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Abstract

We present a novel graph-informed transformer
operator (GITO) architecture for learning com-
plex partial differential equation systems defined
on irregular geometries and non-uniform meshes.
GITO consists of two main modules: a hybrid
graph transformer (HGT) and a transformer neu-
ral operator (TNO). HGT leverages a graph neu-
ral network (GNN) to encode local spatial rela-
tionships and a transformer to capture long-range
dependencies. A self-attention fusion layer inte-
grates the outputs of the GNN and transformer to
enable more expressive feature learning on graph-
structured data. TNO module employs linear-
complexity cross-attention and self-attention lay-
ers to map encoded input functions to predictions
at arbitrary query locations, ensuring discretiza-
tion invariance and enabling zero-shot super-
resolution across any mesh. Empirical results on
benchmark PDE tasks demonstrate that GITO out-
performs existing transformer-based neural opera-
tors, paving the way for efficient, mesh-agnostic
surrogate solvers in engineering applications.

1. Introduction

Solving partial differential equations (PDEs) underpins a
vast array of phenomena in engineering and the physical sci-
ences, from fluid flow and heat transfer to fracture mechan-
ics and structural deformation. Traditional numerical meth-
ods offer rigorous error bounds and adaptable frameworks,
but they often incur substantial computational costs when
applied to high-dimensional, nonlinear, or time-dependent
problems (Olver et al., 2014). This computational burden
can become prohibitive in real-time control and optimiza-
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tion tasks, motivating the search for surrogate models that
deliver rapid yet accurate PDE solutions.

In recent years, deep neural network—based surrogates have
emerged as a powerful alternative, demonstrating orders-of-
magnitude speedups over classical solvers while maintain-
ing competitive accuracy (Zhu & Zabaras, 2018; Bhatnagar
et al., 2019). These data-driven models can learn solu-
tion operators from precomputed simulation data, enabling
instantaneous inference once trained. Physics-informed
neural networks (PINNs) (Raissi et al., 2019) introduced a
paradigm shift by embedding the governing PDE residual
directly into the loss function, thus bypassing the need for
labeled solution data. While PINNs have been successfully
applied to a wide range of forward and inverse problems,
each new setting of initial conditions, boundary values, or
forcing terms requires retraining from scratch, constraining
their applicability to a single PDE configuration (Chen &
Koohy, 2024; Ramezankhani & Milani, 2024).

Neural operators extend the concept of surrogate model-
ing by directly mapping infinite-dimensional input-output
spaces, effectively learning solution operators for a family
of PDEs. Foundational architectures such as DeepONet
(Lu et al., 2021) and the Fourier Neural Operator (FNO)
(Li et al., 2020a) show that a single model can generalize
across varying PDE conditions and enable zero-shot super-
resolution. Inspired by the success of the transformer archi-
tecture (Vaswani et al., 2017) in natural language processing
and computer vision, recent works explored attention-based
surrogate models to simulate physical systems. Typically,
these models are trained on function samples defined over
fixed discretization grids, which limits their ability to gener-
alize across varying meshes (Cao, 2021; Han et al., 2022).
To address this, a new class of transformer-based neural op-
erators has emerged, which enables super-resolution and
discretization-invariant query of the output function (Li
et al., 2022b; Hao et al., 2023; Alkin et al., 2024). They em-
ploy cross-attention to aggregate input features and predict
outputs at arbitrary spatial/temporal coordinates, regardless
of the underlying input grid.

Despite these early successes, significant challenges remain
in scaling transformer-based operators to realistic engineer-
ing applications. In particular, modeling systems with ir-
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regular geometries and non-uniform meshes demands more
powerful mechanisms to capture complex interactions and
dynamics among spatial nodes. To address these challenges,
we propose a novel graph-informed transformer operator
(GITO) architecture tailored for mesh-agnostic operator
learning on arbitrary domains (Figure 1). Our framework
comprises two core modules: a hybrid graph transformer
(HGT) and a transformer neural operator (TNO). HGT mar-
ries graph neural networks (GNNs) for modeling intricate
local spatial relations with transformer layers for long-range,
global dependencies, interleaving message-passing and self-
attention via a dedicated fusion layer to produce expressive
relational embeddings. Building on these embeddings, TNO
applies cross-attention for discretization-invariant querying
of the output domain, followed by self-attention to capture
dependencies among enriched query embeddings. Our main
contributions are: 1) a novel graph-transformer-based neural
operator architecture that seamlessly integrates local and
global feature learning on irregular meshes and geometries,
and 2) superior performance on benchmark PDE tasks, out-
performing existing transformer-based neural operators.

