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ABSTRACT

Accurate segmentation of lung nodules in computed tomography (CT) scans is
challenging due to extreme class imbalance, where nodules appear sparsely among
healthy tissue. Lung tumor boards often review these scans manually, a time-
consuming process. This paper introduces a novel two-stage approach for lung
tumor segmentation by framing the problem as anomaly detection. The method
is divided into two stages, allowing each model to leverage its strengths. Stage 1
focuses on region proposal, employing a custom Deformable Detection Transformer
with Focal Loss to overcome class imbalance and localize sparse tumors. In Stage
2, the predicted bounding boxes are refined into pixel-wise segmentation masks
using a fine-tuned variant of Meta’s Segment Anything Model (SAM) for semantic
segmentation. To address the challenge of nodule sparsity and improve spatial
context, a 7.5 mm Maximum Intensity Projection (MIP) is applied, aiding in the
differentiation between nodules, bronchioles, and vascular structures. The model
achieves a Dice coefficient of 92.4%, with 95.2% sensitivity and 93.2% precision
on the LUNA16 dataset, demonstrating robust performance in real-world clinical
conditions where nodule sparsity is 5%.

1 INTRODUCTION

Lung cancer is a leading cause of cancer-related deaths worldwide with early detection and accurate
assessment being crucial for improving outcomes. Lung tumor boards, comprising oncologists,
radiologists, surgeons, pathologists, and other specialists, collaboratively review complex lung cancer
cases to determine the best treatment plan. Accurate segmentation of lung nodules in CT scans
is essential, as it provides critical information about tumor size, location, and spread. However,
tumor board evaluations typically perform segmentation manually which can be is impractical as it is
time-consuming, slowing decision-making and increasing resource demands.

Clinical decision support (CDS) systems have emerged as promising tools to address these challenges,
integrating clinical knowledge with patient-specific data. Although increasingly integrated into
routine clinical workflows, their widespread adoption remains variable due to challenges in system
integration and user engagement David C. Wyatt and de Waal (2019). Implementing a CDS system
for auto-segmentation of lung metastases can enhance workflow efficiency, improve patient outcomes,
and reduce costs. Despite the benefits, current models struggle with the extreme class imbalance that
appears in CT data, as lung nodules appear infrequently among healthy tissue. Nodule volumes are
much smaller than the overall lung volume, vary widely in size and location, and often have similar
shape and density to vasculature on an axial CT slice. These challenges underscore the need for a
customized architecture that addresses these limitations to ensure a reliable tool for clinicians.

2 RELATED WORK

Thoracic Computed Tomography and LUNA16 Dataset. Thoracic Computed Tomography (CT)
involves a series of 2D cross-sectional greyscale images that, when combined, form a detailed 3D
representation of the patient’s thorax. The LUNA16 dataset, derived from the LIDC-IDRI dataset,
consists of 888 thoracic CT scans containing 1,186 annotated lung nodules. Lung nodules in the
LUNA16 dataset are annotated based on the consensus of at least three out of four radiologists, with
nodules larger than 3 mm considered relevant findings.
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CT datasets present challenges due to the sparsity of nodules—typically only 0 to 5% of slices contain
a nodule Walter et al. (2016)—and the varying voxel sizes and scan resolutions across different
patients. The LUNA16 dataset serves as a critical benchmark and numerous studies have trained
architectures such as CNNs, 3D-CNNs, U-Net, and V-Net on the dataset El-bana et al. (2020); Gu et al.
(2018). Existing research often uses inconsistent and under-documented data processing techniques,
sometimes extracting only positive tumor slices. This makes them difficult to replicate and less
applicable to real-world scenarios where lung nodules sparisty is a key limitation for modelsAgnes
and Anitha (2020); Bhattacharyya et al. (2023). Additionally more powerful transformer architectures
have not yet been fully explored on the problem space Xiao et al. (2020).

