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Extended Abstract   
For aircraft recovery problem (ARP), existing exact 

methods are too time-consuming — constructing and solv-
ing the resulting integer linear programming problems re-
quires too much computational time to be operationally use-
ful. Therefore, existing literature focuses on approximation-
based approaches such as solution heuristics and problem 
size reduction methods that provide a trade-off between 
computation time, problem size and problem complexity. 
However, most heuristics that are fast enough suffer from 
poor solution quality.  

 
In this research, supervised machine learning is employed 

to expedite optimization. The core idea is to try to identify 
components of optimal solutions to new problem instances 
by leveraging their similarity with alternative (historical) 
problem instances presented in the offline model-training 
phase. Our approach prunes the decision space by using ma-
chine learning algorithms that are trained using the network-
wide optimal decisions for similar scenarios. 

Problem Formulation 
First, we employ a commonly used modeling approach for 
characterizing aircraft recovery decisions, based on the con-
cept of flight strings. A flight string is a sequence of flights 
operated by a single aircraft of a particular fleet type. Next, 
we present the sets, parameters and decision variables and 
the ARP formulation itself. 
Sets and Parameters 

𝑆!"#$ : Set of strings corresponding to aircraft group 𝑔 ∈ 𝐺 that 

begin at airport 𝑎 ∈ 𝐴 before the beginning of period 𝑡 ∈ 𝑇 
𝑆!"#% : Set of strings corresponding to aircraft group 𝑔 ∈ 𝐺	that end 

at airport 𝑎 ∈ 𝐴 before the beginning of period 𝑡 ∈ 𝑇 
𝐼&': Indicator parameter (1 if flight 𝑓 ∈ 𝐹 is in string 𝑠 ∈ 𝑆", 
∀𝑔 ∈ 𝐺) 

 
 

𝑁!"#$ : Number of available aircraft of aircraft group 𝑔 ∈ G	at air-
port 𝑎 ∈ 𝐴 at the beginning of period 𝑡 ∈ 𝑇 
𝑁!"#% : Number of aircraft for aircraft group 𝑔 ∈ G that need to be 
at airport 𝑎 ∈ 𝐴 at the beginning of period 𝑡 ∈ 𝑇 
Decision Variables 
𝑥"': The assignment of aircraft group to strings (1 if string s ∈ S  is 
operated by aircraft group g ∈ G ) 
y(: Defines the cancelled flights (=1 if flight 𝑓 ∈ 𝐹 is cancelled)  
Constraints  

 ∑ ∑ 𝐼&' × 𝑥"''∈*!"∈+ + 𝑦& = 1, ∀𝑓 ∈ 𝐹																								(1) 
	 
 ∑ 𝑥"''∈*"!#$ ≤ 𝑁!"#$ 			∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇, 𝑎 ∈ 𝐴																(2) 

  	 
∑ 𝑥"''∈*"!#% ≥ 𝑁!"#% 					∀𝑔 ∈ 𝐺, ∀𝑡 ∈ 𝑇	, 𝑎 ∈ 𝐴	            (3)   

 𝑥"' ∈ {0,1}, 			∀𝑔 ∈ 𝐺, 	∀𝑠 ∈ 𝑆", 	𝑦& ∈ {0,1}, 				∀𝑓 ∈ 𝐹	 
Objective Function 

𝑀𝑖𝑛	 ∑ 𝑦& × 𝑐&,!-,./ +∑ ∑ 𝑥"''∈*!"∈+&∈0 	× [𝑐"'
12.3!#. +

	𝑐"'
4./!5 + 	𝑐"'

'26//]	
The objective function is the sum of cancellation cost and 

assignment cost - the latter is the sum of operating cost, spill 
cost, and delay cost. Constraints 1 ensure that each flight is 
either covered by a flight string or cancelled. Constraints 2 
and 3 ensure flow balance and aircraft availability at the be-
ginning and ending of the recovery horizon respectively  