2. Related work

Transformers as neural operators. The attention mecha-
nism has shown promise at modeling both spatial correla-
tions and temporal dynamics in physical systems. Spatial at-
tention layers aggregate information across nonlocal points,
capturing structural patterns and long-range dependencies
within the domain (Wu et al., 2024; Hao et al., 2023; Li
et al., 2022b; Bryutkin et al., 2024). In the temporal setting,
transformers learn state evolution over time without relying
on recurrent architectures, often delegating spatial aggrega-
tion to other mechanisms such as GNNs (Alkin et al., 2024;
Han et al., 2022; Geneva & Zabaras, 2022). In addition,
recent work has focused on developing novel transformer
architectures to improve the scalability and effectiveness of
modeling complex physical systems (Fonseca et al., 2023;
Li et al., 2023; Chen & Wu, 2024). Our method captures
the spatial structures via linear-complexity attention mecha-
nisms by leveraging the proposed HGT and TNO modules.

Graphs as neural PDE solvers. GNNs have been ex-
plored as mesh-agnostic PDE solvers by representing spatial
discretizations as graph vertices and leveraging message-
passing to model local interactions (Brandstetter et al.,
2022; Li et al., 2020b). Previous studies have demonstrated
that GNNs can effectively model diverse physical phenom-
ena ranging from fluid dynamics and deformable materials
(Sanchez-Gonzalez et al., 2018) to global-scale weather fore-
casting (Lam et al., 2023). Recently, transformer-inspired
architectures have been applied to graph-based operator
learning to more effectively handle arbitrary geometries and
boundary conditions (Bryutkin et al., 2024). In parallel,

latent-space compression via graph encodings has enabled
efficient dynamics propagation and scalable temporal roll-
outs (Alkin et al., 2024; Han et al., 2022).

3. Methodology

3.1. Graph construction and feature encoding

We represent both the input function and query points as
separate graphs G = (V, &), where each node i € V cor-
responds to a spatial location (e.g., a mesh cell or a query
point) and each edge (4, j) € £ connects node 7 either to
its k nearest neighbors or to nodes within a specified Eu-
clidean radius. The value of k£ and radius are considered as
model hyperparameters (Appendix B). Each node feature
vector V; includes the spatial coordinates x;. For nodes cor-
responding to the input function, the observed field value u;
is concatenated to the node features. Edge features E;; com-
prise relative displacements (x; — x;), Euclidean distances
|x; — x;|, and, in case of input function graphs, differences
in solution values between connected nodes u; — u; (Brand-
stetter et al., 2022). Both node and edge features are passed
through dedicated MLP-based encoders to generate initial
embeddings, which are then fed into the HGT layers for
subsequent representation learning.

3.2. Hybrid graph transformer (HGT) module

Despite their strengths, GNNs suffer from fundamental
limitations due to sparse message passing, notably over-
smoothing (Oono & Suzuki, 2019) and over-squashing
(Alon & Yahav, 2020). Graph transformers (GTs) (Dwivedi
& Bresson, 2020; Ying et al., 2021; Mialon et al., 2021)
address these shortcomings by allowing nodes to attend to
all others in the graph; however, they often overlook edge
features, hindering accurate representation learning. Hybrid
architectures such as GPS Graph (Rampasek et al., 2022)
and Exphormer (Shirzad et al., 2023) combine GNN and
transformer layers to overcome these challenges: the GNN
component captures local interactions and integrates edge in-
formation, while the transformer module models long-range
and global dependencies and mitigates over-smoothing and
over-squashing. Following this paradigm, we employ a
GNN layer (GNN) alongside a linear self-attention module
(GlobalAttn) to learn graph dynamics and introduce a
fusion layer (Fusion) that applies self-attention to inter-
leave local neighborhood aggregation with global attention,
resulting in richer and more expressive graph representa-
tions (Figure 2). In the HGT module, node representations
are updated by concatenating the outputs of the GNN and
GlobalAttn layers, followed by processing the combined
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Figure 1. Overall architecture of GITO. The input function and query points are first converted into graph representations and encoded via
edge and node encoders. These encoded graphs are then processed by the hybrid graph transformer (HGT) module to learn informative
relational features. The output representations from the HGT are used as key/value and query inputs to the transformer neural operator
(TNO) module, which integrates contextual information from input function observations to enrich the query representations. Finally, an