Handling Imbalanced Data in Deep Learning. Imbalanced Data is challenging for models
because they are optimized to minimize overall error which leads to a bias favouring the majority
class over the minority class. In cases of class imbalance models are at risk of converging to a
majority class classifier, which keep accuracy high but results in no detections of lung nodules.

Various mitigation strategies for class imbalance exist, including oversampling, class weighting, and
focal loss. Oversampling tumor slices artificially balances the dataset by increasing the number of
minority class examples, but misrepresents the prevalence of the object in real-world conditions Qu
et al. (2020). Class weighting increases the loss contribution of the minority class, forcing the model
to pay more attention to underrepresented cases Buda et al. (2017). However, this is also shown to
increase false positives as it over-represents the minority class Chan et al. (2019; 2020). A more
targeted approach, focal loss, modifies the cross-entropy loss by down-weighting well-classified
examples and emphasizing hard-to-classify ones like tumors, adjusting the loss based on prediction
confidence. This method avoids shortcomings of other techniques and is demonstrates improved
detection for rare classes with less false positives Lin et al. (2017b).

Transformers in Medical Computer Vision Transformer architectures have become a strong
alternative to Convolutional Neural Networks (CNNs) in medical computer vision. CNN’s local
receptive fields are good at capturing local features, but struggle with long-range dependencies which
refer to the model’s ability to understand relationships between distant parts of an image Shamshad
et al. (2023). Transformers’ self-attention allows the capture of these complex relationships and are
crucial for allowing differentiation between nodules and vessels. Shamshad et al. (2023).

Detection Transformer (DETR) is an object detection vision transformer (ViT) architecture that
uses self-attention to directly predict object locations, bypassing traditional region proposal methods
Carion et al. (2020). This architecture has set new standards for finding complex objects by integrating
detection as a set prediction problem Carion et al. (2020). However, DETR is known to have slow
training convergence and difficulty in detecting small objects Zhu et al. (2020). Deformable-DETR is
an enhancement of DETR that introduces a deformable attention mechanism. This focuses attention
on a sparse set of key sampling points near the object, allowing the model to concentrate on the
most informative regions rather than the entire image uniformly to improve both the efficiency and
performance of the model Zhu et al. (2020). Segment Anything Model (SAM) is a foundational
segmentation model designed to be promptable. It is trained on over 1 billion masks across 11 million
images, and is shown to be able to efficiently transfer understanding to new data distributions through
fine-tuning for advanced pixel-wise segmentation in many fieldsKirillov et al. (2023); Ma et al. (2024).
MedSAM, an adaptation of SAM for medical imaging, fine-tunes SAM to focus on the specific needs
of medical images, such as varying tissue densities and anatomical complexities Ma et al. (2024).

3 METHODOLOGY

This paper presents a novel approach to lung tumor segmentation for tumor boards by framing the
task as anomaly detection. Our proposed method splits the task into two stages: Stage 1 serves as
a region proposal phase to localize sparse tumors, while Stage 2 refines these bounding boxes into
pixel-wise segmentation masks. This is the first method to combine various elements, including
architectural components like Deformable-DETR and SAM, along with strategies such as Focal Loss
and Maximum Intensity Projection (MIP), into a unified framework specifically tailored for sparse
lung nodule segmentation. We developed a customized training regimen for a processed LUNA16
dataset to address severe class imbalance and focus on difficult cases. This two-stage pipeline is
specifically designed to optimize segmentation performance for tumor board evaluations.
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Figure 1: Data Processing Pipeline With Tumor Visible at the Top Left of Lung. a) Original CT slice,
b) Post Otsu segmentation and CLAHE, c) Post 7.5mm (5 slice) Maximum Intensity Projection.

