
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BCQ: BLOCK CLUSTERED QUANTIZATION FOR 4-BIT
(W4A4) LLM INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

Post-training quantization (PTQ) is a promising approach to reducing the stor-
age and computational requirements of large language models (LLMs) without
additional training cost. Recent PTQ studies have primarily focused on quantiz-
ing only weights to sub-8-bits while maintaining activations at 8-bits or higher.
Accurate sub-8-bit quantization for both weights and activations without rely-
ing on quantization-aware training remains a significant challenge. We propose
a novel quantization method called block clustered quantization (BCQ) wherein
each operand tensor is decomposed into blocks (a block is a group of contigu-
ous scalars), blocks are clustered based on their statistics, and a dedicated optimal
quantization codebook is designed for each cluster. As a specific embodiment of
this approach, we propose a PTQ algorithm called Locally-Optimal BCQ (LO-
BCQ) that iterates between the steps of block clustering and codebook design to
greedily minimize the quantization mean squared error. When weight and acti-
vation scalars are encoded to W4A4 format (with 0.5-bits of overhead for storing
scaling factors and codebook selectors), we advance the current state-of-the-art by
demonstrating < 1% loss in inference accuracy across several LLMs and down-
stream tasks.

1 INTRODUCTION
Quantization is a highly effective and widely adopted technique for reducing the computational and
storage demands of Large Language Model (LLM) inference. While recent efforts (Wang et al.,
2023; Tseng et al., 2024; Egiazarian et al., 2024; Frantar et al., 2023; Lin et al., 2023) have largely
focused on weight-only quantization targeting single-batch inference, activation quantization be-
comes critical for improving throughput during multi-batch inference scenarios such as cloud-scale
deployments serving multiple users. Previous works (Yao et al., 2023; Dai et al., 2021) on sub-8-bit
quantization of both weights and activations have relied on quantization-aware training (QAT) to re-
cover accuracy loss during inference. However, the prohibitive cost of training and unavailability of
training data in recent LLMs has made QAT increasingly difficult and motivated recent post-training
quantization (PTQ) efforts (Xiao et al., 2023; Rouhani et al., 2023a; Wu et al., 2023).

Block quantization techniques where each block, typically consisting of 16-to-32-scalar elements,
has its own scaling factor (Rouhani et al., 2023a; Dai et al., 2021) achieve the current state-of-the-art
accuracy for sub-8-bit quantization of both weights and activations. While these works deploy the
same quantizer (number-format) across blocks, we hypothesize that one way to achieve lower quan-
tization mean squared error (MSE) would be to design a dedicated codebook for each block through
an MSE-optimal algorithm such as Lloyd (1982). However, such a design would be expensive in
terms of computational effort and memory footprint. Therefore, we propose to amortize this cost
via codebook sharing among clusters of blocks. Our method is called block clustered quantization
(BCQ) and is comprised of two steps: (1) a clustering step applied to operand blocks, and (2) a
quantization step individually applied to operand scalars based on their cluster membership.

We propose an iterative PTQ algorithm called LO-BCQ (locally optimal block clustered quantiza-
tion) that jointly optimizes the block clustering and the per-cluster codebook. We prove that LO-
BCQ greedily minimizes quantization MSE across iterations by performing locally optimal steps at
each iteration. With the optimal codebooks derived through LO-BCQ, we demonstrate state-of-the-
art bitwidth-vs-accuracy across a suite of GPT3, Llama2 and Nemotron-4 models on a wide range
of downstream tasks. For all our results, we employ PTQ on frozen model parameters.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

1.1 RELATED WORK

LO-BCQ (ours)

MX
MXFP

AQLM

Quip#

AWQ

OPTQ

(weights and activations)

BF16

Atom

Figure 1: Wikitext perplexity loss relative to unquan-
tized baseline vs compression factor of LO-BCQ com-
pared to previous LLM quantization proposals. Here,
compression factor is the cumulative number of bits
in the weight and activation tensors1 that need to pro-
cessed in each layer relative to an unquantized BF16
baseline.

Recent sub-4-bit quantization proposals such as
(Wang et al., 2023; Tseng et al., 2024; Egiazar-
ian et al., 2024) explore extreme weight quanti-
zation while maintaining activations at 8-bit or
higher precision. In particular, BitNet (Wang
et al., 2023) proposed W1A8 quantization re-
sulting in an aggregate (weights + activations)
bitwidth comparable to LO-BCQ. However,
BitNet demands training from scratch and de-
spite this large training cost suffers significant
loss in accuracy in downstream tasks. QuiP#
(Tseng et al., 2024) and AQLM (Egiazar-
ian et al., 2024) propose W2A8 quantization
through codebooks. These methods explore
vector and additive codebook quantization, re-
spectively, and rely on a significantly large
number of codebooks (of the order 216) for
quantization, suffering large decoding costs. In
contrast, LO-BCQ explores scalar quantization
methods for W4A4 quantization and achieves
< 1% accuracy loss in downstream tasks with
no more than 16 codebooks with 16 entries
each. W4A8 quantization has been proposed in
(Frantar et al., 2023; Bai et al., 2021; Yao et al.,
2022) involving weight updates to preserve ac-
curacy and in (Lin et al., 2023; van Baalen et al., 2024) without any weight updates (PTQ). Further,
(Guo et al., 2023; Wei et al., 2023; Kim et al., 2023a) perform sub-8-bit weight quantization by sup-
pressing outliers. In contrast, LO-BCQ explores sub-8-bit activation quantization alongside weight
quantization.

Block quantization has emerged as an effective technique for quantizing both weights and activa-
tions, as demonstrated in VSQ (Dai et al., 2021), FineQuant (Kim et al., 2023b), ZeroQuant-V2 (Yao
et al., 2023), Atom (Zhao et al., 2024) through integer number formats, and in (Zhang et al., 2023),
ZeroQuant-FP (Wu et al., 2023), MX (Rouhani et al., 2023a) and MXFP (Rouhani et al., 2023b)
through floating-point formats. Moreover, sub-block scaling techniques explored in MXFP and
BSFP (Lo et al., 2023) demonstrate improvements over standard block quantization. In this work,
we perform clustering of operand blocks and share MSE-optimal codebook quantizers among the
scalars of each cluster. Minimizing quantization MSE using the 1D (Lloyd-Max) and 2D Kmeans
clustering has been explored in (Han et al., 2016; Cho et al., 2021; 2023) and (van Baalen et al.,
2024), respectively. In contrast, LO-BCQ iteratively optimizes block clustering alongside Lloyd-
Max based optimal scalar quantization of block clusters.

Figure 1 compares the perplexity loss vs compression factor of LO-BCQ to other quantization pro-
posals. Here, the perplexity loss is relative to an unquantized baseline on the Wikitext-103 dataset for
LO-BCQ, MX and MXFP4, and on the Wikitext2 for others. Further, the compression factor refers
to the total number of bits in the weight and activation1 tensors (computed as |A|BA + |W |BW

following Sakr et al. (2017))2 that need to be processed in each layer relative to an unquantized
BF16 baseline. Depending on the target application, weight or activation quantization may be more
important. For the sake of generality, we consider them to be equally important in our metric. As
shown in Figure 1, LO-BCQ advances the current state-of-the-art by achieving the best trade-off
between perplexity and compression.

1.2 CONTRIBUTIONS

The main contributions of this work are as follows:

1The size of activations is measured for the prefill phase with a context length of 4096 and batch size of 1.
2the notation |X| refers to the total number of scalars in tensor X , and BX is the bitwidth of X .

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We propose BCQ, a block clustered quantization framework that performs per-block quantiza-
tion by first clustering operand blocks and then quantizing each block cluster using a dedicated
codebook.

• We derive a locally optimal version of BCQ called LO-BCQ that iteratively optimizes block
clustering and per-cluster quantization to provably minimize quantization MSE for any value
distribution. We demonstrate that LO-BCQ is applicable to quantization of both weights and
activations of LLMs.

• We propose block formats for LO-BCQ where each operand block is associated with an index
that maps it to one of a set of codebooks, and a group of blocks (called a block array) share a
quantization scale-factor. We vary the length of blocks, block arrays and the number of codebooks
to study different configurations of LO-BCQ.

• When each of the weight and activation scalars are quantized to 4-bits (effective bitwidth includ-
ing per-block scale-factors etc. is 4.5 to 4.625 bits), we achieve < 0.1 loss in perplexity across
GPT3 (1.3B, 8B and 22B) and Llama2 (7B and 70B) models and < 0.2 loss in the Nemotron4-
15B model, respectively, on the Wikitext-103 dataset. Further, we achieve < 1% loss in average
accuracy across downstream tasks such as MMLU and LM evaluation harness.

To the best of our knowledge, we are the first to achieve < 1% loss in downstream task accuracy
when both LLM activations and weights are quantized to 4-bits during PTQ (no finetuning).