MLP decoder maps the query embeddings to real spatial coordinates.
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Figure 2. (Top) The hybrid graph transformer (HGT) module con-
sists of a GNN layer, a self-attention global layer, and a self-
attention fusion layer that jointly learn graph-based representa-
tions. (Bottom) The transformer neural operator (TNO) module
employs cross-attention and self-attention mechanisms to integrate
and process representations of input functions and query points.
For clarity, standard components such as layer normalization, resid-
ual connections, and feed-forward networks are omitted.
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embedding through the Fusion layer:

Ve, E = GNN(V, E) 1)
Vr = Globalattn(V) 2)
V =Fusion (Vg @ Vr). 3)

The modularity of the hybrid graph transformer enables
seamless integration of diverse GNN architectures and trans-
former modules, allowing the model to be tailored to specific
application requirements.

3.3. Transformer neural operator (TNO) module

To empower zero-shot super-resolution and fully decou-
ple input and output representations, we integrate a cross-
attention layer capable of querying the output domain at
arbitrary spatial locations (Figure 2). This design parallels
the branch and trunk networks in the DeepONet (Li et al.,
2020b), seamlessly fusing input function embeddings with
output queries to achieve discretization-invariant evaluation,
regardless of the underlying input mesh (Li et al., 2022b).
The cross-attention layer takes as input the query embed-
dings and the input function representations generated by
the HGT modules. The cross-attention enriches the query
embeddings with the information from the input functions.
A subsequent self-attention module then captures interac-
tions and dependencies among the enriched query points.
Finally, an MLP decoder translates the resulting embeddings
into the target physical output values.

3.4. Model implementation details

To efficiently learn operators for large-scale physical sys-
tems with numerous input and query locations, we adopt the
linear-complexity attention mechanism proposed by Hao
et al. (2023). Similar to Fourier and Galerkin attention
mechanisms (Cao, 2021), this approach can capture com-
plex dynamics while avoiding the quadratic computational
cost of softmax-based attention. We adopt a “Norm-Attn-
MLP-Norm” with residual connections for all attention lay-
ers. To handle cases with multiple input functions, we use a
dedicated encoder for each input function. These encoded
representations are then processed by the cross-attention
module in TNO, specifically designed to handle multiple
key-value (K/V) combinations, enabling efficient interaction
across heterogeneous inputs. We incorporate a mixture of
experts module following each attention mechanism. The
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Dataset | Subset | MIONet | FNO GKT | Geo-FNO | OFormer | GNOT | GITO (Ours) | Improvement
u | 274e-2 | 6.56e-2 | 1.52¢-2 | 14le-2 | 233e2 | 1.05e-2 8.19¢-3 22 %
NS v 55le-2 | 1.15e-1 | 3.15¢-2 | 298e-2 | 4.83e-2 | 2.33e-2 2.02¢-2 13.3 %
p | 2742 | Llle2 | 1.5%-2 | 1.62¢2 | 243e2 | 1.23e-2 1.07e-2 3.6 %
Heat | T | 174e-1 | - | - | - - | 5.42e2 4492 | 172%
Elasticity | o | 9.65e-2 | 5.08¢-2 | 2.0le-2 | 2.20e-2 \ 1.83¢2 | 9.04e-3 | 8.87e3 | 19%

Table 1. Comparison of GITO with existing operator learning methods on the NS, Heat and Elasticity datasets. The metric used for this
comparison is relative L? error, with lower scores indicating better performance. The top first and second best results are highlighted.
Results for all models except GNOT and GITO are taken directly from Hao et al. (2023). For a fair comparison, we trained a smaller
GNOT model to match GITO’s model size (see Appendix A for details.)

gating network assigns weights to the experts based on the
spatial location of the query points, effectively promoting a
form of soft domain decomposition, which has been shown
to enhance the learning of physical systems in prior work
(Chalapathi et al., 2024; Hao et al., 2023). In the HGT mod-
ule, we use the Graph Attention Network (GATv2) (Brody
et al., 2021) as the GNN layer and apply the same linear-
complexity attention mechanism as in TNO for both the
global and fusion layers. The graph construction strategies
are detailed in Appendix B. In this work, we choose to use
the HGT module only for query points for learning more
expressive relational features.

