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ABSTRACT

Post-training quantization (PTQ) is a promising approach to reducing the stor-
age and computational requirements of large language models (LLMs) without
additional training cost. Recent PTQ studies have primarily focused on quantiz-
ing only weights to sub-8-bits while maintaining activations at 8-bits or higher.
Accurate sub-8-bit quantization for both weights and activations without rely-
ing on quantization-aware training remains a significant challenge. We propose
a novel quantization method called block clustered quantization (BCQ) wherein
each operand tensor is decomposed into blocks (a block is a group of contigu-
ous scalars), blocks are clustered based on their statistics, and a dedicated optimal
quantization codebook is designed for each cluster. As a specific embodiment of
this approach, we propose a PTQ algorithm called Locally-Optimal BCQ (LO-
BCQ) that iterates between the steps of block clustering and codebook design to
greedily minimize the quantization mean squared error. When weight and acti-
vation scalars are encoded to W4A4 format (with 0.5-bits of overhead for storing
scaling factors and codebook selectors), we advance the current state-of-the-art by
demonstrating < 1% loss in inference accuracy across several LLMs and down-
stream tasks.

1 INTRODUCTION
Quantization is a highly effective and widely adopted technique for reducing the computational and
storage demands of Large Language Model (LLM) inference. While recent efforts (Wang et al.,
2023; Tseng et al., 2024; Egiazarian et al., 2024; Frantar et al., 2023; Lin et al., 2023) have largely
focused on weight-only quantization targeting single-batch inference, activation quantization be-
comes critical for improving throughput during multi-batch inference scenarios such as cloud-scale
deployments serving multiple users. Previous works (Yao et al., 2023; Dai et al., 2021) on sub-8-bit
quantization of both weights and activations have relied on quantization-aware training (QAT) to re-
cover accuracy loss during inference. However, the prohibitive cost of training and unavailability of
training data in recent LLMs has made QAT increasingly difficult and motivated recent post-training
quantization (PTQ) efforts (Xiao et al., 2023; Rouhani et al., 2023a; Wu et al., 2023).

Block quantization techniques where each block, typically consisting of 16-to-32-scalar elements,
has its own scaling factor (Rouhani et al., 2023a; Dai et al., 2021) achieve the current state-of-the-art
accuracy for sub-8-bit quantization of both weights and activations. While these works deploy the
same quantizer (number-format) across blocks, we hypothesize that one way to achieve lower quan-
tization mean squared error (MSE) would be to design a dedicated codebook for each block through
an MSE-optimal algorithm such as Lloyd (1982). However, such a design would be expensive in
terms of computational effort and memory footprint. Therefore, we propose to amortize this cost
via codebook sharing among clusters of blocks. Our method is called block clustered quantization
(BCQ) and is comprised of two steps: (1) a clustering step applied to operand blocks, and (2) a
quantization step individually applied to operand scalars based on their cluster membership.

We propose an iterative PTQ algorithm called LO-BCQ (locally optimal block clustered quantiza-
tion) that jointly optimizes the block clustering and the per-cluster codebook. We prove that LO-
BCQ greedily minimizes quantization MSE across iterations by performing locally optimal steps at
each iteration. With the optimal codebooks derived through LO-BCQ, we demonstrate state-of-the-
art bitwidth-vs-accuracy across a suite of GPT3, Llama2 and Nemotron-4 models on a wide range
of downstream tasks. For all our results, we employ PTQ on frozen model parameters.
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1.1 RELATED WORK

LO-BCQ (ours)
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(weights and activations)
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Atom

Figure 1: Wikitext perplexity loss relative to unquan-
tized baseline vs compression factor of LO-BCQ com-
pared to previous LLM quantization proposals. Here,
compression factor is the cumulative number of bits
in the weight and activation tensors1 that need to pro-
cessed in each layer relative to an unquantized BF16
baseline.

Recent sub-4-bit quantization proposals such as
(Wang et al., 2023; Tseng et al., 2024; Egiazar-
ian et al., 2024) explore extreme weight quanti-
zation while maintaining activations at 8-bit or
higher precision. In particular, BitNet (Wang
et al., 2023) proposed W1A8 quantization re-
sulting in an aggregate (weights + activations)
bitwidth comparable to LO-BCQ. However,
BitNet demands training from scratch and de-
spite this large training cost suffers significant
loss in accuracy in downstream tasks. QuiP#
(Tseng et al., 2024) and AQLM (Egiazar-
ian et al., 2024) propose W2A8 quantization
through codebooks. These methods explore
vector and additive codebook quantization, re-
spectively, and rely on a significantly large
number of codebooks (of the order 216) for
quantization, suffering large decoding costs. In
contrast, LO-BCQ explores scalar quantization
methods for W4A4 quantization and achieves
< 1% accuracy loss in downstream tasks with
no more than 16 codebooks with 16 entries
each. W4A8 quantization has been proposed in
(Frantar et al., 2023; Bai et al., 2021; Yao et al.,
2022) involving weight updates to preserve ac-
curacy and in (Lin et al., 2023; van Baalen et al., 2024) without any weight updates (PTQ). Further,
(Guo et al., 2023; Wei et al., 2023; Kim et al., 2023a) perform sub-8-bit weight quantization by sup-
pressing outliers. In contrast, LO-BCQ explores sub-8-bit activation quantization alongside weight
quantization.

Block quantization has emerged as an effective technique for quantizing both weights and activa-
tions, as demonstrated in VSQ (Dai et al., 2021), FineQuant (Kim et al., 2023b), ZeroQuant-V2 (Yao
et al., 2023), Atom (Zhao et al., 2024) through integer number formats, and in (Zhang et al., 2023),
ZeroQuant-FP (Wu et al., 2023), MX (Rouhani et al., 2023a) and MXFP (Rouhani et al., 2023b)
through floating-point formats. Moreover, sub-block scaling techniques explored in MXFP and
BSFP (Lo et al., 2023) demonstrate improvements over standard block quantization. In this work,
we perform clustering of operand blocks and share MSE-optimal codebook quantizers among the
scalars of each cluster. Minimizing quantization MSE using the 1D (Lloyd-Max) and 2D Kmeans
clustering has been explored in (Han et al., 2016; Cho et al., 2021; 2023) and (van Baalen et al.,
2024), respectively. In contrast, LO-BCQ iteratively optimizes block clustering alongside Lloyd-
Max based optimal scalar quantization of block clusters.

Figure 1 compares the perplexity loss vs compression factor of LO-BCQ to other quantization pro-
posals. Here, the perplexity loss is relative to an unquantized baseline on the Wikitext-103 dataset for
LO-BCQ, MX and MXFP4, and on the Wikitext2 for others. Further, the compression factor refers
to the total number of bits in the weight and activation1 tensors (computed as |A|BA + |W |BW

following Sakr et al. (2017))2 that need to be processed in each layer relative to an unquantized
BF16 baseline. Depending on the target application, weight or activation quantization may be more
important. For the sake of generality, we consider them to be equally important in our metric. As
shown in Figure 1, LO-BCQ advances the current state-of-the-art by achieving the best trade-off
between perplexity and compression.