2 BLOCK CLUSTERED QUANTIAZTION (BCQ)
In this section, we introduce the concept of block clustered quantization (BCQ) and present the
locally optimal block clustered quantization (LO-BCQ) algorithm that minimizes quantization MSE
for any operand. We also introduce block formats to support various LO-BCQ configurations.

2.1 MATHEMATICAL DEFINITION

Given a tensor X composed of LX scalar elements, we denote its blockwise decomposition as
{bi}Nb

i=1, where bi’s are blocks of Lb consecutive elements in X , and the number of blocks is
given by Nb = LX/Lb. Block clustered quantization (see Figure 2) uses a family of Nc codebooks
C = {Ci}Nc

i=1, where Nc << Nb, and clusters the blocks into Nc clusters such that each is associated
with one of the Nc codebooks. This procedure is equivalent to creating a mapping function f from
a block b to a cluster index in {1, . . . , Nc}. Quantization (or encoding) proceeds in a two-step
process: (i) mapping to assign a cluster index to a given block, and (ii) quantization of its scalars
using the codebook corresponding to that index. Formally, denoting b̂ as the result of block clustered
quantization of a given block b in X , this procedure is described as:

b̂ = Cf(b)(b) (1)

where C is a 2B-entry codebook that maps each scalar in b to a B-bit index to the closest represen-
tation. Each quantized scalar of block b is obtained as:

b̂[l] = arg min
k=1...2B

|b[l]− Cf(b)[k]|2 (2)

where the notation x[y] is used to describe the yth element in an arbitrary block x. That is, each
scalar in b̂ is an index to the closest entry by value in Cf(b).

Once mapped by invoking f , we store the log2(Nc)-bit codebook selector for each block. Therefore,
the effective bit-width of each quantized scalar is given by:

BitwidthBCQ = B + log2(Nc)/Lb (3)

2.2 LOCALLY OPTIMAL BLOCK CLUSTERED QUANTIZATION (LO-BCQ)
Our goal is to construct a family of codebooks C resulting in minimal quantization MSE during block
clustered quantization. Figure 3 presents an algorithm called Locally Optimal BCQ (LO-BCQ) to
achieve this goal. LO-BCQ consists of two main steps: (i) updating block clusters with fixed per-
cluster codebooks, and (ii) updating per-cluster codebooks with fixed block clusters. This algorithm
begins at iteration 0 (initial condition) with a set of Nc initial codebooks {C(0)

1 , . . . , C
(0)
Nc
} and

unquantized operand blocks as inputs. During step 1 of iteration n, with the per-cluster codebooks

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

𝐿! scalars in each block

𝒃"

Operand Blocks:

… 𝒃# 𝒃$!…

Cluster 1

Unquantized Block Clusters

Cluster 2 Cluster 𝑁%…
Unquantized scalar
Bit-width = 32 bits

Block Clustering (Map each
block to one of 𝑁& clusters)

Quantized
Block Clusters

…
Quantized scalar
Bit-width = B bits

𝐶" 𝐶' 𝐶$"…

Figure 2: Block clustered quantization: Each operand block is first mapped to a cluster based on a mapping
function and then each scalar of that block is encoded as a B-bit index to the closest entry in the 2B-entry
codebook associated with that cluster.

Initial Condition

…
Unquantized Operand Blocks:

𝒃! 𝒃" 𝒃#!

Initial Per-Cluster Codebooks:

𝐶!
(%), 𝐶"

(%), … , 𝐶#"
(%)

Updating Block Clusters

𝒃!
𝒃"

𝒃#!

…

𝑪𝟏
(𝒏$𝟏)

𝐶&
('$()

𝐶)!
('$()

…

MSE𝟏

MSE2

MSE
𝑁!

…

Map each block to quantizer
(cluster) with minimum MSE

Suppose MSE1
is minimum,
map 𝑏& to
cluster 1

LO-BCQ (iteration 𝒏 of 𝑴)

Block
Cluster 1

Block
Cluster 2

Block
Cluster 𝑁'

…

𝐶!
(() 𝐶"

(() 𝐶#"
(()

LM LM LM

LM: Lloyd-Max algorithm

Updating Per-Cluster Codebooks
Updated block

clusters

Updated
per-cluster
codebooks

Figure 3: Overview of LO-BCQ algorithm: The algorithm starts with a set of initial per-cluster codebooks,
and then iteratively performs two steps (i) fix per-cluster codebooks and update block clusters and (ii) fix block
clusters and update per-cluster codebooks.

from the previous iteration {C(n−1)
1 , . . . C

(n−1)
Nc

}, we perform block clustering by mapping each
block to the codebook that achieves minimum quantization MSE. That is, we use the following
mapping function:

f (n)(b) = arg min
i=1...Nc

∥b− C
(n−1)
i (b)∥22 (4)

Since each codebook Ci is associated with a cluster i, mapping to Ci is equivalent to mapping to
cluster i. Specifically, at iteration n, we construct Nc block clusters B(n) = {B(n)i }

Nc
i=1, where each

cluster is defined as:

B(n)i =
{
bj
∣∣f (n)(bj) = i for j ∈ {1 . . . Nb}

}
(5)

In step 2, given the updated block clusters from step 1 and quantization bitwidth B, we apply
the Lloyd-Max algorithm on each block cluster to derive optimal 2B-entry per-cluster codebooks
{C(n)

1 , . . . C
(n)
Nc
}:

C
(n)
i ← LloydMax(B(n)i , B) (6)

where the Lloyd-Max algorithm (see A.1, Lloyd-Max is equivalent to K-means clustering on 1-
dimensional data) is invoked on the data of the corresponding cluster B(n)i .

We iterate steps 1 and 2 until convergence or a pre-determined number of iterations M . Empirically,
we find that LO-BCQ converges at M <= 100. Since each of these steps are locally optimal, we
find that the quantization MSE is non-increasing for each iteration. As a result, for any given value
distribution, our LO-BCQ algorithm greedily minimizes quantization MSE. A theoretical proof of
this claim is provided in section A.2.

2.3 CONVERGENCE AND INITIALIZATION

Prior to clustering, we find that normalizing the operand blocks improves convergence. However, a
block-wise normalization factor (or scaling factor) induces computational and memory overheads.
Therefore, we perform a second-level quantization of this scaling factor to Bs-bits and share it across

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

…

𝑨: Block Array (length = 𝑳𝑨)

s1

�̂�!
s2

𝑏" 𝑏#
sn

𝑏$
𝐶!
𝐶"

𝐶𝑵𝒄

𝐥𝐨𝐠𝑵𝒄-bit per-block selector
selects codebook

…

Codebooks

𝑩-bit index to closest
representation (code)

Per-block array
scale factor (𝐵#-bits)

Block
(length = 𝑳𝒃) 2% entries per codebook

(each entry is a 𝐵&-bit integer)

Figure 4: Block format for LO-BCQ. Each operand block is associated with a log2(Nc)-bit selector that
selects the best codebook and each scalar is a B-bit index that represents the closest value in the selected
codebook. Each block array A is associated with a Bs-bit scale factor.

an array of blocks of length LA. Furthermore, better convergence is observed for larger number of
codebooks (Nc) and for a smaller block length (Lb). Such trends increase the bitwidth of BCQ in
equation 3, meaning that LO-BCQ has an inherent trade-off between accuracy and complexity.

We initialize the per-cluster codebooks {C(0)
1 , . . . , C

(0)
Nc
} based on K-means++ initialization algo-

rithm which maximizes pairwise euclidean distances. In our experiments, we found such initializa-
tion to lead to significantly better convergence than a random one. Further, in step 2 of each iteration,
when Lloyd-Max algorithm is invoked in equation 6, we set the initial centroids corresponding to
the codebooks identified in the previous iteration.

2.4 BLOCK FORMATS FOR LO-BCQ
Figure 4 illustrates the LO-BCQ block format where each operand block of length Lb is associated
with a log2(Nc)-bit index (result of the mapping function f in 4) that selects the best codebook for
that block. Each codebook is composed of 2B entries and each scalar in the operand block is a B-bit
index that represents the closest value in the selected codebook. Each entry in the codebook is a
Bc-bit integer (Bc > B). Finally, each block array A is associated with a scale-factor sA. This
scale-factor and its quantization ŝA to Bs-bits are computed as:

sA =
(
2Bc−1 − 1

)
/max(abs(A)); ŝA = QF {sA/sX , Bs} (7)

where sX is a per-tensor scale-factor that is shared by the entire operand tensor X and QF denotes
a quantizer that quantizes a given operand to format F (see section A.4 for more details on number
formats and quantization method).

The bitwidth of LO-BCQ is computed as:

BitwidthLO−BCQ = B + log2(Nc)/Lb +Bs/LA +Nc ∗ 2B ∗Bc/LX (8)

Table 1: Various LO-BCQ configurations and
their bitwidths.

