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Abstract

Recently, the potential of lightweight models for
resource-constrained scenarios has garnered sig-
nificant attention, particularly in safety-critical
tasks such as bio-electrical signal classification
and B-ultrasound-assisted diagnostic. These tasks
are frequently affected by environmental noise
due to patient movement artifacts and inherent
device noise, which pose significant challenges
for lightweight models (e.g., deep binary neural
networks (DBNNG5)) to perform robust inference.
A pertinent question arises: can a well-trained
DBNN effectively resist environmental noise dur-
ing inference? In this study, we find that the
DBNN’s robustness vulnerability comes from the
binary weights and scaling factors Drawing upon
theoretical insights, we propose L1-infinite norm
constraints for binary weights and scaling factors,
which yield a tighter upper bound compared to
existing state-of-the-art (SOTA) methods. Finally,
visualization studies show that our approach in-
troduces minimal noise perturbations at the pe-
riphery of the feature maps. Our approach outper-
forms the SOTA method, as validated by several
experiments conducted on the bio-electrical and
image classification datasets. We hope our find-
ings can raise awareness among researchers about
the environmental noise robustness of DBNNSs.

1. Introduction

To enable safety-critical tasks (e.g., traffic flow control, bio-
electrical monitoring, etc.) (Hsiao et al., 2022; Qiu et al.,
2025; Roeder, 2022) on edge devices with limited com-
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putational resources, researchers often consider deploying
lightweight models. This implies that lightweight models
are typically trained on GPU servers, after which the well-
trained models are deployed to edge devices for performing
downstream inference tasks. In particular, edge devices are
typically in environments with diverse forms of environ-
mental noise (Yayla & Chen, 2022). If environmental noise
causes the lightweight model to output wrong results, it
can have serious consequences for safety-critical tasks. For
examples, the smart bracelet worn by the patient introduces
environmental noise perturbations, which is compounded
by the patient’s pain and other physiological conditions
(Roeder, 2022). Thus, we aim to support robust decision-
making of lightweight models under environmental noise
perturbations, thereby assisting decision-makers.

Limitations: On Resource Limited Scenarios, the robust-
ness of lightweight models with sparse property is compro-
mised in environmental noise perturbations (Cai et al., 2022).
Empirically, several researches are focused on adversarial
learning schemes (Miyato et al., 2018; Gouk et al., 2021)
using spectral norm constraints to improve the robustness
of full-precision models. In theory, recent approaches exten-
sively employ relaxation strategies based on the Lipschitz
continuity theorem to establish provable bounds for full-
precision convolutional neural networks (CNNs) against
adversarial attack (Gowal et al., 2018; Balunovic & Vecheyv,
2020; Zhang et al., 2020; 2021). However, this kind of
method mainly has the following three limitations. (1) These
relaxation-based methods (Gowal et al., 2018; Balunovic &
Vechev, 2020) improve the robustness of full-precision mod-
els when deployed on GPU servers, yet they introduce expo-
nential computational overhead. Thus, the aforementioned
approaches (Gowal et al., 2018; Balunovic & Vechev, 2020)
present significant challenges for deployment in resource-
constrained environments. (2) The above method (Gowal
et al., 2018; Balunovic & Vechev, 2020; Zhang et al., 2020;
2021) exhibit effectiveness only against specific types of
noise perturbations, owing to their training with specific
adversarial samples. However, the nature of environmental
noise that poses challenges for safety-critical tasks is diffi-
cult to predict. For instance, a patient’s position change due
to discomfort can introduce random noise into the electrodes
collecting bio-electrical signals (Roeder, 2022). (3) The
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above approaches (Gowal et al., 2018; Balunovic & Vecheyv,
2020; Zhang et al., 2020; 2021) focus on the shallow CNNs.
Due to the structural disparities between shallow and deep
model, it remains challenging to determine whether existing
methods can be directly applied to analyze the robustness
of deep backbone (e.g., ResNet34).

Challenges: The utilization of binary neural networks
(BNNs) as an extreme approach for quantifying weights
and activations has yielded remarkable success in several
machine learning tasks (Rastegari et al., 2016; Zhou et al.,
2016; Liu et al., 2018; Bulat & Tzimiropoulos, 2019; Liu
et al., 2020; Qin et al., 2020; Tu et al., 2022; Yuan & Aga-
ian, 2023; Qin et al., 2023). The study (Cai et al., 2022)
shows that the quality of inference from lightweight models
are observed to decrease on edge devices with environmen-
tal noise. Especially in some medical assisted diagnosis
scenarios (Roeder, 2022), noise interference has a serious
negative impact on decision making. However, the existing
approaches focus on narrowing the performance gap be-
tween the full-precision and BNNs, without delving into the
robustness of BNNs against environmental noise perturba-
tions during inference. Compared to full-precision models,
the LCR method (Shang et al., 2022) has investigated the in-
sufficient robustness of BNNs. However, it still encountered
two challenge issues. (1) The study (Shang et al., 2022)
introduce a large extra overhead to BNNs, which is difficult
to meet the requirements of resource limited scenarios. In
particular, the approximation operation using several reten-
tion matrices result in a 20% increase in training overhead.
(2) The study (Shang et al., 2022) lacks a quantitative formal
analysis of noise perturbation bounds to demonstrate the
robustness of DBNNS.

Motivation & Contribution: To address the above-
mentioned challenge issues, we aim to devise an upper
bound via L1 ~.-norm that can analyze the robustness of
DBNNSs under environmental noise perturbations. Further-
more, the analysis also aim to reveal that the vulnerability in
DBNNs model robustness originates from the scaling factor
associated with binary operations. In contrast to the recent
study (Shang et al., 2022) by using an approximate spec-
tral norm constraint strategy, our proposed L1 ,-norm con-
straint only involves the column and row of matrix and the
maximum computing operations, thus avoiding additional
training costs like in the study (Shang et al., 2022). In order
to better target the characteristics (i.e., deep backbones and
binarization operations) of DBNNs under environmental
noise (i.e., random and high SNR), our theoretical analysis
framework by using L1 .,-norm offer superior applicability
to DBNNS in mitigating the negative impact of environmen-
tal noise. Meanwhile, we consider the characteristics of the
DBNN:Ss (e.g., scaling factors and binarization operations)
to provide a tightness upper bound under environmental
noise perturbations. Finally, to address the potential risk
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Figure 1. Workflow for model binarization and robustness evalua-
tion.

Binarization

Training

Our Focus

of our auxiliary robustness loss function (i.e., requiring the
maximization of a non-concave function over a norm ball),
we introduce a constraint coefficient associated with scaling
factors of DBNNS to balance the classification and auxil-
iary robustness loss functions (See Appendix for detailed
experiments). Our main contributions are summarized as
follows:

¢ In theory, we find that the vulnerability of DBNNs to
environmental noise comes from scaling factors and
binary weights. Then, we formally derive an noise
perturbations upper bound for DBNNs in a closed-
form analytical manner. We provide a tighter upper
bound compared to the SOTA method under same noise
conditions.

* We propose a novel automated and robust training
framework to enhance the environmental noise robust-
ness of various DBNNs by using the L -norm con-
straint.

* Our visual case finds the detrimental impact of envi-
ronmental noise on the feature maps of DBNNs.

Experiments show that our approach enhance the robustness
of DBNN-based models on five classification tasks, with
maximum improvements of 4.8% and 5.4% on the CIFAR-
100, Brain tumor MRI datasets, respectively.

Discussion summary: Our work aims to provide an ef-
fective training framework for enhancing the robustness of
DBNNSs against environmental noise by incorporating an
L1 o norm constraint training, hence it is orthogonal to the
topic of formal verification for verifying the correctness of
the resulting quantized/binary NN (In Fig.1). Please see
Appendix for details.