1.2 CONTRIBUTIONS

The main contributions of this work are as follows:

1The size of activations is measured for the prefill phase with a context length of 4096 and batch size of 1.
2the notation |X| refers to the total number of scalars in tensor X , and BX is the bitwidth of X .
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• We propose BCQ, a block clustered quantization framework that performs per-block quantiza-
tion by first clustering operand blocks and then quantizing each block cluster using a dedicated
codebook.

• We derive a locally optimal version of BCQ called LO-BCQ that iteratively optimizes block
clustering and per-cluster quantization to provably minimize quantization MSE for any value
distribution. We demonstrate that LO-BCQ is applicable to quantization of both weights and
activations of LLMs.

• We propose block formats for LO-BCQ where each operand block is associated with an index
that maps it to one of a set of codebooks, and a group of blocks (called a block array) share a
quantization scale-factor. We vary the length of blocks, block arrays and the number of codebooks
to study different configurations of LO-BCQ.

• When each of the weight and activation scalars are quantized to 4-bits (effective bitwidth includ-
ing per-block scale-factors etc. is 4.5 to 4.625 bits), we achieve < 0.1 loss in perplexity across
GPT3 (1.3B, 8B and 22B) and Llama2 (7B and 70B) models and < 0.2 loss in the Nemotron4-
15B model, respectively, on the Wikitext-103 dataset. Further, we achieve < 1% loss in average
accuracy across downstream tasks such as MMLU and LM evaluation harness.

To the best of our knowledge, we are the first to achieve < 1% loss in downstream task accuracy
when both LLM activations and weights are quantized to 4-bits during PTQ ( no finetuning).

2 BLOCK CLUSTERED QUANTIAZTION (BCQ)
In this section, we introduce the concept of block clustered quantization (BCQ) and present the
locally optimal block clustered quantization (LO-BCQ) algorithm that minimizes quantization MSE
for any operand. We also introduce block formats to support various LO-BCQ configurations.

2.1 MATHEMATICAL DEFINITION

Given a tensor X composed of LX scalar elements, we denote its blockwise decomposition as
{bi}Nb

i=1, where bi’s are blocks of Lb consecutive elements in X , and the number of blocks is
given by Nb = LX/Lb. Block clustered quantization (see Figure 2) uses a family of Nc codebooks
C = {Ci}Nc

i=1, where Nc << Nb, and clusters the blocks into Nc clusters such that each is associated
with one of the Nc codebooks. This procedure is equivalent to creating a mapping function f from
a block b to a cluster index in {1, . . . , Nc}. Quantization (or encoding) proceeds in a two-step
process: (i) mapping to assign a cluster index to a given block, and (ii) quantization of its scalars
using the codebook corresponding to that index. Formally, denoting b̂ as the result of block clustered
quantization of a given block b in X , this procedure is described as:

b̂ = Cf(b)(b) (1)

where C is a 2B-entry codebook that maps each scalar in b to a B-bit index to the closest represen-
tation. Each quantized scalar of block b is obtained as:

b̂[l] = arg min
k=1...2B

|b[l]− Cf(b)[k]|2 (2)

where the notation x[y] is used to describe the yth element in an arbitrary block x. That is, each
scalar in b̂ is an index to the closest entry by value in Cf(b).

Once mapped by invoking f , we store the log2(Nc)-bit codebook selector for each block. Therefore,
the effective bit-width of each quantized scalar is given by:

BitwidthBCQ = B + log2(Nc)/Lb (3)

2.2 LOCALLY OPTIMAL BLOCK CLUSTERED QUANTIZATION (LO-BCQ)
Our goal is to construct a family of codebooks C resulting in minimal quantization MSE during block
clustered quantization. Figure 3 presents an algorithm called Locally Optimal BCQ (LO-BCQ) to
achieve this goal. LO-BCQ consists of two main steps: (i) updating block clusters with fixed per-
cluster codebooks, and (ii) updating per-cluster codebooks with fixed block clusters. This algorithm
begins at iteration 0 (initial condition) with a set of Nc initial codebooks {C(0)

1 , . . . , C
(0)
Nc
} and

unquantized operand blocks as inputs. During step 1 of iteration n, with the per-cluster codebooks

3
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Figure 2: Block clustered quantization: Each operand block is first mapped to a cluster based on a mapping
function and then each scalar of that block is encoded as a B-bit index to the closest entry in the 2B-entry
codebook associated with that cluster.
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Figure 3: Overview of LO-BCQ algorithm: The algorithm starts with a set of initial per-cluster codebooks,
and then iteratively performs two steps (i) fix per-cluster codebooks and update block clusters and (ii) fix block
clusters and update per-cluster codebooks.

from the previous iteration {C(n−1)
1 , . . . C

(n−1)
Nc

}, we perform block clustering by mapping each
block to the codebook that achieves minimum quantization MSE. That is, we use the following
mapping function:

f (n)(b) = arg min
i=1...Nc

∥b− C
(n−1)
i (b)∥22 (4)

Since each codebook Ci is associated with a cluster i, mapping to Ci is equivalent to mapping to
cluster i. Specifically, at iteration n, we construct Nc block clusters B(n) = {B(n)i }

Nc
i=1, where each

cluster is defined as:

B(n)i =
{
bj
∣∣f (n)(bj) = i for j ∈ {1 . . . Nb}

}
(5)

In step 2, given the updated block clusters from step 1 and quantization bitwidth B, we apply
the Lloyd-Max algorithm on each block cluster to derive optimal 2B-entry per-cluster codebooks
{C(n)

1 , . . . C
(n)
Nc
}:

C
(n)
i ← LloydMax(B(n)i , B) (6)

where the Lloyd-Max algorithm (see A.1, Lloyd-Max is equivalent to K-means clustering on 1-
dimensional data) is invoked on the data of the corresponding cluster B(n)i .

We iterate steps 1 and 2 until convergence or a pre-determined number of iterations M . Empirically,
we find that LO-BCQ converges at M <= 100. Since each of these steps are locally optimal, we
find that the quantization MSE is non-increasing for each iteration. As a result, for any given value
distribution, our LO-BCQ algorithm greedily minimizes quantization MSE. A theoretical proof of
this claim is provided in section A.2.

2.3 CONVERGENCE AND INITIALIZATION

Prior to clustering, we find that normalizing the operand blocks improves convergence. However, a
block-wise normalization factor (or scaling factor) induces computational and memory overheads.
Therefore, we perform a second-level quantization of this scaling factor to Bs-bits and share it across

4
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Figure 4: Block format for LO-BCQ. Each operand block is associated with a log2(Nc)-bit selector that
selects the best codebook and each scalar is a B-bit index that represents the closest value in the selected
codebook. Each block array A is associated with a Bs-bit scale factor.

an array of blocks of length LA. Furthermore, better convergence is observed for larger number of
codebooks (Nc) and for a smaller block length (Lb). Such trends increase the bitwidth of BCQ in
equation 3, meaning that LO-BCQ has an inherent trade-off between accuracy and complexity.