3.1 DATA PREPROCESSING

Our preprocessing pipeline prepares CT scan data from the LUNA16 dataset for input into Deformable-
DETR. We visualize this process in Figure 1. CT data and mask annotations are loaded in MetaImage
(mhd/raw) format. Since the CT datasets in LUNA16 have varying voxel sizes, including differences
in cross-sectional size and slice thickness, we standardize anatomical structures by resampling the
images to achieve consistent voxel spacing. Specifically, we resample the images to a target voxel
size of 1× 1× 1 mm, ensuring uniformity across the dataset. The resampling factor R is calculated
as shown in Equation (1), where the image is scaled accordingly to achieve the desired voxel spacing:

R =
S

S′ =

[
Sx

S′
x

,
Sy

S′
y

,
Sz

S′
z

]
(1)

Otsu’s method is utilized to threshold and segment lung tissue from surrounding background, isolating
the lung areas. This is followed by morphological operations, including connected component analysis
and region erosion, to obtain clean binary masks to separate lungs from other features. Slices at the
superior and inferior aspects of the dataset in the cranio-caudal direction, which provide minimal
diagnostic information, are removed based on non-zero area size. This significantly reduces the
model’s search space from around 15 million to 5.25 million pixels per patient. After segmentation,
we enhance image contrast using Contrast Limited Adaptive Histogram Equalization (CLAHE),
which improves the visibility of subtle features like small nodules Sundaram et al. (2011). This
process is illustrated by the leftmost arrow of Figure 1.

Maximum Intensity Projection (MIP) enhances nodule visibility by combining adjacent CT slices
into a single 2D image by projecting the highest attenuation voxel from a 3D volume onto a 2D image,
preserving crucial 3D spatial information. Cody (2002). Widely used by radiologists, MIP helps
distinguish nodules which generally appear as compact blobs, whereas vessels are elongated tube-like
structures. This method is shown to be extremely effective in detecting small pulmonary nodules
between 3 mm and 10 mm while also reducing false positives Gruden et al. (2002); Zheng et al.
(2019). This process can be mathematically described by Equation (2), where the highest intensity
voxel along the z-axis is selected for each (x, y) coordinate producing a 2D image that highlights
the most dense features. A slab thickness of 7.5mm was found to be a suitable compromise between
differentiating vessel and nodule shape and limiting overlap between structures. This process is
illustrated by the rightmost arrow of Figure 1.

IMIP(x, y) = max
z

{I(x, y, z)} (2)
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Figure 2: Stage 1 - Region Proposal with Custom Deformable-Detection Transformer Architecture
and Focal Loss

3.2 DATASET

The final processed dataset consists of 9,676 CT scan slices, each with a 7.5mm Maximum Intensity
Projection (MIP) applied. Among these, 1,226 images are annotated with nodules, while the remaining
8,450 images contain healthy tissue. The dataset was split into 70% for training, 20% for validation,
and 10% for testing prior to any augmentation to avoid data contamination and ensure rigorous
evaluation. In the training and validation sets, 12.7% of the images contained a lung nodule. To
better mimic real-world conditions, the test set had a reduced lung nodule rate of 5%, contrasting
with the higher rate used during training. This elevated rate in training was necessary to strike a
balance between realism and model performance, as lower rates resulted in a dataset too sparse for
effective training. Post-split, a set of data augmentations was applied to the training set to increase
the dataset’s size and variability. These include horizontal and vertical flips, rotations between -15◦

and +15◦, brightness adjustments within -15% to +15%, and Gaussian noise (0.001 to 0.18% SD)
simulated typical CT scan sensor noise.

3.3 STAGE 1: REGION PROPOSAL

Stage 1 of our approach focuses on generating region proposals to localize potential tumor candidates
within lung CT scans. Detection Transformer (DETR) was chosen as the architecture for proposing
bounding boxes due to its strong performance in complex object detection tasks, particularly since it
eliminates the need for anchor boxes and ability to handle diverse object sizes and shapes within the
same image. The Deformable variant, introduced by Zhu et al. Zhu et al. (2020), was selected for its
spatially adaptive and computationally efficient attention mechanism. Initial experimentation with
DETR yielded a sensitivity of 42% after 20 epochs, specifically struggling with tumors under 10mm.
Switching to Deformable-DETR improved sensitivity to over 90% across all tumor sizes after just 8
epochs. With 74% of tumors in the LUNA16 dataset measuring 3-10mm, the deformable attention
variant was chosen for tumor detection.