4. Experimental results

Datasets. To demonstrate the scalability and effectiveness
of GITO on complex geometries, we evaluate it on three
challenging datasets based on Navier—Stokes, heat conduc-
tion, and elasticity (Li et al., 2022a; Hao et al., 2023), which
govern critical physical processes in buildings and structural
engineering. The Navier—Stokes dataset models incom-
pressible flow, relevant to wind loading, ventilation, and air
leakage; the heat conduction dataset captures temperature
profiles in multi-material systems, key for assessing thermal
insulation, thermal bridging, and the energy performance
of building envelopes; and the elasticity dataset simulates
stress-strain responses under mechanical loading, essential
for evaluating structural stability, deformation, and material
performance. A brief overview of the datasets is provided
below, with detailed descriptions available in Appendix A.

1) 2D steady-state Navier-Stokes (NS): This dataset in-
volves steady 2D fluid flow governed by Navier-Stokes equa-
tions in a rectangular domain with varying cavity positions
(Figure 3.a). The goal is to predict velocity components w,
v, and pressure p from the input mesh; 2) Multilayer 2D
Heat Conduction (Heat): This dataset models heat conduc-
tion in composite media with multiple boundary shapes and
spatially varying boundary conditions (Figure 3.b). The task
is to predict temperature 7' from multiple input functions; 3)
Elasticity: This dataset simulates solid mechanics governed

by elastokinetics equations. The domain is a unit square
containing an irregular cavity, and the objective is to predict
the stress field given the input mesh.

Baseline Models. We benchmark our model against both
conventional neural operator architectures, including FNO
(Li et al., 2020a), Geo-FNO (Li et al., 2022a), and MIONet
(Jin et al., 2022), as well as recently developed transformer-
based operators, namely, GNOT (Hao et al., 2023), Galerkin
Transformer (GKT) (Cao, 2021), and OFormer (Li et al.,
2022b). GNOT has demonstrated state-of-the-art perfor-
mance across various PDE benchmarks. To ensure a fair
comparison, we re-implement GNOT and evaluate it under
the same experimental settings as our model, using a compa-
rable or slightly larger number of parameters (Appendix A).
We directly report the performance of other baseline models
from Hao et al. (2023).

Results. Table 1 summarizes the mean relative L? error on
each test dataset for all compared models, where lower val-
ues denote higher accuracy. Detailed hyperparameter con-
figurations appear in Appendix A. Across every benchmark,
GITO consistently outperforms the baselines, achieving the
lowest error against the nearest competitor (GNOT) while
employing a similar or slightly reduced parameter count.
Although FNO demonstrates marginally better performance
than GNOT on the p variable of the NS dataset, the pro-
posed GITO model surpasses FNO in this regard as well.
GITO also achieves the lowest error on the Elasticity dataset,
indicating its robustness even in highly sparse and irregular
domains. Consequently, GITO maintains superior overall ac-
curacy across all tasks. These findings demonstrate GITO’s
generality and efficacy in handling both complex geome-
tries (NS and Elasticiy dataset, Figure 4) and multi-input
settings (Heat dataset), establishing it as a versatile, high-
performance surrogate for diverse scientific and engineering
applications.