We initialize the per-cluster codebooks {C(0)
1 , . . . , C

(0)
Nc
} based on K-means++ initialization algo-

rithm which maximizes pairwise euclidean distances. In our experiments, we found such initializa-
tion to lead to significantly better convergence than a random one. Further, in step 2 of each iteration,
when Lloyd-Max algorithm is invoked in equation 6, we set the initial centroids corresponding to
the codebooks identified in the previous iteration.

2.4 BLOCK FORMATS FOR LO-BCQ
Figure 4 illustrates the LO-BCQ block format where each operand block of length Lb is associated
with a log2(Nc)-bit index (result of the mapping function f in 4) that selects the best codebook for
that block. Each codebook is composed of 2B entries and each scalar in the operand block is a B-bit
index that represents the closest value in the selected codebook. Each entry in the codebook is a
Bc-bit integer (Bc > B). Finally, each block array A is associated with a scale-factor sA. This
scale-factor and its quantization ŝA to Bs-bits are computed as:

sA =
(
2Bc−1 − 1

)
/max(abs(A)); ŝA = QF {sA/sX , Bs} (7)

where sX is a per-tensor scale-factor that is shared by the entire operand tensor X and QF denotes
a quantizer that quantizes a given operand to format F (see section A.4 for more details on number
formats and quantization method).

The bitwidth of LO-BCQ is computed as:

BitwidthLO−BCQ = B + log2(Nc)/Lb +Bs/LA +Nc ∗ 2B ∗Bc/LX (8)

Table 1: Various LO-BCQ configurations and
their bitwidths.

Lb = 8 Lb = 8 Lb = 2

LA

Nc 2 4 8 16 2 4 2

64 4.25 4.375 4.5 4.625 4.375 4.625 4.625
32 4.375 4.5 4.625 4.75 4.5 4.75 4.75
16 4.625 4.75 4.875 5 4.75 5 5

where the term Nc ∗ 2B ∗Bc/LX is usually negli-
gible since the memory footprint of codebooks (nu-
merator) is negligible compared to the size of the
operand tensor (denominator). Indeed, we empha-
size that LO-BCQ shares a set of Nc <= 16 code-
books among the scalars of the entire tensor, result-
ing in negligible memory overhead for storing the
codebooks.

In this paper, we assume Bs = 8 and the data format
F is floating point E4M3. Further, each codebook
entry is a 6-bit integer (i.e, Bc = 6) and we vary Nc between 2 and 16, Lb between 2 and 8, and LA

between 16 and 64 to obtain various LO-BCQ configurations. We list the configurations and their
corresponding bitwidths in Table 1.

Figure 5 compares our 4-bit LO-BCQ block format to MX (Rouhani et al., 2023a). As shown, both
LO-BCQ and MX decompose a given operand tensor into block arrays and each block array into
blocks. Similar to MX, we find that per-block quantization (Lb < LA) leads to better accuracy due
to increased flexibility. While MX achieves this through per-block 1-bit micro-scales, we associate
a dedicated codebook to each block through a per-block codebook selector. Further, MX quantizes
the per-block array scale-factor to E8M0 format without per-tensor scaling. In contrast during LO-
BCQ, we find that per-tensor scaling combined with quantization of per-block array scale-factor to
E4M3 format results in superior inference accuracy across models.
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Figure 5: Comparing LO-BCQ to MX format.
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Figure 6: LO-VCQ codebooks compared to 4-bit floating point formats and layerwise normalized MSE
(NMSE). We compute NMSE for the weights of first 20 GEMM layers (QKV, projection and fully-connected)
of Llama2-7B model. Note that we use the NMSE for better visualization across varying layer data.

3 PRACTICAL IMPLEMENTATION OF LO-BCQ FOR LLM INFERENCE
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Figure 7: Quantization NMSE acheived by
universally calibrated codebooks compared
to that calibrated layerwise in Llama2-7B in-
puts of first 30 GEMM (QKV, projection and
fully-connected) layers.

In this section, we discuss specifics of a practical imple-
mentation of LO-BCQ for inference. Specifically, we first
describe the codebook design process, followed by the
practical mechanism for activation quantization on-the-
fly.

We pre-calibrate the LO-BCQ codebooks for both
weights and activations offline (prior to inference). Since
weights are known, their own data can be used as calibra-
tion set. On the other hand, activations are dynamic and
vary for every input; thus, as per common quantization
strategies (Wu et al., 2020a; Sakr et al., 2022), we employ
a randomly sampled calibration set from training data in
order to build activation codebooks. Once codebooks are
calibrated, we also quantize the codewords to 6-bit inte-
gers to further improve the energy efficiency of GEMM
hardware. The choice of 6-bit was based on empirical ob-
servations of accuracy being maintained with LA <= 64.

Figure 6 compares the codebooks identified by the LO-
BCQ algorithm in a GEMM layer of a GPT3-126M
model to 4-bit floating point formats such as E1M2,
E2M1 and E3M0. As shown, the LO-BCQ codebooks outperform other block formats by capturing
the arbitrary and non-uniform patterns in the value distributions of LLM operands and allowing each
block to map to the codebook that best represents it. The mapping of operand blocks to the best of
available codebooks can be conceptually compared to prior works that have explored mixed-format
quantization such as (Tambe et al., 2020; Zadeh et al., 2022).
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LO-BCQ provides the quantization operation the flexibility to assign data to any of the sign posts
(codewords) in Figure 6. The union of these sign posts covers the real line with a resolution that
is clearly superior to that of a 4-bit quantizer. Therefore, we hypothesized that these codebooks
need not be calibrated on a per-tensor (layerwise) basis, but rather, it is likely that they would be
universally appropriate to quantize any tensor, at any layer, for any model. To verify this hypothesis,
we calibrated a set of codebooks on data sampled from GPT3 models on Wikitext-103 dataset and
froze it. We find that these codebooks achieve comparable quantization MSE compared to those
calibrated individually on each operand as shown in Figure 7 which verifies our hypothesis. In our
subsequent results, we always employ universally calibrated codebooks.

Finally, we note that in a real implementation, activations can be efficiently quantized on the fly.
Indeed, LO-BCQ involves computing the following values – per-block array scale-factor sA, per-
block codebook selector sb which is the result of the mapping function f (Eq. 4), and the index to
closest representation b̂ in the selected codebook (Eq. 2). Note that the computation of sA simply
corresponds to a max-reduction (followed by quantization) over the block array, whose size is small
(<= 64). Importantly, with LO-BCQ, the size of codebooks (<= 0.19KB) is small enough such
that it easily fits within the shared memory of modern GPUs. This is an important distinction with
other works on codebook quantization (Tseng et al., 2024; Egiazarian et al., 2024). As such, sb and
b̂ can be concurrently computed in a thread-local sub-routine within a custom CUDA kernel. The
locality of computation circumvents the need for any synchronization of streaming multiprocessors.

4 EXPERIMENTAL EVALUATION OF LO-BCQ
In this section, we present our accuracy studies on downstream tasks comparing LO-BCQ to var-
ious other block quantization proposals. Next, we present ablation studies on varying LO-BCQ
configurations and our calibration methodology, namely universal vs local.