Figure 2 shows our custom Deformable-DETR architecture which is trained from scratch for detection
of sparse lung nodules, evaluated using IoU metrics to inform the customized loss discussed in section
3.6. MIP images are processed through a ResNet-50 CNN backbone to extract multi-scale feature
maps, capturing both low-level textures and high-level semantic features. These are augmented with
2D sine-cosine positional encodings to preserve spatial context and then fed to the encoder. The
encoder uses Deformable Self-Attention (DSA) layers to refine multi-scale feature maps, attending
to a sparse set of learnable sampling points around each nodule. The computational complexity
of self-attention is O(H2W 2C), where H = 256, W = 256 represent the feature map height
and width in pixels, and C = 1 represents the number of channels for grayscale images. The
encoder also integrates a multi-scale attention mechanism to process information at different feature
scales, enhancing the model’s ability to detect nodules of varying sizes. The encoder outputs refined
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Figure 3: Stage 2 Auto-Segmentation model. Bounding boxes from Stage 1 are split into individual
CT slices, cropped into patches, and passed into the model for pixel-wise segmentation.

multi-scale feature maps enriched with context-aware representations. The decoder stage takes
these and combines them with object queries, a learnable set of positional embeddings representing
potential nodules. The decoder’s outputs are finally processed by the Bounding Box Regression
and Classification Heads to convert raw features into predicted nodule coordinates and classification
probabilities, ensuring precise localization and accurate differentiation of nodules.

3.4 STAGE 2: AUTO-SEGMENTATION MODEL

In the second stage, we utilize our auto-segmentation model, a fine-tuned adaptation of the Segment
Anything Model (SAM) with initial weights imported from MedSAM, visualized in Figure 3. This
model is used for precise segmentation by splitting the MIP images back into their individual CT
slices and generating pixel-wise segmentation masks for each slice. The bounding boxes produced
by Deformable-DETR are integrated into SAM’s segmentation process through the prompt encoder,
which is designed to handle various input types such as boxes, points, and masks. These bounding box
embeddings act as attention cues, encoded into high-level features that instruct our auto-segmentation
model to focus on specific areas. The goal is to improve accuracy by guiding the segmentation
algorithm to specific regions of the images that are more likely to contain nodules, while still retaining
the entire image for context.

3.5 TRAINING

Deformable-DETR was trained and evaluated in a Google Colab environment using an L4 GPU,
providing sufficient power for high-resolution 3D CT scans. The model was trained for 15 epochs
using the AdamW optimizer, with learning rates of 1e-4 for the main parameters and 1e-5 for the
backbone, and a weight decay of 1e-4 to mitigate overfitting. A Step Learning Rate Scheduler
adjusted the learning rate dynamically, reducing it by a factor of 10 every 10 epochs. The model used
a batch size of 6 with mixed precision (16-bit) for improved speed and efficiency. Gradient clipping
was set at 0.1, and gradients were accumulated over 6 batches to ensure stable learning.

In Stage 2 our auto-segmentation model was trained by loading model checkpoints from MedSAM
Ma et al. (2024) and fine-tuning SAM’s architecture using a dataset comprised of processed LUNA16
images and their associated ground truth pixel masks. Dice-CrossEntropy Loss was selected to
optimize the overlap between predicted and ground truth masks while mitigating class imbalance
with Cross-Entropy Loss. The model was trained using the Adam optimizer specifically on the mask
decoder.
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Figure 4: Stage 1 Region Proposals on six CT slices from the LUNA16 test dataset, with green boxes
indicating ground truth and red boxes showing model predictions.