2. Related Works

2.1. Binary Neural Networks

The current radical compression strategy involves reduc-
ing the learnable parameters of bit-width from 64 to 1-bit
(Yuan & Agaian, 2023; Qin et al., 2023). Several researchers
(Rastegari et al., 2016; Zhou et al., 2016; Liu et al., 2020;
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2018; Qin et al., 2020; Tu et al., 2022) foremost compress
weights wp € R and activations ap € R (detailed in survey
work (Yuan & Agaian, 2023)) to 1-bit in each convolution
block. In comparison to conventional compression method
(i.e., pruning), binarization exhibits superior computation
operators as it exclusively targets the model parameters
(Rastegari et al., 2016). However, the binarization brings
a scarcity of feature representation, leading to a signifi-
cant degradation in accuracy. Now, the study (Qin et al.,
2023) proposes a method that leverages information gain to
mitigate these representation losses and thus enhance the
performance of BNNs. However, these methods do not con-
sider whether BNNs directly used for inference is resistant
to environmental noise.

2.2. Robust Neural Networks using Lipschitz Continuity

Recently, the study (Gouk et al., 2021) proposes an effec-
tive approach to enhance the performance of feed-forward
neural networks by computing an upper bound on the Lips-
chitz constant for multiple p-norms. Especially in the area
of image processing, the study (Yoshida & Miyato, 2017)
proposes spectral normalization to constrain the Lipschitz
constant of the discriminator by optimizing a adversarial
network. Meanwhile, several studies (Li et al., 2019; Singla
& Feizi, 2021) propose strategies to effectively reduce the
Lipschitz constant of CNNs by leveraging Ls-norm. Then,
the study (Zhang et al., 2021) further proposes a novel net-
work architecture, termed L., -dist network structure, by
leveraging inherently 1-Lipschitz functions as neuron units.
The core module of the study (Miyato et al., 2018) is note-
worthy for its utilization of spectral norm constraints based
on singular values, which are directly applied to the weights
of each convolutional layer. However, the extreme spar-
sity of binarized weights pose an immediate computational
challenge by directly via spectral norm constraints (Shang
et al., 2022). To resolve this issue, a study (Shang et al.,
2022) aimed at enhancing the robustness by incorporating
Lipschitz continuity constant as a regularization term. To
address the extreme sparsity of binary weights, this work
(Shang et al., 2022) proposes employing retention matrices
to approximate spectral norms of weights. However, the
effectiveness of the LCR (Shang et al., 2022) heavily relies
on the strong mutual linear independence assumption of
binary activations.

3. Background

Robustness Definition of BNNs: Following the theoreti-
cal study (Narodytska, 2018), we adopt the L,-norm as
a metric to quantify distance. From a theoretical perspec-
tive, global robustness represents an exceedingly stringent
property. Considering real-world scenarios, our research
is dedicated to enhancing the local robustness of DBNNs,

which can be defined as follows:

Definition 3.1. (L..-robustness) Let F'(x) represent the
output of neural network F' on input signals x and ¢, =
L(z) be the ground truth of x. If the F is locally robust,
there is not exist perturbed ~ that makes ||7y||~ holds on.
e.g., we have F'(z + ) # £;.

Secondly, we outline the prevalent characteristics of BNN-
based models (Rastegari et al., 2016; Liu et al., 2018; 2020;
Qin et al., 2020; Yuan & Agaian, 2023; Qin et al., 2023),
which involve the conversion of full-precison weights (W r)
and/or activations (/) into 1-bit precision. Here, the stan-
dard definition (Qin et al., 2023; Liu et al., 2018; Qin et al.,
2020) of the binarization operation is provided as follows:

Q(WF):CY*WZ), Q(IF):B*IZN (1)

where W, and I, are denote the binary weight and binary
activation matrices, respectively. Here, the o = || Wg |y
and 3 = L||Ir ||, are represent two scaling factors for full-
precision weight (Wx) and activation (I ). Following the
survey (Yuan & Agaian, 2023), we present the description
of the Sign(-) function:

Sign(z) = {_H’ ifr =0 . 2

—1, otherwise

Furthermore, we give a general computation process of
DBNNS in Def.3.2.

Definition 3.2. The BNNs typically employs binary
{—1,1} weights and activations components to achieve
light-weight modeling. Then, we can write such network
thought L—1 modules (i.e., (axI})®(8xW}),1 € [1, L—1],
where ® denotes the convolution operation) with weights
and activations and L-th layer (i.e., output module O(-)).
Hence, we can deduce the iterative form of BNNs with input
x as follows:

BNNs(x) = O((al; ™) ® (W) -+ (aly) ® (BW}(x))) -

3)

Notations of Matrix and Perturbed Robustness: We can
represent matrices by uppercase letter, such as W. For a
weight matrix W, we can write its it" row and J th column
as the entry W; ; € R™>". The L, norm of a matrix can be
abbreviated as ||W||,. The L1 -norm will be used in the
subsequent theoretical analysis of robustness. According
to the definition of the matrix norm, we can get the formal

L. Ai
definition for L; o-norm ||A[|1 o = max |“|"Eﬁ:”1 , where
Z#0 >

Z denotes a vector and A denotes a matrix. Recently, the
study (Mao et al., 2023) has focus on the L, robustness of
perturbed inputs as follows:

B () € {2’ — 2l < e}, @)

T =
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Figure 2. Our automatic robust training framework.

where 2’ denotes a series of perturbed inputs and x denotes
a series of clean inputs, the €, denotes a input noise pertur-
bation radius and BS°(€) represents a L, norm ball of the
noise perturbation radius €.

4. Method

Overview: In this section, we propose a novel robust train-
ing method that utilizes a targeted objective function with
a L1 o.-norm constraint term on binary weights to enhance
the robustness of DBNNSs against environmental noise per-
turbations. In contrast to the work (Shang et al., 2022), our
proposed method effectively mitigates the excessive training
cost resulting from the indirect preservation of the matrix.
To analyze more suitable constraints, we establish a quan-
titative relationship between our perturbation bounds and
the bounds of study (Shang et al., 2022). To facilitate the
application of our approach for enhancing the robustness of
various BNN structures, we propose an automatic training
framework (See the last paragraph of section 4.3 for details)
as shown in Fig.2.

4.1. Formal Analysis on the Robustness of DBNNs

Main Analysis Process: (1) We present a feed-forward and
full-precision neural network under general noise perturba-
tions as an example in Fig.3. Here, the weights W7 1, Wy o
should be annotations on the edges. (2) Taking a simple
3-layer full-precision model as an illustrative example, we
present an analysis of the disparity in learnable weights
between the outcomes of the two categories before and af-
ter introducing input noise perturbations. (3) Based on the
above theoretical findings and the inherent characteristics
of the DBNN:Ss (e.g., scale factors «, 8 and binary weights
W4), we can deduce the upper bound of L-layer DBNNs
model under noise perturbations.

Step1: The Process of Full Precision Models with Noise.
In Fig.3, our example illustrates the variations in each
weight value under noise perturbations, thereby offering
a valuable contribution to the subsequent analysis of the

Initial Hidden Layer
Input Layer

Output
{ Wq / 2

Second Hidden Layer

Figure 3. The example of a full-precision neural network perturbed
by noise.

upper bound of DBNNSs. In Fig.3, the noise is applied to the
image signal x. Subsequently, we demonstrate the disparity
between the output of the DBNNSs under clean and noise
scenarios. Specifically, in Eqn.5, Y represents the perturbed
output resulting from two examples with noise (i.e., £; and
i5). Here, |Y — Y| denotes the absolute difference between
the disturbed and clean outputs. Then, ReLU(-) denotes the
ReLU activation function. In addition, W7 5 denotes to the
second weight value in the initial hidden layer.

|V — Y| = |[WoReLU{ReLU (&, W, 1)W1

+ ReLU (2, W1 2)Wa.g + ReLU (22 Wy 1 ) Wo 1+
ReLU (&, W1 2)Wa o} — WoReLU{ (5)
ReLU (21 W7 1)Wa,1 + ReLU (21 W7 2)Wa 2

+ ReLU(22W1 1)Wa 1 + ReLU (22 Wy o) Wa 2} .