4.1 EXPERIMENTAL SETUP

We perform accuracy studies on GPT3 (Shoeybi et al., 2020) (1.3B, 8B and 22B), Llama2 (Tou-
vron et al., 2023) (7B and 70B) and Nemotron4-15B (Parmar et al., 2024) models. We evaluate
PTQ inference accuracy on several downstream tasks including Wikitext-103 (Merity et al., 2016),
MMLU (Hendrycks et al., 2021) and Eleuther AI’s LM evaluation harness (Gao et al., 2024). In
LM evaluation harness, we infer on Race (RA), Boolq (BQ), Hellaswag (HS), Piqa (PQ) and Wino-
grande (WG) tasks and in the MMLU dataset we evaluate all tasks. In all these models, we quantize
GEMM layers including Query, Key and Value computations, Projection layer after self attention
and the fully-connected layers.

We apply the LO-BCQ algorithm to the operands before inference and pre-calibrate the optimal
codebooks. In our experiments, we perform this calibration on one batch of activations from the
training data of the GPT3-126M model and the Wikitext-103 dataset. We freeze these optimal
codebooks across operands and models during all of our accuracy evaluations. Further, we represent
each entry of the codebooks as a 6-bit integer. That is, once decoded, the inner product computations
with a block array during inference can be performed at 6-bit precision3. Furthermore, we perform
ablation studies on the LO-BCQ configurations listed in Table1 with quantization bitwidth ranging
from 4.25-bits to 5-bits. We denote the LO-BCQ configurations by the tuple {LA, Lb, Nc}.
We compare LO-BCQ against previous block quantization works that have explored PTQ of both
weights and activations such as VSQ (Dai et al., 2021), MX (Rouhani et al., 2023a) and MXFP
(Rouhani et al., 2023b). VSQ and MX perform per-block quantization of 16-element blocks with
an 8-bit scale-factor per-block resulting in an effective bit-width of 4.5 bits. VSQ quantizes each
scalar to INT4 format and per-block scale-factor to INT8 format. MX performs micro-scaling at
per-block level with a 1-bit exponent shared by 2-element blocks. Each scalar is quantized to INT3.
In this paper, we overestimate accuracy of MX by allowing each scalar to have its own exponent,
resulting in INT4 precision. The per-block array scale factors of MX are quantized to E8M0 format.
Therefore, our evaluation results in a bitwidth of 4.5 bits. Further, MXFP explores 32-element
blocks with 8-bit scale-factor per block resulting in an effective bitwidth of 4.25 bits. The number
format of scalars and per-block scale factors are E2M1 and E8M0, respectively. The quantization
methodology with these block formats is detailed in A.4.4.

3In our experiments in this paper, we emulate (”fake”) quantization by representing the quantized values in
BF16 format. Therefore, the computations are performed in BF16 precision.
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Additionally, we compare weight-only (W4A8) LO-BCQ to other weight-only quantization propos-
als of equivalent bitwidth such as GPTQ (Frantar et al., 2023), AWQ (Lin et al., 2023), OmniQ
(Shao et al., 2024) and QuiP# (Tseng et al., 2024). For this comparison, we choose a block-array
length of 128 for LO-BCQ, matching the group-size of other works.

4.2 ACCURACY STUDIES ON DOWNSTREAM TASKS

Table 2 presents our comprehensive accuracy evaluations across the Llama2 and GPT3 models, on
the Wikitext-103, LM evaluation harness and MMLU datasets. For convenience, we present select
LO-BCQ configurations in this table. See A for accuracy studies on other configurations.

4.2.1 PERPLEXITY ON WIKITEXT-103

Across large models such as Llama2-70B and GPT3-22B, 4.5-bit LO-BCQ achieves < 0.1 loss in
perplexity compared to the unquantized baseline on the Wikitext-103 dataset. Further, LO-BCQ
achieves significant benefits compared to the baselines of equivalent bit-widths. When the quanti-
zation bitwidth is 4.5-bits, LO-BCQ achieves an average improvement of 0.9 and 0.76 in perplexity
compared to VSQ and MX, respectively, and 1.19 average improvement with 4.25-bits compared
to MXFP across models. We achieve these improvements during PTQ, i.e., without any additional
training or finetuning.

MX, MXFP and VSQ perform per-block quantization by associating a scale-factor to each block
(or a block array) and with a single number format (quantizer) across blocks. On the other hand, in
addition to per-block array scaling, LO-BCQ allows a block to flexibly map to a codebook that best
represents it from a set of codebooks. This flexibility allows LO-BCQ to achieve better perplexity.
Furthermore, we find that with a larger quantization bitwidth, LO-BCQ achieves better perplexity
across models as expected.

Further, the number format of per-block (or block array) scale-factor has a significant impact on
accuracy. VSQ is unable to sufficiently capture the range of activations with its INT8 scale-factors
as observed in Llama2-7B, while it outperforms the E8M0 scale-factors of MX in GPT3-22B due
to better resolution when representing large values. Across various models, we find that the E4M3
format of LO-BCQ provides sufficient range and resolution to represent the scale-factors.

4.2.2 ACCURACY ON LM EVALUATION HARNESS TASKS

Across 0-shot LM evaluation harness tasks LO-BCQ shows significant improvement in average ac-
curacy compared to MX, MXFP and VSQ at equivalent bitwidth. Further, across models during
4.5-bit quantization, LO-BCQ achieves < 1% loss in average accuracy compared to the respective
unquantized baselines. When the bitwidth of LO-BCQ is increased by varying its configuration,
we find that the average accuracy generally increases albeit with a few exceptions. Although these
variations are small (< 0.5%), we believe that they arise due to the universal calibration of code-
books. Our codebooks are calibrated on a batch of training data from the Wikitext-103 dataset and
the GPT3-126M model and remain frozen across all datasets and models.

4.2.3 ACCURACY ON MMLU TASKS

Similarly, in 5-shot MMLU tasks LO-BCQ achieves < 1% loss in average accuracy with 4.5-bits
per scalar compared to respective unquantized baselines across GPT3-22B and Llama2-70B models.
Further, LO-BCQ achieves a significantly better accuracy compared to all of our block quantization
baselines such as VSQ, MX and MXFP4 at equivalent bitwidth. Across Llama2 models, LO-BCQ
with a smaller bitwidth (4.25-bits) outperforms VSQ and MX4 with a comparatively larger bitwidth
(4.5-bits). While the 0.5-bit overhead in VSQ and MX4 are used on per-block array scale-factors, the
0.25-bit overhead of LO-BCQ is shared between scale-factors and codebook selectors. Therefore,
the superior accuracy of LO-BCQ can be attributed to the better representation by selecting the best
codebook for each block.