We further conducted ablation studies to assess the impact
of two critical design components in GITO: the fusion layer
in the HGT module and the graph construction strategy. To
evaluate the contribution of the fusion layer, we conducted
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Configuration— GITO w/ Fusion ‘ GITO w/o Fusion
U 8.42e-3 1.00e-2
Relative L2 Error | v 2.06e-2 2.44e-2
P 1.12e-2 1.61e-2
Model Parameters (M) | 4.75 5.35

Table 2. Ablation study comparing GITO with and without the fusion layer on the NS dataset. The fusion layer combines outputs from the
GNN and self-attention paths. Reported values are relative L? errors; lower is better.

experiments on the NS dataset using identical hyperparame-
ters, except for the hidden size. In this variant, the outputs
of the GNN and self-attention modules were summed and
passed through a 2-layer MLP (as in the GPS Graph design
(Rampések et al., 2022)), instead of being concatenated and
fused. To match the dimensionality of the original fused out-
put, the hidden size of the non-fusion model was doubled
(192 vs. 96). Table 2 reports the number of model pa-
rameters and the relative L? errors for both configurations.
Despite having more parameters, the model without the fu-
sion layer exhibited consistently worse accuracy across all
predicted variables. This clearly demonstrates the effective-
ness of the fusion mechanism in enabling more expressive
feature interactions between the GNN and self-attention
pathways, as opposed to the limited representational ca-
pacity of a simple element-wise summation. The results
for different graph construction methods are presented in
Appendix B.1 (Tables 4 and 5).

5. Conclusion

In this work, we introduced GITO, the Graph-Informed
Transformer Operator, a novel architecture that unifies
graph neural networks with transformer attention to learn
mesh-agnostic PDE solution operators for arbitrary geome-
tries. By combining hybrid message-passing, discretization-
invariant cross-attention, and scalable linear-complexity
attention mechanisms, GITO delivers zero-shot super-
resolution and outperforms existing transformer-based oper-
ators across diverse benchmarks. These results underscore
GITO’s promise as an accurate and efficient surrogate model
for complex engineering applications.
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A. Datasets and Model Hyperparameters.
Datasets.

NS. We use a two-dimensional steady-state fluid dynamics dataset governed by the incompressible Navier—Stokes equations.
The computational domain is a square region of size [0, 8]? with four internal circular cavities, resulting in a complex
and non-trivial geometry. The goal is to predict the velocity components in the = and y directions, denoted by u and v,
respectively, along with the pressure field p, given the input mesh geometry. The domain is defined as

4

Q=008 \ |J ki M

i=1
where each R; represents a circular cavity. The flow within this domain is governed by the steady-state incompressible
Navier—Stokes equations:

1
Re
V-u=0 (3)

(u-Viu= —V?u—Vp ()

where u = (u, v) is the velocity vector field and Re is the Reynolds number. The boundary conditions are defined as follows:
the velocity is set to zero on the entire boundary, i.e., u = 0 on 0f). A parabolic velocity profile is imposed at the inlet (left
boundary), given by u, = y(ﬁigy), while at the outlet (right boundary), the pressure is fixed at p = 0.

Each sample in the dataset consists of a two-dimensional unstructured mesh over the domain (2 and the corresponding
geometric configuration determined by the locations of the circular cavities. The outputs are the velocity field (u,v) and the
pressure field p, evaluated over the mesh nodes. We use the dataset provided by Hao et al. (2023), which is publicly available
athttps://github.com/HaozZhongkai/GNOT. It consists of 1,100 samples generated by varying the positions of
the four cavities to create different internal geometries. Of these, 1,000 samples are used for training and 100 for testing.

a) b)

Figure 3. Visualization of mesh points depicting the domain geometry of a single sample from a) the NS dataset and b) the Heat dataset,
where the geometry varies across samples.

Heat. We use a multi-scale heat conduction dataset, where the goal is to predict the steady-state temperature field 7" given
spatially varying material properties and complex boundary conditions. The problem is governed by the two-dimensional
steady-state heat equation:

pCyou - VT — kV2T = Q “)
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Figure 4. Comparison of GITO’s predictions against ground truth, and the corresponding absolute error plots for a test sample from the
NS dataset: a) velocity component u, b) velocity component v, and c) pressure p.

where p is the density, C), is the specific heat capacity, u is the velocity field, £ is the thermal conductivity, and () is the
internal heat source. The computational domain is a rectangle defined as Q = [0, 9]2, segmented into three subdomains
using two spline-shaped curves. Each subdomain possesses distinct physical properties, resulting in a highly heterogeneous
medium. Periodic boundary conditions are applied along the left and right edges of the domain. The top boundary is
assigned a temperature profile, which acts as an input function. Another input function parameterizes the shapes of the
internal splines, thereby influencing the geometry of the subdomains and the overall distribution of material properties.