Step2: Formal Analysis for Full Precision Models under
Noise Perturbations. For the first hidden layer of a full pre-
cision model, we quantify the discrepancy through applied
noise perturbations (also referred to as the model’s decision
margin) with L., perturbed inputs based on Eqn.4-Eqn.5
are as follows:

dfl 2 1 2
ED D Wiy (@ —a SZZ Wil - |&5 — ;)
i=1 j=1 i=1 j=1

12
< ¢, max Wigl = e Il

(6)
where e! denotes the difference between clean and applied
noise at the initial hidden layer. The weight value of the
it" row and j'* column in a matrix is denoted as W; ;,
while the initial hidden layer of all weights is represented by
W, Then, €, represents the perturbation value for inputs.
It is imperative to maximize this disparity to effectively
constrain the model and enable correct decision against
noise perturbations. Hence, we provide an expanded upper
bound on the right side of the definition and then employ

the L, norm to calculate its maximum value.

Thereafter, we present the perturbation bounds of second
hidden layer from the preceding layer with respect to input

€, as follows:
e? <ReLU(e - [W|oo) - W20 )
N————

el
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Table 1. The distinctions between our study and previous studies. Here, * denotes the additional training cost.

Methods Constraints | Types | Deep Structures | Assumptions | Additional Cost
ELC (2021) (Gouk et al., 2021) L,-norm DNNs VGG19 N/A Not
SN (2018) (Miyato et al., 2018) Lo-norm DNNs ResNet18 N/A Not
LCR (2022) (Shang et al., 2022) Ly-norm BNNs ResNet20 stringent +20% cost*
Our L1 oc-norm | DBNNs ResNet34 N/A Not

where ||IW?||« denotes the difference for the second hidden
layer. Finally, we can provide the perturbation bounds of
output layer based on Eqn.7 as follows:

¢ < ReLU(ReLU (e [[W" o) W2 [loo)- WS =WE] 1 -

®)
According to the study (Gouk et al., 2021), we employ the
L, norm to quantify the discrepancy in weights between a
perturbed output result and an unperturbed output result as

denote the output layer of learnable parameters correspond
to classes C7 and Cs, respectively. Then, héfl and Bgfl
denote the intermediate results from the preceding L — 1
layer under clean and noise scenarios, respectively.

Theorem 4.2. For L-layer DBNNs against noise perturba-
tions, we can derive the upper bound of robustness for the
discrepancy between two classification outcomes (i.e., Ci

and Cs) as follows:

(W& — WE 1 in Eqn.8. K ‘ L1

. . . Fyg (#) = Fyg? () < (H ) [Wie, = Wiyl
Step3: Formal Analysis for Environmental Noise Bounds
of L-layer DBNNs. Based on the Def.3.2, we focus on the L—1

DBNNS using the classical ResNet-based backbone. Then,
the formal description perspective for DBNN s only requires

IT 1oV =7 e H [[Q O 75y 7 [
=1 M=2

the conversion of activation and weights from full-precision R (11)
models in Eqn.7 to binarized form. where WYy = IM @ (WM...I! @ (W}%)) denotes
the expansion of front M-layer DBNNs (i.e., BI éw ®

The Difference between Full-precision models and
DBNNs: The primary differents between the computa-
tional processes of full-precision model (i.e., ReLU(W))
and BNNss lie in the binarization of activations (i.e., 51)
and weights (i.e., aWW},) with scaling factors. Hence, we can
illustrate a BNNs example of final bounds via the Def.3.2
and Eqn.8 as follows:

& < (B ® (€0l W loo) BTy @ (al|WE]loo) FAWY,

©)
where W denotes the all binary weights of the second bi-
nary convolution layer, and then AW = [[Wy ; =Wy 5|1
denotes the difference of binary weights corresponding to
different classification results at output layer by utilizing L
norm. Here, o and § denote scaling factors. Thus, we can
obtain the upper bound of the DBNNs under environmental
noise in Def.4.1.

Definition 4.1. Suppose a standard classification task con-
tains P categories, such as C;,i € [1,--- , P]. Suppose the
output of the DBNNSs is ] instead of the expected result
Cs, we can define the discrepancy between different classi-
fication results using L-layer DBNNs under environmental
noise perturbations as follows:

def 1

F (&) = Fi2 () € ( [Well, - Wi, ) o

1 _
(Wl - W, - b5,

where Fi§! () — F? (x) represents the difference between
.b b .

the two different outputs of DBNNs under noise perturba-

tions and clean scenarios. Meanwhile, W and W/,

(W BI; ®
tors (i.e., HZL;ll oy 8;) by a 1-lipschitz continuous function.
Here, N denotes the total number of binarization layers that
are perturbed by noise excluding the output layer of DBNNZs.
Then, - W,fc2 |1 represents the discrepancy in out-
put layer of weights corresponding to the two categories
(Suppose the DBNNs is judged to be of two different classes
after applying noise) that are deemed distinct following
noise perturbations. Thus, we constrain the scale factors
and binary weights can effectively enhance the tightness of
upper bound under noise perturbations.

(aW %)) can be contracted scaling fac-

To facilitate the derivation of the bounds, we approximately
omit the analysis of the residual structure. Nevertheless, we
give the upper bound result of the Lipschitz constant for the
residual block in the Appendix.

4.2. Tightness Analysis of L; ..-norm Constraint

Firstly, the study (Shang et al., 2022) employs the Lipschitz
continuity constrains to enhance the robustness of BNN-
based models. However, it fails to provide a quantitative
upper bound under environmental noise perturbations. Ac-
cording to the study (Shang et al., 2022), we can obtain an
upper bound as follows:

Han<H Wil -4~ 9)2 (12)
j=1

where ||wi ||2 denotes the Lo norm of binarized weights in
the j*" convolution layer, ) denotes the total number of
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binary convolution layers, j € [1, Q)] and hyper-parameter
~v>1. Clearly, it is imperative to compare the quantitative
relation between other norm constraints and the spectral
norm constraints (Shang et al., 2022).

IA]I%, = miax(z lai i) <> laisl)?
j=1

i=1 j=1

n n
<y Y ais = nlAll3,

i=1 j=1

(13)

where A denotes a standard matrix and n represents the
total number of rows in matrix. Obviously, we can get such
an inequality relation || A||oc < v/n||A||2. The study (Liu
et al., 2022) has focused on investigating the inequality rela-
tionship among different types of classical Ly, Lo, and L,
norms for learning smooth neural functions. In contrast to
the work (Liu et al., 2022), our aims to explore the quan-
titative relationship between the dual norm L; o, and the
spectral norm Lo for robustness noise perturbations bound
in DBNNS. Firstly, the inequality relationship between the
L1 o norm and the L, norm is as follows:

AT ATl -
AT — e e AT AT
Tl el
< k- AT oo - max 17l
el

(14)
where k£ denotes the number of dimensions of the matrix
A. Based on the intermediate inequality (i.e., Eqn.13 and
Eqgn.14), we can derive the final bound inequality relation
of one binary convolution layer in Eqn.15:

T
AT e < e VAl max = as)
Corollary 4.3. According to Eqn.12 and Egn.15, we can
determine the tightness ratio of Q) binary convolution layers
between our study and previous work (i.e., LCR) (Shang
et al., 2022) under noise perturbation as follows:

2wl
L
Hj:l L‘l]lp

k-v/n [l

< - : -max
W3 ll2 - (7=9)? [l

. (16)

Here, the symbol n denotes the dimension of the binary
convolution weights. In fact, this is a definite value and does
not change as the number of network layers increases. In
addition, the upper bound of (Shang et al., 2022) increases
exponentially and its value is much larger (due to the value
of hyper-parameters v > 1 in the LCR method) than the
upper bound of our work, which means that the denominator
of Cor.4.3 is always greater than the numerator, that is to
say, the ratio is strictly less than 1. Theoretically, a compact

upper bound can improve the robustness of the model. With
an increase in the network’s layer count, the cumulative
product of L ..-norm described in our method will also
escalate; hence, we introduce a constraint coefficient (¢) to
regulate the constraint’s strength in Eqn.18.