4.2.4 ACCURACY STUDIES ON NEMOTRON4-15B

Table 3a lists the perplexity achieved by the Nemotron4-15B model quantized by LO-BCQ on
Wikitext-103 dataset and compares it to various baselines. When both weights and activations are
quantized to 4.75-bits, LO-BCQ achieves 0.16 loss in perplexity compared to unquantized baseline.
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Table 2: PTQ Perplexity (lower is better) on Wikitext-103 dataset and downstream task accuracy (higher is
better) with Llama2 and GPT3 models. We denote the LO-BCQ configurations by the tuple {LA, Lb, Nc} =
{Length of block array, Length of block, Number of codebooks}.

Method Bitwidth Wiki3 LM evaluation Harness (Accuracy %, 0-shot) MMLU (5-shot)
PPL (∆) RA BQ WG PQ HS Avg (∆ %) Avg (∆ %)

Llama2-7B

FP32 32 5.06 44.4 79.29 69.38 78.07 57.10 65.65 45.8
MX4 4.5 5.73 (0.67) 41.43 73.98 66.22 77.04 55.19 62.77 (2.88) 41.38 (4.42)
VSQ 4.5 835 (829) 31.39 65.75 55.49 67.30 43.51 52.69 (12.96) 26.48 (19.3)

MXFP4 4.25 5.76 (0.70) 41.34 74.00 67.48 77.53 54.22 62.91 (2.74) 37.64 (8.16)
LO-BCQ {64, 8, 2} 4.25 5.31 (0.25) 42.49 77.58 68.90 77.09 55.93 64.40 (1.25) 43.90 (1.90)
LO-BCQ {64, 8, 8} 4.5 5.19 (0.13) 42.58 77.43 69.77 77.09 56.51 64.68 (0.97) 43.90 (1.90)

LO-BCQ {32, 8, 16} 4.75 5.15 (0.09) 43.73 77.86 68.90 77.86 56.52 64.97 (0.68) 44.50 (1.30)

Llama2-70B

FP32 32 3.14 48.8 85.23 79.95 81.56 65.27 72.16 69.12
MX4 4.5 3.58 (0.44) 48.04 82.41 76.40 80.58 63.24 70.13 (2.03) 65.73 (3.39)
VSQ 4.5 4.96 (1.82) 47.85 82.29 77.27 79.82 61.40 69.73 (2.43) 62.46 (6.66)

MXFP4 4.25 3.69 (0.55) 47.75 83.06 76.32 80.58 63.24 70.19 (1.97) 66.16 (2.96)
LO-BCQ {64, 8, 2} 4.25 3.35 (0.21) 49.0 82.82 78.77 81.45 64.21 71.25 (0.91) 68.07 (1.05)
LO-BCQ {64, 8, 8} 4.5 3.23 (0.09) 49.28 84.03 78.37 81.45 64.76 71.58 (0.58) 68.17 (0.95)

LO-BCQ {32, 8, 16} 4.75 3.20 (0.06) 49.28 84.93 80.66 81.34 65.18 72.28 (+0.12) 68.27 (0.85)
GPT3-1.3B

FP32 32 9.98 37.51 64.62 58.01 74.21 43.51 55.57 24.20
MX4 4.5 11.33 (1.35) 35.22 54.31 57.38 70.78 40.58 51.65 (3.92) 24.04
VSQ 4.5 10.83 (0.85) 35.98 62.60 59.59 71.27 39.98 53.88 (1.69) 25.89

MXFP4 4.25 11.04 (1.06) 36.56 61.68 56.75 71.65 40.66 53.46 (2.11) 24.87
LO-BCQ {64, 8, 2} 4.25 10.40 (0.42) 36.94 63.73 58.17 73.01 42.10 54.79 (0.78) 24.80
LO-BCQ {64, 8, 8} 4.5 10.17 (0.19) 36.27 63.49 57.85 73.07 42.73 54.68 (0.89) 24.50

LO-BCQ {32, 8, 16} 4.75 10.12 (0.14) 37.03 63.33 58.56 73.94 43.20 55.07 (0.50) 24.80

GPT3-8B

FP32 32 7.38 41.34 68.32 67.88 78.78 54.16 62.10 25.50
MX4 4.5 8.15 (0.77) 38.28 66.27 65.11 75.63 50.77 59.21 (2.89) 24.51
VSQ 4.5 8.17 (0.79) 40.86 63.91 66.93 76.28 51.38 59.87 (2.23) 27.57

MXFP4 4.25 9.12 (1.74) 39.71 65.35 67.01 76.12 50.22 59.68 (2.42) 24.93
LO-BCQ {64, 8, 2} 4.25 7.61 (0.23) 40.48 69.20 66.85 77.31 53.06 61.38 (0.72) 24.53
LO-BCQ {64, 8, 8} 4.5 7.48 (0.1) 39.43 69.45 67.72 77.75 53.71 61.61 (0.49) 26.04

LO-BCQ {32, 8, 16} 4.75 7.45 (0.07) 39.62 69.30 67.00 77.37 53.51 61.36 (0.74) 25.32

GPT3-22B

FP32 32 6.54 40.67 76.54 70.64 79.16 57.11 64.82 38.75
MX4 4.5 7.69 (1.15) 39.04 72.26 67.96 77.86 54.77 62.38 (2.44) 37.07 (1.68)
VSQ 4.5 7.12 (0.58) 40.57 65.81 69.61 77.20 54.82 61.60 (3.22) 37.79 (0.96)

MXFP4 4.25 10.18 (3.64) 39.14 69.61 64.17 75.68 47.60 59.24 (5.58) 32.26 (6.49)
LO-BCQ {64, 8, 2} 4.25 6.74 (0.20) 40.48 75.41 69.14 78.24 56.06 63.87 (0.95) 36.71 (2.04)
LO-BCQ {64, 8, 8} 4.5 6.62 (0.08) 39.43 77.09 70.17 78.62 56.60 64.38 (0.44) 38.13 (0.62)

LO-BCQ {32, 8, 16} 4.75 6.59 (0.05) 39.62 75.35 69.30 78.89 56.64 63.96 (0.86) 38.34 (0.41)

Compared to GPT3 and Llama2 models, LO-BCQ suffers a larger perplexity degradation in this
model. A similar trend is observed for our block quantization baselines VSQ, MX and MXFP. At
equivalent bitwidth LO-BCQ achieves 1.45, 2.75 and 1.94 improvement in perplexity over VSQ,
MX and MXFP, respectively.

Across MMLU tasks, LO-BCQ achieves < 1% loss in average accuracy compared to unquantized
baseline with >= 4.5-bits per scalar. Further, we achieve 5.57%, 6.34% and 4.89% improvement
over MX4, VSQ and MXFP4, respectively, at equivalent bitwidth.

Table 3b compares weight-only (W4A8) LO-BCQ with a block array size of 128 to other weight-
only quantization proposals of comparable block array size and effective bit-width. As shown, LO-
BCQ with 2, 4, 8 and 16 codebooks with effective bitwidth of 4.19, 4.31, 4.44 and 4.56, respectively,
achieves significantly lower perplexity loss. It is worth noting that we evaluate this loss on Wikitext-
103 dataset, which is a much larger dataset compared to Wikitext2 used by other works.