Each sample in the dataset includes a two-dimensional unstructured mesh over the domain €2 and five input functions: the
geometric configuration defined by the spline parameters and the temperature distribution prescribed on the top boundary.
The output is the temperature field 7" evaluated over the same discretized mesh. We use the dataset provided by Hao et al.
(2023), which is publicly available at https://github.com/HaoZhongkai/GNOT. It consists of 1,100 samples
generated by varying the spline parameters and boundary conditions to produce diverse thermal configurations. Of these,
1,000 samples are used for training and 100 for testing.

Elasticity. We use a two-dimensional elasticity dataset governed by elastokinetics equations, modeling the mechanical
response of a solid body under external loading. The computational domain is a unit square Q = [0, 1] with a centrally
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H | NS | Heat | Elasticity
yperparameter Type
\ GNOT \ GITO \ GNOT \ GITO \ GNOT \ GITO
Activation function GELU GELU GELU GELU GELU GELU
Number of attention layers 2 2 3 3 2 2
Hidden size of attention 192 96 256 128 192 96
Layers of MLP 2 2 4 3 2 2
Hidden size of MLP 192 96 256 128 192 96
Hidden size of input embedding 192 96 256 128 192 96
Learning rate schedule OneCycle | OneCycle | OneCycle | OneCycle | OneCycle | OneCycle
N experts 2 2 4 3 2 2
N heads 8 8 8 8 8 8
Total model parameters 4.49M 4.37TM 21.26M 18.24M 4.48M 4.35M

Table 3. Hyperparameters and training runtime details for the GNOT and GITO models on the NS, Heat and Elasticity datasets. Hidden
sizes for GITO are reported before fusion.

located irregular cavity, resulting in complex internal geometry. The objective is to predict the stress field components over
the domain, given the input mesh geometry. The governing equation for the displacement field « in a solid body is given by:

Pu

P o

where p?® is the mass density, and o is the stress tensor.

+V-0=0 5)

Each sample in the dataset consists of a two-dimensional point cloud discretization of the domain, along with the
corresponding cavity geometry. The inputs are the point cloud coordinates, and the outputs are the stress field com-
ponents evaluated at each point. We use the dataset provided by Li et al. (2022a), which is publicly available at
https://github.com/neuraloperator/Geo—FNO. It comprises over 2,000 samples generated by varying the
shape and location of the internal cavity to create diverse geometric configurations. Of these, 1,000 samples are used for
training and 200 for testing.

Model Hyperparameters. Table 3 outlines the hyperparameters used in our experiments for all benchmarks across the
GNOT and GITO models. To ensure a fair comparison, we kept the number of attention layers, MLP layers, and experts
identical across both models. However, since GITO employs a fusion layer that concatenates the outputs of the GNN and
self-attention components within the HGT module (effectively doubling the hidden dimension) we set the hidden size in
GNOT to be twice that of GITO prior to this fusion. Note that the hidden sizes reported in the table for GITO correspond to
the dimensions before concatenation. For the Heat dataset, which involves larger inputs and more complex dynamics, we
increased the number of MLP layers and experts in GNOT to match or slightly exceed the total parameter count of GITO.
Although exact parameter matching was not possible due to architectural differences, we intentionally allocated slightly
more parameters to GNOT to fairly showcase its performance and demonstrate its modeling efficacy under comparable
capacity constraints. All experiments were conducted on a single NVIDIA V100 GPU with 8 vCPUs and 52 GB of RAM.

B. Additional results

Figure 4 shows a qualitative comparison between our model’s predictions and the ground truth for a test sample from the NS
dataset. Panels a) and b) display the velocity components u and v, respectively, while panel c¢) shows the pressure p. The
absolute error plots illustrate the spatial distribution and magnitude of prediction errors, highlighting the model’s accuracy
in capturing complex flow dynamics across all variables.