4.3. The L, .. Norm Constrain for Robust DBNNs

Given the multiple classification loss function £ on the image
classification tasks, a series of randomly sampled image
input matrices X = [x1,---,7,]T € R"*? and ground
truth Y, we can obtain a expected optimization objective as
follows:
arg min E(X—FX/?Y) , (17)
X' eRnxd

where X denotes the perturbed inputs according to Eqn.4.
However, the optimization goal will deviate from the Eqn.17
due to the environmental perturbations that were not ap-
peared during the training phase. The influence of noise
perturbations during the inference phase on the robustness
of DBNNSs should be duly considered. Inspired by the the-
oretical analysis of Thm.4.2, we propose the L; -norm
constraint term to the objective function as the auxiliary
robustness loss function £,:

Q
L, =0 [[alWilhe (18)

Jj=1

where the constrain coefficient § (The experiments in the
Appendix discuss the effect of different coefficients on
the performance.) is utilized to ensure the maximization
of a non-concave function (i.e., auxiliary robustness loss
by using L; -norm constrain) over a norm ball. Then,
the coordination of the orders of magnitude between the
our auxiliary robustness loss term and the classification
loss term is crucial to prevent gradient disappearance or ex-
plosion rather than simple maximization. Here, [|W} ||1 o
denotes the L1 , norm of binarized weights in the j"* con-
volution module, and () denotes the total number of binary
convolution modules.

Given a classification-based objective function L;y¢q;, We
design a robustness loss function inside L;tq; through
L1 -norm constrain as

Etotal = 'lec(X; Y) + Lp 3 (19)

where L,,1.(X,Y) is the traditional cross-entropy loss func-
tion for multiple classification tasks. Here, the X denotes
the input image signal and Y denotes the target label. Fur-
thermore, it is crucial to ensure dimensional consistency
in both the cross-entropy loss and our proposed L; o, con-
straint term. Please see the Appendix for an analysis of the
impact of constraint coefficients .
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The Automatic Training Framework for Various BNNs:
Based on the survey of BNNs (Yuan & Agaian, 2023), it
has been observed that a common characteristics among
various BNNSs is their utilization of well-established deep
backbone networks, such as ResNet18 and ResNet34. Thus,
we provide the automatic training framework in Fig.2.

5. Experiments

5.1. Experimental Setups

Datasets: To comprehensively evaluate our proposed ap-
proach, we construct experiments on a series of popular
BNNs on the large-scale bio-electricity (Roeder, 2022) clas-
sification, CIFAR-10, CIFAR-100 and ImageNet, Brain tu-
mor MRI (Nickparvar, 2021) datasets with two common
backbones (i.e., ResNet18 and ResNet34), see details of the
setup in the Appendix.

Noise Perturbations and Metrics: We utilize a signal-to-
noise ratio (SNR) level close to 50% for environmental noise.
First, we apply the perturbations to the bio-electricity dataset
is e=[0.4, 0.8]. Then, the range of environmental noise per-
turbations of Brain Tumor MRI dataset is e=[0.05, 0.1]. In
addition, CIFAR-10, CIFAR-100 and ImageNet datasets, we
select small perturbations e=[1/255,4/255] range of noise
(refer to (Zhang et al., 2021)). Then, we utilize the test
accuracy with noise metric to evaluate DBNNs. For details
of clean test performance, please see the Appendix.

5.2. Experimental Results

The Robustness of Our Method in Image Classification:
We conduct comprehensive experiments to evaluate the ro-
bustness of various DBNN-based models and our proposed
method against environmental noise perturbations on pop-
ular image classification benchmarks (i.e., CIFAR-10 and
CIFAR-100 datasets). To be fair, according to previous
survey study (Qin et al., 2023), we have retrained several
BNN-based models (i.e., BirealNet (Liu et al., 2018), Re-
ActNet (Liu et al., 2020), DorefaNet (Zhou et al., 2016) and
IRNet (Qin et al., 2020)) with our proposed method that uti-
lize classical ResNet18 and ResNet34 backbone networks.

Specifically, we can draw several conclusions from the fol-
lowing aspects in Tab.2. (1) The experimental findings
demonstrate that our approach significantly enhances the
robustness of mainstream four BNN-based methods (Liu
et al., 2018; 2020; Zhou et al., 2016; Qin et al., 2020) with
two classical backbones, thereby emphasizing its universal
applicability in our L o, norm constraint. On the CIFAR-
10 dataset, the application of our proposed method to IRNet
significantly enhances its robustness test accuracy, achiev-
ing a remarkable increase of 2.23% to reach 93.64%. (2)

The proposed approach demonstrates a substantial enhance-
ment in the robustness of models utilizing ResNet34 with
BirealNet and IRNet when subjected to environmental noise
perturbations on the two datasets. This means that our L;
norm constraint strategy is more suitable for methods that
have significant adjustments for learnable parameters. (3)
The proportion of performance degradation under environ-
mental noise perturbations are significantly higher on the
CIFAR-100 dataset, which contains more complex image
information, compared to the CIFAR-10 data set for both
full-precision and binarized models. This implies that the
general environmental noise perturbations have a greater
impact on the decision-making process of the model in the
intricate classification scenarios.

Finally, our work also provides a discussion on the selection
of our designed constraint coefficients in Eqn.18. Due to
space limitations, we provide several experiments of chang-
ing the hyperparameter for our constraint coefficients on
enhancing the robustness of various BNN-based methods
(Zhou et al., 2016; Liu et al., 2018; 2020; Qin et al., 2020;
Tu et al., 2022) in the Appendix.

The Robustness of Our Method in Bio-electrical and
Brain tumor Classification: To validate the generalization
of our method against environmental noise perturbations,
we examine the effect of L ,-norm constraint on the large-
scale bio-electricity series (Roeder, 2022) and Brain tumor
MRI classification (Nickparvar, 2021), as shown in Tab.3-4.
We observe a 4% performance decline when replacing the
binary convolution module with full-precision model. This
means that for resources-constrained tasks, the robustness
of the DBNN-based models are difficult to meet the require-
ments. For Bio-electricity task, our L1 o-norm constraint
strategy demonstrates a robustness improvement of up to
1% across the three binary convolution modules, thereby
validating the efficacy of our strategy for diverse BNNs. For
the brain tumor task, our strategy yields a 3-5% improve-
ment in robustness for three DBNNs, thereby validating the
effectiveness of the our method (See Appendix for details).

Computational Overhead Analysis: To mitigate the addi-
tional costs associated with training, we propose incorpo-
rating the L ,-norm constraint as an alternative solution,
thereby eliminating the need for intricate approximation op-
erations employed in the previous study (Shang et al., 2022).
In Tab.5, we compare the actual time spent on training and
testing time with the SOTA method (Shang et al., 2022) on
the ImageNet dataset. Specifically, we propose eliminates
the Lo-norm constraint module (Shang et al., 2022) in the
inner embedding convolution operation, thereby reducing
overhead from a model perspective. It is evident that our pro-
posed method reduces training costs by 16% compared to
LCR method (Shang et al., 2022). Thus, our robust training
algorithm enables faster training speed for the DBNNSs.
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Table 2. Robustness comparison between our approach and popular BNN-based methods against environmental noise on the CIFAR-10
and CIFAR-100 datasets. Here, 1 denotes the proposed method can improve the robustness of the existing BNN-based methods.

Methods

Datasets  Scenarios Backbones FP32 (clean) | DoReFa DoReFa+our|BiReal Bireal+our|ReAct ReAct+our | IRNet IRNet+our
 ResNetl§ 9482 [ 9155 92277 9120 93217 [9140 93.047 [O1.41 93.647
CIFAR-10 With Noise poNe34 0417 | 8516 87.04% | 87.80 90.13% |87.87 89.007 |87.88 88311
 ResNetl8§ 7261 | 6515 67217 6535 68847 6601 68267 [6524 70.047
CIFAR-100 With Noise p o Neiza 7152 | 6037 61161 | 6376  64.691 |6048 63811 |60.61 61.711

Table 3. Robustness comparison between our strategy and three Binary Convolution structure against environmental noise on the bio-

electricity series classification task.