Lb = 8 Lb = 8 Lb = 2

LA

Nc 2 4 8 16 2 4 2

64 4.25 4.375 4.5 4.625 4.375 4.625 4.625
32 4.375 4.5 4.625 4.75 4.5 4.75 4.75
16 4.625 4.75 4.875 5 4.75 5 5

where the term Nc ∗ 2B ∗Bc/LX is usually negli-
gible since the memory footprint of codebooks (nu-
merator) is negligible compared to the size of the
operand tensor (denominator). Indeed, we empha-
size that LO-BCQ shares a set of Nc <= 16 code-
books among the scalars of the entire tensor, result-
ing in negligible memory overhead for storing the
codebooks.

In this paper, we assume Bs = 8 and the data format
F is floating point E4M3. Further, each codebook
entry is a 6-bit integer (i.e, Bc = 6) and we vary Nc between 2 and 16, Lb between 2 and 8, and LA

between 16 and 64 to obtain various LO-BCQ configurations. We list the configurations and their
corresponding bitwidths in Table 1.

Figure 5 compares our 4-bit LO-BCQ block format to MX (Rouhani et al., 2023a). As shown, both
LO-BCQ and MX decompose a given operand tensor into block arrays and each block array into
blocks. Similar to MX, we find that per-block quantization (Lb < LA) leads to better accuracy due
to increased flexibility. While MX achieves this through per-block 1-bit micro-scales, we associate
a dedicated codebook to each block through a per-block codebook selector. Further, MX quantizes
the per-block array scale-factor to E8M0 format without per-tensor scaling. In contrast during LO-
BCQ, we find that per-tensor scaling combined with quantization of per-block array scale-factor to
E4M3 format results in superior inference accuracy across models.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

𝐴!𝑠!!

𝐴"𝑠!"

𝐴!!

𝑏!		𝑠"!

𝑏"		𝑠""

𝑏#!…

…

𝐶!
𝐶"

𝐶#"

…
𝑠"

Operand Tensor X à Block Arrays
Block Array à Blocks

Codebooks
𝑵𝒄 = {𝟐, 𝟒, 𝟖, 𝟏𝟔}

𝟏𝟔 entries Block Array of length
𝑳𝑨 = {𝟏𝟔, 𝟑𝟐, 𝟔𝟒}

INT6 entry

8-bit scale
(FP8: E4M3)

Block of length
𝑳𝒃 = {𝟐, 𝟒, 𝟖}

1 to 4-bit
codebook

selector (INT)

INT4 index to
closest entry in

selected codebook

LO-BCQ-4

Effective Bitwidth
= 4.25 to	5-bits

𝐴!𝑠!!

𝐴"𝑠!"

𝐴!!

𝑏!		𝑠"!

𝑏"		𝑠""

𝑏#!…

…

Operand Tensor X à Block Arrays
Block Array à Blocks

Block Array of length
𝑳𝑨 = 𝟏𝟔

8-bit scale
(FP8: E8M0)

Block of length
𝑳𝒃 = 𝟐

1-bit
micro-scale

INT3 scalars

MX-4

Effective Bitwidth
= 4-bits

Per-tensor
scale factor

(FP32)

Figure 5: Comparing LO-BCQ to MX format.

1.0 0.5 0.0 0.5 1.0
Codeword Values

Codebooks vs Number Formats
E1M2 (MX4)
E2M1 (MXFP4)
E3M0
LO-BCQ: C0
LO-BCQ: C1
LO-BCQ: C2
LO-BCQ: C3
LO-BCQ: C4
LO-BCQ: C5
LO-BCQ: C6
LO-BCQ: C7

0 4 8 12 16 20
GEMM Layer Number

10 2NM
SE

Layerwise NMSE during LO-BCQ

MX4 (E1M2)
MXFP4 (E2M1)
Mixed Format (E1M2, E2M1, E3M0)
LO-BCQ: 2 codebooks
LO-BCQ: 4 codebooks
LO-BCQ: 8 codebooks

Figure 6: LO-VCQ codebooks compared to 4-bit floating point formats and layerwise normalized MSE
(NMSE). We compute NMSE for the weights of first 20 GEMM layers (QKV, projection and fully-connected)
of Llama2-7B model. Note that we use the NMSE for better visualization across varying layer data.

3 PRACTICAL IMPLEMENTATION OF LO-BCQ FOR LLM INFERENCE

0 5 10 15 20 25 30
GEMM Layer Number

0.004

0.005

0.006

0.007

0.008

0.009

NM
SE

Universally vs layerwise calibrated codebooks

LO-BCQ: 2 universal codebooks
LO-BCQ: 8 universal codebooks
LO-BCQ: 2 layerwise codebooks
LO-BCQ: 8 layerwise codebooks

Figure 7: Quantization NMSE acheived by
universally calibrated codebooks compared
to that calibrated layerwise in Llama2-7B in-
puts of first 30 GEMM (QKV, projection and
fully-connected) layers.

In this section, we discuss specifics of a practical imple-
mentation of LO-BCQ for inference. Specifically, we first
describe the codebook design process, followed by the
practical mechanism for activation quantization on-the-
fly.

We pre-calibrate the LO-BCQ codebooks for both
weights and activations offline (prior to inference). Since
weights are known, their own data can be used as calibra-
tion set. On the other hand, activations are dynamic and
vary for every input; thus, as per common quantization
strategies (Wu et al., 2020a; Sakr et al., 2022), we employ
a randomly sampled calibration set from training data in
order to build activation codebooks. Once codebooks are
calibrated, we also quantize the codewords to 6-bit inte-
gers to further improve the energy efficiency of GEMM
hardware. The choice of 6-bit was based on empirical ob-
servations of accuracy being maintained with LA <= 64.

Figure 6 compares the codebooks identified by the LO-
BCQ algorithm in a GEMM layer of a GPT3-126M
model to 4-bit floating point formats such as E1M2,
E2M1 and E3M0. As shown, the LO-BCQ codebooks outperform other block formats by capturing
the arbitrary and non-uniform patterns in the value distributions of LLM operands and allowing each
block to map to the codebook that best represents it. The mapping of operand blocks to the best of
available codebooks can be conceptually compared to prior works that have explored mixed-format
quantization such as (Tambe et al., 2020; Zadeh et al., 2022).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

LO-BCQ provides the quantization operation the flexibility to assign data to any of the sign posts
(codewords) in Figure 6. The union of these sign posts covers the real line with a resolution that
is clearly superior to that of a 4-bit quantizer. Therefore, we hypothesized that these codebooks
need not be calibrated on a per-tensor (layerwise) basis, but rather, it is likely that they would be
universally appropriate to quantize any tensor, at any layer, for any model. To verify this hypothesis,
we calibrated a set of codebooks on data sampled from GPT3 models on Wikitext-103 dataset and
froze it. We find that these codebooks achieve comparable quantization MSE compared to those
calibrated individually on each operand as shown in Figure 7 which verifies our hypothesis. In our
subsequent results, we always employ universally calibrated codebooks.

Finally, we note that in a real implementation, activations can be efficiently quantized on the fly.
Indeed, LO-BCQ involves computing the following values – per-block array scale-factor sA, per-
block codebook selector sb which is the result of the mapping function f (Eq. 4), and the index to
closest representation b̂ in the selected codebook (Eq. 2). Note that the computation of sA simply
corresponds to a max-reduction (followed by quantization) over the block array, whose size is small
(<= 64). Importantly, with LO-BCQ, the size of codebooks (<= 0.19KB) is small enough such
that it easily fits within the shared memory of modern GPUs. This is an important distinction with
other works on codebook quantization (Tseng et al., 2024; Egiazarian et al., 2024). As such, sb and
b̂ can be concurrently computed in a thread-local sub-routine within a custom CUDA kernel. The
locality of computation circumvents the need for any synchronization of streaming multiprocessors.

4 EXPERIMENTAL EVALUATION OF LO-BCQ
In this section, we present our accuracy studies on downstream tasks comparing LO-BCQ to var-
ious other block quantization proposals. Next, we present ablation studies on varying LO-BCQ
configurations and our calibration methodology, namely universal vs local.

4.1 EXPERIMENTAL SETUP

We perform accuracy studies on GPT3 (Shoeybi et al., 2020) (1.3B, 8B and 22B), Llama2 (Tou-
vron et al., 2023) (7B and 70B) and Nemotron4-15B (Parmar et al., 2024) models. We evaluate
PTQ inference accuracy on several downstream tasks including Wikitext-103 (Merity et al., 2016),
MMLU (Hendrycks et al., 2021) and Eleuther AI’s LM evaluation harness (Gao et al., 2024). In
LM evaluation harness, we infer on Race (RA), Boolq (BQ), Hellaswag (HS), Piqa (PQ) and Wino-
grande (WG) tasks and in the MMLU dataset we evaluate all tasks. In all these models, we quantize
GEMM layers including Query, Key and Value computations, Projection layer after self attention
and the fully-connected layers.