 

Figure 1 Solution Methodology 
Solution Methodology Overview 

The methodology consists of two main components: one of-
fline and one online. The offline component should be run 
before the day of operations. The online component should 
be run in real-time, between the time when a disruption sit-
uation is identified and the time when the airline must decide 
its recovery actions. The goal is to identify and exploit the 
similar solution components (flight pairs) between these 
previously solved offline instances and the online one that 
manifests on the day of operations, to inform solution of the 
online instance. A flight pair (FP) is defined as a pair of con-
secutive flights within a string operated by the same aircraft. 
In the offline component, first, a set of representative dis-
ruption scenarios is identified, and an offline database of 
disruption scenarios is created. Second, the airline recovery 
problem is solved for each of these representative scenarios 
and a solution database is created. Finally, for each FP, a 
separate classifier, with the aim of predicting the probability 
that the FP will be selected under a new disruption scenario, 
is trained. In the online component, first, for the online dis-
ruption scenario under consideration, we calculate the prob-
ability of each candidate solution component. Then, we 
identify the subsets of FPs with highest selection probabil-
ity. Finally, we eliminate from the solution space (of a com-
mercial solver) all the strings which have either, but not 
both, of those flights. An overview of the solution method-
ology can be seen in Figure 1.  

Computational Results 
We present computational case study for JetBlue Airlines 
during the June-August 2019 time period. Data from BTS 
(Bureau of Transportation Statistics) Airline On-Time Per-
formance Database were used. We utilized schedules and 
disruption scenarios from weekdays in June, July and first 
two weeks of August for training and schedules and disrup-
tion scenarios from the weekdays in the last two weeks of 
August for testing. We consider a day-long recovery hori-
zon, which is typical for many airlines. Flight network con-
sists of 1211 flights with 220 aircrafts (2 aircraft models: 
Airbus A220 and Embraer 190) and 11 maintenance 

stations. Features for classification were binary variables de-
fining whether or not a flight was included in the day’s flight 
schedule (acknowledging the fact that flight schedules often 
change from day to day even during the same scheduling 
season) and the associated Independent Arrival delays (Lan 
et al. 2006) of the included flights. Four relevant bench-
marks were employed. GS is the Global Solution obtained 
by using the entire string set. TS is the Trivial Solution that 
takes only the disrupted aircraft into consideration. This so-
lution resembles the immediate solution that an airline con-
troller would find during operations as described in Vink et 
al. (2021). SA is the Selection Algorithm – a heuristic that 
iteratively considers a selection of aircraft, as described in 
Vink et al. (2021). CGR is the Column Generation Heuristic 
at root node. CGA is the Column Generation algorithm at 
all nodes. ML_LR is our proposed machine learning method 
using logistic regression classifier for learning and ML_RF 
is our machine learning method using random forest classi-
fier. Table 1 shows the optimality gap – with respect to the 
true optimal obtained by solving the problem directly using 
CPLEX over a much longer time period – of all the ap-
proaches for different time thresholds. We notice that at all 
time thresholds, one of our machine learning-based ap-
proaches achieves the lowest optimality gap. Specifically, 
we establish the superiority of our machine learning-based 
approaches compared to the other baselines considered for 
each time budget whether we need to make a very quick de-
cision (30 sec objective) or when the decision can be taken 
with a maximum of two minutes of available runtime budget 
(120 sec objective). 

  
Table 1 Comparing optimality gaps of approaches w.r.t true opti-

mal cost at different time thresholds (averaged over 20 test in-
stances) 

Conclusion 
Our results, demonstrate the consistently high performance 
of our approach on the tested instances when compared to 
state-of-the-art approaches under various runtime budgets. 
While much more exploration, experimentation and close 
scrutiny is warranted of these machines learning based ap-
proaches, we find that they do exhibit a potential to generate 
fast and high-quality solutions of complex recovery optimi-
zation problems faced by airlines. 
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