (x; ξi)]
]

(1)

where ξi is a random data vector supported on Ξi ⊆ Rq

with some distribution Di, and F : Rd×Rq → R is a Borel-
measurable function. Each loss function fi is accessible
only by node i and is assumed to be smooth and potentially
nonconvex. Note that data heterogeneity typically exists, i.e.,
the local data distributions {Di}ni=1 vary across nodes. In
this paper, we model decentralized communication between
nodes as a directed graph, a scenario frequently encountered
in practical applications. For example, bidirectional commu-
nication may be infeasible due to differences in node power
ranges (Yang et al., 2019) or connection failures (Yemini
et al., 2022; Li et al., 2024). In distributed deep learning,
carefully designed directed topologies can achieve sparser
and faster communication than their undirected counterparts,
thereby reducing the training wall clock time (Bottou et al.,
2018; Assran et al., 2019; Yuan et al., 2021).

Network topology and mixing matrix. A central chal-
lenge in decentralized optimization is determining the opti-
mal convergence rate and designing algorithms that achieve
it. This requires a theoretical understanding of how net-
work topologies influence decentralized algorithms. For any
given connected network, its topology can be represented by
a mixing matrix that reflects its connectivity pattern, serv-
ing as a critical tool for evaluating the network’s impact.
In undirected networks, symmetric and doubly-stochastic
matrices can be readily constructed. However, in directed
networks, constructing a doubly-stochastic mixing matrix is
generally infeasible. Instead, mixing matrices are typically
either column-stochastic (Nedić & Olshevsky, 2014; Nedić
et al., 2017) or row-stochastic (Sayed, 2014; Mai & Abed,
2016), but not both.

Optimal complexity over doubly-stochastic networks is
well-established. The connectivity of a doubly-stochastic
mixing matrix can be effectively assessed using the spectral
gap, a metric that quantifies how closely a decentralized
network approximates a fully connected one. Leveraging
this metric, several studies have established the optimal con-
vergence rates for decentralized algorithms. For example,

1

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

references (Scaman et al., 2017; 2018; Sun & Hong, 2019;
Kovalev et al., 2021) derive optimal convergence rates for
convex or non-stochastic decentralized optimization. Lu &
De Sa (2021) determine the optimal complexity for non-
convex and stochastic decentralized optimization over a
specific type of linear network, while Yuan et al. (2022)
extend this complexity to a significantly broader class of
networks. The optimal complexity for doubly-stochastic
time-varying networks has been established in (Huang &
Yuan, 2022; Li & Lin, 2024; Kovalev et al., 2021).

Optimal complexity over column-stochastic networks
is established recently. If out-degree information is avail-
able prior to communication, a column-stochastic matrix
can be readily constructed. When decentralized algorithms
rely solely on column-stochastic matrices, this is referred
to as the COL-ONLY setting. The PUSH-SUM gossip pro-
tocol (Kempe et al., 2003; Tsianos et al., 2012) forms the
foundation of COL-ONLY algorithms. Many algorithms
based on PUSH-SUM achieve superior convergence rates,
e.g., Nedić & Olshevsky (2015); Tsianos et al. (2012); Zeng
& Yin (2017); Xi & Khan (2017); Xi et al. (2017); Nedić
et al. (2017); Assran et al. (2019); Qureshi et al. (2020).
However, these works fail to precisely capture the influence
of column-stochastic networks and, as a result, do not clar-
ify the optimal complexity in the COL-ONLY setting. This
open question is addressed in a recent study by Liang et al.
(2023), which introduces effective metrics to evaluate the
influence of column-stochastic networks, establishes the op-
timal lower bound for the COL-ONLY setting, and proposes
algorithms that achieve this bound.

Optimal complexity over row-stochastic networks re-
mains unclear yet. If out-degree information is unavail-
able, column-stochastic matrices cannot be directly con-
structed. However, row-stochastic matrices can be formed
using in-degree information, which can be easily obtained
by counting received messages. This is referred to as the
ROW-ONLY setting. Similar to how PUSH-SUM serves as
the basis for COL-ONLY algorithms, the foundation of ROW-
ONLY methods is the PULL-DIAG gossip protocol (Mai &
Abed, 2016). Building on PULL-DIAG, Mai & Abed (2016)
adapted the distributed gradient descent (DGD) algorithm
for the ROW-ONLY setting, while Li et al. (2019); Xin et al.
(2019c) extended gradient tracking methods, and Ghaderyan
et al. (2023); Lü et al. (2020); Xin et al. (2019a) introduced
momentum-based ROW-ONLY gradient tracking. However,
the convergence analysis for ROW-ONLY algorithms is still
quite limited. Current analyses focus only on deterministic
and strongly convex loss functions, leaving the performance
of ROW-ONLY algorithms in non-convex and stochastic
settings unknown. More importantly, the impact of row-
stochastic networks on the convergence rate of ROW-ONLY
algorithms remains unclear. These gaps present significant
obstacles to determining the optimal complexity in the ROW-

ONLY setting. Some fundamental open problems are:

Q1. What are the effective metrics that can fully capture
the impact of row-stochastic networks on decentralized
stochastic optimization, and how do they influence the
convergence of prevalent ROW-ONLY algorithms?

Q2. Given these metrics, what is the lower bound on the
convergence rate for ROW-ONLY algorithms in the
non-convex and stochastic setting?

Q3. Can existing ROW-ONLY algorithms readily achieve
the optimal convergence rate? If not, what limitations
do they face?

Q4. Can we develop new ROW-ONLY algorithms that over-
come the limitations of existing algorithms and attain
the aforementioned lower bound?

Main contributions. This paper improves the understand-
ing of decentralized methods over row-stochastic networks
by addressing these open questions. Our contributions are :

C1. We find that the metrics generalized spectral gap and
equilibrium skewness, proposed by (Liang et al., 2023)
to characterize the influence of column-stochastic net-
works, can also effectively capture the impact of row-
stochastic networks on decentralized algorithms.

C2. Using these metrics, we establish the first lower bound
on the convergence rate for nonconvex decentralized
stochastic first-order algorithms with a row-stochastic
mixing matrix. This bound achieves linear speedup
with respect to network size n and captures the influ-
ence of gradient noise, the mixing matrix, the number
of nodes and the smoothness of the loss function.

C3. We find existing ROW-ONLY algorithms cannot attain
the aforementioned lower bound due to two challenges.
First, the use of row-stochastic mixing matrices alone
introduces a deviation in the descent direction from the
globally averaged gradient, preventing existing analy-
ses from achieving linear speedup convergence. Sec-
ond, the PULL-DIAG protocol introduces inversion of
small values during operation, which introduces insta-
bility in ROW-ONLY algorithms.

C4. We develop a novel analysis framework proving that
PULL-DIAG-GT achieves linear speedup, marking the
first such result in ROW-ONLY scenarios. Moreover,
when integrated with a multistep gossip (MG) protocol,
MG-PULL-DIAG-GT addresses the instability caused
by the inversion of small values and achieves the estab-
lished lower bound. Therefore, both the lower bound
and our algorithm achieve optimal complexity for de-
centralized learning over row-stochastic networks.

2

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

Notations. Let 1n denote the vector of all-ones of n dimen-
sions and In ∈ Rn×n the identity matrix. We let matrix
A denote the row-stochastic matrix (A1n = 1n). The set
[n] represents the indices {1, 2, . . . , n}. Diag(A) refers to
the diagonal matrix composed of the diagonal entries of
A, while diag(v) is the diagonal matrix derived from vec-
tor v. The Perron vector of matrix A is πA, i.e., πA ≥
0, π⊤

AA = π⊤
A , π

⊤
A1 = 1. By letting ΠA := diag(πA), we

define ∥v∥πA
:= ∥Π1/2

A v∥, which is associated with the
induced matrix norm ∥W∥πA

:= ∥Π1/2
A WΠ

−1/2
A ∥2. We

define A∞ := 1nπ
⊤
A . The vector x(k)

i ∈ Rd represents the
local model at node i during iteration k. We also define
n× d matrices

x(k) := [(x
(k)
1)⊤; (x

(k)
2)⊤; · · · ; (x(k)

n)⊤]

∇F (x(k);ξ(k)) := [∇F1(x
(k)
1 ;ξ

(k)
1)⊤;· · ·;∇Fn(x

(k)
n ; ξ(k)n)⊤]

∇f(x(k)) := [∇f1(x(k)
1)⊤; · · · ;∇fn(x(k)

n)⊤]

by stacking all local variables. The upright bold symbols
(e.g. x,w,g) always denote network-level quantities. We
define filtration Fk as the collection of all the information
available up to x(k), excluding the stochastic gradient evalu-
ated at x(k). We use the symbol ≲ to represent inequality
up to absolute constants.

2. Metrics for Row-stochastic Networks
We consider a directed network with n computing nodes that
is associated with a mixing matrix A = [aij]

n
i,j=1 ∈ Rn×n

where aij ∈ (0, 1] if node j can send information to node i
otherwise aij = 0. Decentralized optimization is built upon
partial averaging z+i =

∑
j∈Ni

aijzj in which zi ∈ Rd is a
local vector held by node i and Ni denotes the in-neighbors
of node i, including node i itself. Since every node conducts
partial averaging simultaneously, we have

z ≜ [z⊤1 ; z⊤2 ; · · · ; z⊤n]
A-protocol7−−−−−→ z+ = Az (2)

where A-protocol represents partial averaging with mixing
matrix A. Evidently, the algebraic characteristics of A sub-
stantially affect the convergence of partial averaging and
the corresponding decentralized optimization. This section
explores metrics that capture the characteristics of A.

2.1. Row-stochastic Mixing Matrix

This paper focuses on a static directed network G = (V, E)
associated with a row-stochastic matrix A = [aij]n×n.

Assumption 1 (Primitive and Row-stochastic). The mixing
matrix A is nonnegative, primitive and satisfies A1n = 1n.
The weight aij ∈ (0, 1], if (i→ j) ∈ E , otherwise aij = 0.

If G is strongly-connected, i.e., there exists a directed path
from each node to every other node, and A has a positive

trace, then A is primitive. It is straightforward to make
A row-stochastic by setting aij = 1/(1 + dini) if (i, j) ∈
E or j = i otherwise aij = 0, where E is the set of directed
edges and dini is the in-degree of node i excluding the self-
loop. With Assumption 1, we have the following result:

Proposition 1 (Perron-Frobenius theorem (Perron, 1907)).
If matrix A satisfies Assumption 1, there exists a unique
equilibrium vector πA ∈ Rn with positive entries such that

π⊤
AA = π⊤

A , 1⊤
n πA = 1, and lim

k→∞
Ak = 1nπ

⊤
A .

2.2. Effective Metrics to Characterize Row-stochastic A

Most decentralized algorithms rely on gossip protocols
like (2), where local variables are partially mixed to ap-
proximate the global average. The properties of the mixing
matrix A play a critical role in determining both the feasibil-
ity of achieving the global average and the efficiency of this
process. These properties serve as key metrics for assessing
the influence of A on algorithmic performance.

Now we examine the A-protocol (2) where A is a row-
stochastic mixing matrix A. Suppose that each node i has
a local variable zi ∈ Rd, we let z = [z⊤1 ; z⊤2 ; · · · ; z⊤n] ∈
Rn×d and initialize x(0) = z. Following the gossip protocol
as in (2), we have the following recursions:

x(k) = Ax(k−1) = Akx(0) k→∞7−−−−→ 1nπ
⊤
Az, (3)

where we utilize the property limk→∞Ak = 1nπ
⊤
A (see

Proposition 1). It is evident that the matrix A influences
both whether and how quickly x(k) approaches the global
average 1n1

⊤
n z/n. Inspired by (3), we use the following

two metrics to characterize the row-stochastic matrix A:

• The generalized spectral gap 1 − βA of the row-
stochastic matrix A, where

βA :=
∥∥A− 1nπ

⊤
A

∥∥
πA

= ∥A−A∞∥πA
∈ [0, 1)

quantifies the convergence rate of x(k) to the weighted
average 1nπ

⊤
Az in (3). The πA-norm was defined in the

notations in Sec. 1. As βA approaches 0, the iterates
x(k) converge more rapidly to the fixed point 1nπ

⊤
Az

of the A-protocol (3).

• The equilibrium skewness

κA := max(πA)/min(πA) ∈ [1,+∞)

captures the disagreement between the equilibrium vec-
tor πA and the uniform vector n−11n. When κA → 1,
it holds that πA → 1n/n, and hence, the weighted av-
erage aligns better with the global average 1n1

⊤
n z/n.

3

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

The spectral gap gauges the rate of the A-protocol when
converging to the fixed point 1nπ

⊤
Az, while equilibrium

skewness measures the proximity of the fixed point to the
desired global average 1n1

⊤
n z/n. Together, these metrics

effectively capture the influence of row-stochastic mixing
matrices and directed networks on decentralized algorithms.
Omitting either would lead to an incomplete understanding
of their impact. Figure 1 shows examples that the spectral
gap and equilibrium skewness jointly impact the conver-
gence to average consensus. The protocol used in Figure 1
is called PULL-DIAG and will be discussed in Sec. 2.3.

It is important to note that these two metrics are not new;
they were proposed in (Xin et al., 2019b; Liang et al., 2023)
to assess the influence of column-stochastic mixing matrices.
Our contribution lies in demonstrating that these metrics are
also applicable to row-stochastic mixing matrices. Prior to
our work, no literature had examined the metrics that can
gauge the influence of row-stochastic mixing matrices on
decentralized algorithms.