We apply the LO-BCQ algorithm to the operands before inference and pre-calibrate the optimal
codebooks. In our experiments, we perform this calibration on one batch of activations from the
training data of the GPT3-126M model and the Wikitext-103 dataset. We freeze these optimal
codebooks across operands and models during all of our accuracy evaluations. Further, we represent
each entry of the codebooks as a 6-bit integer. That is, once decoded, the inner product computations
with a block array during inference can be performed at 6-bit precision3. Furthermore, we perform
ablation studies on the LO-BCQ configurations listed in Table1 with quantization bitwidth ranging
from 4.25-bits to 5-bits. We denote the LO-BCQ configurations by the tuple {LA, Lb, Nc}.
We compare LO-BCQ against previous block quantization works that have explored PTQ of both
weights and activations such as VSQ (Dai et al., 2021), MX (Rouhani et al., 2023a) and MXFP
(Rouhani et al., 2023b). VSQ and MX perform per-block quantization of 16-element blocks with
an 8-bit scale-factor per-block resulting in an effective bit-width of 4.5 bits. VSQ quantizes each
scalar to INT4 format and per-block scale-factor to INT8 format. MX performs micro-scaling at
per-block level with a 1-bit exponent shared by 2-element blocks. Each scalar is quantized to INT3.
In this paper, we overestimate accuracy of MX by allowing each scalar to have its own exponent,
resulting in INT4 precision. The per-block array scale factors of MX are quantized to E8M0 format.
Therefore, our evaluation results in a bitwidth of 4.5 bits. Further, MXFP explores 32-element
blocks with 8-bit scale-factor per block resulting in an effective bitwidth of 4.25 bits. The number
format of scalars and per-block scale factors are E2M1 and E8M0, respectively. The quantization
methodology with these block formats is detailed in A.4.4.

3In our experiments in this paper, we emulate (”fake”) quantization by representing the quantized values in
BF16 format. Therefore, the computations are performed in BF16 precision.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Additionally, we compare weight-only (W4A8) LO-BCQ to other weight-only quantization propos-
als of equivalent bitwidth such as GPTQ (Frantar et al., 2023), AWQ (Lin et al., 2023), OmniQ
(Shao et al., 2024) and QuiP# (Tseng et al., 2024). For this comparison, we choose a block-array
length of 128 for LO-BCQ, matching the group-size of other works.

4.2 ACCURACY STUDIES ON DOWNSTREAM TASKS

Table 2 presents our comprehensive accuracy evaluations across the Llama2 and GPT3 models, on
the Wikitext-103, LM evaluation harness and MMLU datasets. For convenience, we present select
LO-BCQ configurations in this table. See A for accuracy studies on other configurations.

4.2.1 PERPLEXITY ON WIKITEXT-103

Across large models such as Llama2-70B and GPT3-22B, 4.5-bit LO-BCQ achieves < 0.1 loss in
perplexity compared to the unquantized baseline on the Wikitext-103 dataset. Further, LO-BCQ
achieves significant benefits compared to the baselines of equivalent bit-widths. When the quanti-
zation bitwidth is 4.5-bits, LO-BCQ achieves an average improvement of 0.9 and 0.76 in perplexity
compared to VSQ and MX, respectively, and 1.19 average improvement with 4.25-bits compared
to MXFP across models. We achieve these improvements during PTQ, i.e., without any additional
training or finetuning.

MX, MXFP and VSQ perform per-block quantization by associating a scale-factor to each block
(or a block array) and with a single number format (quantizer) across blocks. On the other hand, in
addition to per-block array scaling, LO-BCQ allows a block to flexibly map to a codebook that best
represents it from a set of codebooks. This flexibility allows LO-BCQ to achieve better perplexity.
Furthermore, we find that with a larger quantization bitwidth, LO-BCQ achieves better perplexity
across models as expected.

Further, the number format of per-block (or block array) scale-factor has a significant impact on
accuracy. VSQ is unable to sufficiently capture the range of activations with its INT8 scale-factors
as observed in Llama2-7B, while it outperforms the E8M0 scale-factors of MX in GPT3-22B due
to better resolution when representing large values. Across various models, we find that the E4M3
format of LO-BCQ provides sufficient range and resolution to represent the scale-factors.

4.2.2 ACCURACY ON LM EVALUATION HARNESS TASKS

Across 0-shot LM evaluation harness tasks LO-BCQ shows significant improvement in average ac-
curacy compared to MX, MXFP and VSQ at equivalent bitwidth. Further, across models during
4.5-bit quantization, LO-BCQ achieves < 1% loss in average accuracy compared to the respective
unquantized baselines. When the bitwidth of LO-BCQ is increased by varying its configuration,
we find that the average accuracy generally increases albeit with a few exceptions. Although these
variations are small (< 0.5%), we believe that they arise due to the universal calibration of code-
books. Our codebooks are calibrated on a batch of training data from the Wikitext-103 dataset and
the GPT3-126M model and remain frozen across all datasets and models.

4.2.3 ACCURACY ON MMLU TASKS

Similarly, in 5-shot MMLU tasks LO-BCQ achieves < 1% loss in average accuracy with 4.5-bits
per scalar compared to respective unquantized baselines across GPT3-22B and Llama2-70B models.
Further, LO-BCQ achieves a significantly better accuracy compared to all of our block quantization
baselines such as VSQ, MX and MXFP4 at equivalent bitwidth. Across Llama2 models, LO-BCQ
with a smaller bitwidth (4.25-bits) outperforms VSQ and MX4 with a comparatively larger bitwidth
(4.5-bits). While the 0.5-bit overhead in VSQ and MX4 are used on per-block array scale-factors, the
0.25-bit overhead of LO-BCQ is shared between scale-factors and codebook selectors. Therefore,
the superior accuracy of LO-BCQ can be attributed to the better representation by selecting the best
codebook for each block.

4.2.4 ACCURACY STUDIES ON NEMOTRON4-15B

Table 3a lists the perplexity achieved by the Nemotron4-15B model quantized by LO-BCQ on
Wikitext-103 dataset and compares it to various baselines. When both weights and activations are
quantized to 4.75-bits, LO-BCQ achieves 0.16 loss in perplexity compared to unquantized baseline.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: PTQ Perplexity (lower is better) on Wikitext-103 dataset and downstream task accuracy (higher is
better) with Llama2 and GPT3 models. We denote the LO-BCQ configurations by the tuple {LA, Lb, Nc} =
{Length of block array, Length of block, Number of codebooks}.

Method Bitwidth Wiki3 LM evaluation Harness (Accuracy %, 0-shot) MMLU (5-shot)
PPL (∆) RA BQ WG PQ HS Avg (∆ %) Avg (∆ %)

Llama2-7B

FP32 32 5.06 44.4 79.29 69.38 78.07 57.10 65.65 45.8
MX4 4.5 5.73 (0.67) 41.43 73.98 66.22 77.04 55.19 62.77 (2.88) 41.38 (4.42)
VSQ 4.5 835 (829) 31.39 65.75 55.49 67.30 43.51 52.69 (12.96) 26.48 (19.3)

MXFP4 4.25 5.76 (0.70) 41.34 74.00 67.48 77.53 54.22 62.91 (2.74) 37.64 (8.16)
LO-BCQ {64, 8, 2} 4.25 5.31 (0.25) 42.49 77.58 68.90 77.09 55.93 64.40 (1.25) 43.90 (1.90)
LO-BCQ {64, 8, 8} 4.5 5.19 (0.13) 42.58 77.43 69.77 77.09 56.51 64.68 (0.97) 43.90 (1.90)

LO-BCQ {32, 8, 16} 4.75 5.15 (0.09) 43.73 77.86 68.90 77.86 56.52 64.97 (0.68) 44.50 (1.30)

Llama2-70B

FP32 32 3.14 48.8 85.23 79.95 81.56 65.27 72.16 69.12
MX4 4.5 3.58 (0.44) 48.04 82.41 76.40 80.58 63.24 70.13 (2.03) 65.73 (3.39)
VSQ 4.5 4.96 (1.82) 47.85 82.29 77.27 79.82 61.40 69.73 (2.43) 62.46 (6.66)

MXFP4 4.25 3.69 (0.55) 47.75 83.06 76.32 80.58 63.24 70.19 (1.97) 66.16 (2.96)
LO-BCQ {64, 8, 2} 4.25 3.35 (0.21) 49.0 82.82 78.77 81.45 64.21 71.25 (0.91) 68.07 (1.05)
LO-BCQ {64, 8, 8} 4.5 3.23 (0.09) 49.28 84.03 78.37 81.45 64.76 71.58 (0.58) 68.17 (0.95)

LO-BCQ {32, 8, 16} 4.75 3.20 (0.06) 49.28 84.93 80.66 81.34 65.18 72.28 (+0.12) 68.27 (0.85)
GPT3-1.3B

FP32 32 9.98 37.51 64.62 58.01 74.21 43.51 55.57 24.20
MX4 4.5 11.33 (1.35) 35.22 54.31 57.38 70.78 40.58 51.65 (3.92) 24.04
VSQ 4.5 10.83 (0.85) 35.98 62.60 59.59 71.27 39.98 53.88 (1.69) 25.89