B.1. Effect of graph construction strategies

We conduct an ablation study to evaluate the impact of graph construction methods on the accuracy and computational
efficiency of the proposed GITO model. Specifically, we compare two widely used strategies: K-nearest neighbors (KNN)
and radius-based (circular) graphs (Qi et al., 2017; Bryutkin et al., 2024). In the KNN strategy, each node is connected to
its k nearest neighbors based on spatial proximity. In the circular strategy, nodes are connected to all other nodes within a
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fixed radius, forming edges only if the pairwise distance falls below the specified threshold.

NS Dataset: As shown in Table 4, increasing the number of neighbors in KNN (from 4 to 16) consistently reduces the
relative L? error, indicating that denser local connectivity enables better modeling of spatial dependencies. However, this
improvement comes at the cost of a significant increase in the number of graph edges (from 41k to 164k), which leads to
higher memory usage and computational time during training and inference. On the other hand, the circular strategy with a
radius of 0.0525 achieves the lowest error (3.91e-2) while maintaining a moderate edge count (16k). This suggests that,
with careful tuning, the radius-based approach can capture only the most relevant local interactions and avoid unnecessary
edges, providing a better balance between accuracy and efficiency. Larger radius, such as 0.067, may include irrelevant
distant nodes, while smaller radius (e.g., 0.04) risk missing essential local connections—both resulting in slightly degraded
performance.

Strategy for graph ‘ KNN (Number of neighbors) ‘ Circular (Radius)
construction | 4 | 8 | 16 | 0.04 | 00525 | 0.067
Relative L? error (total) | 4.20e-2 | 4.33e-3 | 4.17e-2 | 4.06e-2 | 3.91e-2 | 3.93e-2
Number of Edges | 41k | 8k | 164k | 8k | 16k | 44k

Table 4. Ablation study on the effect of graph construction strategies-KNN (with varying number of neighbors) and Circular (with varying
radius)-on model accuracy for the NS dataset. The table reports the sum of relative L? errors across all three variables (lower is better).
The number of edges is reported approximately in thousands.

Heat Dataset: The trends differ for the Heat dataset (Table 5), which features more sparsely distributed query points and
different material properties. Here, increasing the KNN count beyond 8 does not yield consistent improvements and, in
fact, degrades performance. For instance, using 16 neighbors increases the error to 4.75e-2 compared to 4.61e-2 with 8
neighbors and 4.49e-2 with only 4 neighbors. This is likely because higher KNN values may force connections to spatially
distant and physically irrelevant nodes, misleading the model in heterogeneous material settings. Similarly, larger radius
in the circular graph (e.g., 0.9) also lead to performance drops due to excessive inclusion of unrelated nodes. The best
performance is observed with a small radius (0.25), which maintains sparse yet contextually meaningful connectivity. These
results emphasize the importance of tailoring graph construction strategies to the underlying spatial structure and physical
properties of the dataset.

Strategy for graph ‘ KNN (Number of neighbors) ‘ Circular (Radius)
construction |~y g | 16 | 025 | 04 | 09
Relative L? error \ 4.49e-2 \ 4.61e-2 \ 4.75e-2 \ 4.64e-2 \ 4.72e-2 \ 4.75e-2
Number of Edges | 8k | 16k | 33k | 25k | 8k | 36k

Table 5. Ablation study on the effect of graph construction strategies on model performance for temperature prediction in the Heat dataset.
Reported values are relative L? errors; lower is better. The number of edges is reported approximately in thousands.

Elasticity Dataset. For the Elasticity dataset, we use a radius-based graph construction with a radius of 0.05 to handle the
sparse point cloud structure. The chosen radius strikes a balance between maintaining meaningful local connectivity and
keeping the graph sparse, leading to improved efficiency and accurate stress field prediction.

Overall, the ablation studies demonstrate that the choice of graph construction strategy significantly affects both the accuracy
and computational efficiency of the model. While KNN provides a simple and adaptive structure, circular graphs—when
carefully tuned—offer a more interpretable and controllable connectivity pattern, often yielding better performance with
fewer edges. For datasets with dense spatial coverage (like NS), moderate-radius circular graphs are preferable, while for
sparse or heterogeneous domains (like Heat), lower connectivity thresholds help prevent overfitting to irrelevant neighbors.
Ultimately, the best graph construction strategy varies depending on the specific characteristics of the problem domain.
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