Performance

Methods

FP32(clean)|IRConv IRConv+our

BirealConv BirealConv+our|AdaBinConv AdaBinConv+our

Test Acc. with Noise 97.1 87.21 88.361

88.66 89.511 93.13 93.721

Table 4. Test accuracy with noise comparison between our strategy
and three DBNN-based baselines against environmental noise on
the Brain tumor MRI dataset. Here, w-+ denotes DBNN model
with our strategy.
Backbones|React w-+our|Dorefa w+our|CycleBNN w+our
ResNet18 |76.77 83.87 | 84.84 86.91| 83.36 85.46
ResNet34 |76.13 79.16 | 77.42 80.13| 7194 78.39

Table 5. Computational cost comparison between our and SOTA
method on the ImageNet dataset. The notation (mm:ss) represents
the unit of minutes and seconds of Epoch.

Methods Training(mm:ss) Test (mm:ss)
Our 56:08 4:49
LCR (Shang et al., 2022) 66:37 6:30

0
ReActNet B

ReActNe
t+Our(L-
{Linf})

CycleNet

CycleNet
+Our(L-
{1,inf})

0 20

(b) CycleNet V.S. CycleNet+our
Figure 4. The visual feature maps between our method and two
baselines (Liu et al., 2020; Fontana et al., 2024) under environmen-
tal noise perturbations on the CIFAR-100 dataset.

The Visualization Case Study of Our Proposed Method
for Enhancing Robustness on the CIFAR-100 Dataset:
To visually demonstrate the robustness of the proposed
method against environmental noise on feature learning
from images, we present a series of visualization cases on
the CIFAR-100 dataset. In Fig.4, we randomly provide
several figures of feature maps extracted by the first binary
convolution layer before and after utilizing our proposed
L1 o-norm constraints term in the loss function. The pri-
mary observations in this case study are as follows:

(1) After applying our L -norm constraints, we ob-
serve that the baelines can attention towards the most cru-
cial/center feature information under environmental noise
perturbations. Specifically, our proposed method extracts
image features with a heightened focus on individuals
wearing glasses, in contrast to ReActNet’s and CycleNet’s
broader emphasis on surrounding features (i.e., red/blue
box).

(2) The feature maps of our proposed method have little
color mixing zones around due to environmental noise per-
turbations and are clearer in the eyeglass frame compared to
the several baseline models (Liu et al., 2020; Fontana et al.,
2024) (i.e., the brown/blue box).

Thus, we can find that the proposed method has a positive
effect on improving the robustness of DBNNSs.

6. Conclusion

In this study, we answer that the robustness vulnerability
of DBNNs (during inference) facing environmental noise
is due to binary weights and scaling factors. To mitigate
the adverse effects of environmental noise, we propose em-
ploying a L o-norm constraint loss function in the train-
ing of DBNNSs. Then, we quantitatively analyze the upper
bound of noise perturbations which is more tighter than
SOTA method. Experimental results demonstrate that our
approach provides an effective strategy for DBNNSs to mit-
igate environmental noise perturbations during inference
across five different classification tasks.
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A. Appendix
A.1. Discussion of Differences with Existing Studies

In these remarkable verification researches (Baluta et al., 2019; Paulsen et al., 2020b;a; Mohammadinejad et al., 2021;
Zhang et al., 2023; 2022), such researches only answer the Pass/Fail robustness verification questions (Jr. et al., 2024; Mistry
et al., 2022; Henzinger et al., 2021) (i.e., The yellow box in Fig.1) of established models (i.e., whether the well-trained
model is pass or fail). In the event that the established model fails to pass formal verification, it becomes imperative to
iterate through the training process once again. This implies that the aforementioned process exhibits sub-optimal efficiency
in real-time task execution on edge devices.

Many papers on formal verification of quantized/binarized NNs (Baluta et al., 2019; Paulsen et al., 2020b;a; Mohammadinejad
et al., 2021; Zhang et al., 2023), which can verify a given NN against a specific property, e.g., local robustness verification
and maximum robustness radius computation in QVIP (Zhang et al., 2022). Our work aims to produce a more robust Binary
NN, with empirical evaluation based on a test dataset, similar to several comparison baselines (Qin et al., 2020; 2023; Shang
et al., 2022). Note that the “upper bound” derived in our paper refers to the Lipschitz constant of the NN, a metric that
measures the maximum rate of change of the network’s output with respect to changes in its input, but we do not address the
formal verification problem (as we mentioned above). In real-world scenarios, the input noise may be unpredictable and
encompass various types of noise unseen during the training phase, and without any upper bound on its radius or norm. Our
work proposes a robust training algorithm for enhancing robustness against general input noise perturbations during the
testing phase, and empirical experiments confirm its effectiveness.

The reason that our work and comparison baselines do not use formal verification is due to the well-known scalability
issue (in survey study (Meng et al., 2022)) that limits the size of NNs that can be formally verified with both sound-
ness and completeness. Subsequently, numerous comprehensive analyses have been conducted to explore the intricate
relationship between robustness (Shkolnik et al., 2020) and quantization (Lin et al., 2021). Thus, it is worth noting that
quantization/binarization does not hurt the robustness of the model when compared to its full-precision counterpart.

A.2. Proof of Theorem 1

Firstly, we employ several matrix norm inequalities to determine the upper bound of this discrepancy by using the rule from
an example in Eqn.7. Then, we have

a
< HWbL;c1 —WbL;czHl
1 1 1 o7
'||{gHIF||1-Ib(ﬁHWFHl'WbL LR} (20

1 1 _ _
- {EHIFHl ' Ib(gHWF”l W B ) o -

The establishment of inequality % is attributed to the rule of Eqn.9 and the problem definition of Def.4.1. Furthermore, we
have

b ~
< [Weie, = Wiig, I IWy = (™ = hiy ) s - 21

b

The establishment of inequality < is the contractive property of binary activation function and scaling factors (i.e., « and o)
combined with triangle inequality. To establish the tightness of the upper bound on robustness of DBNN:S, it is crucial to
thoroughly analyze the intermediate conclusion in Cor.A.1 and subsequently conclude the proof for Thm.4.2.

The contractive inequality in the subsequent step is derived through a crucial Cor.A.1, which constitutes the pivotal aspect of
the upper bound derivation in our work.

Corollary A.1. Given a standard matirx A and a vector Z, we have || AZ]|oo < || AT 11,001 2] oo
Let A = [a; ;] wherei € [1,--- ,m],j € [1,--- ,n]and 2= [zi]lTSan and I, xm = [t_{,t_g', e ,t;]. Here, [fk]l represents
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the i* term of ;.. Then, we have the following derivation (Z?Zl lak,;]):
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In order not to lose generality, it is obvious that the number of rows (i.e., k) is arbitrary, and thus we have:

n n
o > e 3 lowl > e 13 ol
A ||1,oo_11§r;€a§xm‘ 1Iouw _lrgr;cagxm\‘ lak,j
J= J=

Finally, the inequality of Cor.A.1 can be proved as follows:

(23)

n
1470 = o 13 1} < e {|Za”| ma |2}

1<i<m 1<j<n
(24)

=

b max {lz]} < AT,
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where the above inequality is established by using the matrix norm consistency theorem.

Utilizing the Cor.A.1, we continue to give the proof of the upper bound from Thm.4.2 as follows:

C
< Wie, = Wil - Wy ™) oo
1 1 _9
AN el - Wl W27 ) 5)
1 1 _ _
— = pll - I (= Well - Wy hg 7)o} -
n n
Subsequently, the contractive property of the 1-lipschitz continuous function is utilized to further process several scaling

factors and binary activation functions in the Eqn.25, thereby organizing the continued product terms associated with the
input of the initial layer. Based on the key corollary (i.e., Cor.A.1), we can derive the following two inequalities:

d
< Wike, = Wiie, - IOV~ 100

: ||(WN+1) AR ey S [

R L—1
< H aB) - [Wike, = Wil TT IOV oo (26)

=1

N A
T Ao IhE T =R o) -

M=2

Finally, the conclusion of Thm.4.2 can be proven.