MXFP4 4.25 11.04 (1.06) 36.56 61.68 56.75 71.65 40.66 53.46 (2.11) 24.87
LO-BCQ {64, 8, 2} 4.25 10.40 (0.42) 36.94 63.73 58.17 73.01 42.10 54.79 (0.78) 24.80
LO-BCQ {64, 8, 8} 4.5 10.17 (0.19) 36.27 63.49 57.85 73.07 42.73 54.68 (0.89) 24.50

LO-BCQ {32, 8, 16} 4.75 10.12 (0.14) 37.03 63.33 58.56 73.94 43.20 55.07 (0.50) 24.80

GPT3-8B

FP32 32 7.38 41.34 68.32 67.88 78.78 54.16 62.10 25.50
MX4 4.5 8.15 (0.77) 38.28 66.27 65.11 75.63 50.77 59.21 (2.89) 24.51
VSQ 4.5 8.17 (0.79) 40.86 63.91 66.93 76.28 51.38 59.87 (2.23) 27.57

MXFP4 4.25 9.12 (1.74) 39.71 65.35 67.01 76.12 50.22 59.68 (2.42) 24.93
LO-BCQ {64, 8, 2} 4.25 7.61 (0.23) 40.48 69.20 66.85 77.31 53.06 61.38 (0.72) 24.53
LO-BCQ {64, 8, 8} 4.5 7.48 (0.1) 39.43 69.45 67.72 77.75 53.71 61.61 (0.49) 26.04

LO-BCQ {32, 8, 16} 4.75 7.45 (0.07) 39.62 69.30 67.00 77.37 53.51 61.36 (0.74) 25.32

GPT3-22B

FP32 32 6.54 40.67 76.54 70.64 79.16 57.11 64.82 38.75
MX4 4.5 7.69 (1.15) 39.04 72.26 67.96 77.86 54.77 62.38 (2.44) 37.07 (1.68)
VSQ 4.5 7.12 (0.58) 40.57 65.81 69.61 77.20 54.82 61.60 (3.22) 37.79 (0.96)

MXFP4 4.25 10.18 (3.64) 39.14 69.61 64.17 75.68 47.60 59.24 (5.58) 32.26 (6.49)
LO-BCQ {64, 8, 2} 4.25 6.74 (0.20) 40.48 75.41 69.14 78.24 56.06 63.87 (0.95) 36.71 (2.04)
LO-BCQ {64, 8, 8} 4.5 6.62 (0.08) 39.43 77.09 70.17 78.62 56.60 64.38 (0.44) 38.13 (0.62)

LO-BCQ {32, 8, 16} 4.75 6.59 (0.05) 39.62 75.35 69.30 78.89 56.64 63.96 (0.86) 38.34 (0.41)

Compared to GPT3 and Llama2 models, LO-BCQ suffers a larger perplexity degradation in this
model. A similar trend is observed for our block quantization baselines VSQ, MX and MXFP. At
equivalent bitwidth LO-BCQ achieves 1.45, 2.75 and 1.94 improvement in perplexity over VSQ,
MX and MXFP, respectively.

Across MMLU tasks, LO-BCQ achieves < 1% loss in average accuracy compared to unquantized
baseline with >= 4.5-bits per scalar. Further, we achieve 5.57%, 6.34% and 4.89% improvement
over MX4, VSQ and MXFP4, respectively, at equivalent bitwidth.

Table 3b compares weight-only (W4A8) LO-BCQ with a block array size of 128 to other weight-
only quantization proposals of comparable block array size and effective bit-width. As shown, LO-
BCQ with 2, 4, 8 and 16 codebooks with effective bitwidth of 4.19, 4.31, 4.44 and 4.56, respectively,
achieves significantly lower perplexity loss. It is worth noting that we evaluate this loss on Wikitext-
103 dataset, which is a much larger dataset compared to Wikitext2 used by other works.

4.3 ABLATION STUDIES

Table 4a shows the perplexity of LO-BCQ on Wikitext-103 dataset and across Llama2-70B and
GPT3-22B models when its configuration is varied. For a given Lb (block length), larger number
of codebooks results in better perplexity. This is intuitive since larger number of codebooks leads
to better representation of the values in each block since LO-BCQ allows it to map to the codebook

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: (a) PTQ Perplexity (lower is better) on Wikitext-103 dataset and MMLU accuracy (higher is better)
with Nemotron4-15B model, and (b) Comparing perplexity loss of weight-only (W4A8) LO-BCQ to other
weight-only quantization works such as GPTQ, AWQ, OmniQ and QuiP#. Here, the LO-BCQ configuration is
denoted by tuple {LA, Lb, Nc} = {Length of block array, Length of block, Number of codebooks}.

Method Bitwidth Wiki3 MMLU (5-shot)
PPL (∆) Avg (∆ %)

Nemotron4-15B

FP32 32 5.87 64.3
MX4 4.5 8.88 (3.01) 58.15 (6.15)
VSQ 4.5 7.58 (1.71) 57.38 (6.92)

MXFP4 4.25 8.24 (2.37) 58.28 (6.02)
LO-BCQ {64, 8, 2} 4.25 6.30 (0.43) 63.17 (1.13)
LO-BCQ {64, 8, 8} 4.5 6.13 (0.26) 63.72 (0.58)

LO-BCQ {32, 8, 16} 4.75 6.03 (0.16) 64.33 (+0.03)
(a)

Method Llama2-7B Llama2-70B
GPTQ 0.22 0.10
AWQ 0.13 0.09

OmniQ 0.27 0.15
QuiP# 0.19 0.10

LO-BCQ {128, 8, 2} 0.14 0.09
LO-BCQ {128, 8, 4} 0.12 0.07
LO-BCQ {128, 8, 8} 0.09 0.06

LO-BCQ {128, 8, 16} 0.08 0.05
(b)

Table 4: Ablation studies: (a) Perplexity on Wikitext-103 dataset across various LO-BCQ configurations, and
(b) Perplexity on Wikitext-103 dataset with universally calibrated vs locally calibrated codebooks

Lb → 8 4 2

LA

Nc 2 4 8 16 2 4 2

Llama2-70B (FP32 PPL = 3.14)

64 3.35 3.25 3.23 3.21 3.31 3.22 3.27
32 3.27 3.24 3.22 3.20 3.25 3.22 3.22
16 3.25 3.22 3.20 3.19 3.23 3.20 3.20

GPT3-22B (FP32 PPL = 6.54)

64 6.74 6.64 6.62 6.63 6.71 6.64 6.64
32 6.67 6.64 6.61 6.59 6.65 6.64 6.60
16 6.67 6.63 6.59 6.61 6.66 6.63 6.62

(a)

Llama2-7B (FP32 PPL = 5.06), Lb = 8

LA

Nc 2 4 8 16

Universally Calibrated Codebooks

64 5.31 5.26 5.19 5.18
32 5.23 5.25 5.18 5.15
16 5.23 5.19 5.16 5.14

Layerwise Calibrated Codebooks

64 5.29 5.22 5.19 5.17
32 5.23 5.19 5.17 5.15
16 5.20 5.17 5.15 5.14

(b)

with best representation. Further, when the block array size is reduced, we achieve better perplexity.
The block array corresponds to the granularity of normalization. As discussed in section 2.3, normal-
ization improves convergence of LO-BCQ and results in better perplexity. Further, when comparing
configurations with same bitwidth (see Table 1), we find that the configuration with larger number
of codebooks is better than smaller block array. This shows that the per-block metadata is better
utilized for codebook selectors than scale factors.

Furthermore, we find that reducing the block length (Lb) below 8 results in diminishing returns.
This is because, the overhead of storing codebook selectors is larger for a smaller block. For a given
bitwidth, configuration with smaller Lb has fewer codebooks. Therefore, these configurations result
in larger loss in perplexity.

Table 4b compares the perplexity with universally calibrated codebooks to codebooks calibrated lay-
erwise (per-tensor) in Llama2-7B model. The layerwise calibrated codebooks achieve slightly better
perplexity when the number of codebooks are small (e.g. Nc = 2). However, they do not provide
significant benefits when Nc > 4 despite the comparatively larger calibration effort. Therefore, in
our experiments in this paper, we have largely explored universally calibrated codebooks.

5 CONCLUSION

The inference accuracy of LLMs during per-block (fine-grained) quantization is significantly influ-
enced by the number format of the operands and per-block scale factors. Several previous works
have explored novel number formats to improve accuracy. However, none have explored per-block
quantization methods involving clustering that minimize quantization MSE. In this work, we pro-
pose LO-BCQ, an iterative block clustering and quantization algorithm that greedily minimizes
quantization MSE for any operand (weights and activations) through locally optimal steps at each
step of the iteration. We demonstrate that LO-BCQ achieves state-of-the-art perplexity across a
suite of GPT3, LLama2 and Nemotron4 models on various downstream tasks such Wikitext-103,
LM evaluation harness and MMLU.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Haoli Bai, Lu Hou, Lifeng Shang, Xin Jiang, Irwin King, and Michael R. Lyu. Towards efficient
post-training quantization of pre-trained language models, 2021.