2.3. Pull-Diag Protocol Corrects Weighted Average

According to (3), A-protocol alone cannot achieve the
desired global average. The bias between the limiting
weighted average 1nπ

⊤
Az and the desired global average

1n1
⊤
n z/n can be corrected by the following manner:

Akdiag(nπA)
−1z

k→∞7−−−−→ 1nπ
⊤
Adiag(nπA)

−1z = 1n1
⊤
n z/n. (4)

Although the above strategy is effective, the quantity πA is
not known beforehand. To estimate πA, prior works (Mai
& Abed, 2016; Xin et al., 2019c; Ghaderyan et al., 2023)
use power iterations, resulting in a practical and efficient
approach referred to as PULL-DIAG in this paper:

Vk+1 = AVk, Dk+1 = Diag(nVk+1), (5a)

z(k+1) = Vk+1D
−1
k+1z. (5b)

With initialization V0 = In, we have Vk = Ak and
Dk = Diag(nAk). It holds that Vk → 1nπ

⊤
A and

Dk → diag(nπA) as k → ∞. Substituting these facts
into (5b), we asymptotically achieve the bias correction il-
lustrated in (4). The distributed implementation details of
the PULL-DIAG protocol can be found in Appendix B. It
is shown in Figure 1 that PULL-DIAG protocol corrects the
weighted average and converges exponentially fast.

3. Convergence Lower Bounds
3.1. Assumptions

This subsection specifies the category of decentralized algo-
rithms to which our lower bound applies.

0 100 200 300 400
Comm. Rounds

10 14
10 11
10 8
10 5
10 2
101
104

A = 0.77, A = 5.3 + e04
A = 0.87, A = 5.3 + e04
A = 0.92, A = 5.3 + e04
A = 0.95, A = 5.3 + e04

0 100 200 300 400
Comm. Rounds

10 14

10 11

10 8

10 5

10 2

101 A = 0.9, A = 9.3 + e03
A = 0.9, A = 2.7 + e05
A = 0.9, A = 7.3 + e07
A = 0.9, A = 1.7 + e10

Figure 1. Convergence of PULL-DIAG protocol on different mix-
ing matrices with varying spectral gaps (βA) and equilibrium skew-
ness (κA). The y-axis represents the consensus error ∥z(k) −
1n1

⊤
n z/n∥. The left plot shows fixed κA with different βA, while

the right plot shows fixed βA with different κA.

Function class. We define the function class F∆,L as the
set of functions that satisfy Assumption 2, for any given
dimension d ∈ N+ and any initialization point x(0) ∈ Rd.

Assumption 2 (Smoothness). There exists constants
L,∆ ≥ 0 such that

∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, ∀i ∈ n,x,y ∈ Rd.

and for initial model parameter x(0),

fi(x
(0))− inf

x∈Rd
fi(x) ≤ ∆, ∀i ∈ [n].

Gradient oracle class. We assume that each node i pro-
cesses its local cost function fi using a stochastic gradient
oracle ∇F (x; ξi), which provides unbiased estimates of the
exact gradient ∇fi with bounded variance. Specifically, we
define the stochastic gradient oracle class Oσ2 as the set of
all oracles ∇F (·; ξi) that satisfy Assumption 3.

Assumption 3 (Gradient oracles). There exists a constant
σ ≥ 0 such that for all x ∈ Rd, i ∈ [n] we have

E[∇Fi(x; ξ)] = ∇fi(x), tr(Var[∇Fi(x; ξ)]) ≤ σ2.

We also assume that the gradient noise is linearly indepen-
dent, i.e., ∀i ̸= j ∈ [n] we have

Cov(∇Fi(xi; ξi),∇Fj(xj ; ξj)) = 0.

Algorithm class description. We focus on decentralized
algorithms where each node i maintains a local solution
x
(k)
i at iteration k and communicates using the A-protocol

defined in (2). These algorithms also adhere to the linear-
spanning property, as defined in (Carmon et al., 2020; 2021;
Yuan et al., 2022; Lu & De Sa, 2021). Informally, this prop-
erty ensures that each local solution x(k)

i resides within the
linear space spanned by x(0)

i , its local stochastic gradients,
and interactions with neighboring nodes. Upon completion
of K iterations, the final output x̂(K) can be any variable in
span({{x(k)

i }ni=1}Kk=0). Let AA denote the set of all algo-
rithms that adhere to partial averaging via mixing matrix A
and satisfy the linear-spanning property.

4

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

3.2. Lower Bound

With βA and κA at hand, we show, for the first time, that the
convergence rate of any non-convex decentralized stochastic
first-order algorithm with a row-stochastic mixing matrix is
lower-bounded by the following theorem.

Theorem 1 (Lower bound). For any given L ≥ 0, n ≥
2, σ ≥ 0, and β̃ ∈ [0.01, 1 − 1/n], there exists a set
of loss functions {fi}ni=1 ∈ F∆,L, a set of stochastic
gradient oracles in Oσ2 , and a row-stochastic matrix
A ∈ Rn×n with βA = β̃ and ln(κA) = Ω(n(1− βA)),
such that the convergence of any algorithm A ∈ AA

starting from x(0)
i = x(0), i ∈ [n] with K iterations is

lower bounded by

E∥∇f(x̂(K))∥2=Ω

(
σ
√
L∆√
nK

+
(1 + ln(κA))L∆

(1− βA)K

)
,

(6)

where K, σ, L, and ∆ represent the total number of
iterations, the gradient variance, the smoothness param-
eter of the functions, and the initial gap in the function
values, respectively. The proof is in Appendix A.

Linear speedup. The first term, σ/
√
nK, dominates the

lower bound (6) when K is sufficiently large, indicating
that decentralized algorithms with row-stochastic mixing
matrices could achieve linear speedup with respect to net-
work size n (i.e., convergence improves as the number of
computing nodes n increases).

Network topology impact. The lower bound in (6) ex-
plicitly highlights the combined impact of the generalized
spectral gap βA and the equilibrium skewness κA on decen-
tralized algorithms utilizing row-stochastic mixing matrices.
Omitting either metric would provide an incomplete under-
standing of the algorithmic performance.

Deterministic scenario. When the gradient noise σ = 0,
the established lower bound in (6) for stochastic settings
simplifies to the first lower bound for deterministic decen-
tralized algorithms with row-stochastic mixing matrices.

4. Achieving Linear Speedup Using
Row-stochastic Matrix Alone

The lower bound (6) reveals a linear speedup convergence
rate of σ/

√
nK as K grows large. However, no existing

ROW-ONLY decentralized stochastic algorithm has theoreti-
cally achieved this rate, highlighting a significant gap from
the lower bound. This section identifies the challenges and
presents a novel analysis framework that achieves the first
theoretical linear speedup for ROW-ONLY algorithms.

4.1. Pull-DIAG-GT Algorithm

We begin by reviewing the state-of-the-art ROW-ONLY al-
gorithms (Li et al., 2019; Xin et al., 2019c; Ghaderyan
et al., 2023; Lü et al., 2020; Xin et al., 2019a), all of which
are based on PULL-DIAG-GT—an adaptation of gradient
tracking (Nedic et al., 2017; Di Lorenzo & Scutari, 2016;
Xu et al., 2015; Qu & Li, 2017) designed specifically for
ROW-ONLY scenarios.

x(k+1) = A(x(k) − αy(k)), (7a)

y(k+1) = A(y(k) +D−1
k+1g

(k+1) −D−1
k g(k)). (7b)

Here, Dk = Diag(Ak),∀k ≥ 1, D0 = In. Matrix x(k)

denotes the stacked model parameters and y(k) denotes the
gradient tracking term. g(k) denotes the stochastic gradi-
ent, defined as g(k) = ∇F (x(k); ξ(k)), with y(0) = g(0).
The details of algorithm implementation is provided in Ap-
pendix B. As recursion (7) incorporates the PULL-DIAG
protocol (5) into gradient tracking, it is termed PULL-DIAG-
GT throughout this paper.

It is noteworthy D−1
k may involve inversion of zeros. There-

fore, the following assumption is necessary:

Assumption 4 (Bounded Diagonals). There exists a con-
stant θA > 0 such that

[Ak]−1
ii ≤ θA, ∀k ≥ 1, i ∈ [n].

Remarkably, under Assumption 1, the existence of θA can
be guaranteed if and only if every node has a self-loop.

Algorithm insight. As shown in A-protocol (3), communi-
cation utilizing a row stochastic matrix yields a biased aver-
age z → π⊤

Az. In PULL-DIAG-GT, we can left-multiply π⊤
A

on both sides of (7a) and observe the following dynamics:

π⊤
Ax

(k+1) = π⊤
Ax

(k) − απ⊤
Ay

(k). (8)

If y(k) represents the stacked stochastic gradients, i.e.,
y(k) = ∇F (x(k); ξ(k)), the descent direction π⊤

Ay
(k) devi-

ates from the desired globally averaged gradient 1⊤
ny

(k)/n,
preventing π⊤

Ax
(k) from converging to the solution to prob-

lem (1). To ensure convergence, PULL-DIAG-GT corrects
the descent direction using D−1

k in (7b). Left-multiplying
π⊤
A on both sides of (7b) yields

π⊤
Ay

(k+1) − π⊤
AD

−1
k+1g

(k+1)= π⊤
Ay

(k) − π⊤
AD

−1
k g(k)

= · · · = π⊤
Ay

(0) − π⊤
Ag

(0) (a)
= 0,

where equality (a) holds due to y(0) = g(0). This implies

π⊤
Ay

(k) = πT
AD

−1
k g(k)

(b)
≈ 1⊤

n g
(k) ≜ nḡ(k), (9)

where (b) holds because Dk = Diag(Ak) ≈ diag(πA),
and ḡ(k) = (1/n)1⊤

n g
(k). The combined dynamics of (8)

5

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

and (9) ensure that PULL-DIAG-GT converges along the
globally averaged gradient, ultimately solving problem (1).

Challenges in establishing linear speedup. Although the
rationale behind PULL-DIAG-GT’s convergence to the de-
sired solution is clear, to the best of our knowledge, no
existing analysis has established its linear speedup conver-
gence with respect to the network size n. This subsection
highlights the key challenges involved.

We first define two error terms to facilitate analysis:

• Consensus error. Let π⊤
Ax

(k) be the centroid variable
for x(k). We introduce ∥x(k) − 1nπ

⊤
Ax

(k)∥2 as the
consensus error to gauge the difference between each
local variable x(k)

i to the centroid π⊤
Ax

(k).

• Descent deviation. We define ∥π⊤
Ay

(k) − nḡ(k)∥2
as the descent deviation, measuring the discrepancy
between the PULL-DIAG-GT descent direction and the
desired globally averaged stochastic gradient.

If the aforementioned two error terms are guaranteed to
diminish to zero, PULL-DIAG-GT enables each x(k)

i to
converge to centroid w(k) = π⊤

Ax
(k), and the update of

w(k) asymptotically approximate centralized parallel SGD:

w(k+1) = w(k) − nαḡ(k)w , (10)

where ḡ(k)w = (1/n)
∑n

i=1 ∇F (w(k); ξ
(k)
i) is the globally

averaged gradient over centroid. This ensures w(k) to con-
verge to the desired solution to problem (1).

Linear speedup analysis in distributed stochastic optimiza-
tion relies heavily on the descent structure aligned with the
globally averaged stochastic gradient (Yu et al., 2019; Xin
et al., 2019b; Koloskova et al., 2020; Yang et al., 2021).
When each local stochastic gradient gi introduces mean-
square gradient noise σ2, the globally averaged gradient ḡ
benefits from reduced noise σ2/n, forming the foundation
for linear speedup. Gradient tracking with doubly or column-
stochastic mixing matrices preserves the globally averaged
gradient descent direction ḡ, enabling well-established lin-
ear speedup convergence (Koloskova et al., 2020; Lu &
De Sa, 2021; Assran et al., 2019; Kungurtsev et al., 2023;
Liang et al., 2023). In contrast, PULL-DIAG-GT suffers
from an additional descent deviation between π⊤

Ay and ḡ,
making existing linear speedup analyses inapplicable and
necessitating new techniques to address this limitation.

4.2. Achieving linear speedup in Pull-Diag-GT

This subsection presents a new analytical framework to
establish the linear speedup rate for PULL-DIAG-GT.

Descent lemma. Our analysis begins with a descent lemma.

Lemma 2 (Descent lemma). Under Assumptions 1-4, when
α ≤ 1

2nL , for any k ≥ 0 we have

nα

2
∥∇f(w(k))∥2 ≤ f(w(k))− E[f(w(k+1))|Fk]

+ αL2 ∥∆(k)
x ∥2F︸ ︷︷ ︸

consensus error

+
α

n
∥E[π⊤

Ay
(k) − nḡ(k)|Fk]∥2︸ ︷︷ ︸

descent deviation

+
α2Lσ2

2
dk − α

4n
∥π⊤

AD
−1
k ∇f(x(k))∥2 (11)

where w(k) := π⊤
Ax

(k) is the centroid variable, dk :=∑n
j=1(

[πA]j
[Dk]j

)2 is a constant. ∆
(k)
x := x(k) − 1nπ

⊤
Ax

(k),

and ḡ(k) = (1/n)1⊤
n∇F (x(k); ξ(k)).

As anticipated, the descent lemma incorporates both the
consensus error and the descent deviation. Due to the con-
ditional expectation operation, the descent deviation in the
lemma appears as ∥E[π⊤

Ay
(k) − nḡ(k) | Fk]∥2. In contrast,

the descent lemma for gradient tracking using doubly or
column-stochastic mixing matrices ensures ȳ(k) = ḡ(k),
thereby accounting solely for the consensus error.

Estimate descent deviation. According to (9), we have
π⊤
Ay

(k) = πT
AD

−1
k g(k). This implies that

∥E[π⊤
Ay

(k) − nḡ(k)|Fk]∥ = ∥(π⊤
AD

−1
k − 1⊤

n)∇f(x(k))∥.

Therefore, we can use the following lemma to provide an
estimate for the descent deviation.

Lemma 3. Under Assumptions 1, 2 and 4, for all k ≥ 1,

∥(π⊤
AD

−1
k − 1⊤

n)∇f(x(k))∥2

≤ 2nκAθ
2
Aβ

2k
A

(
L2∥∆(k)

x ∥2F + 2nL((f(w(k))− f∗)
)
,

where f∗ := n−1
∑n

i=1 f
∗
i .