The previous study (Gouk et al., 2021) has examined the disparity of the Lipschitz constants between the residual module
and the convolutional layer, albeit acknowledging that calculating this aspect of DBNNSs is relatively intricate. For the sake
of theoretical accuracy, we provide an upper bound for the residual connection module through subsequent corollary.

Firstly, in the standard ResNet backbone, the computation process of residual module (¢"*(x)) can be described as follows:

¢"(x) =X+ (Pgip 0. 0 Pgt1) (%), 27

where p represents the maximum number of layers to span in a residual connection module. The existing study has given the
following corollary through Lipschitz continuity:
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Walking

Jogging

Figure 5. The example of data point corresponding to distinct human actions.

Corollary A.2 (from (Gouk et al., 2021)). We can find that the Lipschitz constant of a residual module is bounded by
L(¢pm) <1+ Hq+p L (¢;) , where L (¢;) represents the Lipschitz constant of the i-th module of the neural network.

Based on the conclusion of Cor.A.2 and Eqn.26, we can add residual module of the upper bound to the last term of the
right-hand side in Eqn.28 as follows:

L—-1

L—-1

(S

< ([T @B - 1Wee, = Wil - TT IOV oo
=1 =1

N
T WOV e - 1 = R o) (28)
M=1
M+p ) . ]
A+ T UV e - IR = bl Hlse))
i=M+1

where k denotes the total number of the residual module. In the case of employing ResNet18 as the backbone, the residual
connections encompass a total of four BNN module layers, wherein each layer comprises two sets of residual modules.
Consequently, the value of k is determined to be 8.

A.3. Detailed Experimental Setup

Datasets: (1) The Bio time series dataset (Kaggle project) stems from the esteemed neural networks and cognitive models
course offered by the MAI program at FHWS (Roeder, 2022). The dataset comprises data from 51 distinct subjects,
each identified uniquely within the train and test sets by their IDs ranging from 1600 to 1650. Total 120K data points
encapsulate low-level, high-frequency (20 Hz, or every 50 milliseconds) time-series sensor readings, specifically the x, y,
and z coordinates recorded by the smartwatch’s accelerometer. After introducing general input noise, we show the bio-metric
signals corresponding to distinct human actions in Fig.5. (2) The CIFAR-10 is the most popular image classification dataset,
which consists of 50,000 training samples and 10,000 testing samples of size 32 x 32 divided into 10 image classes. (3) The
CIFAR-100 dataset is similar to CIFAR-10 dataset, with the exception that it consists of 100 classes, each containing 600
images. (4) The ImageNet dataset provide 1.2 million training samples and 50,000 validation samples, distributed across a
total of 1,000 distinct classes to facilitate the exploration of complex research tasks.

Experimental Setup Details: Datasets: Brain tumors can be classified as either malignant or benign. The growth of both
types of tumors can lead to an increase in intracranial pressure. Early detection and accurate classification of brain tumors
is a critical research area within medical imaging, which significantly aids in selecting the most appropriate treatment
strategy to save patients’ lives. This dataset (Nickparvar, 2021) comprises 7,023 human brain MRI images categorized into
four classes: glioma, meningioma, no tumor, and pituitary tumor. The dataset is divided into training, validation, and test
sets following a conventional 7:2:1 ratio. Training Details: Firstly, we validated several DBNN-based models with two
common backbones (i.e., ResNet34 and ResNet18) on some image classification datasets, namely ABCNet (Lin et al., 2017),
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BirealNet (Liu et al., 2018), ReActNet (Liu et al., 2020), DorefaNet (Zhou et al., 2016), IR-Net (Qin et al., 2020), AdaBin
(Tu et al., 2022) and CycleBNN (Fontana et al., 2024). The rationale for selecting the aforementioned baselines lies in their
widespread recognition and high citations within the research community. To validate the robustness of the DBNN-based
training algorithm by using various matrix norm constraint strategies, we compare our proposed method with the LCR
method (Shang et al., 2022) on the ImageNet dataset. For the task of bio-electricity series classification, we opted to replace
the 2D convolution module in the full-precision model with binary convolution modules (i.e., IRConv (Qin et al., 2020),
BirealConv (Liu et al., 2018), and AdaBinConv (Tu et al., 2022)) that are currently popular to align with the requirements of
a shallow network, as opposed to deep networks used for image classification tasks. We also evaluate the clean test accuracy
of our method with several baselines on the CIFAR-10 and CIFAR-100 datasets.

All experiments are executed on a Linux server (i.e., Ubuntu 18.04.6 LTS) with one RTX 3090 GPUs. Specifically, we
train all baselines and our method with SGD optimizer by using common hyper-parameters (i.e., momentum=0.9, weight
decay=1e — 4) under PyTorch1.13-GPU library on several classification benchmarks, namely CIFAR-10, CIFAR-100,
ImageNet, Bio-electricity series and Brain Tumor MRI datasets. For image classification tasks, the batch size is set to 128
and then epoch is set to 400. Furthermore, the initial learning rate is 1le — 1 on the three image benchmark datasets. In
addition, we follow the popular cosine of learning rate decay strategy in the survey (Qin et al., 2023). To understand the
process of applying environmental noise in the manuscript, we give the pseudo-code in Algo.1.

Algorithm 1 Model with Environmental Noise Perturbations during Inference

Input: Sample z, size m from Dataset D
Require: Dateset D for Test.
1: for size of test set D do
2:  Sample z from D.
//Apply the environmental noise for each test sample.

3:  for j = 1 to size of test samples IV do

4: for i = 1 to total number of pixel noise points P do

5: randz = np.random.randint(1, h — 1) /Random height position (h).
6: randy = np.random.randint(1,w — 1) //Random width position (w).
7: if np.random.random() < 0.5 and j < N then

8: x[j, :, randz, randy] = z[j,:, randz, randy] + € //Use function random(-) to generate random noise

perturbations e.

9: end if
10: end for
11:  end for
12: end for

13: Return: The test sample with environmental noise perturbations during inference.

Evaluation: Following the evaluation method of a previous robustness study (Zhang et al., 2021), we employ two metrics,
namely 'No Noise’ (representing clean test accuracy) and *With Noise’ (indicating test accuracy under environmental noise
with high intensity signal-to-noise ratio (SNR) set at nearly 50%) to evaluate the performance of all BNN-based methods.

A.4. Additional Experiments

Clean Test Accuracy Comparison: The study (Shang et al., 2022) claims that the norm constraints by using the Lipschitz
continuous to enhance test accuracy of BNN-based models under the clean scenarios. To verify such capability, we conduct
several experiments to evaluate our strategy on the CIFAR-10 dataset, as shown in Tab.6.

In particular, we choose the IRNet (Qin et al., 2020) as our fundamental BNN-based model for conducting comparative
experiments due to its demonstrated effectiveness in the field of BNNs, as emphasized in several studies (Tu et al., 2022;
Shang et al., 2022). According to the experimental setups of the study (Shang et al., 2022), we employ ResNet18 and
ResNet20 as the two backbone networks. Then, we construct experiments by employing our proposed method for IRNet,
denoted as IRNet+our. For the ResNet18 backbone, the IRNet+our method has significantly enhanced the clean test accuracy
of IRNet method, surpassing the performance achieved by the LCR method. Then, the proposed method demonstrates
enhanced test accuracy for the IRNet method, even when the depth of the backbone network is increased to ResNet20.
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Table 6. Performance comparison between the our method and several SOTA methods on the clean CIFAR-10 dataset. Here, the (W/A)
denotes the weights and activations of Bit-width. Here, notation * indicates that the activations are in full precision.