Minsik Cho, Keivan Alizadeh-Vahid, Saurabh N. Adya, and Mohammad Rastegari. Dkm: Differ-
entiable k-means clustering layer for neural network compression. ArXiv, abs/2108.12659, 2021.
URL https://api.semanticscholar.org/CorpusID:237353080.

Minsik Cho, Keivan A. Vahid, Qichen Fu, Saurabh Adya, Carlo C Del Mundo, Mohammad Raste-
gari, Devang Naik, and Peter Zatloukal. edkm: An efficient and accurate train-time weight clus-
tering for large language models, 2023.

Steve Dai, Rangha Venkatesan, Mark Ren, Brian Zimmer, William Dally, and Brucek Khailany.
Vs-quant: Per-vector scaled quantization for accurate low-precision neural network inference. In
A. Smola, A. Dimakis, and I. Stoica (eds.), Proceedings of Machine Learning and Systems, vol-
ume 3, pp. 873–884, 2021. URL https://proceedings.mlsys.org/paper_files/
paper/2021/file/48a6431f04545e11919887748ec5cb52-Paper.pdf.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan Al-
istarh. Extreme compression of large language models via additive quantization, 2024. URL
https://arxiv.org/abs/2401.06118.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. OPTQ: Accurate quantization
for generative pre-trained transformers. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=tcbBPnfwxS.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

Cong Guo, Jiaming Tang, Weiming Hu, Jingwen Leng, Chen Zhang, Fan Yang, Yunxin Liu, Minyi
Guo, and Yuhao Zhu. Olive: Accelerating large language models via hardware-friendly outlier-
victim pair quantization. ISCA ’23, New York, NY, USA, 2023. Association for Computing
Machinery. ISBN 9798400700958. doi: 10.1145/3579371.3589038. URL https://doi.
org/10.1145/3579371.3589038.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural network
with pruning, trained quantization and huffman coding. In Yoshua Bengio and Yann LeCun
(eds.), 4th International Conference on Learning Representations, ICLR 2016, San Juan, Puerto
Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http://arxiv.org/abs/
1510.00149.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. Measuring massive multitask language understanding, 2021. URL https:
//arxiv.org/abs/2009.03300.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W.
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization, 2023a.

Young Jin Kim, Rawn Henry, Raffy Fahim, and Hany Hassan Awadalla. Finequant: Unlocking
efficiency with fine-grained weight-only quantization for llms, 2023b.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-
aware weight quantization for llm compression and acceleration, 2023.

S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):
129–137, 1982. doi: 10.1109/TIT.1982.1056489.

11

https://api.semanticscholar.org/CorpusID:237353080
https://proceedings.mlsys.org/paper_files/paper/2021/file/48a6431f04545e11919887748ec5cb52-Paper.pdf
https://proceedings.mlsys.org/paper_files/paper/2021/file/48a6431f04545e11919887748ec5cb52-Paper.pdf
https://arxiv.org/abs/2401.06118
https://openreview.net/forum?id=tcbBPnfwxS
https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://doi.org/10.1145/3579371.3589038
https://doi.org/10.1145/3579371.3589038
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Yun-Chen Lo, Tse-Kuang Lee, and Ren-Shuo Liu. Block and subword-scaling floating-point (BSFP)
: An efficient non-uniform quantization for low precision inference. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=VWm4o4l3V9e.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016.

Jupinder Parmar, Shrimai Prabhumoye, Joseph Jennings, Mostofa Patwary, Sandeep Subrama-
nian, Dan Su, Chen Zhu, Deepak Narayanan, Aastha Jhunjhunwala, Ayush Dattagupta, et al.
Nemotron-4 15b technical report. arXiv preprint arXiv:2402.16819, 2024.

Bita Rouhani, Ritchie Zhao, Venmugil Elango, Rasoul Shafipour, Mathew Hall, Maral Mesmakhos-
roshahi, Ankit More, Levi Melnick, Maximilian Golub, Girish Varatkar, Lai Shao, Gaurav
Kolhe, Dimitry Melts, Jasmine Klar, Renee L’Heureux, Matt Perry, Doug Burger, Eric Chung,
Zhaoxia (Summer) Deng, Sam Naghshineh, Jongsoo Park, and Maxim Naumov. With shared
microexponents, a little shifting goes a long way. In Proceedings of the 50th Annual Interna-
tional Symposium on Computer Architecture, ISCA ’23, New York, NY, USA, 2023a. Associa-
tion for Computing Machinery. ISBN 9798400700958. doi: 10.1145/3579371.3589351. URL
https://doi.org/10.1145/3579371.3589351.

Bita Rouhani, Ritchie Zhao, Ankit More, Mathew Hall, Alireza Khodamoradi, Summer Deng,
Dhruv Choudhary, Marius Cornea, Eric Dellinger, Kristof Denolf, Stosic Dusan, Venmugil
Elango, Maximilian Golub, Alexander Heinecke, Phil James-Roxby, Dharmesh Jani, Gaurav
Kolhe, Martin Langhammer, Ada Li, Levi Melnick, Maral Mesmakhosroshahi, Andres Ro-
driguez, Michael Schulte, Rasoul Shafipour, Lei Shao, Michael Siu, Pradeep Dubey, Paulius
Micikevicius, Maxim Naumov, Colin Verrilli, Ralph Wittig, Doug Burger, and Eric Chung. Mi-
croscaling data formats for deep learning, 2023b.

Charbel Sakr, Yongjune Kim, and Naresh Shanbhag. Analytical guarantees on numerical preci-
sion of deep neural networks. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ICML’17, pp. 3007–3016. JMLR.org, 2017.

Charbel Sakr, Steve Dai, Rangharajan Venkatesan, Brian Zimmer, William J. Dally, and Brucek
Khailany. Optimal clipping and magnitude-aware differentiation for improved quantization-aware
training, 2022.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for
large language models, 2024. URL https://arxiv.org/abs/2308.13137.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-lm: Training multi-billion parameter language models using model par-
allelism, 2020.

Thierry Tambe, En-Yu Yang, Zishen Wan, Yuntian Deng, Vijay Janapa Reddi, Alexander Rush,
David Brooks, and Gu-Yeon Wei. Algorithm-hardware co-design of adaptive floating-point en-
codings for resilient deep learning inference. In 2020 57th ACM/IEEE Design Automation Con-
ference (DAC), pp. 1–6, 2020. doi: 10.1109/DAC18072.2020.9218516.

Hugo Touvron et al. Llama 2: Open foundation and fine-tuned chat models, 2023. URL https:
//arxiv.org/abs/2307.09288.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#: Even
better llm quantization with hadamard incoherence and lattice codebooks, 2024. URL https:
//arxiv.org/abs/2402.04396.

Mart van Baalen, Andrey Kuzmin, Markus Nagel, Peter Couperus, Cedric Bastoul, Eric Mahurin,
Tijmen Blankevoort, and Paul Whatmough. Gptvq: The blessing of dimensionality for llm quan-
tization, 2024. URL https://arxiv.org/abs/2402.15319.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language
models, 2023. URL https://arxiv.org/abs/2310.11453.

12

https://openreview.net/forum?id=VWm4o4l3V9e
https://openreview.net/forum?id=VWm4o4l3V9e
https://doi.org/10.1145/3579371.3589351
https://arxiv.org/abs/2308.13137
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2402.04396
https://arxiv.org/abs/2402.15319
https://arxiv.org/abs/2310.11453

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Feng-
wei Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer lan-
guage models, 2023.

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quantization
for deep learning inference: Principles and empirical evaluation. CoRR, abs/2004.09602, 2020a.
URL https://arxiv.org/abs/2004.09602.

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quantization
for deep learning inference: Principles and empirical evaluation, 2020b.

Xiaoxia Wu, Zhewei Yao, and Yuxiong He. Zeroquant-fp: A leap forward in llms post-training
w4a8 quantization using floating-point formats, 2023.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models, 2023.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022. URL https://openreview.net/forum?
id=f-fVCElZ-G1.

Zhewei Yao, Xiaoxia Wu, Cheng Li, Stephen Youn, and Yuxiong He. Zeroquant-v2: Exploring
post-training quantization in llms from comprehensive study to low rank compensation, 2023.

Ali Hadi Zadeh, Mostafa Mahmoud, Ameer Abdelhadi, and Andreas Moshovos. Mokey: Enabling
narrow fixed-point inference for out-of-the-box floating-point transformer models. In Proceedings
of the 49th Annual International Symposium on Computer Architecture, ISCA ’22, pp. 888–901,
New York, NY, USA, 2022. Association for Computing Machinery. ISBN 9781450386104. doi:
10.1145/3470496.3527438. URL https://doi.org/10.1145/3470496.3527438.

Yijia Zhang, Lingran Zhao, Shijie Cao, Wenqiang Wang, Ting Cao, Fan Yang, Mao Yang, Shang-
hang Zhang, and Ningyi Xu. Integer or floating point? new outlooks for low-bit quantization on
large language models, 2023.

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind
Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and
accurate llm serving, 2024. URL https://arxiv.org/abs/2310.19102.