4.3 ABLATION STUDIES

Table 4a shows the perplexity of LO-BCQ on Wikitext-103 dataset and across Llama2-70B and
GPT3-22B models when its configuration is varied. For a given Lb (block length), larger number
of codebooks results in better perplexity. This is intuitive since larger number of codebooks leads
to better representation of the values in each block since LO-BCQ allows it to map to the codebook

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: (a) PTQ Perplexity (lower is better) on Wikitext-103 dataset and MMLU accuracy (higher is better)
with Nemotron4-15B model, and (b) Comparing perplexity loss of weight-only (W4A8) LO-BCQ to other
weight-only quantization works such as GPTQ, AWQ, OmniQ and QuiP#. Here, the LO-BCQ configuration is
denoted by tuple {LA, Lb, Nc} = {Length of block array, Length of block, Number of codebooks}.

Method Bitwidth Wiki3 MMLU (5-shot)
PPL (∆) Avg (∆ %)

Nemotron4-15B

FP32 32 5.87 64.3
MX4 4.5 8.88 (3.01) 58.15 (6.15)
VSQ 4.5 7.58 (1.71) 57.38 (6.92)

MXFP4 4.25 8.24 (2.37) 58.28 (6.02)
LO-BCQ {64, 8, 2} 4.25 6.30 (0.43) 63.17 (1.13)
LO-BCQ {64, 8, 8} 4.5 6.13 (0.26) 63.72 (0.58)

LO-BCQ {32, 8, 16} 4.75 6.03 (0.16) 64.33 (+0.03)
(a)

Method Llama2-7B Llama2-70B
GPTQ 0.22 0.10
AWQ 0.13 0.09

OmniQ 0.27 0.15
QuiP# 0.19 0.10

LO-BCQ {128, 8, 2} 0.14 0.09
LO-BCQ {128, 8, 4} 0.12 0.07
LO-BCQ {128, 8, 8} 0.09 0.06

LO-BCQ {128, 8, 16} 0.08 0.05
(b)

Table 4: Ablation studies: (a) Perplexity on Wikitext-103 dataset across various LO-BCQ configurations, and
(b) Perplexity on Wikitext-103 dataset with universally calibrated vs locally calibrated codebooks

Lb → 8 4 2

LA

Nc 2 4 8 16 2 4 2

Llama2-70B (FP32 PPL = 3.14)

64 3.35 3.25 3.23 3.21 3.31 3.22 3.27
32 3.27 3.24 3.22 3.20 3.25 3.22 3.22
16 3.25 3.22 3.20 3.19 3.23 3.20 3.20

GPT3-22B (FP32 PPL = 6.54)

64 6.74 6.64 6.62 6.63 6.71 6.64 6.64
32 6.67 6.64 6.61 6.59 6.65 6.64 6.60
16 6.67 6.63 6.59 6.61 6.66 6.63 6.62

(a)

Llama2-7B (FP32 PPL = 5.06), Lb = 8

LA

Nc 2 4 8 16

Universally Calibrated Codebooks

64 5.31 5.26 5.19 5.18
32 5.23 5.25 5.18 5.15
16 5.23 5.19 5.16 5.14

Layerwise Calibrated Codebooks

64 5.29 5.22 5.19 5.17
32 5.23 5.19 5.17 5.15
16 5.20 5.17 5.15 5.14

(b)

with best representation. Further, when the block array size is reduced, we achieve better perplexity.
The block array corresponds to the granularity of normalization. As discussed in section 2.3, normal-
ization improves convergence of LO-BCQ and results in better perplexity. Further, when comparing
configurations with same bitwidth (see Table 1), we find that the configuration with larger number
of codebooks is better than smaller block array. This shows that the per-block metadata is better
utilized for codebook selectors than scale factors.

Furthermore, we find that reducing the block length (Lb) below 8 results in diminishing returns.
This is because, the overhead of storing codebook selectors is larger for a smaller block. For a given
bitwidth, configuration with smaller Lb has fewer codebooks. Therefore, these configurations result
in larger loss in perplexity.

Table 4b compares the perplexity with universally calibrated codebooks to codebooks calibrated lay-
erwise (per-tensor) in Llama2-7B model. The layerwise calibrated codebooks achieve slightly better
perplexity when the number of codebooks are small (e.g. Nc = 2). However, they do not provide
significant benefits when Nc > 4 despite the comparatively larger calibration effort. Therefore, in
our experiments in this paper, we have largely explored universally calibrated codebooks.

5 CONCLUSION

The inference accuracy of LLMs during per-block (fine-grained) quantization is significantly influ-
enced by the number format of the operands and per-block scale factors. Several previous works
have explored novel number formats to improve accuracy. However, none have explored per-block
quantization methods involving clustering that minimize quantization MSE. In this work, we pro-
pose LO-BCQ, an iterative block clustering and quantization algorithm that greedily minimizes
quantization MSE for any operand (weights and activations) through locally optimal steps at each
step of the iteration. We demonstrate that LO-BCQ achieves state-of-the-art perplexity across a
suite of GPT3, LLama2 and Nemotron4 models on various downstream tasks such Wikitext-103,
LM evaluation harness and MMLU.
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A APPENDIX

A.1 LLOYD-MAX ALGORITHM

For a given quantization bitwidth B and an operand X , the Lloyd-Max algorithm finds 2B quantiza-
tion levels {x̂i}2

B

i=1 such that quantizing X by rounding each scalar in X to the nearest quantization
level minimizes the quantization MSE.

The algorithm starts with an initial guess of quantization levels and then iteratively computes quan-
tization thresholds {τi}2

B−1
i=1 and updates quantization levels {x̂i}2

B

i=1. Specifically, at iteration n,
thresholds are set to the midpoints of the previous iteration’s levels:

τ
(n)
i =

x̂
(n−1)
i + x̂

(n−1)
i+1

2
for i = 1 . . . 2B − 1

Subsequently, the quantization levels are re-computed as conditional means of the data regions de-
fined by the new thresholds:

x̂
(n)
i = E

[
X

∣∣X ∈ [τ
(n)
i−1, τ

(n)
i ]

]
for i = 1 . . . 2B

where to satisfy boundary conditions we have τ0 = −∞ and τ2B = ∞. The algorithm iterates the
above steps until convergence.
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Figure 8: Quantization levels and the corresponding quantization MSE of Floating Point (left) vs Lloyd-Max
(right) Quantizers for a layer of weights in the GPT3-126M model.

Table 5: Comparing perplexity (lower is better) achieved by floating point quantizers and Lloyd-Max quan-
tizers on a GPT3-126M model for the Wikitext-103 dataset.

Bitwidth Floating-Point Quantizer Lloyd-Max Quantizer
Best Format Perplexity Perplexity

7 E3M3 18.32 18.27
6 E3M2 19.07 18.51
5 E4M0 43.89 19.71

Figure 8 compares the quantization levels of a 7-bit floating point (E3M3) quantizer (left) to a 7-bit
Lloyd-Max quantizer (right) when quantizing a layer of weights from the GPT3-126M model at a
per-tensor granularity. As shown, the Lloyd-Max quantizer achieves substantially lower quantiza-
tion MSE. Further, Table 5 shows the superior perplexity achieved by Lloyd-Max quantizers for
bitwidths of 7, 6 and 5. The difference between the quantizers is clear at 5 bits, where per-tensor FP
quantization incurs a drastic and unacceptable increase in perplexity, while Lloyd-Max quantization
incurs a much smaller increase. Nevertheless, we note that even the optimal Lloyd-Max quantizer
incurs a notable (∼ 1.5) increase in perplexity due to the coarse granularity of quantization.