Backbones Methods Bit-width (W/A) | Clean Test Accuracy
Full Precision (Qin et al., 2023) 32/32 94.82
IRNet (Qin et al., 2020) 1/1 91.50
ResNetl8 |} g (Slgmg etal., 2022) 1/1 91.80
IRNet+our 1/1 94.0671
Full Precision (Qin et al., 2023) 32/32 91.99
IRNet (Qin et al., 2020) 1/1 85.50
ResNet20 | | R (Shang et al., 2022) /1 86.00
IRNet+our 1/1 88.191
IRNet* (Qin et al., 2020) 1/32 90.80
ResNet20 LCR* (Shang et al., 2022) 1/32 91.20
IRNet+our* 1/32 914171

Table 7. Investigation of the Influence of our constraint coefficient on the robustness of various BNNs against environmental noise on the
CIFAR-10 dataset.

Methods Backbones | Noise | Coefficient | Test Acc.
AdaBin ResNet34 | Noise N/A 87.55
AdaBin+our | ResNet34 | Noise 5e-3 87.85 1
AdaBin+our | ResNet34 | Noise 5e-2 88.08 1
DoReFa ResNet34 | Noise N/A 85.16
DoReFa+our | ResNet34 | Noise 5e-3 87.04 1
DoReFa+our | ResNet34 | Noise Se-2 86.92 1
ReAct ResNet34 | Noise N/A 87.87
ReAct+our ResNet34 | Noise 5e-3 89.00 1
ReAct+our ResNet34 | Noise 5e-2 89.00 1
Bireal ResNet34 | Noise N/A 87.80
Bireal+our ResNet34 | Noise 5e-3 90.13 1
Bireal+our ResNet34 | Noise S5e-2 90.40 1
IRNet ResNet34 | Noise N/A 87.88
IRNet+our ResNet34 | Noise 5e-3 87.93 1
IRNet+our ResNet34 | Noise 5e-2 88.31 1

Meanwhile, we can observe a slight improvement in the IRNet+our method than the LCR method when the activation of
the model is 32-bit. Thus, the above empirical results demonstrate that the application of our L o,-norm constraints can
enhance the performance of BNN-based models in clean scenarios, surpassing the effectiveness of spectral norm (Shang
et al., 2022) constraints.

The Influence of Our Constraint Coefficient on Robustness: Clearly, the distinct design of the BNN-based methods
imply that our provided general noise disturbance bound constraints can enhance the environmental noise robustness of
various BNNs to varying degrees. To further imporve robustness of such BNN-based methods (Zhou et al., 2016; Liu et al.,
2018; 2020; Qin et al., 2020; Tu et al., 2022), we conducted several quantitative experiments for the constraint coefficient
on the CIFAR-10 dataset, as illustrated in Tab.7. Here, the upward arrow in Tab.7 denotes the enhanced robustness of
several BNN-based methods (Zhou et al., 2016; Liu et al., 2018; 2020; Qin et al., 2020; Tu et al., 2022) by using our L;
constraints. Specifically, the ReAct method (Liu et al., 2020) exhibits insensitivity to variations in constraint coefficients
following the application of our approach. For the DoReFa method (Zhou et al., 2016), a smaller constraint coefficient (i.e.,
5e — 3) demonstrates enhanced robustness. Conversely, for the remaining methods (Liu et al., 2018; Qin et al., 2020; Tu
et al., 2022) utilizing our L; o, norm constraint term, a larger coefficient demonstrates enhanced robustness. In addition,
our proposed L o, norm constraint term for the latest AdaBin method (Tu et al., 2022) should be carefully, as it is highly
susceptible to gradient calculation anomalies (i.e., NAN) when the coefficients are in the 1le — 1.

The Trade-offs between Clean Test Accuracy and Robustness in Our L ,,-norm constraint method: It is worth
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On the Biometric Time Series Classification Task
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Figure 6. The accuracy curves on bio-electricity time series dataset.

Table 8. Analysis of the clean test accuracy of our proposed L1 ..-norm constraint strategy with baseline models on the Brain Tumor MRI
dataset

Methods Test Accuracy(clean)
ResNet18(FP32) 92.58
ResNet34(FP32) 90.32

ResNet18-Cyclebnn 84.84
ResNet34-Cyclebnn 72.35
ResNet18-Cyclebnn+our 89.98
ResNet34-Cyclebnn+our 82.26

noting that a certain degree of under-fitting may occur in some full precision CNN-based models due to the utilization of
regularization techniques (Wei & Zhao, 2024). In other words, the model’s accuracy on clean test data is observed to be lower
than its performance in noisy scenarios. To investigate the impact of the aforementioned phenomenon on the DBNN-based
model, a series of experiments is presented in Tab.10. Specifically, it can be observed that only a subset of BNNs exhibit
a marginal decline in terms of clean test accuracy when the proposed L o, constraint loss function is employed. Our
method achieves a remarkably low loss of 0.06 for the ABC+our, specifically when employing the ResNet18 backbone
network. Conversely, IRNet exhibits a slightly performance loss of 0.66 with the proposed method. The above experiments
demonstrate that our proposed method strikes an appropriate balance between clean test accuracy and robustness. In Tab.8,
we can find that the clean test accuracy of our proposed L1 ~.-norm constraint strategy with baseline models on the Brain
Tumor MRI dataset. The experimental results show that our proposed strategy can also improve the clean classification
accuracy of the model during inference.

Investigation of the impact of the L, ..-norm constraint approach on the robustness of the full precision model:
The L1 ~-norm constraints are commonly believed to enhance the robustness of full-precision models. However, due to
the quantization operation, there exists a certain disparity between the calculation processes of deep CNNs and BNNs.
Hence, we present a case analysis (on the CIFAR-100 dataset) in Tab.9. Specifically, we observe that the proposed method
enhances robustness (i.e., increasing 0.5%) in deeper structures (i.e., ResNet34), while leading to performance degradation
in shallower structures (i.e., ResNet18). Firstly, several experimental results in Tab.2 and Tab.9 show that our proposed
method is specifically for improving the robustness of DBNN-based models. Then, the above improving discrepancy
primarily stems from the scaling factor and XNNOR operation employed in DBNN-based models, which are not present
in full precision models. Consequently, the robustness improvement offered by our approach is limited for full-precision
models with specific ResNet backbone.

The Effectiveness of Different L-norm Constraints on the Robustness of DBNNs: To comprehensive understanding
the effectiveness of various L-norm constraints for the robustness of DBNNs against environmental noise, we conducted
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Table 9. Analysis of the robustness effect of our proposed L1,.o-norm constraint for full precision model on the CIFAR-100 dataset
Methods  Test Acc.with Noise

ResNet18 71.96
ResNet18+our 69.33]

ResNet34 71.23
ResNet34+our 71.731

Table 10. The Trade-offs between Clean Test Accuracy and Robustness of our L1, constraint method on the CIFAR100 dataset

Scenarios Backbones . Methods
DoReFa+our ABC+our Bireal+our ReAct+our IRNet+our CycleBNN+our
Clean ResNetl8 67.59 69.17] 68.96 68.20] 69.30]. 67.35
Noise  ResNetl8 67.21 69.23 68.84 68.26 70.04 67.29
Clean ResNet34 61.18 63.34] 64.114 64.05 61.46] 68.90
Noise  ResNet34 61.16 63.47 64.69 63.81 61.71 68.36

relevant experiments on the CIFAR-10 and ImageNet in Tab.11. To begin with, we adopt similar experimental setups from
the LCR method (Shang et al., 2022), wherein the ResNet18 backbone network is trained using the BirealNet model for
LCR and our approaches on the ImageNet dataset. To verify the extensibility of our bounds, a deeper ResNet34 is provided
as the backbone network. Recently, some L-norm constraints have been proposed to improve the robustness of CNN-based
model. Thus, we construct experiments to analyze how much they improve the robustness of DBNNs. Specifically, Ly,
represents the spectral norm constraint after the approximate operations of the LCR method (Shang et al., 2022). Then, the
special norm constraints Ly and L, are derived from the studies (Li et al., 2019) and (Kanai et al., 2020), respectively.