3.6 FOCAL LOSS FOR CLASSIFICATION

To handle the significant class imbalance in the LUNA16 dataset, we customize the DETR loss
function to incorporate focal loss. By adding a modulating factor, focal loss down-weights well-
classified samples and emphasizes hard-to-classify samples, assisting in the detection of rare nodule
instances Lin et al. (2017a). The focal loss function is defined in Equation (3) Lin et al. (2017a):

FL(pt) = −αt(1− pt)
γ log(pt), (3)

where pt is the predicted probability of the correct class, αt balances positive and negative examples,
and γ adjusts focus towards challenging samples.

4 RESULTS

Table 1: Performance Metrics for Region Proposal (Stage 1) and Auto-Segmentation (Stage 2) for
Sparse Lung Tumor Detection

Metric F1/Dice Precision Sensitivity
Stage 1: Region Proposal
F1 Score 94.2% – –
Average @ IoU 0.5 (All Areas) – 93.3% 95.2%
Average @ IoU 0.5 (Small Areas) – 78.4% 83.3%
Average @ IoU 0.5 (Medium Areas) – 96.7% 97.0%
Average @ IoU 0.5 (Large Areas) – 97.8% 99.2%

Stage 2: Auto-Segmentation
Dice Coefficient 92.4% – –

This section evaluates the performance of the proposed two-stage architecture on the LUNA16 test
dataset with a focus on key metrics. Table 1 summarizes the performance metrics for Stage 1 (Region
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Proposal) and Stage 2 (Auto-Segmentation) on the LUNA16 test dataset, with nodules categorized
by size: small (up to 7 mm), medium (7-15 mm), and large (over 15 mm). Precision reflects the
proportion of correctly identified nodules among all predicted nodules, while sensitivity measures the
proportion of actual nodules that were successfully detected. The F1 score combines these metrics
for balanced accuracy, and the Dice Coefficient evaluates the overlap between predicted and actual
segmentation masks.

Through hyperparameter tuning, we found that setting γ = 2 and αt = 0.25 provided the best balance
between precision and recall. These values helped the model focus on harder-to-classify nodules,
reducing false positives and negatives. The value of γ emphasized challenging examples, while αt

balanced positive and negative samples.

Stage 1 proposed regions achieve strong precision and recall across most tumor sizes, even with
a test nodule sparsity of 5%. For medium and large tumors, the model maintains high precision
(96.7% and 97.8%) and recall (97.0% and 99.2%). Stage 2 achieves a Dice Coefficient of 92.4%,
closely matching ground truth masks. The accuracy of this stage depends on the quality of predicted
bounding boxes, with only a slight drop in accuracy from Stage 1 (94.2% F1 score), demonstrating
the robustness of the auto-segmentation process with a high retention of approximately 98%.

Figure 4 provides Stage 1 visualizations of proposed regions on six CT slices, showing green boxes
for ground truth and red boxes for predictions. Despite the complexity of vascular structures and
bronchioles, the model’s predictions align closely with the ground truth in all slices.

5 DISCUSSION

Table 2: Comparison of Lung Nodule Segmentation Models on Dice Coefficient, Sensitivity, and
Specificity

Author Architecture Dice Coefficient (%) Sensitivity (%) Specificity (%)
Agnes et al. Agnes and Anitha (2020) MRUNet-3D 89.0 94.8 84.2
Bhattacharyya et al. Bhattacharyya et al. (2023) DB-NET 88.9 90.2 77.9
Song et al. Song et al. (2023) ConvLSTM 84.0 87.8 81.5
Ma et al. Ma et al. (2023) SW-UNet 84.0 82.0 89.0
Annavarapu et al. Annavarapu et al. (2023) Bi-FPN 82.8 92.2 78.9
Cao et al. Cao et al. (2020) DB-ResNet 82.7 89.4 79.6
Tyagi et al. Tyagi and Talbar (2022) CSE-GAN 80.7 85.5 77.5
Wang et al. Wang et al. (2017) MV-DCNN 77.9 87.0 77.3
Sun et al. Sun et al. (2017) MCROI-CNN 77.0 85.4 73.5