Lemma 3 employs f(w(k))−f∗ to establish an upper bound
on the norm of the stacked gradients. In many instances, this
approach can negatively impact the recursive nature of the
descent lemma. Nevertheless, in this particular situation, we
can effectively accommodate it due to its O(β2k

A) coefficient.
Details are provided in Lemma 13 in Appendix C.

Estimate consensus error. We present a novel method to
establish bounds on the consensus error, which is based on
converting ∆x into rolling sums.

Lemma 4 (Informal). Denote ∆
(k)
y = y(k) − 1nπ

⊤
Ay

(k),
∆

(−1)
g = g(0), ∆(i)

g = g(i+1)−g(i),∀i ≥ 0. For any k ≥ 0,
it follows that

∆(k+1)
x = −α

k∑
i=0

(A−A∞)k+1−i∆(i)
y ,

∆(k+1)
y =

k∑
i=−1

(
(A−A∞)k+1−iD−1

i+1 +O(kβk
A)
)
∆(i)

g .

6

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

The following lemma tells us how to estimate rolling sums:

Lemma 5 (Rolling sum). For A ∈ Rn×n satisfying As-
sumption 1, the following estimation holds for any matrices
∆(i) ∈ Rn×d and for any K ≥ 0:

K∑
k=0

∥
k∑

i=0

(A−A∞)k+1−i∆(i)∥2F ≤ s2A

K∑
i=0

∥∆(i)∥2F ,

where sA is a constant decided by A.

Under the L-smooth assumption, it is straightforward to de-
rive an upper bound for the sum

∑K
k=0 ∥∆

(k)
g ∥2F . Following

the sequence of steps ∆g → ∆y → ∆x, Lemmas 4 and 5
together lead to the following consensus lemma.

Lemma 6 (Consensus lemma, informal). With Assump-
tions 1, 2, 3 and 4, we have

K∑
k=0

E[∥∆(k+1)
x ∥2F] ≤ Cx,yα

4
K∑

k=0

E[∥π⊤
AD

−1
k ∇f(x(k))∥2F]

+ Cx,0α
2∥∇f(x(0))∥2 + Cx,σα

2(K + 1)σ2,

where Cx,y, Cx,0 and Cx,σ are constants.

Achieving linear speedup. Building on Lemmas 2, 3 and
6, we finally achieve the convergence Theorem 2.

Theorem 2 (PULL-DIAG-GT convergence). Under as-
sumptions 1, 2, 3 and 4, when total iteration K >
2κAθ2

A

1−βA
, there exists a learning rate α (see Section C.8

in Appendix C) such that

1

K

K∑
k=0

E∥∇f(w(k))∥2 ≲
σ
√
L∆√
nK

+
L∆(1 + CA)

K
,

where w(k) = π⊤
Ax

(k), CA is a positive constant de-
cided by the mixing matrix A. Proof is in Appendix C.

Remark 1. Theorem 2 establishes the first linear speedup
convergence utilizing solely row-stochastic mixing matrices.
The term CAL∆

K+1 signifies the influence of the network, where
CA is a rational function of κA, βA and θA.

5. Achieving Near-Optimal Convergence Rate
Comparing Theorem 2 with the lower bound in Theorem 1,
we identify two key discrepancies preventing PULL-DIAG-
GT from achieving the lower bound. First, Theorem 2 relies
on Assumption 4, which the lower bound does not require.
Second, the constant CA in Theorem 2 depends on θA, the
upper bound of the diagonals, which is absent from the lower
bound and can grow arbitrarily large even for fixed βA and
κA. This section introduces a variant of PULL-DIAG-GT to
address these discrepancies and achieve the lower bound.

Removing θA with multiple gossips. The requirement for
θA (and Assumption 4) arises from the use of Diag(Ak)−1

for gradient correction in the PULL-DIAG-GT update (7b).
For small values of k, the diagonal elements of Ak can
become extremely small due to network sparsity, leading to
significant instability in the inversion Diag(Ak)−1 during
the initial phase. As k increases, Diag(Ak) converges to
diag(πA), which stabilizes the correction. This behavior is
formally stated in the following lemma:
Lemma 7. For A ∈ Rn×n satisfying Assumption 1, if
k ≥ 2 ln(κA)+2 ln(n)

1−βA
, we have

[Ak]ii > 0 and [Ak]−1
ii ≤ 2nκA, ∀i ∈ [n].

Lemma 7 implies that for sufficiently large k, the diagonals
of Ak are naturally bounded without any extra assumptions.
This motivates the use of the multiple gossip strategy to
eliminate Assumption 4 and the dependence on θA in Theo-
rem 2. Instead of a single gossip step z

A-Protocol7−−−−−→ Az, we

perform R consecutive gossip steps z
Multiple Gossip7−−−−−−−−→ ARz

during each communication phase, where the gossip round
R is determined as indicated in Lemma 7.

Pull-DIAG-GT with multiple gossips. We now introduce
MG-PULL-DIAG-GT to remove Assumption 4 and the the
reliance on θA. Here, “MG” is short for multiple gossips.

x(t+1) = AR(x(t) − αy(t)) (12a)

g(t+1) =
1

R

R∑
r=1

∇F (x(t+1), ξ(t+1,r)) (12b)

y(t+1) = AR(y(t) +D−1
t+1g

(t+1) −D−1
t g(t)) (12c)

Here Dt = Diag(AtR),∀t ≥ 1, D0 = In, y(0) = g(0) =
1
R

∑R
r=1 ∇F (x(0), ξ(0,r)). The implementation details are

provided in Appendix B. It is observed that for each iteration
t, recursions (12a) and (12c) incur R rounds of communi-
cation, and (12b) requires R samples to compute the mini-
batch stochastic gradient. To ensure a fair comparison with
PULL-DIAG-GT, for each K-iteration run of PULL-DIAG-
GT, we run MG-PULL-DIAG-GT for T =K/R iterations,
thereby fixing the total number of communication rounds
and data samples at K.

Achieving optimal convergence rate. Technically, by per-
forming multiple gossip steps, we improve the spectral pa-
rameter from βA to βR

A , which exponentially reduces all
terms associated with decentralized communication. Addi-
tionally, by utilizing an R-mini-batch stochastic gradient,
we reduce the gradient variance from σ2 to σ2/R. However,
reducing the outer iterations from K to K/R may polyno-
mially slow the convergence. By carefully balancing this
exponential gain against the polynomial cost with an ap-
propriately chosen R, we can improve overall convergence,
ultimately achieving optimal performance:

7

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

Theorem 3. Suppose Assumptions 1,2 and 3 hold, and
set T = K/R. When R = ⌈ 3(1+ln(κA)+ln(n))

1−βA
⌉ and α

being selected properly, we have

1

T

T∑
t=1

E[∥∇f(w(t))∥2F]

≲
σ
√
L∆√
nK

+
(1 + ln(κA) + ln(n))L∆

(1− βA)K
,

where w(k) = π⊤
Ax

(k). The proof is in Appendix D.

Remark 2. It is observed that Theorem 3 is independent of
Assumption 4 and θA due to the multiple gossip strategy.

Remark 3. When ln(n) is negligible compared to ln(κA),
Theorem 3 aligns with our lower bound (Theorem 1), making
both the lower bound and the algorithm optimal. Otherwise,
we say that MG-PULL-DIAG-GT achieves near-optimal
complexity (rather than optimal complexity) due to the exis-
tence of the logarithmic gap ln(n).

6. Experiments
In this section, we empirically validate the theoretical results
presented in Theorems 2 and 3. For the stochastic gradient
oracle, we focus on the case where each node has access to
a finite dataset, and the stochastic gradient is computed with
respect to a randomly chosen data sample at each iteration.
To assess the performance of the algorithms, we conduct
experiments on a synthetic dataset, MNIST dataset and
CIFAR-10 dataset. Implementation details are provided in
Appendix E for reference.

6.1. Non-convex Logistic Regression for Classification

In this first group of experiment, we minimize a synthetic
nonconvex loss function (Antoniadis et al., 2011; Xin et al.,
2021; Alghunaim & Yuan, 2022; Liang et al., 2023) that
satisfies the L-smooth property. Our experiments are con-
ducted on directed exponential graphs (Xin et al., 2021;
Ying et al., 2021) and directed ring graphs (see Figure A1
in Appendix E.1). For exponential graphs, we evaluate
the performance across network sizes of 1 (single node),
2, 8, 16, 128 and 512. For ring graphs, we evaluate the per-
formance across network sizes of 1 (single node), 5, 10, 16.

The results in Figure 2 reveal that, for each fixed topology,
the gradient curve decreases proportionally to the square
root of the number of nodes after the same number of com-
munication rounds. This numerically validates our Theo-
rem 2 that PULL-DIAG-GT is able to achieve linear speedup.

0 1500 3000 4500 6000
Comm. Rounds

10 4

10 3

10 2

10 1

G
ra

di
en

t
N

or
m

Exponential
n=1
n=2
n=8

n=16
n=128
n=512

0 250 500 750 1000
Comm. Rounds(1e2)

10 4

10 3

10 2

10 1

G
ra

di
en

t
N

or
m

Ring
n=1
n=5

n=10
n=16

Figure 2. Performance of PULL-DIAG-GT for non-convex logistic
regression evaluated across exponential graphs and ring graphs.
Number n denotes the number of nodes.

6.2. Neural Network for Multi-Class Classification

In the second group of experiment, we focus on a digit-
classification task using the MNIST dataset. We evaluate
the performance of MG-PULL-DIAG-GT against the vanilla
PULL-DIAG-GT across four distinct network topologies: a
ring graph, an undirected grid graph, a geometric graph, and
a nearest neighbor graph, each comprising 16 nodes. These
topologies are illustrated in Figure A1 in Appendix E.1.
The weights of the mixing matrices are determined using
the Metropolis rule (Nedić et al., 2018), which produces
row-stochastic but not doubly-stochastic matrices.

0 200 400 600 800
Comm. Rounds

10 1

100

Lo
ss

Ring
MG=1 (Vanilla)
MG=5
MG=10

0 80 160 240
Comm. Rounds

100
Lo

ss

Grid
MG=1 (Vanilla)
MG=5
MG=10

0 80 160 240
Comm. Rounds

100

Lo
ss

Geometric
MG=1 (Vanilla)
MG=5
MG=10

0 80 160 240
Comm. Rounds

100

Lo
ss

Nearest Neighbor
MG=1 (Vanilla)
MG=5
MG=10

Figure 3. Averaged training loss of neural networks on MNIST
dataset. Networks trained using MG-PULL-DIAG-GT and vanilla
PULL-DIAG-GT. Here, “MG” denotes the number of gossip steps.

Figure 3 demonstrates that MG-PULL-DIAG-GT achieves a
consistently faster convergence rate in training loss across
all tested topologies, while the corresponding test accuracy
is detailed in Figure A2 in Appendix E.

8

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

6.3. Neural Network for Image Classification

In the third set of experiments, we conducted training of the
ResNet-18 model (He et al., 2016) on the CIFAR-10 dataset
using a distributed approach. Consistent with our previous
MNIST dataset experiment, we evaluated and compared
the performance of MG-PULL-DIAG-GT against the stan-
dard PULL-DIAG-GT over different topologies. Figure 4

0 60 120 180 240
Comm. Rounds

100

Lo
ss

Ring
MG=1 (Vanilla)
MG=4
MG=8

0 60 120 180 240
Comm. Rounds

10 1

100

Lo
ss

Grid
MG=1 (Vanilla)
MG=5
MG=10

0 30 60 90 120
Comm. Rounds

10 1

100

Lo
ss

Geometric
MG=1 (Vanilla)
MG=5
MG=10

0 50 100 150 200
Comm. Rounds

10 1

100

Lo
ss

Nearest Neighbor
MG=1 (Vanilla)
MG=5
MG=10

Figure 4. Averaged training loss of neural networks on CIFAR-10
dataset. Networks trained using MG-PULL-DIAG-GT and vanilla
PULL-DIAG-GT. Here, “MG” denotes the number of gossip steps.

illustrates the stability of MG-PULL-DIAG-GT when ap-
plied to a larger real-world dataset. In the context of sparse
topologies like the ring and grid graphs, MG-PULL-DIAG-
GT effectively reduces the influence of sparse structures,
resulting in superior performance compared to the vanilla
PULL-DIAG-GT. The corresponding test accuracy is de-
tailed in Figure A3 in Appendix E.

7. Conclusions and Limitations
In this paper, we investigate nonconvex, stochastic decen-
tralized optimization over row-stochastic networks. We
establish the first lower bound on the convergence rate for
this setting. Additionally, we present the first linear speedup
convergence rate achieved by PULL-DIAG-GT. To further
improve performance, we introduce the multiple gossip tech-
nique, leading to the development of MG-PULL-DIAG-GT.
This algorithm matches our lower bound up to a logarith-
mic gap, rendering both the lower bound and the algorithm
nearly optimal. Numerical experiments validate our the-
oretical findings and demonstrate the effectiveness of our
approach. A main limitation of our work is that the network
impact on PULL-DIAG-GT, such as the explicit influence of
θA, remains unclear, leaving it for future research.

Acknowledgment
The work is supported by the National Natural Science
Foundation of China under Grants 92370121, 12301392,
and W2441021.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Alghunaim, S. A. and Yuan, K. A unified and refined con-

vergence analysis for non-convex decentralized learning.
IEEE Transactions on Signal Processing, 70:3264–3279,
2022.

Antoniadis, A., Gijbels, I., and Nikolova, M. Penalized
likelihood regression for generalized linear models with
non-quadratic penalties. Annals of the Institute of Statis-
tical Mathematics, 63:585–615, 2011.

Arjevani, Y., Carmon, Y., Duchi, J. C., Foster, D. J.,
Srebro, N., and Woodworth, B. E. Lower bounds for
non-convex stochastic optimization. Mathematical
Programming, 199:165–214, 2019. URL https:
//api.semanticscholar.org/CorpusID:
208637439.

Assran, M., Loizou, N., Ballas, N., and Rabbat, M. Stochas-
tic gradient push for distributed deep learning. In Inter-
national Conference on Machine Learning, pp. 344–353.
PMLR, 2019.