In Tab.11, experimental results demonstrate that our proposed L; ~, norm constraint can enhance robustness of the Bireal
method by 0.96% compared to the LCR method (Shang et al., 2022) when applied to the ImageNet dataset. Meanwhile, the
experimental results show that our L; ., norm constraint can improve robustness by 1.98% compared to the Bireal (Liu
et al., 2018) on the CIFAR-10 dataset. Furthermore, the robustness of BNNs by using our L o,-norm constraint surpasses
the L1, Lo and L, norm constraints on the CIFAR-10 and ImageNet datasets. This means that our L; ,-norm constraints
can bring effective robustness improvement under environmental noise perturbations in the inference phase to DBNNSs. In
addition, another advantage of our L; ,-norm constraint is that it can also improve the robustness of existing constraint
methods, such as the "LCR _Bireal+our (L1, )" in Tab.11.

The Effectiveness of Our Constraints on the Distribution of Learnable Parameters: An intriguing inquiry pertains
to the impact of matrix norm constraints, such as Ly or L; o, on the learnable parameters within DBNNs. Revealing this
inquiry, we employ visual method to compare our proposed method with IRNet (Qin et al., 2020) on the CIFAR-10 dataset.
In Fig.7(a) and Fig.7(b), the learnable parameter distribution of IRNet (Qin et al., 2020) exhibits a unimodal form, which
may potentially limit the model’s capacity to capture complex features and consequently hinder its performance. Then,
the learnable parameters distribution of the IRNet using our L o, norm constraint, exhibits a smoother histogram profile
compared to IRNet, as illustrated in Fig.7(c) and Fig.7(d). Meanwhile, the study (Liu et al., 2021) has been shown that

Table 11. Robustness comparison of our and SOTA methods using different L-norm constraints on the CIFAR-10 and ImageNet datasets.

Datasets Methods with L-norm Constraints Backbones | Scenario | Test Accuracy with Noise
ImageNet LCR_Bireal+Lg;, ResNet18 Noise 57.27
ImageNet LCR_Bireal+L, ResNet18 Noise 57.84
ImageNet LCR_Bireal+L, (Li et al., 2019) ResNet18 Noise 57.98
ImageNet | LCR_Bireal+L, (Kanai et al., 2020) | ResNet18 Noise 58.07
ImageNet Bireal+our (L1,o0) ResNet18 Noise 58.23
ImageNet LCR_Bireal+our (L1, o) ResNet18 Noise 58.35
CIFAR-10 Bireal+1L4 ResNet34 Noise 88.15
CIFAR-10 Bireal+Lo (Li et al., 2019) ResNet34 Noise 88.34
CIFAR-10 Bireal+ L, (Kanai et al., 2020) ResNet34 Noise 88.48
CIFAR-10 Bireal+our (L1 o) ResNet34 Noise 90.13
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Figure 7. The distributions of learnable parameters in two binary convolution layers are compared on the CIFAR-10 by using our method
and IRNet.
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restoring the diversity of learnable parameter distribution by special optimization settings can improve the performance
of BNNs. Our L o, norm constraint introduces more peaks in Fig.7(c) and Fig.7(d), indicating an positive impact of our
approach on restoring the diversity of learnable parameters.

The Visualization of Our Strategy with Several Binary Convolution Modules on the Bio-electrical (Roeder, 2022)
dataset: To show the advantages of the proposed strategy over several popular binary convolution modules against general
environmental noise perturbations, we present its accuracy rate iterated over epochs in a visual manner as shown in Fig.6.

The Visualization of Our Strategy with a CycleBNN (Fontana et al., 2024) model in the Brain tumor image classifica-
tion (Nickparvar, 2021) dataset: To validate the effectiveness of the proposed constraint training strategy in enhancing
robustness for a real-world resource-constrained task, we select the open-source brain tumor MRI task. Visual comparison
results as shown in Fig.8. Specifically, we randomly chose a batch of 20 samples perturbed by environmental noise to visually
demonstrate the improvement. Then, the model employs ResNet18 as the backbone network, and the most recent CycleBNN
(Fontana et al., 2024) serves as the BNN algorithm. The environmental noise level is set within the range of 0.05 to 0.1,
which closely mimics the environmental noise characteristics of MRI image data. Additionally, the SNR is enhanced by
50%. Here, the well-trained CycleBNN by using our proposed L1 -norm constraints (i.e., Yellow rectangle with rounded
corners) exhibits an un-robust rate in the inference that is half that of the CycleBNN model (i.e., Blue rectangle with rounded
corners). In addition, our strategy achieves 90% test accuracy in inference tasks involving random environmental noise,
which is sufficient to meet the practical requirements for assisting primary care physicians in diagnostic decision-making.

Analysis of Additional Computational Overhead: Specifically, we have evaluated the training cost of a series of BNN-
based methods on CIFAR-100 and Brain Tumor datasets. We have reported the average training time of each epoch and total
test time. According to the results presented in the main paper and two table below, it can be observed that an appropriately
designed penalty term not only enhances model robustness but also significantly improves training efficiency. In addition, the
overhead in the test phase also encompasses the time required for adding environmental noise. The detailed computational
overhead are presented Tab. 12-13.

Analysis of the PGD Attack for DBNNs: We opted for a standard training and testing phase to introduce PGD attacks,
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Table 12. Computational cost comparison between popular BNN-based methods and our on the CIFAR-100 dataset.

Methods (ResNet18 backbone) | Training Time/Epochs (s) | Total Test Time (s)
CycleBNN 24 43
CycleBNN+Our 21 42
IRNet 13 32
IRNet+Our 12 31
Dorefa 11 33
Dorefa+Our 11 33
React 14 33
React+Our 13 33
Bireal 13 30
Bireal+Our 12 30
ABCNet 13 41
ABCNet+Our 12 41

Table 13. Computational cost comparison between BNNs and our on the Brain tumor dataset.

Methods (ResNet18 backbone) | Training Time/Epochs (s) | Total Test Time (s)
CycleBNN 13 8
CycleBNN+Our 11 8
Dorefa 11 3
Dorefa+Our 10 3
React 6 4
React+Our 5 4

Table 14. PGD performance comparison between CycleBNN and our on the CIRFA-100 dataset.
Models Test PGD
CycleBNN 17.78
CycleBNN+Our 18.38
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Table 15. Ablation study 1: The contribution of constrained binary weights and scaling factors to improving environmental noise robustness
of DBNNSs on the CIRFA-100 dataset. The w/o indicates that the constraint on the scaling factors has been removed.

Backbone Dorefa+Our Dorefa+Our+w/o React+Our React+Our+w/o ABC+Our ABC+Our+w/o IRNet+Our IRNet+Our+w/o Bireal+Our Bireal+Our+w/o CycleBNN+Our CycleBNN+Our+w/o

ResNet18 67.21 66.90 68.26 67.26 69.23 68.57 70.04 68.74 68.84 67.79 67.29 66.51

Table 16. Ablation study 2: The contribution of constrained binary weights and scaling factors to improving environmental noise robustness
of DBNNSs on the Brain tumor dataset. The w/o indicates that the constraint on the scaling factors has been removed.
Backbone Dorefa+Our Dorefa+Our+w/o React+Our React+Our+w/o CycleBNN+Our CycleBNN+Our+w/o
ResNet18 86.91 85.62 83.87 82.39 85.46 84.17

thereby evaluating the effectiveness of the proposed approach in defending adversarial attacks. Specifically, we use the
LinfPGDAttack method from the library advertorch, with step size set to 7 and perturbation value set to ¢ = 1/255. Then,
we added such adversarial perturbations to the test set of the CIFAR-100 task and measured the CycleBNN with ResNet18
backbone and our proposed method. In Tab. 14, experimental results demonstrate that DBNN models, which have not
been trained with adversarial samples, are highly susceptible to strong PGD attacks (Similar issues have been reported in
full-precision models during both standard training and adversarial attack testing). The proposed method still has a certain
percentage improvement despite the serious degradation of the performance of unconstrained DBNN models.

Ablation Analysis for DBNNs: We found that the constraints on binary weights and scaling factors are indispensable to
improve the robustness of DBNNSs.
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