A APPENDIX

A.1 LLOYD-MAX ALGORITHM

For a given quantization bitwidth B and an operand X , the Lloyd-Max algorithm finds 2B quantiza-
tion levels {x̂i}2

B

i=1 such that quantizing X by rounding each scalar in X to the nearest quantization
level minimizes the quantization MSE.

The algorithm starts with an initial guess of quantization levels and then iteratively computes quan-
tization thresholds {τi}2

B−1
i=1 and updates quantization levels {x̂i}2

B

i=1. Specifically, at iteration n,
thresholds are set to the midpoints of the previous iteration’s levels:

τ
(n)
i =

x̂
(n−1)
i + x̂

(n−1)
i+1

2
for i = 1 . . . 2B − 1

Subsequently, the quantization levels are re-computed as conditional means of the data regions de-
fined by the new thresholds:

x̂
(n)
i = E

[
X

∣∣X ∈ [τ
(n)
i−1, τ

(n)
i]

]
for i = 1 . . . 2B

where to satisfy boundary conditions we have τ0 = −∞ and τ2B = ∞. The algorithm iterates the
above steps until convergence.

13

https://arxiv.org/abs/2004.09602
https://openreview.net/forum?id=f-fVCElZ-G1
https://openreview.net/forum?id=f-fVCElZ-G1
https://doi.org/10.1145/3470496.3527438
https://arxiv.org/abs/2310.19102

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

1.00 -0.5 -0.25 0.00 0.25 0.50 0.75-0.75 1.00 -0.5 -0.25 0.00 0.25 0.50 0.75-0.75
100

101

102

103

104

105

100

101

102

103

104

105

Quantized OperandUnquantized Operand
FP7 (E3M3)
MSE = 0.0028

Lloyd-Max (7-bits)
MSE = 0.0016

Figure 8: Quantization levels and the corresponding quantization MSE of Floating Point (left) vs Lloyd-Max
(right) Quantizers for a layer of weights in the GPT3-126M model.

Table 5: Comparing perplexity (lower is better) achieved by floating point quantizers and Lloyd-Max quan-
tizers on a GPT3-126M model for the Wikitext-103 dataset.

Bitwidth Floating-Point Quantizer Lloyd-Max Quantizer
Best Format Perplexity Perplexity

7 E3M3 18.32 18.27
6 E3M2 19.07 18.51
5 E4M0 43.89 19.71

Figure 8 compares the quantization levels of a 7-bit floating point (E3M3) quantizer (left) to a 7-bit
Lloyd-Max quantizer (right) when quantizing a layer of weights from the GPT3-126M model at a
per-tensor granularity. As shown, the Lloyd-Max quantizer achieves substantially lower quantiza-
tion MSE. Further, Table 5 shows the superior perplexity achieved by Lloyd-Max quantizers for
bitwidths of 7, 6 and 5. The difference between the quantizers is clear at 5 bits, where per-tensor FP
quantization incurs a drastic and unacceptable increase in perplexity, while Lloyd-Max quantization
incurs a much smaller increase. Nevertheless, we note that even the optimal Lloyd-Max quantizer
incurs a notable (∼ 1.5) increase in perplexity due to the coarse granularity of quantization.

A.2 PROOF OF LOCAL OPTIMALITY OF LO-BCQ

For a given block bj , the quantization MSE during LO-BCQ can be empirically evaluated as 1
Lb
∥bj−

b̂j∥22 where b̂j is computed from equation (1) as Cf(bj)(bj). Further, for a given block cluster Bi, we

compute the quantization MSE as 1
|Bi|

∑
b∈Bi

1
Lb
∥b− C

(n)
i (b)∥22. Therefore, at the end of iteration

n, we evaluate the overall quantization MSE J (n) for a given operand X composed of Nc block
clusters as:

J (n) =
1

Nc

Nc∑
i=1

1

|B(n)i |

∑
v∈B(n)

i

1

Lb
∥b−B

(n)
i (b)∥22

At the end of iteration n, the codebooks are updated from C(n−1) to C(n). However, the mapping
of a given vector bj to quantizers C(n) remains as f (n)(bj). At the next iteration, during the vector
clustering step, f (n+1)(bj) finds new mapping of bj to updated codebooks C(n) such that the quan-
tization MSE over the candidate codebooks is minimized. Therefore, we obtain the following result
for bj :

1

Lb
∥bj − C

(n)

f(n+1)(bj)
(bj)∥22 ≤

1

Lb
∥bj − C

(n)

f(n)(bj)
(bj)∥22

That is, quantizing bj at the end of the block clustering step of iteration n + 1 results in lower
quantization MSE compared to quantizing at the end of iteration n. Since this is true for all b ∈X ,
we assert the following:

J̃ (n+1) =
1

Nc

Nc∑
i=1

1

|B(n+1)
i |

∑
b∈B(n+1)

i

1

Lb
∥b− C

(n)
i (b)∥22 ≤ J (n)

(9)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
Iterations

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

NM
SE

MX4

MXFP4

VSQ4

NMSE vs Iterations during LO-BCQ
LO-BCQ: Block length=64, Num codebooks=4
LO-BCQ: Block length=64, Num codebooks=16
LO-BCQ: Block length=16, Num codebooks=4
LO-BCQ: Block length=16, Num codebooks=16

Figure 9: NMSE vs interations during LO-BCQ compared to other block quantization proposals

where J̃ (n+1) is the the quantization MSE after the vector clustering step at iteration n+ 1.

Next, during the codebook update step (6) at iteration n + 1, the per-cluster codebooks C(n) are
updated to C(n+1) by invoking the Lloyd-Max algorithm (Lloyd, 1982). We know that for any given
value distribution, the Lloyd-Max algorithm minimizes the quantization MSE. Therefore, for a given
vector cluster Bi we obtain the following result:

1

|B(n+1)
i |

∑
b∈B(n+1)

i

1

Lb
∥b − C

(n+1)
i (b)∥22 ≤ 1

|B(n+1)
i |

∑
b∈B(n+1)

i

1

Lb
∥b − C

(n)
i (b)∥22 (10)

The above equation states that quantizing the given block cluster Bi after updating the associated
codebook from C

(n)
i to C

(n+1)
i results in lower quantization MSE. Since this is true for all the block

clusters, we derive the following result:

J (n+1) =
1

Nc

Nc∑
i=1

1

|B(n+1)
i |

∑
b∈B(n+1)

i

1

Lb
∥b− C

(n+1)
i (b)∥22 ≤ J̃ (n+1)

(11)

Following (9) and (11), we find that the quantization MSE is non-increasing for each iteration, that
is, J (1) ≥ J (2) ≥ J (3) ≥ . . . ≥ J (M) where M is the maximum number of iterations. ■

Figure 9 shows the empirical convergence of LO-BCQ across several block lengths and number
of codebooks. Also, the MSE achieved by LO-BCQ is compared to baselines such as MXFP and
VSQ. As shown, LO-BCQ converges to a lower MSE than the baselines. Further, we achieve better
convergence for larger number of codebooks (Nc) and for a smaller block length (Lb), both of which
increase the bitwidth of BCQ (see Eq 3).

A.3 ADDITIONAL ACCURACY RESULTS

A.4 NUMBER FORMATS AND QUANTIZATION METHOD

A.4.1 INTEGER FORMAT

An n-bit signed integer (INT) is typically represented with a 2s-complement format (Yao et al.,
2022; Xiao et al., 2023; Dai et al., 2021), where the most significant bit denotes the sign.

A.4.2 FLOATING POINT FORMAT

An n-bit signed floating point (FP) number x comprises of a 1-bit sign (xsign), Bm-bit mantissa
(xmant) and Be-bit exponent (xexp) such that Bm +Be = n− 1. The associated constant exponent
bias (Ebias) is computed as (2Be−1 − 1). We denote this format as EBeMBm .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Lb → 8 4 2

LA

Nc 2 4 8 16 2 4 2

GPT3-1.3B (FP32 PPL = 9.98)
64 10.40 10.23 10.17 10.15 10.28 10.18 10.19
32 10.25 10.20 10.15 10.12 10.23 10.17 10.17
16 10.22 10.16 10.10 10.09 10.21 10.14 10.16

GPT3-8B (FP32 PPL = 7.38)
64 7.61 7.52 7.48 7.47 7.55 7.49 7.50
32 7.52 7.50 7.46 7.45 7.52 7.48 7.48
16 7.51 7.48 7.44 7.44 7.51 7.49 7.47

Table 6: Wikitext-103 perplexity across GPT3-1.3B and 8B models.