Bottou, L., Curtis, F. E., and Nocedal, J. Optimization
methods for large-scale machine learning. SIAM review,
60(2):223–311, 2018.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. Lower
bounds for finding stationary points i. Mathematical
Programming, 184(1-2):71–120, 2020.

Carmon, Y., Duchi, J. C., Hinder, O., and Sidford, A. Lower
bounds for finding stationary points ii: first-order meth-
ods. Mathematical Programming, 185(1-2):315–355,
2021.

Di Lorenzo, P. and Scutari, G. Next: In-network nonconvex
optimization. IEEE Transactions on Signal and Informa-
tion Processing over Networks, 2(2):120–136, 2016.

Ghaderyan, D., Aybat, N. S., Aguiar, A. P., and Pereira, F. L.
A fast row-stochastic decentralized method for distributed
optimization over directed graphs. IEEE Transactions on
Automatic Control, 69(1):275–289, 2023.

9

https://api.semanticscholar.org/CorpusID:208637439
https://api.semanticscholar.org/CorpusID:208637439
https://api.semanticscholar.org/CorpusID:208637439

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Huang, X. and Yuan, K. Optimal complexity in non-convex
decentralized learning over time-varying networks. arXiv
preprint arXiv:2211.00533, 2022.

Huang, X., Chen, Y., Yin, W., and Yuan, K. Lower bounds
and nearly optimal algorithms in distributed learning with
communication compression. Advances in Neural Infor-
mation Processing Systems, 35:18955–18969, 2022.

Kempe, D., Dobra, A., and Gehrke, J. Gossip-based com-
putation of aggregate information. In 44th Annual IEEE
Symposium on Foundations of Computer Science, 2003.
Proceedings., pp. 482–491. IEEE, 2003.

Koloskova, A., Loizou, N., Boreiri, S., Jaggi, M., and Stich,
S. A unified theory of decentralized sgd with changing
topology and local updates. In International Conference
on Machine Learning, pp. 5381–5393. PMLR, 2020.

Kovalev, D., Gasanov, E., Gasnikov, A., and Richtarik, P.
Lower bounds and optimal algorithms for smooth and
strongly convex decentralized optimization over time-
varying networks. Advances in Neural Information Pro-
cessing Systems (NeurIPS), 34, 2021.

Kungurtsev, V., Morafah, M., Javidi, T., and Scutari, G.
Decentralized asynchronous non-convex stochastic op-
timization on directed graphs. IEEE Transactions on
Control of Network Systems, 2023.

Li, H. and Lin, Z. Accelerated gradient tracking over time-
varying graphs for decentralized optimization. Journal of
Machine Learning Research, 25(274):1–52, 2024.

Li, H., Wang, J., and Wang, Z. Row-stochastic matrices
based distributed optimization algorithm with uncoordi-
nated step-sizes. In 2019 6th International Conference
on Information, Cybernetics, and Computational Social
Systems (ICCSS), pp. 124–131. IEEE, 2019.

Li, W., Lv, T., Ni, W., Zhao, J., Hossain, E., and Poor,
H. V. Decentralized federated learning over imperfect
communication channels. IEEE Transactions on Commu-
nications, 2024.

Liang, L., Huang, X., Xin, R., and Yuan, K. Towards
better understanding the influence of directed networks
on decentralized stochastic optimization. arXiv preprint
arXiv:2312.04928, 2023.

Lü, Q., Liao, X., Li, H., and Huang, T. A nesterov-like gra-
dient tracking algorithm for distributed optimization over
directed networks. IEEE Transactions on Systems, Man,
and Cybernetics: Systems, 51(10):6258–6270, 2020.

Lu, Y. and De Sa, C. Optimal complexity in decentral-
ized training. In International Conference on Machine
Learning, pp. 7111–7123. PMLR, 2021.

Mai, V. S. and Abed, E. H. Distributed optimization over
weighted directed graphs using row stochastic matrix.
In 2016 American Control Conference (ACC), pp. 7165–
7170. IEEE, 2016.

Nedić, A. and Olshevsky, A. Distributed optimization over
time-varying directed graphs. IEEE Transactions on Au-
tomatic Control, 60(3):601–615, 2014.

Nedić, A., Olshevsky, A., and Shi, W. Achieving geomet-
ric convergence for distributed optimization over time-
varying graphs. SIAM Journal on Optimization, 27(4):
2597–2633, 2017. doi: 10.1137/16M1084316.

Nedic, A., Olshevsky, A., and Shi, W. Achieving geomet-
ric convergence for distributed optimization over time-
varying graphs. SIAM Journal on Optimization, 27(4):
2597–2633, 2017.

Nedić, A., Olshevsky, A., and Rabbat, M. G. Network
topology and communication-computation tradeoffs in
decentralized optimization. Proceedings of the IEEE, 106
(5):953–976, 2018.

Nedić, A. and Olshevsky, A. Distributed optimization over
time-varying directed graphs. IEEE Transactions on Au-
tomatic Control, 60(3):601–615, 2015. doi: 10.1109/
TAC.2014.2364096.

Perron, O. Zur theorie der matrices. Mathematis-
che Annalen, 64(2):248–263, 1907. doi: 10.1007/
BF01449896. URL https://doi.org/10.1007/
BF01449896.

Qu, G. and Li, N. Harnessing smoothness to accelerate
distributed optimization. IEEE Transactions on Control
of Network Systems, 5(3):1245–1260, 2017.

Qureshi, M. I., Xin, R., Kar, S., and Khan, U. A. S-addopt:
Decentralized stochastic first-order optimization over di-
rected graphs. IEEE Control Systems Letters, 5(3):953–
958, 2020.

Sayed, A. H. Adaptive networks. Proceedings of the IEEE,
102(4):460–497, 2014.

Scaman, K., Bach, F., Bubeck, S., Lee, Y. T., and Massoulié,
L. Optimal algorithms for smooth and strongly convex
distributed optimization in networks. In international
conference on machine learning, pp. 3027–3036. PMLR,
2017.

Scaman, K., Bach, F., Bubeck, S., Massoulié, L., and Lee,
Y. T. Optimal algorithms for non-smooth distributed opti-
mization in networks. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 2740–2749, 2018.

10

https://doi.org/10.1007/BF01449896
https://doi.org/10.1007/BF01449896

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

Sun, H. and Hong, M. Distributed non-convex first-order op-
timization and information processing: Lower complexity
bounds and rate optimal algorithms. IEEE Transactions
on Signal processing, 67(22):5912–5928, 2019.

Tsianos, K. I., Lawlor, S., and Rabbat, M. G. Push-sum
distributed dual averaging for convex optimization. In
2012 ieee 51st ieee conference on decision and control
(cdc), pp. 5453–5458. IEEE, 2012.

Xi, C. and Khan, U. A. Dextra: A fast algorithm for op-
timization over directed graphs. IEEE Transactions on
Automatic Control, 62(10):4980–4993, 2017.

Xi, C., Xin, R., and Khan, U. A. Add-opt: Accelerated
distributed directed optimization. IEEE Transactions on
Automatic Control, 63(5):1329–1339, 2017.

Xin, R., Jakovetić, D., and Khan, U. A. Distributed nesterov
gradient methods over arbitrary graphs. IEEE Signal
Processing Letters, 26(8):1247–1251, 2019a.

Xin, R., Sahu, A. K., Khan, U. A., and Kar, S. Dis-
tributed stochastic optimization with gradient tracking
over strongly-connected networks. In 2019 IEEE 58th
Conference on Decision and Control (CDC), pp. 8353–
8358. IEEE, 2019b.

Xin, R., xi, C., and Khan, U. Frost—fast row-stochastic op-
timization with uncoordinated step-sizes. EURASIP Jour-
nal on Advances in Signal Processing, 2019, 01 2019c.
doi: 10.1186/s13634-018-0596-y.

Xin, R., Khan, U., and Kar, S. An improved convergence
analysis for decentralized online stochastic non-convex
optimization. IEEE Transactions on Signal Process-
ing, 69:1842–1858, 01 2021. doi: 10.1109/TSP.2021.
3062553.

Xu, J., Zhu, S., Soh, Y. C., and Xie, L. Augmented dis-
tributed gradient methods for multi-agent optimization
under uncoordinated constant stepsizes. In IEEE Con-
ference on Decision and Control (CDC), pp. 2055–2060,
Osaka, Japan, 2015.

Yang, H., Fang, M., and Liu, J. Achieving linear speedup
with partial worker participation in non-iid federated
learning. Proceedings of ICLR, 2021.

Yang, T., Yi, X., Wu, J., Yuan, Y., Wu, D., Meng, Z., Hong,
Y., Wang, H., Lin, Z., and Johansson, K. H. A survey of
distributed optimization. Annual Reviews in Control, 47:
278–305, 2019.

Yemini, M., Saha, R., Ozfatura, E., Gündüz, D., and Gold-
smith, A. J. Robust federated learning with connectivity
failures: A semi-decentralized framework with collabora-
tive relaying. arXiv preprint arXiv:2202.11850, 2022.

Ying, B., Yuan, K., Chen, Y., Hu, H., Pan, P., and Yin, W.
Exponential graph is provably efficient for decentralized
deep training. Advances in Neural Information Process-
ing Systems, 34:13975–13987, 2021.

Yu, H., Jin, R., and Yang, S. On the linear speedup analysis
of communication efficient momentum sgd for distributed
non-convex optimization. In International Conference on
Machine Learning, pp. 7184–7193. PMLR, 2019.

Yuan, K., Chen, Y., Huang, X., Zhang, Y., Pan, P., Xu,
Y., and Yin, W. Decentlam: Decentralized momentum
sgd for large-batch deep training. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pp. 3029–3039, 2021.

Yuan, K., Huang, X., Chen, Y., Zhang, X., Zhang, Y., and
Pan, P. Revisiting optimal convergence rate for smooth
and non-convex stochastic decentralized optimization.
Advances in Neural Information Processing Systems, 35:
36382–36395, 2022.

Zeng, J. and Yin, W. Extrapush for convex smooth decen-
tralized optimization over directed networks. Journal of
Computational Mathematics, pp. 383–396, 2017.

11

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

Content of Appendix
Appendix A. Lower Bound . 13

A Matrix Example . 13

Proof of Theorem 1 .13

Appendix B. Algorithm Implementation Details . 14

Appendix C. Convergence of PULL-DIAG-GT . 15

Notations . 15

Linear Algebra Inequalities . 16

Proof of Lemma 2 . 18

Estimate Descent Deviation . 19

Absorb extra f(w)− f∗ . 19

Proof of Lemma 4 . 20

Proof of Lemma 6 . 20

Proof of Theorem 2 .20

Appendix D. Convergence of MG-PULL-DIAG-GT . 24

Appendix E. Experiment Details . 25

12

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

A. Lower Bound
A.1. A Matrix Example

Proposition 8. For any n ≥ 2, there exists a row-stochastic, primitive matrix A ∈ Rn×n satisfying βA =
√
2
2 but

κA = 2n−1.

Proof. Proposition 2.5 of Liang et al. (2023) tells us that for any n ≥ 2, there exists a column-stochastic, primitive matrix
W ∈ Rn×n satisfying βW =

√
2
2 but κW = 2n−1. Taking A = B⊤, their Perron vectors are the same, i.e. πA = πW .

Therefore, κA = κW . By the definition of the π-norm, we know that βA = ∥A−A∞∥πA
= ∥Π1/2

A (A−A∞)Π
−1/2
A ∥2 =

∥(Π−1/2
W (W −W∞)Π

1/2
W)⊤∥2 = ∥W∥πW

= βW .

A.2. Proof of Theorem 1

The core idea of the proof is derived from (Liang et al., 2023). The first complexity term, Ω(σ
√
L∆√
nK

), is standard, and its
proof can be found in works such as Lu & De Sa (2021) and Yuan et al. (2022). Therefore, we concentrate on proving the
second term, Ω((1 + ln(κA))L∆/K).

To proceed, let [x]j represent the j-th coordinate of a vector x ∈ Rd for 1 ≤ j ≤ d, and define:

prog(x) :=

{
0 if x = 0;

max1≤j≤d{j : [x]j ̸= 0} otherwise.

We also introduce several important lemmas, which have been established in previous research.

Lemma 9 (Lemma 2 of Arjevani et al. (2019)). Consider the function

h(x) := −ψ(1)ϕ([x]1) +
∑d−1

j=1

(
ψ(−[x]j)ϕ(−[x]j+1)− ψ([x]j)ϕ([x]j+1)

)
where for any z ∈ R,

ψ(z) =

{
0 z ≤ 1/2;

exp
(
1− 1

(2z−1)2

)
z > 1/2,

and ϕ(z) =
√
e

∫ z

−∞
e−

1
2 t

2

dt.

The function h(x) has the following properties:

1. h is zero-chain, i.e., prog(∇h(x)) ≤ prog(x) + 1 for all x ∈ Rd.

2. h(x)− infx h(x) ≤ ∆0d, for all x ∈ Rd with ∆0 = 12.

3. h is L0-smooth with L0 = 152.

4. ∥∇h(x)∥∞ ≤ G∞, for all x ∈ Rd with G∞ = 23.

5. ∥∇h(x)∥∞ ≥ 1 for any x ∈ Rd with [x]d = 0.

Lemma 10 (Lemma 4 of (Huang et al., 2022)). Letting functions

h1(x) := −2ψ(1)ϕ([x]1) + 2
∑

j even, 0<j<d

(
ψ(−[x]j)ϕ(−[x]j+1)− ψ([x]j)ϕ([x]j+1)

)
and

h2(x) := 2
∑

j odd, 0<j<d

(
ψ(−[x]j)ϕ(−[x]j+1)− ψ([x]j)ϕ([x]j+1)

)
,

then h1 and h2 satisfy the following properties:

1. 1
2 (h1 + h2) = h, where h is defined in Lemma 9.