A.2 PROOF OF LOCAL OPTIMALITY OF LO-BCQ

For a given block bj , the quantization MSE during LO-BCQ can be empirically evaluated as 1
Lb
∥bj−

b̂j∥22 where b̂j is computed from equation (1) as Cf(bj)(bj). Further, for a given block cluster Bi, we

compute the quantization MSE as 1
|Bi|

∑
b∈Bi

1
Lb
∥b− C

(n)
i (b)∥22. Therefore, at the end of iteration

n, we evaluate the overall quantization MSE J (n) for a given operand X composed of Nc block
clusters as:

J (n) =
1

Nc

Nc∑
i=1

1

|B(n)i |

∑
v∈B(n)

i

1

Lb
∥b−B

(n)
i (b)∥22

At the end of iteration n, the codebooks are updated from C(n−1) to C(n). However, the mapping
of a given vector bj to quantizers C(n) remains as f (n)(bj). At the next iteration, during the vector
clustering step, f (n+1)(bj) finds new mapping of bj to updated codebooks C(n) such that the quan-
tization MSE over the candidate codebooks is minimized. Therefore, we obtain the following result
for bj :

1

Lb
∥bj − C

(n)

f(n+1)(bj)
(bj)∥22 ≤

1

Lb
∥bj − C

(n)

f(n)(bj)
(bj)∥22

That is, quantizing bj at the end of the block clustering step of iteration n + 1 results in lower
quantization MSE compared to quantizing at the end of iteration n. Since this is true for all b ∈X ,
we assert the following:

J̃ (n+1) =
1

Nc

Nc∑
i=1

1

|B(n+1)
i |

∑
b∈B(n+1)

i

1

Lb
∥b− C

(n)
i (b)∥22 ≤ J (n)

(9)
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Figure 9: NMSE vs interations during LO-BCQ compared to other block quantization proposals

where J̃ (n+1) is the the quantization MSE after the vector clustering step at iteration n+ 1.

Next, during the codebook update step (6) at iteration n + 1, the per-cluster codebooks C(n) are
updated to C(n+1) by invoking the Lloyd-Max algorithm (Lloyd, 1982). We know that for any given
value distribution, the Lloyd-Max algorithm minimizes the quantization MSE. Therefore, for a given
vector cluster Bi we obtain the following result:

1

|B(n+1)
i |

∑
b∈B(n+1)

i

1

Lb
∥b − C

(n+1)
i (b)∥22 ≤ 1

|B(n+1)
i |

∑
b∈B(n+1)

i

1

Lb
∥b − C

(n)
i (b)∥22 (10)

The above equation states that quantizing the given block cluster Bi after updating the associated
codebook from C

(n)
i to C

(n+1)
i results in lower quantization MSE. Since this is true for all the block

clusters, we derive the following result:

J (n+1) =
1

Nc

Nc∑
i=1

1

|B(n+1)
i |

∑
b∈B(n+1)

i

1

Lb
∥b− C

(n+1)
i (b)∥22 ≤ J̃ (n+1)

(11)

Following (9) and (11), we find that the quantization MSE is non-increasing for each iteration, that
is, J (1) ≥ J (2) ≥ J (3) ≥ . . . ≥ J (M) where M is the maximum number of iterations. ■

Figure 9 shows the empirical convergence of LO-BCQ across several block lengths and number
of codebooks. Also, the MSE achieved by LO-BCQ is compared to baselines such as MXFP and
VSQ. As shown, LO-BCQ converges to a lower MSE than the baselines. Further, we achieve better
convergence for larger number of codebooks (Nc) and for a smaller block length (Lb), both of which
increase the bitwidth of BCQ (see Eq 3).

A.3 ADDITIONAL ACCURACY RESULTS

A.4 NUMBER FORMATS AND QUANTIZATION METHOD

A.4.1 INTEGER FORMAT

An n-bit signed integer (INT) is typically represented with a 2s-complement format (Yao et al.,
2022; Xiao et al., 2023; Dai et al., 2021), where the most significant bit denotes the sign.

A.4.2 FLOATING POINT FORMAT

An n-bit signed floating point (FP) number x comprises of a 1-bit sign (xsign), Bm-bit mantissa
(xmant) and Be-bit exponent (xexp) such that Bm +Be = n− 1. The associated constant exponent
bias (Ebias) is computed as (2Be−1 − 1). We denote this format as EBeMBm .
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Lb → 8 4 2

LA

Nc 2 4 8 16 2 4 2

GPT3-1.3B (FP32 PPL = 9.98)
64 10.40 10.23 10.17 10.15 10.28 10.18 10.19
32 10.25 10.20 10.15 10.12 10.23 10.17 10.17
16 10.22 10.16 10.10 10.09 10.21 10.14 10.16

GPT3-8B (FP32 PPL = 7.38)
64 7.61 7.52 7.48 7.47 7.55 7.49 7.50
32 7.52 7.50 7.46 7.45 7.52 7.48 7.48
16 7.51 7.48 7.44 7.44 7.51 7.49 7.47

Table 6: Wikitext-103 perplexity across GPT3-1.3B and 8B models.

Lb → 8

LA

Nc 2 4 8 16

Llama2-7B (FP32 PPL = 5.06)
64 5.31 5.26 5.19 5.18
32 5.23 5.25 5.18 5.15
16 5.23 5.19 5.16 5.14

Nemotron4-15B (FP32 PPL = 5.87)
64 6.3 6.20 6.13 6.08
32 6.24 6.12 6.07 6.03
16 6.12 6.14 6.04 6.02

Nemotron4-340B (FP32 PPL = 3.48)
64 3.67 3.62 3.60 3.59
32 3.63 3.61 3.59 3.56
16 3.61 3.58 3.57 3.55

Table 7: Wikitext-103 perplexity compared to FP32 baseline in Llama2-7B and Nemotron4-15B,
340B models

Lb → 8 8

LA

Nc 2 4 8 16 2 4 8 16

Llama2-7B (FP32 Accuracy = 45.8%) Llama2-70B (FP32 Accuracy = 69.12%)
64 43.9 43.4 43.9 44.9 68.07 68.27 68.17 68.75
32 44.5 43.8 44.9 44.5 68.37 68.51 68.35 68.27
16 43.9 42.7 44.9 45 68.12 68.77 68.31 68.59
GPT3-22B (FP32 Accuracy = 38.75%) Nemotron4-15B (FP32 Accuracy = 64.3%)
64 36.71 38.85 38.13 38.92 63.17 62.36 63.72 64.09
32 37.95 38.69 39.45 38.34 64.05 62.30 63.8 64.33
16 38.88 38.80 38.31 38.92 63.22 63.51 63.93 64.43

Table 8: Accuracy on MMLU dataset across GPT3-22B, Llama2-7B, 70B and Nemotron4-15B
models.
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Lb → 8 8

LA

Nc 2 4 8 16 2 4 8 16

Race (FP32 Accuracy = 37.51%) Boolq (FP32 Accuracy = 64.62%)
64 36.94 37.13 36.27 37.13 63.73 62.26 63.49 63.36
32 37.03 36.36 36.08 37.03 62.54 63.51 63.49 63.55
16 37.03 37.03 36.46 37.03 61.1 63.79 63.58 63.33

Winogrande (FP32 Accuracy = 58.01%) Piqa (FP32 Accuracy = 74.21%)
64 58.17 57.22 57.85 58.33 73.01 73.07 73.07 72.80
32 59.12 58.09 57.85 58.41 73.01 73.94 72.74 73.18
16 57.93 58.88 57.93 58.56 73.94 72.80 73.01 73.94

Table 9: Accuracy on LM evaluation harness tasks on GPT3-1.3B model.