Lb → 8

LA

Nc 2 4 8 16

Llama2-7B (FP32 PPL = 5.06)
64 5.31 5.26 5.19 5.18
32 5.23 5.25 5.18 5.15
16 5.23 5.19 5.16 5.14

Nemotron4-15B (FP32 PPL = 5.87)
64 6.3 6.20 6.13 6.08
32 6.24 6.12 6.07 6.03
16 6.12 6.14 6.04 6.02

Nemotron4-340B (FP32 PPL = 3.48)
64 3.67 3.62 3.60 3.59
32 3.63 3.61 3.59 3.56
16 3.61 3.58 3.57 3.55

Table 7: Wikitext-103 perplexity compared to FP32 baseline in Llama2-7B and Nemotron4-15B,
340B models

Lb → 8 8

LA

Nc 2 4 8 16 2 4 8 16

Llama2-7B (FP32 Accuracy = 45.8%) Llama2-70B (FP32 Accuracy = 69.12%)
64 43.9 43.4 43.9 44.9 68.07 68.27 68.17 68.75
32 44.5 43.8 44.9 44.5 68.37 68.51 68.35 68.27
16 43.9 42.7 44.9 45 68.12 68.77 68.31 68.59
GPT3-22B (FP32 Accuracy = 38.75%) Nemotron4-15B (FP32 Accuracy = 64.3%)
64 36.71 38.85 38.13 38.92 63.17 62.36 63.72 64.09
32 37.95 38.69 39.45 38.34 64.05 62.30 63.8 64.33
16 38.88 38.80 38.31 38.92 63.22 63.51 63.93 64.43

Table 8: Accuracy on MMLU dataset across GPT3-22B, Llama2-7B, 70B and Nemotron4-15B
models.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Lb → 8 8

LA

Nc 2 4 8 16 2 4 8 16

Race (FP32 Accuracy = 37.51%) Boolq (FP32 Accuracy = 64.62%)
64 36.94 37.13 36.27 37.13 63.73 62.26 63.49 63.36
32 37.03 36.36 36.08 37.03 62.54 63.51 63.49 63.55
16 37.03 37.03 36.46 37.03 61.1 63.79 63.58 63.33

Winogrande (FP32 Accuracy = 58.01%) Piqa (FP32 Accuracy = 74.21%)
64 58.17 57.22 57.85 58.33 73.01 73.07 73.07 72.80
32 59.12 58.09 57.85 58.41 73.01 73.94 72.74 73.18
16 57.93 58.88 57.93 58.56 73.94 72.80 73.01 73.94

Table 9: Accuracy on LM evaluation harness tasks on GPT3-1.3B model.

Lb → 8 8

LA

Nc 2 4 8 16 2 4 8 16

Race (FP32 Accuracy = 41.34%) Boolq (FP32 Accuracy = 68.32%)
64 40.48 40.10 39.43 39.90 69.20 68.41 69.45 68.56
32 39.52 39.52 40.77 39.62 68.32 67.43 68.17 69.30
16 39.81 39.71 39.90 40.38 68.10 66.33 69.51 69.42

Winogrande (FP32 Accuracy = 67.88%) Piqa (FP32 Accuracy = 78.78%)
64 66.85 66.61 67.72 67.88 77.31 77.42 77.75 77.64
32 67.25 67.72 67.72 67.00 77.31 77.04 77.80 77.37
16 68.11 68.90 67.88 67.48 77.37 78.13 78.13 77.69

Table 10: Accuracy on LM evaluation harness tasks on GPT3-8B model.

Lb → 8 8

LA

Nc 2 4 8 16 2 4 8 16

Race (FP32 Accuracy = 40.67%) Boolq (FP32 Accuracy = 76.54%)
64 40.48 40.10 39.43 39.90 75.41 75.11 77.09 75.66
32 39.52 39.52 40.77 39.62 76.02 76.02 75.96 75.35
16 39.81 39.71 39.90 40.38 75.05 73.82 75.72 76.09

Winogrande (FP32 Accuracy = 70.64%) Piqa (FP32 Accuracy = 79.16%)
64 69.14 70.17 70.17 70.56 78.24 79.00 78.62 78.73
32 70.96 69.69 71.27 69.30 78.56 79.49 79.16 78.89
16 71.03 69.53 69.69 70.40 78.13 79.16 79.00 79.00

Table 11: Accuracy on LM evaluation harness tasks on GPT3-22B model.

Lb → 8 8

LA

Nc 2 4 8 16 2 4 8 16

Race (FP32 Accuracy = 44.4%) Boolq (FP32 Accuracy = 79.29%)
64 42.49 42.51 42.58 43.45 77.58 77.37 77.43 78.1
32 43.35 42.49 43.64 43.73 77.86 75.32 77.28 77.86
16 44.21 44.21 43.64 42.97 78.65 77 76.94 77.98

Winogrande (FP32 Accuracy = 69.38%) Piqa (FP32 Accuracy = 78.07%)
64 68.9 68.43 69.77 68.19 77.09 76.82 77.09 77.86
32 69.38 68.51 68.82 68.90 78.07 76.71 78.07 77.86
16 69.53 67.09 69.38 68.90 77.37 77.8 77.91 77.69

Table 12: Accuracy on LM evaluation harness tasks on Llama2-7B model.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Lb → 8 8

LA

Nc 2 4 8 16 2 4 8 16

Race (FP32 Accuracy = 48.8%) Boolq (FP32 Accuracy = 85.23%)
64 49.00 49.00 49.28 48.71 82.82 84.28 84.03 84.25
32 49.57 48.52 48.33 49.28 83.85 84.46 84.31 84.93
16 49.85 49.09 49.28 48.99 85.11 84.46 84.61 83.94

Winogrande (FP32 Accuracy = 79.95%) Piqa (FP32 Accuracy = 81.56%)
64 78.77 78.45 78.37 79.16 81.45 80.69 81.45 81.5
32 78.45 79.01 78.69 80.66 81.56 80.58 81.18 81.34
16 79.95 79.56 79.79 79.72 81.28 81.66 81.28 80.96

Table 13: Accuracy on LM evaluation harness tasks on Llama2-70B model.

A.4.3 MX FORMAT

The MX format proposed in (Rouhani et al., 2023a) introduces the concept of sub-block shifting. For
every two scalar elements of b-bits each, there is a shared exponent bit. The value of this exponent
bit is determined through an empirical analysis that targets minimizing quantization MSE. We note
that the FP format E1Mb is strictly better than MX from an accuracy perspective since it allocates
a dedicated exponent bit to each scalar as opposed to sharing it across two scalars. Therefore, we
conservatively bound the accuracy of a b + 2-bit signed MX format with that of a E1Mb format in
our comparisons. For instance, we use E1M2 format as a proxy for MX4.

A.4.4 QUANTIZATION SCHEME

A quantization scheme dictates how a given unquantized tensor is converted to its quantized rep-
resentation. We consider FP formats for the purpose of illustration. Given an unquantized tensor
X and an FP format EBe

MBm
, we first, we compute the quantization scale factor sX that maps

the maximum absolute value of X to the maximum quantization level of the EBe
MBm

format as
follows:

sX =
max(|X|)

max(EBeMBm)
(12)

In the above equation, | · | denotes the absolute value function.

Next, we scale X by sX and quantize it to X̂ by rounding it to the nearest quantization level of
EBe

MBm
as:

X̂ = round-to-nearest
(
X

sX
, EBeMBm

)
(13)

We perform dynamic max-scaled quantization (Wu et al., 2020b), where the scale factor s for acti-
vations is dynamically computed during runtime.

A.5 VECTOR SCALED QUANTIZATION

Figure 10: Vectorwise decomposi-
tion for per-vector scaled quantization
(VSQ (Dai et al., 2021)).

During VSQ (Dai et al., 2021), the operand tensors are de-
composed into 1D vectors in a hardware friendly manner as
shown in Figure 10. Since the decomposed tensors are used
as operands in matrix multiplications during inference, it is
beneficial to perform this decomposition along the reduction
dimension of the multiplication. The vectorwise quantization
is performed similar to tensorwise quantization described in
Equations 12 and 13, where a scale factor sv is required for
each vector v that maps the maximum absolute value of that
vector to the maximum quantization level. While smaller vec-
tor lengths can lead to larger accuracy gains, the associated

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

memory and computational overheads due to the per-vector
scale factors increases. To alleviate these overheads, VSQ (Dai
et al., 2021) proposed a second level quantization of the per-vector scale factors to unsigned integers,
while MX (Rouhani et al., 2023b) quantizes them to integer powers of 2 (denoted as 2INT).

19

	Introduction
	Related work
	Contributions

	Block Clustered Quantiaztion (BCQ)
	Mathematical Definition
	Locally optimal block clustered quantization (LO-BCQ)
	Convergence and Initialization
	Block formats for LO-BCQ

	Practical implementation of LO-BCQ for LLM Inference
	Experimental Evaluation of LO-BCQ
	Experimental Setup
	Accuracy studies on downstream tasks
	Perplexity on Wikitext-103
	Accuracy on LM evaluation harness tasks
	Accuracy on MMLU tasks
	Accuracy studies on Nemotron4-15B

	Ablation Studies

	Conclusion
	Appendix
	Lloyd-Max Algorithm
	Proof of Local Optimality of LO-BCQ
	Additional Accuracy Results
	Number Formats and Quantization Method
	Integer Format
	Floating Point Format
	MX Format
	Quantization Scheme

	Vector Scaled Quantization