2. h1 and h2 are zero-chain, i.e., prog(∇hi(x)) ≤ prog(x) + 1 for all x ∈ Rd and i = 1, 2. Furthermore, if prog(x) is
odd, then prog(∇h1(x)) ≤ prog(x); if prog(x) is even, then prog(∇h2(x)) ≤ prog(x).

13

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

3. h1 and h2 are also L0-smooth with L0 = 152.

We are now ready to prove our lower bound. This proceeds in three steps. Without loss of generality, we assume n can be
divided by 3.

(Step 1.) We let fi = Lλ2h1(x/λ)/L0, ∀ i ∈ E1 ≜ {j : 1 ≤ j ≤ n/3} and fi = Lλ2h2(x/λ)/L0, ∀ i ∈ E2 ≜ {j :
2n/3 ≤ j ≤ n}, where h1 and h2 are defined in Lemma 10, and λ > 0 will be specified later. By the definitions of h1 and
h2, we have that fi, ∀ 1 ≤ i ≤ n, is zero-chain and f(x) = n−1

∑n
i=1 fi(x) = 2Lλ2h(x/λ)/3L0. Since h1 and h2 are

also L0-smooth, {fi}ni=1 are L-smooth. Furthermore, since

f(0)− infx f(x) =
2Lλ2

3L0
(h(0)− infx h(x))≤Lλ2∆0d

L0
,

to ensure {fi}ni=1 satisfy L-smooth Assumption, it suffices to let

Lλ2∆0d
L0

≤ ∆, i.e., λ ≤
√

L0∆
L∆0d

. (13)

With the functions defined above, we have f(x) = n−1
∑n

i=1 fi(x) = Lλ2l(x/λ)/(3L0) and prog(∇fi(x)) = prog(x)+1
if prog(x) is even and i ∈ E1 or prog(x) is odd and i ∈ E2, otherwise prog(∇fi(x)) ≤ prog(x). Therefore, to make
progress (i.e., to increase prog(x)), for any gossip algorithm A ∈ AW , one must take the gossip communication protocol to
transmit information between E1 and E2 alternatively.

(Step 2.) We consider the noiseless gradient oracles and the constructed mixing matrix W in Subsection 8 with ϵ = 2β2
A − 1

so that 1+ln(κA)
1−βA

= O(n). Note the directed distance from E1 to E2 is n/3. Consequently, starting from x(0) = 0, it takes
of at least n/3 communications for any possible algorithm A ∈ AA to increase prog(x̂) by 1 if it is odd. Therefore, we
have

⌈
prog(x̂(k))/2

⌉
≤
⌊

k
2n/3

⌋
,∀ k ≥ 0. This further implies

prog(x̂(k)) ≤ 2
⌊

k
2n/3

⌋
+ 1 ≤ 3k/n+ 1, ∀ k ≥ 0. (14)

(Step 3.) We finally show the error E[∥∇f(x)∥2] is lower bounded by Ω
(

(1+ln(κA))L∆
(1−βA)K

)
, with any algorithm A ∈ AW

with K communication rounds. For any K ≥ n, we set d = 2
⌊

K
2n/3

⌋
+ 2 ≤ 3K/n+ 2 ≤ 5K/n and λ =

(
nL0∆
5L∆0K

)1/2
.

Then (13) naturally holds. Since prog(x̂(K)) < d by (14), using the last point of Lemma 9 and the value of λ, we obtain

E[∥∇f(x̂)∥2] ≥ min[x̂]d=0 ∥∇f(x̂)∥2 ≥ L2λ2

9L2
0

= Ω
(
nL∆
K

)
.

Finally, by using n = Ω((1 + ln(κA))/(1− βA)), we complete the proof of Theorem 1.

B. Algorithm Implementation Details
We provide complete expression and pseudo code for PULL-DIAG protocol, PULL-DIAG-GT and MG-PULL-DIAG-GT
here.

For PULL-DIAG protocol, the iteration is:

Vk+1 = AVk, Dk+1 = Diag(nVk+1),

z(k+1) = n−1Vk+1D
−1
k+1z.

where V0 = In.

For PULL-DIAG-GT, the iteration is:

x(k+1) = A(x(k) − αy(k)) (16a)

D̃k+1 = AD̃k (16b)

Dk = Diag(D̃k) (16c)

y(k+1) = A(y(k) +D−1
k+1g

(k+1) −D−1
k g(k)) (16d)

14

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

Algorithm 1 PULL-DIAG protocol

Require: Initialize v(0)i = ei, zi.
for k = 0, 1, . . . ,K − 1, each node i in parallel do

Update v(k+1)
i =

∑
j∈N in

i
aijv

(k)
j ;

end for
Update z(0)i = zi/nv

(K)
ii ;

for k = 0, 1, . . . ,K − 1, each node i in parallel do
Update z(k+1)

i =
∑

j∈N in
i
aijz

(k)
j ;

end for

Algorithm 2 PULL-DIAG-GT

Require: Initialize v(0,0)i = ei, w(0) = x(0), g(0)i = y
(0)
i = ∇F (x(0); ξ(0)i), the mixing matrix A = [aij]n×n.

for k = 0, 1, . . . ,K − 1, each node i in parallel do
Let ϕ(k+1) = x

(k)
i − γy

(k)
i ;

Update x(k+1)
i =

∑
j∈N in

i
aijϕ

(k+1)
j and v(k+1)

i =
∑

j∈N in
i
aijv

(k)
j ;

Compute g(k+1)
i = ∇F (x(k+1)

i ; ξ
(k+1)
i);

Let ψ(k+1)
i = y

(k)
i + [v

(k+1)
i]−1

i g
(t+1)
i − [v

(k)
i]−1

i g
(t)
i ;

Update y(k+1)
i =

∑
j∈N in

i
aijψ

(k+1)
j ;

end for

where D̃0 = In.

For MG-PULL-DIAG-GT, its iteration runs as:

x(t+1) = AR(x(t) − αy(t)) (17a)

D̃t+1 = ARD̃t (17b)

Dt = Diag(D̃t) (17c)

g(t+1) =
1

R

R∑
r=1

∇F (x(t+1), ξ(t+1,r)) (17d)

y(t+1) = AR(y(t) +D−1
t+1g

(t+1) −D−1
t g(t)) (17e)

where D̃0 = In.

C. Convergence of PULL-DIAG-GT
C.1. Notation

Most of notations in the proof are the same with notations defined in Section 1. We repeat them as follows:

We denote 1n as an n-dimensional all-ones vector. We define In ∈ Rn×n as the identity matrix. Throughout the paper,
A is always a row-stochastic matrix, i.e., A1n = 1n. We denote [n] as the index set {1, 2, . . . , n}. We denote Diag(A)
as the the diagonal matrix generated from the diagonal entries of A. We denote diag(v) as the diagonal matrix whose
diagonal entries comes from vector v. We denote πA as the left Perron vector of A. We denote ΠA = diag(πA), πA-vector
norm ∥v∥πA

= ∥Π1/2
A v∥ and the induced πA-matrix norm as ∥W∥πA

= ∥Π1/2
A WΠ

−1/2
A ∥2. We define A∞ = 1nπ

⊤
A ,

βA = ∥A−A∞∥πA
, κA = max(πA)/min(πA). Throughout the paper, we let x(k)

i ∈ Rd denote the local model copy at
node i at iteration k. Furthermore, we define the matrices

15

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

Algorithm 3 MG-PULL-DIAG-GT: PULL-DIAG-GT with multi-round gossip

Require: Initialize v(0,0)i = ei, w(0) = x(0), g(0)i = y
(0)
i = 1

R

∑R
r=1 ∇F (x(0); ξ

(0,r)
i), the mixing matrix A = [aij]n×n,

the multi-round number R.
for t = 0, 1, . . . , (K/R)− 1, each node i in parallel do

Let ϕ(t+1,0) = x
(t)
i − γy

(t)
i ;

for r = 0, 1, . . . , R− 1, each node i in parallel do
Update ϕ(t+1,r+1)

i =
∑

j∈N in
i
aijϕ

(t+1,r)
j and v(t,r+1)

i =
∑

j∈N in
i
aijv

(t,r)
j ;

end for
Update x(t+1)

i = ϕ
(t+1,R)
i , v(t+1,0)

i = v
(t,R)
i ;

Compute g(t+1)
i = 1

R

∑R
r=1 ∇F (bmx

(t+1)
i ; ξ

(t+1,r)
i);

Let ψ(t+1,0)
i = y

(t)
i + [v

(t+1,0)
i]−1

i g
(t+1)
i − [v

(t,0)
i]−1

i g
(t)
i ;

for r = 0, 1, . . . , R− 1, each node i in parallel do
Update ψ(t+1,r+1)

i =
∑

j∈N in
i
aijψ

(t+1,r)
j ;

end for
Update y(t+1)

i = ψ
(t+1,R)
i ;

end for

x(k) := [(x
(k)
1)⊤; (x

(k)
2)⊤; · · · ; (x(k)

n)⊤] ∈ Rn×d,

∇F (x(k); ξ(k)) := [∇F1(x
(k)
1 ; ξ

(k)
1)⊤; · · · ;∇Fn(x

(k)
n ; ξ(k)n)⊤] ∈ Rn×d,

∇fk := [∇f1(x(k)
1)⊤;∇f2(x(k)

2)⊤; · · · ;∇fn(x(k)
n)⊤] ∈ Rn×d,

by stacking all local variables. The upright bold symbols (e.g. x,w,g ∈ Rn×d) always denote stacked network-level
quantities.

Besides, we define ∇f(x(k)) = n−11⊤
n∇f(x(k)), ∆(k)

x := (I −A∞)x(k), ∆(k)
g = g(k+1) − g(k),∀k ≥ 0, ∆(−1)

g = g(0).

C.2. Linear Algebra Inequalities

We outline some useful inequalities which will be frequently used in the proof.

Lemma 11 (ROLLING SUM LEMMA). If l ≥ 1 and A ∈ Rn×n is a row-stochastic matrix satisfying Assumption 1, the
following estimation holds for ∀T ≥ 0.

T∑
k=0

∥
k∑

i=0

(Ak+l−i −A∞)∆(i)∥2F ≤ s2A

T∑
i=0

∥∆(i)∥2F , (18)

where ∆(i) ∈ Rn×d are arbitrary matrices, and sA is defined by:

sA := max
k≥1

∥Ak −A∞∥2 ·
1 + 1

2 ln(κA)

1− βA
.

Proof. First, we prove that

∥Ai −A∞∥2 ≤
√
κAβ

i
A,∀i ≥ 0. (19)

Notice that βA := ∥A−A∞∥πA
and

∥Ai −A∞∥πA
= ∥(A−A∞)i∥πA

≤ ∥A−A∞∥iπA
= βi

A,

we have
∥(Ai −A∞)v∥ = ∥Π−1/2

A (Ai −A∞)v∥πA
≤ √

πAβ
i
A∥v∥πA

≤
√
κAβ

i
A∥v∥.

The last inequality comes from ∥v∥πA
≤ πA∥v∥. Therefore, (19) holds.

16

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

Second, we want to prove that for all k ≥ 0, we have

k∑
i=0

∥Ak+l−i −A∞∥2 ≤ sA. (20)

Towards this end, we define MA := maxk≥1 ∥Ak − A∞∥2. According to (19), MA is well-defined. We also define

p = max
{

ln(
√
κA)−ln(MA)
− ln(βA) , 0

}
, then we can verify that ∥Ai −A∞∥2 ≤ min{MA,MAβ

i−p
A },∀i ≥ 1. With this inequality,

we can bound
∑k

i=0 ∥Ak+1−i −A∞∥2 as follows:

k∑
i=0

∥Ak+1−i −A∞∥2 =

min{⌊p⌋,k}∑
i=1

∥Ai −A∞∥2 +
k+1∑

i=min{⌊p⌋,k}+1

∥Ai −A∞∥2

≤
min{⌊p⌋,k}∑

i=0

MA +

k+1∑
i=min{⌊p⌋,k}+1

MAβ
i−p
A

≤MA · (1 + min{⌊p⌋, k}) +MA · 1

1− βA
β
min{⌊p⌋,k}+1−p
A . (21)

If p = 0, (21) is simplified to
∑k

i=0 ∥Ak+1−i − A∞∥2 ≤ MA · 1
1−βA

and (20) is naturally satisfied. If p > 0, let
x = min{⌊p⌋, k}+ 1− p ∈ [0, 1), (20) is simplified to

k∑
i=0

∥Ak−i −A∞∥2 ≤MA(x+ p+
βx
A

1− βA
) ≤MA(p+

1

1− βA
).

Noting that p ≤
1
2 ln(κA)

1−βA
, we finish the proof of (20).

Finally, to obtain (18), we use Jensen’s inequality. For positive numbers ai, i ∈ [k + 1] satisfying
∑k+1

i=1 ai = 1, we have

∥
k∑

i=0

(Ak+1−i −A∞)∆(i)∥2F = ∥
k∑

i=0

ak+1−i · a−1
k+1−i(A

k−i −A∞)∆(i)∥2F

≤
k∑

i=0

ak+1−i∥a−1
k+1−i(A

k+1−i −A∞)∆(i)∥2F ≤
k∑

i=0

a−1
k+1−i∥A

k+1−i −A∞∥22∥∆(i)∥2F . (22)

By choosing ak+1−i = (
∑k

i=0 ∥Ak+1−i −A∞∥2)−1∥Ak+1−i −A∞∥2 in (22), we obtain that

∥
k∑

i=0

(Ak+1−i −A∞)∆(i)∥2F ≤
k∑

i=0

∥Ak+1−i −A∞∥2 ·
k∑

i=0

∥Ak+1−i −A∞∥2∥∆(i)∥2F . (23)

By summing up (23) from k = 0 to T , we obtain that

T∑
k=0

∥
k∑

i=0

(Ak+1−i −A∞)∆(i)∥2F ≤ sA

T∑
k=0

k∑
i=0

∥Ak+1−i −A∞∥2∥∆(i)∥2F

≤sA
T∑

i=0

(

T∑
k=i

∥Ak+1−i −A∞∥2)∥∆(i)∥2F ≤ s2A

T∑
i=0

∥∆(i)∥2F ,

which finishes the proof of this lemma.