Our Proposed Method DETR-SAM 92.4 95.2 93.3

Our two-stage approach outperforms many established models for lung nodule segmentation, par-
ticularly those based on traditional CNN and U-Net architectures. Models like U-Net, V-Net, and
MRUNet-3D often struggle with small sparse nodules. Architectures like MRUNet-3D Agnes and
Anitha (2020) and DB-Net Bhattacharyya et al. (2023) address these challenges through multi-scale
feature extraction and deeper networks. 3D-MSViT, a hybrid CNN-transformer approach used by
Mkindu et al. Mkindu et al. (2023), achieved strong specificity (97.8%) and high sensitivity but
was primarily focused on detection, highlighting the limitations of hybrid models in segmentation.
Similarly, SW-UNet Ma et al. (2023), which integrates a sliding window transformer with a CNN,
showed improved segmentation accuracy, yet its performance suggests that fully transformer-based
models may better handle the complexities of precise lung nodule segmentation.

While existing methods like 3D-MSViT Mkindu et al. (2023) and SW-UNet Ma et al. (2023) have
integrated transformers in a hybrid manner, our approach aims to fully exploit the benefits of
transformers by custom-training models like Deformable-DETR and SAM. These models enable
both direct detection and precise pixel-wise segmentation, addressing the complexities that hybrid
approaches often miss Carion et al. (2020); Zhu et al. (2020). This approach allows for higher
capacity models to better decipher complex structures potentially setting a new standard for accuracy
in lung nodule segmentation.
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An important point of differentiation is transparency regarding class sparsity. Many existing methods
use varying data processing techniques that may emphasize positive tumor slices, which can compli-
cate replication and reduce applicability to real-world scenarios where class imbalance is significant
Cao et al. (2020). In contrast, our approach preserves the natural class imbalance found in clinical
settings, ensuring that both positive and negative samples are accounted for in the model design and
evaluation. When tested on a dataset with higher nodule sparsity, our model demonstrated superior
performance, particularly in detecting small tumors, a crucial factor in early diagnosis.

In our analysis, we discovered that SAM, when deployed independently, struggled with class imbal-
ance, achieving only a 45% Dice Coefficient and low overall accuracy. This highlighted a critical
gap: SAM’s capabilities were not well-suited for the initial detection phase. To bridge this gap, we
integrated Deformable-DETR with a custom loss function as the first stage. This model excelled
at localizing nodule regions, narrowing SAM’s task to precise segmentation rather than detection
and significantly improving the performance. This division of labor between Deformable-DETR and
SAM allowed each model to operate within its strengths.

Stage 1 shows relatively lower precision and recall for small nodules (up to 7 mm in diameter),
reflecting the inherent challenges of detecting small nodules due to their lower contrast in CT scans.
Notably, the prevalence of malignancy in nodules smaller than 6 mm is very low, ranging between 0
and 1%, and guidelines from the European Respiratory Society now suggest a threshold of 6 mm for
follow-up consideration due to the low malignancy risk associated with these small nodules Larici
et al. (2017).

6 CONCLUSION

This study introduces a two-stage framework for lung nodule segmentation. Stage 1 focuses on region
proposal, achieving an F1 score of 94.2% for accurate bounding box predictions. Stage 2 refines these
regions into pixel-wise segmentation masks, resulting in a 92.4% Dice coefficient on the LUNA16
dataset. This framework demonstrates significant improvements and successfully integrates modern
transformer architectures. Looking forward, future research will focus on validating the model across
diverse clinical datasets to enhance generalizability and refining its detection capabilities for small
tumors, addressing a key challenge in early lung cancer diagnosis.
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