Lb → 8 8

LA

Nc 2 4 8 16 2 4 8 16

Race (FP32 Accuracy = 41.34%) Boolq (FP32 Accuracy = 68.32%)
64 40.48 40.10 39.43 39.90 69.20 68.41 69.45 68.56
32 39.52 39.52 40.77 39.62 68.32 67.43 68.17 69.30
16 39.81 39.71 39.90 40.38 68.10 66.33 69.51 69.42

Winogrande (FP32 Accuracy = 67.88%) Piqa (FP32 Accuracy = 78.78%)
64 66.85 66.61 67.72 67.88 77.31 77.42 77.75 77.64
32 67.25 67.72 67.72 67.00 77.31 77.04 77.80 77.37
16 68.11 68.90 67.88 67.48 77.37 78.13 78.13 77.69

Table 10: Accuracy on LM evaluation harness tasks on GPT3-8B model.

Lb → 8 8

LA

Nc 2 4 8 16 2 4 8 16

Race (FP32 Accuracy = 40.67%) Boolq (FP32 Accuracy = 76.54%)
64 40.48 40.10 39.43 39.90 75.41 75.11 77.09 75.66
32 39.52 39.52 40.77 39.62 76.02 76.02 75.96 75.35
16 39.81 39.71 39.90 40.38 75.05 73.82 75.72 76.09

Winogrande (FP32 Accuracy = 70.64%) Piqa (FP32 Accuracy = 79.16%)
64 69.14 70.17 70.17 70.56 78.24 79.00 78.62 78.73
32 70.96 69.69 71.27 69.30 78.56 79.49 79.16 78.89
16 71.03 69.53 69.69 70.40 78.13 79.16 79.00 79.00

Table 11: Accuracy on LM evaluation harness tasks on GPT3-22B model.

Lb → 8 8

LA

Nc 2 4 8 16 2 4 8 16

Race (FP32 Accuracy = 44.4%) Boolq (FP32 Accuracy = 79.29%)
64 42.49 42.51 42.58 43.45 77.58 77.37 77.43 78.1
32 43.35 42.49 43.64 43.73 77.86 75.32 77.28 77.86
16 44.21 44.21 43.64 42.97 78.65 77 76.94 77.98

Winogrande (FP32 Accuracy = 69.38%) Piqa (FP32 Accuracy = 78.07%)
64 68.9 68.43 69.77 68.19 77.09 76.82 77.09 77.86
32 69.38 68.51 68.82 68.90 78.07 76.71 78.07 77.86
16 69.53 67.09 69.38 68.90 77.37 77.8 77.91 77.69

Table 12: Accuracy on LM evaluation harness tasks on Llama2-7B model.
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Lb → 8 8

LA

Nc 2 4 8 16 2 4 8 16

Race (FP32 Accuracy = 48.8%) Boolq (FP32 Accuracy = 85.23%)
64 49.00 49.00 49.28 48.71 82.82 84.28 84.03 84.25
32 49.57 48.52 48.33 49.28 83.85 84.46 84.31 84.93
16 49.85 49.09 49.28 48.99 85.11 84.46 84.61 83.94

Winogrande (FP32 Accuracy = 79.95%) Piqa (FP32 Accuracy = 81.56%)
64 78.77 78.45 78.37 79.16 81.45 80.69 81.45 81.5
32 78.45 79.01 78.69 80.66 81.56 80.58 81.18 81.34
16 79.95 79.56 79.79 79.72 81.28 81.66 81.28 80.96

Table 13: Accuracy on LM evaluation harness tasks on Llama2-70B model.

A.4.3 MX FORMAT

The MX format proposed in (Rouhani et al., 2023a) introduces the concept of sub-block shifting. For
every two scalar elements of b-bits each, there is a shared exponent bit. The value of this exponent
bit is determined through an empirical analysis that targets minimizing quantization MSE. We note
that the FP format E1Mb is strictly better than MX from an accuracy perspective since it allocates
a dedicated exponent bit to each scalar as opposed to sharing it across two scalars. Therefore, we
conservatively bound the accuracy of a b + 2-bit signed MX format with that of a E1Mb format in
our comparisons. For instance, we use E1M2 format as a proxy for MX4.

A.4.4 QUANTIZATION SCHEME

A quantization scheme dictates how a given unquantized tensor is converted to its quantized rep-
resentation. We consider FP formats for the purpose of illustration. Given an unquantized tensor
X and an FP format EBe

MBm
, we first, we compute the quantization scale factor sX that maps

the maximum absolute value of X to the maximum quantization level of the EBe
MBm

format as
follows:

sX =
max(|X|)

max(EBeMBm)
(12)

In the above equation, | · | denotes the absolute value function.

Next, we scale X by sX and quantize it to X̂ by rounding it to the nearest quantization level of
EBe

MBm
as:

X̂ = round-to-nearest
(
X

sX
, EBeMBm

)
(13)

We perform dynamic max-scaled quantization (Wu et al., 2020b), where the scale factor s for acti-
vations is dynamically computed during runtime.

A.5 VECTOR SCALED QUANTIZATION

Figure 10: Vectorwise decomposi-
tion for per-vector scaled quantization
(VSQ (Dai et al., 2021)).

During VSQ (Dai et al., 2021), the operand tensors are de-
composed into 1D vectors in a hardware friendly manner as
shown in Figure 10. Since the decomposed tensors are used
as operands in matrix multiplications during inference, it is
beneficial to perform this decomposition along the reduction
dimension of the multiplication. The vectorwise quantization
is performed similar to tensorwise quantization described in
Equations 12 and 13, where a scale factor sv is required for
each vector v that maps the maximum absolute value of that
vector to the maximum quantization level. While smaller vec-
tor lengths can lead to larger accuracy gains, the associated
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memory and computational overheads due to the per-vector
scale factors increases. To alleviate these overheads, VSQ (Dai
et al., 2021) proposed a second level quantization of the per-vector scale factors to unsigned integers,
while MX (Rouhani et al., 2023b) quantizes them to integer powers of 2 (denoted as 2INT ).
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