Lemma 12 (CONVERGENCE OF DIAGONAL MATRIX). The following inequalities hold for all k ≥ 1.

1. ∥π⊤
AD

−1
k − 1⊤

n ∥ ≤ θA
√
nκAβ

k
A.

17

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

2. ∥D−1
k −Π−1

A ∥2 ≤ θA
√
κ3An

3βk
A.

3. ∥D−1
k −D−1

k+1∥2 ≤ 2θA
√
κ3An

3βk
A.

Proof. Denote ΠA = diag(A∞) and πA = mini[πA]i.

The first conclusion comes from

∥π⊤
AD

−1
k − 1⊤

n ∥ ≤ ∥D−1
k ∥∥πA − diag(Ak)∥ ≤ θA∥πA − diag(Ak)∥

≤ θA∥Ak −A∞∥F ≤
√
nθA∥Ak −A∞∥2 ≤ θA

√
nκAβ

k
A.

The second conclusion can be derived from the first conclusion:

∥D−1
k −Π−1

A ∥2 ≤ ∥Π−1
A ∥2∥ΠAD

−1
k − In∥2 = π−1

A max
i

[π⊤
AD

−1
k − 1⊤

n]i ≤ nκA∥π⊤
AD

−1
k − 1⊤

n ∥ ≤ θA

√
n3κ3Aβ

k
A.

Finally, note that ∥D−1
k −D−1

k+1∥2 ≤ ∥D−1
k −Π−1

A ∥2 + ∥D−1
k+1 −Π−1

A ∥2, we obtain the third conclusion.

C.3. Proof of Lemma 2

Left-multiply π⊤
A on both sides of (7a), we have w(k+1) = w(k) − απ⊤

Ay
(k). Using Assumption 2, we know that

f(w(k+1)) ≤ f(w(k))− n−1α
〈
n∇f(w(k)), π⊤

Ay
(k)
〉
+
α2L

2
∥π⊤

Ay
(k)∥2. (24)

By taking expectations on F(k) both sides of (24), we have

E[f(w(k+1))|Fk] ≤ f(w(k))− n−1αE
[〈
n∇f(w(k)), π⊤

Ay
(k)
〉
|Fk

]
+
α2L

2
E[∥π⊤

Ay
(k)∥2|Fk]

= f(w(k))− n−1α
〈
n∇f(w(k)), π⊤

AD
−1
k ∇f(x(k))

〉
+
α2L

2
∥π⊤

AD
−1
k ∇f(x(k))∥2

+
α2L

2
Var[π⊤

AD
−1
k ∇f(x(k))]

(a)

≤ f(w(k))− n−1α
〈
n∇f(w(k)), π⊤

AD
−1
k ∇f(x(k))

〉
+
α2L

2
∥π⊤

AD
−1
k ∇f(x(k))∥2 + α2Lσ2

2

n∑
j=1

(
[πA]j
[Dk]j

)2

= f(w(k))− (
α− nα2L

2n
)E[∥π⊤

AD
−1
k ∇f(x(k))∥2]− nα

2
∥∇f(w(k))∥2

+
α

2n
∥n∇f(w(k))− π⊤

AD
−1
k ∇f(x(k))∥2 + α2Lσ2

2
dk

α≤ 1
2nL

≤ f(w(k))− α

4n
∥π⊤

AD
−1
k ∇f(x(k))∥2 − nα

2
∥∇f(w(k))∥2

+ nα∥∇f(w(k))− n−11⊤
n∇f(x(k))∥2 + α

n
∥(1⊤

n − π⊤
AD

−1
k)∇f(x(k))∥2 + α2Lσ2

2
dk

where (a) holds because the gradient noise is linearly independent, Var[π⊤
AD

−1
k ∇f(x(k))] =

Var[
∑n

j=1
[πA]j
[Dk]jj

∇Fj(xj ; ξj)] =
∑n

j=1(
[πA]j
[Dk]jj

)2Var[∇Fj(xj ; ξj)] ≤ σ2
∑n

j=1(
[πA]j
[Dk]jj

)2 = σ2dk. dk is defined

as dk =
∑n

j=1(
[πA]j
[Dk]jj

)2.

Note that ∥∇f(w(k))−n−11⊤
n∇f(x(k))∥2= 1

n2 ∥1⊤
n (∇f(w(k))−∇f(x(k)))∥2 ≤ 1

n

∑n
i=1 ∥∇fi(x

(k)
i)−∇fi(w(k))∥2 ≤

n−1L2
∑n

i=1 ∥x
(k)
i −w(k)∥2 = n−1L2∥∆(k)

x ∥2F , we thus obtain Lemma 2. □

18

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

C.4. Estimate Descent Deviation

Using the first statement of Lemma 12, we know that

∥π⊤
ADiag(Ak)−1 − 1⊤

n ∥ ≤ θA
√
nκAβ

k
A, ∀k ≥ 1.

Next, with Assumption 2 we know that ∀x,y ∈ Rd, i ∈ [n],

fi(y) ≤ fi(x) + ⟨∇fi(x),y − x⟩+ L

2
∥y − x∥2.

By taking y = x − 1
L∇fi(x), we obtain that 1

2L∥∇f(x)∥
2 ≤ fi(x) − fi(y) ≤ fi(x) − f∗i . Furthermore, using

L-smoothness property and Cauchy-Schwarz inequality, we have

∥∇f(x(k))∥2F ≤ 2∥∇f(x(k))−∇f(w(k))∥2F + 2∥∇f(w(k))∥2F

≤ 2L2∥∆(k)
x ∥2F + 2

n∑
i=1

∥∇fi(w(k))∥2

≤ 2L2∥∆(k)
x ∥2F + 4L

n∑
i=1

(fi(w
(k))− f∗i)

= 2L2∥∆(k)
x ∥2F + 4nL(f(w(k))− f∗),

By combining the two parts, we complete the proof of Lemma 3.

C.5. Absorb extra f(w)− f∗

Lemma 13. For any ∆k, Sk, Fk, c ∈ R+, β ∈ [0, 1), if

Sk ≤ (1 + cαβk)∆k −∆k+1 + Fk, ∀k ≥ 1,

then, by selecting α ≤ 1−β
cβ , we obtain

K∑
k=1

Sk ≤ 3∆1 + 3

K∑
k=1

Fk.

Suppose that Sk ≤ (1 + αcβk)∆k −∆k+1 + Fk,∀k ≥ 1, Define Uk =
∏k

i=1(1 + αcβi),∀k ≥ 1, U0 = 1. Then we have

U−1
k Sk ≤ U−1

k−1∆k − U−1
k ∆k+1 + U−1

k Fk,∀k ≥ 1. (25)

By summing up (25) from k = 1 to K, we have

K∑
k=1

U−1
k Sk ≤ ∆1 − U−1

K ∆K+1 +

K∑
k=1

U−1
k Fk.

When α < 1−β
cβ ≜ α2, we have Uk = exp(

∑k
i=1 ln(1 + αcβi)) ≤ exp(

∑k
i=1 αcβ

i) ≤ exp(αcβ
1−β) ≤ e < 3. Therefore,

K∑
k=1

Sk ≤ UK(

K∑
k=1

U−1
k Sk) ≤ UK(∆1 − U−1

K ∆k+1 +

K∑
k=1

U−1
k Fk) ≤ 3∆1 + 3

K∑
k=1

Fk.

□

19

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

C.6. Proof of Lemma 4

The following lemma is the formal version of Lemma 4.

Lemma 14. For any k ≥ 0, we have

∆(k+1)
x = −α

k∑
i=0

(A−A∞)k+1−i∆(i)
y .

∆(k+1)
y =

k∑
i=0

(A−A∞)k+1−iD−1
i+1∆

(i)
g

+

k∑
i=0

k∑
l=i

(A−A∞)k+1−l(D−1
l+1 −D−1

l)∆(i−1)
g .

We prove this lemma by induction. Easy to verify that the transformation holds for k = 0. Suppose the transformation holds
for k − 1, then we have

(I −A∞)y(k+1) = (A−A∞)(I −A∞)y(k) + (A−A∞)(D−1
k+1g

(k+1) −D−1
k g(k))

=

k−1∑
i=0

(A−A∞)k+1−iD−1
i+1∆

(i)
g +

k−1∑
i=0

k−1∑
l=i

(A−A∞)k+1−l(D−1
l+1 −D−1

l)∆(i−1)
g

+(A−A∞)D−1
k+1∆

(k)
g + (A−A∞)(D−1

k+1 −D−1
k)g(k)

=

k∑
i=0

(A−A∞)k+1−iD−1
i+1∆

(i)
g +

k∑
i=0

k∑
l=i

(A−A∞)k+1−l(D−1
l+1 −D−1

l)∆(i−1)
g

which finishes the proof. □

C.7. Proof of Lemma 6

We start with the following Lemma.

Lemma 15 (Consensus Lemma for y).

K∑
k=0

E[∥(I −A∞)y(k+1)∥2]F ≤ Cy,σ(K + 1)σ2 + α2Cy,yσ
2

K∑
k=0

dk + Cy,0∥∇f(x(0))∥2F

+ Cy,xL
2

K∑
k=0

E∥∆(k+1)
x ∥2F + α2L2Cy,y

K∑
k=0

E∥π⊤
AD

−1
k ∇f(x(k))∥2F (26)

where Cy,σ = 6nsAMAθ
2
A +

8n2κ2
Aβ2

A

1−β2
A

, Cy,0 =
8nκ2

Aβ2
A

(1−β2
A)3

, Cy,x = 18s2Aθ
2
A +

144nκ2
Aβ2

A

(1−β2
A)4

, Cy,y = 9ns2Aθ
2
A +

72n2κ2
Aβ2

A

(1−β2
A)4

.

Proof. Using Lemma 4, we know that (I − A∞)y(k+1) can be decomposed to two rolling sums
∑k

i=0(A −
A∞)k+1−iD−1

i+1∆
(i)
g and

∑k
i=0

∑k
l=i(A − A∞)k+1−l(D−1

l+1 − D−1
l)∆

(i−1)
g . For the first rolling sum, using Assump-

tion 3 that noise are linearly independent, we can divide ∆(i)
g into ∇f(x(i+1))−∇f(x(i)) and two noise parts, thus applying

the Cauchy-Schwarz inequality:

E∥
k∑

i=0

(A−A∞)k+1−iD−1
i+1∆

(i)
g ∥2F ≤ 6nE

k∑
i=0

∥(A−A∞)k+1−iD−1
i+1∥

2
2σ

2 (27)

+ 3E∥
k∑

i=0

(A−A∞)k+1−iD−1
i+1(∇f(x

(i+1))−∇f(x(i)))∥2F

20

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

Sum up (27) from k = 0 to K, we have:

K∑
k=0

E∥
k∑

i=0

(A−A∞)k+1−iD−1
i+1∆

(i)
g ∥2F (28)

≤ 6nσ2
K∑

k=0

k∑
i=0

E∥(A−A∞)k+1−iD−1
i+1∥

2
2

+ 3

K∑
k=0

E∥
k∑

i=0

(A−A∞)k+1−iD−1
i+1(∇f(x

(i+1))−∇f(x(i)))∥2F

≤ 6nsAMAθ
2
A(K + 1)σ2 + 3s2Aθ

2
A

K∑
i=0

E∥∇f(x(i+1))−∇f(x(i))∥2F

≤ 6nsAMAθ
2
A(K + 1)σ2 + 3s2Aθ

2
AL

2
K∑
i=0

E∥∆(i+1)
x −∆(i)

x − αA∞y(k)∥2F

≤ 6nsAMAθ
2
A(K + 1)σ2 + 18s2Aθ

2
AL

2
K∑
i=0

E∥∆(i+1)
x ∥2F + 9α2L2s2Aθ

2
A

K∑
i=0

E∥A∞y(i)∥2F ,

where the second inequality uses the rolling sum lemma, the third inequality uses the L-smooth assumption, the final
inequality uses Cauchy-Schwartz inequality.

Next, we consider the second part. Similar to (27), we have

E∥
k∑

i=0

k∑
l=i

(A−A∞)k+1−l(D−1
l+1 −D−1

l)∆(i−1)
g ∥2F (29)

≤ 8nσ2
k∑

i=0

∥
k∑

l=i

(A−A∞)k+1−l(D−1
l+1 −D−1

l)∥22

+ 4E∥
k∑

i=1

k∑
l=i

(A−A∞)k+1−l(D−1
l+1 −D−1

l)(∇f(x(i))−∇f(x(i−1)))∥2F

+ 4E∥
k∑

l=0

(A−A∞)k+1−l(D−1
l+1 −D−1

l)∇f(x(0))∥2F

≤ 8nσ2
k∑

i=0

nκ2Aβ
2k+2
A + 4k

k∑
i=1

∥
k∑

l=i

(A−A∞)k+1−l(D−1
l+1 −D−1

l)∥22E∥(∇f(x(i))−∇f(x(i−1)))∥2F

+ 4∥
k∑

l=0

(A−A∞)k+1−l(D−1
l+1 −D−1

l)∥22∥∇f(x(0))∥2F

≤ 8n2σ2(k + 1)κ2Aβ
2k+2
A + 4k3

k∑
i=1

nκ2Aβ
2k+2
A E∥∇f(x(i))−∇f(x(i−1))∥2F

+ 4(k + 1)2nκ2Aβ
2k+2
A ∥∇f(x(0))∥2F ,

where the first inequality is similar to the first inequality of (27), the second and third inequality use the fact that ∥(A−
A∞)k+1−l(D−1

l+1 −D−1
l)∥22 ≤ nκ2Aβ

2k+2
A .

21

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

Sum up (29) from k = 0 to K, we have:

K∑
k=0

E∥
k∑

i=0

k∑
l=i

(A−A∞)k+1−l(D−1
l+1 −D−1

l)∆(i−1)
g ∥2F (30)

≤ 8n2κ2Aσ
2

K∑
k=0

(k + 1)β2k+2
A + 4nκ2Aβ

2
A∥∇f(x(0))∥2F

K∑
k=0

(k + 1)2β2k+2
A

+ 4nκ2Aβ
2
A

K∑
k=0

k∑
i=1

k3β2k
A E∥∇f(x(i))−∇f(x(i−1))∥2F

≤ 8n2κ2Aβ
2
A(K + 1)σ2

1− β2
A

+
8nκ2Aβ

2
A∥∇f(x(0))∥2F
(1− β2

A)
3

+
24nκ2Aβ

2
A

(1− β2
A)

4

K∑
i=1

E∥∇f(x(i))−∇f(x(i−1))∥2F

≤ 8n2κ2Aβ
2
A(K + 1)σ2

1− β2
A

+
8nκ2Aβ

2
A∥∇f(x(0))∥2F
(1− β2

A)
3

+
144nκ2Aβ

2
AL

2

(1− β2
A)

4

K∑
i=1

E∥∆(i)
x ∥2F +

72α2L2nκ2Aβ
2
A

(1− β2
A)

4

K∑
i=1

E∥A∞y(i)∥2F

Finally, from the proof of Lemma 2 we know that E[∥A∞y(k)∥2F] = nσ2dk + n∥π⊤
AD

−1
k ∇f(x(k))∥2. By replacing

E[∥A∞y(k)∥2F] we obtain the lemma for ∆y .

The following Lemma is a formal version of Lemma 6.

Lemma 16 (Consensus Lemma for x). When α ≤ 1

sAL
√

2Cy,x

and K >
2κAθ2

A

1−βA
, we have

K∑
k=0

E∥∆(k+1)
x ∥2F ≤ 2α2s2A(Cy,σ + 3nα2L2Cy,y)(K + 1)σ2 + 4nα2Ls2ACy,0∆ (31)

+ 2α4s2AL
2Cy,y

K∑
k=0

E∥π⊤
AD

−1
k ∇f(x(k))∥2F

where Cy,x, Cy,σ , Cy,0 and Cy,y are defined as in Lemma 15.

Proof. Note that ∆(k+1)
x = −α

∑k
i=0(A−A∞)k+1−i∆

(i)
y , we apply the rolling sum lemma and obtain that

K∑
k=0

E∥∆(k+1)
x ∥2F ≤ α2s2A

K∑
k=0

∥∆(k)
y ∥2F (32)

Lemma 15
≤ α2s2ACy,σ(K + 1)σ2 + α2s2ACy,0∥∇f(x(0))∥2F + α4s2AL

2σ2Cy,y

K∑
k=0

dk

+ α2L2s2ACy,x

K∑
k=0

E∥∆(k+1)
x ∥2F + α4L2s2ACy,y

K∑
k=0

E∥A∞y(k)∥2F

To estimate
∑K

k=0 dk, notice that

dk =

n∑
j=1

(
[πA]j
[Dk]j

)2 =

n∑
j=1

(1 +
2([πA]j − [Dk]j)

[Dk]j
+

([πA]j − [Dk]j)
2

[Dk]2j
)

≤2n+ 2∥π⊤
AD

−1
k − 1⊤

n ∥2 ≤ 2n+ 2θ2AκAnβ
2k
A

22

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

Therefore,
∑K

k=0 dk ≤ 2n(K + 1) +
2θ2

AκAn

1−β2
A

. When K ≥ 2κAθ2
A

1−βA
, we have

∑K
k=0 dk ≤ 3n(K + 1). When α ≤

1

sAL
√

2Cy,x

≜ α3, α2s2ACy,x ≤ 1/2. Therefore, we can subtract 1
2

∑T
k=0 E∥∆

(k+1)
x ∥2F from both sides of (32). Finally,

note that ∥∇f(x(0))∥2F ≤ 2nL∆, we obtain the lemma.

C.8. Proof of Theorem 2

Using Lemma 3 to estimate the descent deviation in Lemma 2, we have
nα

2
E[∥∇f(w(k))∥2] ≤ E[f(w(k))− f(w(k+1))] + αL2(1 + 2θ2AκAβ

2k
A)E[∥∆(k)

x ∥2F] + 4αθ2κAnLE[(f(w(k))− f∗))]

+
α2Lσ2

2
dk − α

4n
E[∥π⊤

AD
−1
k ∇f(x(k))∥2], ∀k ≥ 1.

Then, we can apply Lemma 13, where we set β = βA, c = 4nθ2AκAL, ∆k = E[f(w(k))−f∗], Sk = nα
2 E[∥∇f(w(k))∥2]+

α
4nE[∥π

⊤
AD

−1
k ∇f(x(k))∥2], Fk = α2Lσ2

2 dk + αL2(1 + 2θ2AκAβ
2k
A)E[∥∆(k)

x ∥2]. When α ≤ 1−βA

4nθ2
AκAL

, we obtain that

nα

2

K∑
k=1

E[∥∇f(w(k))∥2] ≤ 3E[f(w(1))− f∗]− α

4n

K∑
k=1

E[∥π⊤
AD

−1
k ∇f(x(k))∥2] (33)

+ 3αL2(1 + 2θ2AκAβ
2
A)

K∑
k=1

∥∆(k)
x ∥2F +

3α2Lσ2

2

K∑
k=1

dk

For k = 0, note that ∆(0)
x = 0 and D0 = In, the descent lemma provides

E[f(w(1))− f∗] ≤ −nα
2
∥∇f(x(0))∥2 + f(x(0))− f∗ − α

4n
E[∥π⊤

A∇f(x(0))∥2] + α

n
E[∥(π⊤

A − 1⊤
n)∇f(x)(0)∥2] +

αLσ2

2
d0

≤ ∆− nα

2
∥∇f(x(0))∥2 − α

4n
E[∥π⊤

A∇f(x(0))∥2] + 2αL∆n−1∥π⊤
A − 1⊤

n ∥2 +
αLσ2

2
d0

≤ ∆− nα

2
∥∇f(x(0))∥2 − α

4n
E[∥π⊤

A∇f(x(0))∥2] + 2αL∆+
αLσ2

2
d0 (34)

Using (34) and estimate of
∑K

k=0 dk in (33), we obtain that

nα

2

K∑
k=0

E[∥∇f(w(k))∥2] ≤ 3(1 + 2αL)∆− α

4n

K∑
k=0

E[∥π⊤
AD

−1
k ∇f(x(k))∥2] (35)

+ 3αL2(1 + 2θ2AκAβ
2
A)

K∑
k=1

∥∆(k)
x ∥2F +

9nα2Lσ2

2
(K + 1)

Note that α ≤ 1
2nL , 3(1 + 2αL) ≤ 6. We further plug in Lemma 16 in (33) and obtain that

1

K + 1

K∑
k=0

E[∥∇f(w(k))∥2]

≤ 12∆

nα(K + 1)
+ 15αLσ2 + (12n−1α4s2AL

2(1 + θ2AκAβ
2
A)Cy,y − 0.5n−2)

1

K + 1

K∑
k=0

E[∥π⊤
AD

−1
k ∇f(x(k))∥2]

+ 6n2s2Aα
2L2(1 + θ2AκAβ

2
A)(2Cy,σ + 6nα2L2Cy,y)σ

2 +
12L3(1 + 2θ2AκAβ

2
A)α

2s2ACy,0∆

K + 1
. (36)

When α ≤
(

1
24ns2AL4(1+θ2

AκAβ2
A)Cy,y

) 1
4

≜ α4, the coefficient of
∑K

k=0 E[∥π⊤
AD

−1
k ∇f(x(k))∥2] is negative. When

α ≤ min{ 1√
24Cy,σ(1+θ2

AκAβ2
A)sAnL

≜ α5,
(

1
72n3s2AL3Cy,y

) 1
3

≜ α6}, the coefficient 6n2s2Aα
2L2(1 + θ2AκAβ

2
A)(2Cy,σ +

23

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

6nα2L2Cy,y) ≤ αL. When α ≤ 1

sAL
√

(1+2θ2
Aκ2

A)βACy,0

≜ α7, the last term 12L3(1+2θ2
AκAβ2

A)α2s2ACy,0∆
K+1 ≤ L∆

K+1 .

Therefore, with sufficiently small α, we have

1

K + 1

K∑
k=0

E[∥∇f(w(k))∥2] ≤ 12∆

nα(K + 1)
+ 16αLσ2 +

L∆

K + 1
.

The α here should be smaller than min1≤i≤7 {αi}, where α1 = 1
2nL , α2 = 1−βA

4nθ2
AκAβAL

, α3 = 1

sAL
√

2Cy,x

, α4 =(
1

24ns2AL4(1+θ2
AκAβ2

A)Cy,y

) 1
4

, α5 = 1√
24Cy,σ(1+θ2

AκAβ2
A)sAnL

, α6 =
(

1
72n3s2AL3Cy,y

) 1
3

, α7 = 1

sAL
√

(1+2θ2
AκAβ2

A)Cy,0

.

Cy,x, Cy,y , Cy,σ , Cy,0 are positive constants defined in Lemma 15 and are only decided by the mixing matrix A.

Finally, by selecting α = 1/(
√

4Lσ2n(K+1)
3∆ +

∑7
i=1 α

−1
i) which is smaller than min1≤i≤7 {αi}, we have

1

K + 1

K∑
k=0

E[∥∇f(w(k))∥2] ≲

√
L∆σ2

n(K + 1)
+

∆(L+ n−1
∑7

i=1 α
−1
i)

K + 1
.

Define n−1
∑7

i=1 α
−1
i = LCA, where CA is a positive constant decided by the mixing matrix A, we have

1

K + 1

K∑
k=0

E[∥∇f(w(k))∥2] ≲
√
L∆σ2

nK
+

∆L(1 + CA)

K
.

□

D. Convergence of MG-PULL-DIAG-GT
Compared to vanilla PULL-DIAG-GT, MG-PULL-DIAG-GT introduces two notable changes: multiple gossip and the
utilization of batch-average gradients. By calculating the gradient across R batches, under Assumption 3, it follows
that the variance of g decreases from σ2 to σ̂2 = σ2

R . The term multiple gossip signifies the substitution of A with
AR; in this scenario, βA, sA, θA and CA are all modified according to the respective measure of AR. Therefore, we
define β̂A = βAR = ∥AR − A∞∥πA

, θ̂A = supk≥1{[diag(AkR)]−1
i }, ŝA = sAR = supk≥1 ∥AkR − A∞∥2 · 2(1+ln(κA)

1−β̂A
.

ĈA = CAR . We define α̂i has the same expression with αi, but their βA, sA, θA are replaced with β̂A, ŝA, θ̂A, respectively.

Using the conclusion of Theorem 2, we obtain

1

T + 1

T∑
t=0

E[∥∇f(w(k))∥2] ≲ σ̂
√
L∆√
nT

+
L∆(1 + ĈA)

T

T=K
R=
σ
√
L∆√
nK

+
L∆(1 + ĈA)R

K
(37)

Next, we demonstrate that when R = r
1−βA

and r > 3 + 3 ln(κA) + 3 ln(n), ĈA is necessarily an absolute constant. Under

our definition, ĈA =
∑7

i=1(nLα̂i)
−1, so it suffices to establish that (nLα̂i)

−1 is an absolute constant, ∀1 ≤ i ≤ 7.

For α̂1 = 1
2nL , (nLα̂1)

−1 = 2. Before estimating (nLα̂i)
−1,∀ 2 ≤ i ≤ 7, we show that 1− β̂A = Ω(1), θ̂A ≤ 2nκA.

β̂A = ∥AR −A∞∥πA
≤ ∥A−A∞∥RπA

= βR
A = exp(r

ln(βA)

1− βA
) ≤ exp(−r) ≤ 1

e3n3κ3A
, 1− β̂A ∈ (1− 1/e, 1].

When k ≥ 1,

[AkR]ii = [πA]i+[AkR−A∞]ii ≥ πA−∥AkR−A∞∥F ≥ πA−
√
nκAβ

R
A ≥ 1

nκA
−
√
nκA exp(−r) ≥ 1

nκA
− 1

2nκA
=

1

2nκA

Therefore, θ̂A = supk≥1 maxi[A
kR]−1

ii ≤ 2nκA. Additionally, we have

24

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

ŝA = sup
k≥1

∥AkR −A∞∥2 ·
2(1 + ln(κA))

1− β̂A
≤ 4

√
κAβ

R
A(1 + ln(κA)) ≤ 4

√
κA(1 + ln(κA)) exp(−r) ≤

1

nκA
.

Note that α̂2 = 1−β̂A

4nθ̂2
AκAβ̂AL

≥ exp(r)
8n3κ3

AL
≥ 1

nL , thus, n−1L−1α̂−1
2 ≤ 1.

For α̂3, we have

(nLα̂3)
−1 =

ŝA

√
36ŝ2Aθ̂

2
A +

288nκ2
Aβ̂2

A

(1−β̂2
A)4

n
≤ 100

ŝ2AκA +
√
nκAβ̂A

n
≤ 100.

For α̂4, we have

(nLα̂4)
−1 =

24ŝ2A(1 + θ̂2AκAβ̂
2
A)(9nŝ

2
Aθ̂

2
A +

72n2κ2
Aβ̂2

A

(1−β̂A
2
)4
))

n3


1
4

≤ 10

(
ŝ4An

3κ2A + n2κ2A exp(−2r)

n3

) 1
4

≤ 10.

For α̂5, we have

(nLα̂5)
−1 = ŝA

√√√√24(6nŝAM̂Aθ̂2A +
8n2κ2Aβ̂

2
A

1− β̂A
2)(1 + θ̂2AκAβ̂

2
A) ≤ 40ŝA

√
nŝAM̂Aκ2A + n2κ2Aβ̂

2
A ≤ 80.

Here we use the fact that M̂A = supk≥1 ∥AkR −A∞∥2 ≤ √
κAβ

R
A ≤ 1

nκA
.

For α̂6, we have

(nLα̂6)
−1 =

(
72ŝ2A(9nŝ

2
Aθ̂

2
A +

72n2κ̂2Aβ̂
2
A

(1− β̂2
A)

4
)

) 1
3

≤ 36
(
nŝ4Aκ

2
A + n2κ2Aβ̂

2
A

) 1
3 ≤ 72.

For α̂7, we have

(nLα̂6)
−1 = ŝA

√
(1 + 2θ̂2AκAβ̂

2
A)

8κ2Aβ̂
2
A

n(1− β̂2
A)

3
≤ 14ŝAκAβ̂A ≤ 14.

By combining these inequalities, we demonstrate that ĈA ≤ 300 is an absolute constant. Finally, notice that r is any
constant larger than 1 + 3 ln(κA) + 3 ln(n), therefore, by choosing R = ⌈ 1+3 ln(κA)+3 ln(n)

1−βA
⌉ in (37), we have

1

T + 1

T∑
t=0

E[∥∇f(w(k))∥2] ≲ σ
√
L∆√
nK

+
L∆(1 + ĈA)R

K
≲
σ
√
L∆√
nK

+
L∆(1 + ln(κA) + ln(n))

(1− βA)K

Finally, we discuss the range of T which ensures
∑T

t=0 dtR ≤ 3n(T + 1). Note that d0 = ∥πA∥2 ≤ 1, and for any t ≥ 1
we have

dtR = ∥π⊤
AD

−1
tR ∥2 ≤ 2∥1n∥2 + 2∥π⊤

AD
−1
tR − 1⊤

n ∥2 ≤ 2n+ 2θ̂2A∥πA − diag(AtR)∥2

≤ 2n+ 16n2κ2A · nκAβ̂A ≤ 2n+ 16e−3 ≤ 3n.

So we can cancel the requirement on the range of T or K.

□

25

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

E. Experiment Details
In this section, we provide unexplained details of the experimental setup in the article.

E.1. Network Design

In this subsection, we present the networks used in our experiments.

0

1

2

3

4

5

6

7

0

1

2

3
4

5

6

7

8

9

10

11
12

13

14

15

0

1

2

3
4

5

6

7

8

9

10

11
12

13

14

15

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

0

1

2

3

4

5

6

7

8

9

10

11

1213

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

Figure A1. Directed exponential graphs with 8 and 16 nodes, and a directed ring graph (top three); an undirected grid graph, an undirected
geometric graph, and an undirected nearest neighbor graph (bottum three).

Here we list the network metrics of the graphs above:

• Directed exponential graph with 8 nodes: βA = 0.5, κA = 1.

• Directed exponential graph with 16 nodes: βA = 0.6, κA = 1.

• Directed ring graph with 16 nodes: βA = 0.924, κA = 2.

• Undirected grid graph with 16 nodes: βA = 0.887, κA = 6.25.

• Undirected geometric graph with 16 nodes: βA = 0.916, κA = 3.

• Undirected nearest neighbor graph with 16 nodes: βA = 0.907, κA = 1.74.

E.2. Synthetic Data Experiment

We conduct numerical experiments on a synthetic decentralized learning problem with non-convex regularization. The
optimization function is given by:

f(x) =
1

n

n∑
i=1

fi(x), x ∈ Rd

26

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

where

fi,Li
(x) =

1

Li

Li∑
l=1

ln
(
1 + exp(−yi,lh⊤i,lx)

)
+ ρ

d∑
j=1

[x]2j
1 + [x]2j

, Li ≡M = LLocal/n

Data Synthesis Process:

1. Global Data Generation:

• Generate optimal parameters: xopt ∼ N (0, Id)

• Create global feature matrix H ∈ RLtotal×d with hl,j ∼ N (0, 1)

• Compute labels Y ∈ RLtotal with yl ∈ {−1,+1} via randomized thresholding:

yl =

{
1 if 1/zl > 1 + exp(−h⊤l xopt)

−1 otherwise
, zl ∼ U(0, 1)

2. Data Distribution:

• Partition H and L across n nodes using:

H(i) = H[iM : (i+ 1)M, :], Y (i) = Y [iM : (i+ 1)M], M = Ltotal/n

where Ltotal must be divisible by n

3. Local Initial Points:
x⋆i = xopt + εi, εi ∼ N (0, σ2

hId), σh = 10

Gradient Computation: At each iteration, each node i independently computes its stochastic gradient by randomly
sampling a minibatch of size B from its local dataset of size Li = Ltotal/n. The gradient computation consists of two
components:

∇fi,B(x) = − 1

B

B∑
b=1

yi,bhi,b
1 + exp(yi,bh⊤i,bx)︸ ︷︷ ︸

Logistic Loss Gradient

+ ρ

d∑
j=1

2[x]j
(1 + [x]2j)

2︸ ︷︷ ︸
Non-convex Regularization

(38)

where the minibatch {hi,b, yi,b}Bb=1 is drawn uniformly from the Li local samples without replacement. Notice that the
gradient on each node i is computed on the local parameter xi ∈ Rd.

Implementation Details:

• Global dataset size Ltotal = 204800, batch size B = 200

• Dimension d = 10, regularization ρ = 0.01

• Node configurations: n ∈ {1, 2, 8, 16, 128, 512}

Notice that Ltotal = 204800 = 512 · 200 · 2 = nmax ·B · 2.

Evaluation Metric: We track ∥n−11⊤
n∇f(x(k))∥ as gradient norm, where

n−11⊤
n∇f(x(k)) =

1

n

n∑
i=1

∇fi,M (x
(k)
i), M = LTotal/n.

The experimental results shown in our plots represent the average performance across 20 independent repetitions, where
each trial is conducted with the fixed random seed = 42 for reproducibility.

27

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

E.3. Neural Network Experiment

Firstly, we employ a four-layer fully connected neural network for MNIST classification. The experiments are conducted on
four distinct network topologies, each consisting of 16 nodes: a directed ring graph, an undirected grid graph, a geometric
graph, and a nearest neighbor graph, as illustrated in Figure A1.

The MNIST training dataset, comprising 60,000 images, is evenly distributed across n = 16 nodes, each node maintaining
an independent instance of the neural network model. At the end of each batch (that is, communication round), we record
key performance metrics, including loss and accuracy. The communication is then executed based on the predefined network
topology.

The complete experiment results are shown in A2. The accuracy cannot reach 100% because we are using a constant
learning rate and the network is very simple.

0 200 400 600 800
Comm. Rounds

10 1

100

Lo
ss

Ring
MG=1 (Vanilla)
MG=5
MG=10

0 200 400 600 800
Comm. Rounds

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Ring

MG=1 (Vanilla)
MG=5
MG=10

0 80 160 240
Comm. Rounds

100

Lo
ss

Grid
MG=1 (Vanilla)
MG=5
MG=10

0 80 160 240
Comm. Rounds

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Grid

MG=1 (Vanilla)
MG=5
MG=10

0 80 160 240
Comm. Rounds

100

Lo
ss

Geometric
MG=1 (Vanilla)
MG=5
MG=10

0 80 160 240
Comm. Rounds

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Geometric

MG=1 (Vanilla)
MG=5
MG=10

0 80 160 240
Comm. Rounds

100

Lo
ss

Nearest Neighbor
MG=1 (Vanilla)
MG=5
MG=10

0 80 160 240
Comm. Rounds

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Nearest Neighbor

MG=1 (Vanilla)
MG=5
MG=10

Figure A2. Training loss and test accuracy for models trained by MG-PULL-DIAG-GT and PULL-DIAG-GT on MNIST dataset. MG-
PULL-DIAG-GT outperforms on all topologies.

Secondly, we employ a ResNet18 for CIFAR10 classification. The experiments are conducted on four distinct network
topologies, each consisting of 16 nodes: a directed ring graph, an undirected grid graph, a geometric graph, and a nearest
neighbor graph, as illustrated in Figure A1.

The experimental results are as follows:

28

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

0 60 120 180 240
Comm. Rounds

100

Lo
ss

Ring
MG=1 (Vanilla)
MG=4
MG=8

0 60 120 180 240
Comm. Rounds

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Ring

MG=1 (Vanilla)
MG=4
MG=8

0 60 120 180 240
Comm. Rounds

10 1

100

Lo
ss

Grid
MG=1 (Vanilla)
MG=5
MG=10

0 60 120 180 240
Comm. Rounds

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Grid

MG=1 (Vanilla)
MG=5
MG=10

0 30 60 90 120
Comm. Rounds

10 1

100

Lo
ss

Geometric
MG=1 (Vanilla)
MG=5
MG=10

0 30 60 90 120
Comm. Rounds

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Geometric

MG=1 (Vanilla)
MG=5
MG=10

0 50 100 150 200
Comm. Rounds

10 1

100

Lo
ss

Nearest Neighbor
MG=1 (Vanilla)
MG=5
MG=10

0 50 100 150 200
Comm. Rounds

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Nearest Neighbor

MG=1 (Vanilla)
MG=5
MG=10

Figure A3. Training loss and test accuracy for models trained by MG-PULL-DIAG-GT and PULL-DIAG-GT on CIFAR-10 dataset.
MG-PULL-DIAG-GT outperforms on all topologies.

Lastly, we provide an experiment on the heterogeneous MNIST dataset where each node possesses a unique data distribution,
see Figure A4.

0 1 2 3 4 5 6 7 8 9
Class Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

No
de

 In
de

x

387 399 378 373 358 352 369 388 404 342

338 433 375 416 356 328 376 380 353 395

392 371 365 394 391 347 390 370 371 359

377 434 366 337 396 340 389 379 360 372

396 443 326 384 341 372 359 395 352 382

340 420 385 380 387 360 352 390 364 372

378 461 402 354 377 312 357 388 345 376

359 384 390 390 381 351 368 373 350 404

378 413 362 387 380 346 382 396 353 353

400 451 347 364 345 329 374 403 376 361

356 425 396 393 340 330 365 393 351 401

346 419 379 412 343 334 365 420 374 358

366 406 369 365 354 337 373 391 405 384

366 429 386 412 358 338 357 391 362 351

367 433 373 362 370 339 370 393 372 371

377 421 359 408 365 306 372 415 359 368

Uniform Distribution

0 1 2 3 4 5 6 7 8 9
Class Index

0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

170 266 28 259 120 691 460 826 2 131

1120 572 1115 63 294 345 368 475 275 8

449 451 1254 1144 54 127 17 273 194 372

344 252 613 507 631 20 83 577 109 301

55 722 130 978 30 133 15 507 46 18

63 112 32 743 1638 133 665 73 167 132

22 258 444 303 557 467 223 650 1038 979

719 343 220 867 76 371 481 237 133 101

324 439 72 38 0 791 1577 498 258 65

440 1149 245 64 665 229 171 681 481 313

5 167 21 10 479 43 354 128 165 1688

1290 522 892 127 480 474 975 38 1310 135

685 627 93 174 552 510 169 69 1207 478

98 34 408 95 37 298 45 171 93 585

62 671 137 605 190 530 203 531 252 104

77 157 254 154 39 259 112 531 121 539

Heterogeneous Distribution

0

200

400

600

800

1000

1200

1400

1600

Figure A4. Left: Uniform MNIST data distribution used in the experiments in Section 6. Right: Heterogeneous MNIST data distribution
used in the additional experiment shown in Figure A5.

29

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

0 60 120 180 240
Comm. Rounds

10 1

Lo
ss

Ring
MG=1 (Vanilla)
MG=5
MG=10

0 60 120 180 240
Comm. Rounds

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Ring

MG=1 (Vanilla)
MG=5
MG=10

0 80 160 240
Comm. Rounds

10 3

10 2

10 1

Lo
ss

Grid
MG=1 (Vanilla)
MG=5
MG=10

0 80 160 240 320
Comm. Rounds

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Grid

MG=1 (Vanilla)
MG=5
MG=10

0 80 160 240
Comm. Rounds

10 3

10 2

10 1

100

Lo
ss

Geometric
MG=1 (Vanilla)
MG=5
MG=10

0 80 160 240
Comm. Rounds

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Geometric

MG=1 (Vanilla)
MG=5
MG=10

0 100 200 300 400
Comm. Rounds

10 4

10 3

10 2

10 1

100

Lo
ss

Nearest Neighbor
MG=1 (Vanilla)
MG=5
MG=10

0 100 200 300 400
Comm. Rounds

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Nearest Neighbor

MG=1 (Vanilla)
MG=5
MG=10

0 80 160 240
Comm. Rounds

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Geometric

MG=1 (Vanilla)
MG=5
MG=10

40 80 120 160 200 240
97.3%

97.5%

97.7%

97.9%

98.1%

0 100 200 300 400
Comm. Rounds

0%

20%

40%

60%

80%

100%

Ac
cu

ra
cy

Nearest Neighbor

MG=1 (Vanilla)
MG=5
MG=10

90 152 214 276 338 400
97.7%

97.8%

97.9%

98.0%

98.1%

Figure A5. Training loss and test accuracy of a 4-layer neural network trained using MG-Pull-Diag-GT and vanilla Pull-Diag-GT on the
MNIST dataset. The data is distributed in a heterogeneous manner (see Figure A4).

30

Achieving Linear Speedup and Near-Optimal Complexity for Decentralized Optimization over Row-Stochastic Networks

E.4. Learning Rates

In Figure 2:

• Exponential graph of n nodes:
nαn = 0.512.

• Ring graph of n nodes:
nα = 0.002

In Figure 3 and 4:

• For ring graph with m times of multiple gossips, the learning rate αm satisfies:

α1 = 0.005, α5 = 0.01, α10 = 0.02.

.

• Grid graph:
α1 = 0.02, α5 = 0.03, α10 = 0.03.

• Geometric graph:
α1 = 0.02, α5 = 0.02, α10 = 0.03.

• Nearest neighbor graph:
α1 = 0.02, α5 = 0.02, α10 = 0.02.

Here, the learning rates are chosen in a non-decreasing order, as the MG mechanism typically permits a wider range of
stable learning rates.

31

